JP2020181926A - Joining structure of high crystalline graphite, and joining method - Google Patents

Joining structure of high crystalline graphite, and joining method Download PDF

Info

Publication number
JP2020181926A
JP2020181926A JP2019085076A JP2019085076A JP2020181926A JP 2020181926 A JP2020181926 A JP 2020181926A JP 2019085076 A JP2019085076 A JP 2019085076A JP 2019085076 A JP2019085076 A JP 2019085076A JP 2020181926 A JP2020181926 A JP 2020181926A
Authority
JP
Japan
Prior art keywords
graphite
oxide
joining
bonding
crystalline graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019085076A
Other languages
Japanese (ja)
Inventor
敏之 上野
Toshiyuki Ueno
敏之 上野
吉弘 守谷
Yoshihiro Moriya
吉弘 守谷
克洋 竹馬
Katsuhiro Takeuma
克洋 竹馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORIYA HAMONO KENKYUSHO KK
Shimane Prefecture
Thermo Graphitics Co Ltd
Original Assignee
MORIYA HAMONO KENKYUSHO KK
Shimane Prefecture
Thermo Graphitics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORIYA HAMONO KENKYUSHO KK, Shimane Prefecture, Thermo Graphitics Co Ltd filed Critical MORIYA HAMONO KENKYUSHO KK
Priority to JP2019085076A priority Critical patent/JP2020181926A/en
Publication of JP2020181926A publication Critical patent/JP2020181926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a heat-dissipating joined body having a high strength and easy to manufacture, taking advantage of a high heat conductivity of a high crystalline graphite, such as graphite.SOLUTION: According to the present invention, a joining layer 3 made of metal or oxide is formed between lamination planes of a plurality of plate-like or sheet-like graphite sheets 1 made of high crystalline graphite, which serves to join the graphite sheets to each other. The metal is iron, cobalt or nickel, and the oxide is titanium oxide or vanadium oxide. By laminating the plurality of plate-like or sheet-like graphite sheets 1 made of high crystalline graphite are laminated, interposing a joining material 2 composed of a thin film made of metal or oxide between lamination planes of the graphite sheets 1, and heating and pressing the graphite sheets 1 thus laminated under a reduced pressure, carbide is produced between lamination planes of the graphite sheets 1 to form the joining layer 3 for joining the graphite sheets to each other.SELECTED DRAWING: Figure 1

Description

この発明は例えば半導体や電子部品等の放熱・冷却用のヒートスプレッダ又はヒートシンク等の材料として用いられる高結晶性黒鉛の接合構造及び接合方法に関する。 The present invention relates to, for example, a bonding structure and a bonding method of highly crystalline graphite used as a material for a heat spreader or a heat sink for heat dissipation and cooling of semiconductors and electronic components.

近年自動車は、HV、EV等電動化が進んでおり、高効率に出力制御を行えるパワー半導体の高性能化が進んでいる。パワー半導体の高性能化にともなって、半導体の冷却が重要な課題となっている。半導体の直近にあるヒートスプレッダの熱伝導率を高めることが冷却効率を高める重要な点であり、現状では銅やアルミニウムといった金属が用いられてきた。 In recent years, automobiles have been electrified such as HVs and EVs, and power semiconductors capable of highly efficient output control have been improved in performance. As the performance of power semiconductors increases, the cooling of semiconductors has become an important issue. Increasing the thermal conductivity of the heat spreader in the immediate vicinity of the semiconductor is an important point for increasing the cooling efficiency, and at present, metals such as copper and aluminum have been used.

このように、より高熱伝導な素材が求められる中で、高結晶性の熱分解黒鉛(Pyrolytic Graphite=PG)等のグラファイト系材料や人造黒鉛等の高純度の炭素材が着目されてきている。しかしグラファイトは熱伝導方向が結晶構造に依存して強い異方性を示す。すなわち結晶ab軸の二軸となる面内ではダイヤモンドに匹敵し銅の3から4倍となる高熱伝動率を示すのに対し、結晶c軸方向では樹脂(銅の1/100以下)程度の熱伝導率しか示さない。また、グラファイトは接合の難しい材料であり、熱伝導性を損なわない接合は非常に困難であった。 As described above, in the demand for a material having higher thermal conductivity, graphite-based materials such as highly crystalline pyrolytic graphite (PG) and high-purity carbon materials such as artificial graphite have been attracting attention. However, graphite shows strong anisotropy depending on the crystal structure in the heat conduction direction. That is, while the biaxial plane of the crystal ab axis shows a high thermal conductivity comparable to that of diamond and 3 to 4 times that of copper, the heat of about resin (1/100 or less of copper) in the direction of the crystal c axis. Shows only conductivity. Further, graphite is a material that is difficult to join, and it is very difficult to join without impairing thermal conductivity.

これに対し、従来特許文献1に示されるようにグラファイト部材間に銀,銅,チタンを含む結合材を介在させ、これを加熱融合させることによってグラファイト部材を加熱接合する技術が公知である。 On the other hand, conventionally, as shown in Patent Document 1, a technique is known in which a binder containing silver, copper, and titanium is interposed between graphite members, and the graphite members are heat-bonded by heating and fusing the binder.

さらに、特許文献2に示されるように、一対の金属又はセラミック製の基板間にシート状のバルクグラフェン材料を介挿入し、バルクグラフェン材料と基板の重ね合せ面に、チタン,ジルコニウムその他の炭化物形成薬剤を含む金属材料(銀,錫その他)系熱結合層を設けて加熱接合する技術が公知である。 Further, as shown in Patent Document 2, a sheet-shaped bulk graphene material is inserted between a pair of metal or ceramic substrates, and titanium, zirconium or other carbides are formed on the overlapping surface of the bulk graphene material and the substrate. A technique for providing a heat-bonding layer of a metal material (silver, tin, etc.) containing a chemical and heat-bonding is known.

特開2017−112334号公報Japanese Unexamined Patent Publication No. 2017-11234 特開2015−532531号公報Japanese Unexamined Patent Publication No. 2015-532531

しかし特許文献1の発明で接合層として形成されるチタンカーバイド(TiC)の熱伝導率は20W/m/K程度と低く、このため、接合層材の熱伝導率の低さのため、接合層厚みは5μm以下でなければ接合体全体の熱伝導率を大きく損なうという欠点がある。さらに上記発明では、接合材としてはスラリーでも良いと記載されているものの、金属箔の使用が推奨されており、チタンは展延性が低いため10μm以下の箔とすることが困難である。他方、スラリーは金属粉を有機溶媒で練ったものであるが、脆いセラミックスと比べ金属は微粉化が困難であり、表面が酸化しやすいため接合材の出発材としては使用が難しく、そのためチタンカーバイドを金属チタンとの反応による接合材とした場合、実用に耐える程度に十分薄くすることが困難である。ちなみに特許文献1には、接合材として0.05mm(=50μm)の金属箔が用いられている([0028]参照)。 However, the thermal conductivity of titanium carbide (TiC) formed as a bonding layer in the invention of Patent Document 1 is as low as about 20 W / m / K. Therefore, due to the low thermal conductivity of the bonding layer material, the bonding layer If the thickness is not 5 μm or less, there is a drawback that the thermal conductivity of the entire joint is significantly impaired. Further, in the above invention, although it is described that a slurry may be used as the bonding material, the use of a metal foil is recommended, and it is difficult to make a foil of 10 μm or less because titanium has low malleability. On the other hand, slurries are made by kneading metal powder with an organic solvent, but compared to brittle ceramics, metal is more difficult to pulverize and the surface is easily oxidized, making it difficult to use as a starting material for bonding materials. Therefore, titanium carbide When is used as a bonding material by reaction with metallic titanium, it is difficult to make it sufficiently thin enough to withstand practical use. Incidentally, in Patent Document 1, a metal foil of 0.05 mm (= 50 μm) is used as a bonding material (see [0028]).

特許文献2の発明はシート状のバルクグラフェン(グラファイト)材料の両面に金属又はセラミック製の基板を接合するもので、グラファイト同士を接合するものではないものの、両者の接合面間には炭化物を形成するチタンやジルコニウム等からなる薬剤(又は活性化剤)を含む金属系被覆(熱結合層)を配置し加熱接合するものである([0032]参照)。 The invention of Patent Document 2 is to join a metal or ceramic substrate to both sides of a sheet-shaped bulk graphene (graphite) material, and although it is not to join graphite to each other, carbide is formed between the joining surfaces of both. A metal-based coating (thermally bonded layer) containing a chemical (or activator) made of titanium, zirconium, or the like is arranged and heat-bonded (see [0032]).

そして既述のように金属は微粉化することが困難なことを考慮すると、特許文献2に示す金属系被覆材粉は、予め銀,錫,鉛等の金属に薬剤としてのチタンやジルコニウムを添加した合金([0033]参照)を、0.01〜1.0mm厚の厚み([0034]参照)の金属箔に加工形成したものと解される。 Considering that it is difficult to atomize a metal as described above, the metal-based coating material powder shown in Patent Document 2 is prepared by adding titanium or zirconium as a chemical to a metal such as silver, tin, or lead in advance. It is understood that the alloy (see [0033]) is processed and formed into a metal foil having a thickness of 0.01 to 1.0 mm (see [0034]).

このことは異種材料の接合に一般的に用いられるろう付やはんだ付による場合、グラフェンとろう付やはんだ間の熱障壁のために高い熱界面抵抗を示すことと、引用文献2の発明を対比している点からも明らかである([0040],[0041]参照)。 This contrasts the invention of Cited Document 2 with the fact that when brazing or soldering, which is generally used for joining dissimilar materials, shows high thermal interface resistance due to the thermal barrier between graphene and brazing or soldering. It is also clear from this point (see [0040] and [0041]).

上記課題を解決するための本発明の接合構造又は接合方法は、第1に高結晶性黒鉛よりなるプレート状又はシート状の複数枚の黒鉛シート1の積層面間に、黒鉛シート同士を接合する金属又は酸化物よりなる接合層3を形成したことを特徴としている。 In the joining structure or joining method of the present invention for solving the above problems, first, graphite sheets are joined between laminated surfaces of a plurality of plate-shaped or sheet-shaped graphite sheets 1 made of highly crystalline graphite. It is characterized in that a bonding layer 3 made of metal or oxide is formed.

第2に、金属が鉄,コバルト又はニッケルであることを特徴としている。 Secondly, the metal is iron, cobalt or nickel.

第3に、酸化物が酸化チタン又は酸化バナジウムであることを特徴としている。 Thirdly, the oxide is titanium oxide or vanadium oxide.

第4に、接合層3の平均膜厚が0.5〜20μmであることを特徴としている。 Fourth, the bonding layer 3 is characterized in that the average film thickness is 0.5 to 20 μm.

第5に、金属が鉄であって接合層3の平均膜厚が50μm以下であることを特徴としている。 Fifth, the metal is iron and the average film thickness of the bonding layer 3 is 50 μm or less.

第6に、接合層の平均膜厚が0.5〜5μmであることを特徴としている。 Sixth, the average film thickness of the bonding layer is 0.5 to 5 μm.

第7に、積層された黒鉛シート1の黒鉛の結晶方位を交差させた状態で重ね合わせて接合したことを特徴としている。 Seventh, it is characterized in that the graphite sheets 1 of the laminated graphite sheets 1 are overlapped and joined in a state where the crystal orientations are crossed.

第8に、高結晶性黒鉛よりなるプレート状又はシート状の複数枚の黒鉛シート1を積層し、各黒鉛シート1の積層面間に金属又は酸化物よりなる薄膜の接合材2を介在させ、積層された上記黒鉛シート1を減圧下で加熱加圧することにより、上記黒鉛シート1の積層面間において炭化物を生成し黒鉛シート同士を接合する接合層3を形成することを特徴としている。 Eighth, a plurality of plate-shaped or sheet-shaped graphite sheets 1 made of highly crystalline graphite are laminated, and a thin bonding material 2 made of metal or oxide is interposed between the laminated surfaces of each graphite sheet 1. By heating and pressurizing the laminated graphite sheets 1 under reduced pressure, carbides are generated between the laminated surfaces of the graphite sheets 1 to form a bonding layer 3 for joining the graphite sheets to each other.

第9に、接合材2に鉄,コバルト,ニッケル又はこれらの酸化物又は酸化チタン,酸化バナジウムのいずれかを使用することを特徴としている。 Ninth, it is characterized in that iron, cobalt, nickel or oxides thereof or titanium oxide or vanadium oxide is used for the bonding material 2.

第10に、接合材2として酸化鉄,酸化コバルト,酸化バナジウム,酸化チタン,ニッケルのいずれかを微粉末化したものを黒鉛シート1の積層面に付着させ、接合層3として成膜させることを特徴としている。 Tenth, a fine powder of iron oxide, cobalt oxide, vanadium oxide, titanium oxide, or nickel as the bonding material 2 is adhered to the laminated surface of the graphite sheet 1 to form a film as the bonding layer 3. It is a feature.

第11に、微粉末化した接合材2を低級アルコールを添加した懸濁液として黒鉛シート1の積層面に塗布し乾燥させることを特徴としている。 Eleventh, it is characterized in that the finely powdered bonding material 2 is applied to the laminated surface of the graphite sheet 1 as a suspension to which a lower alcohol is added and dried.

第12に、接合材2をスパッタリングその他の物理蒸着法により黒鉛シート1の積層面に付着させることを特徴としている。 The twelfth feature is that the bonding material 2 is adhered to the laminated surface of the graphite sheet 1 by sputtering or other physical vapor deposition method.

第13に、微粉末化した接合材2の粒径が2μm以下であることを特徴としている。 Thirteenth, the finely powdered bonding material 2 is characterized in that the particle size is 2 μm or less.

第14に、接合材2として鉄箔を使用することを特徴としている。 Fourteenth, it is characterized in that iron foil is used as the bonding material 2.

以上のように構成される本発明によれば、多数の黒鉛シート同士を薄膜の接合層で接合し、高結晶性黒鉛の特性を活かした高熱伝導率又は界面低熱抵抗値の放熱部材を得ることができる。特に微粉末化された接合材を用いる場合は、黒鉛シートの接合面に懸濁液化して塗布し又はスパッタリング等による成膜によって極薄膜の接合層を形成できるので、炭化物を生成させるための素材を添加した合金を予め生成し又はこれを金属箔に形成する方法に限定されることがなく、極薄の成膜が可能でしかも高強度である。特に鉄は黒鉛(炭素)との相性が良く高強度の接合層が得られ、酸化鉄の場合はさらに薄膜で強度が高い。 According to the present invention configured as described above, a large number of graphite sheets are bonded to each other with a thin film bonding layer to obtain a heat radiating member having a high thermal conductivity or an interfacial low thermal resistance value utilizing the characteristics of high crystalline graphite. Can be done. In particular, when a finely powdered bonding material is used, an ultrathin film bonding layer can be formed by suspending and coating on the bonding surface of a graphite sheet or by forming a film by sputtering or the like, so that a material for generating carbides. The alloy is not limited to the method of forming the alloy in advance or forming the alloy into a metal foil, and an ultra-thin film can be formed and the strength is high. In particular, iron has good compatibility with graphite (carbon) and a high-strength bonding layer can be obtained, and in the case of iron oxide, it is a thinner film and has higher strength.

また懸濁液にエタノールその他の低級アルコールを用いる場合、塗布後の乾燥性に優れ、安全性やコスト面でも優位であるほか、親水基と新油基を有しており、酸化物粉末とは親水基により馴染みが良いほか、黒鉛シート表面とは新油基が馴染むため均一な塗布が可能である。
その他の本発明の効果については実施形態の説明中で説明する。
When ethanol or other lower alcohol is used for the suspension, it has excellent drying properties after application, is superior in terms of safety and cost, and has a hydrophilic group and a new oil group. What is an oxide powder? In addition to being more familiar with the hydrophilic group, the new oil group is compatible with the surface of the graphite sheet, so uniform application is possible.
Other effects of the present invention will be described in the description of the embodiments.

(A)〜(C)は本発明の接合方法による接合過程を説明する模視図である。(A) to (C) are schematic views explaining the joining process by the joining method of the present invention. 本発明の接合を実施するための装置の説明用模視図である。It is a schematic diagram for explanation of the apparatus for carrying out the joining of this invention. 接合構造の断面図と厚み方向の熱抵抗の関係を示す説明図である。It is explanatory drawing which shows the relationship between the cross-sectional view of a joint structure and the thermal resistance in a thickness direction. 接合構造の断面図と熱回路の関係を示す説明図である。It is explanatory drawing which shows the relationship between the cross-sectional view of a junction structure and a thermal circuit. 接合体の総厚さを2mmとした場合の黒鉛シートの接合部における接合層(膜)の厚みと見かけ熱伝導率の関係を示すグラフである。It is a graph which shows the relationship between the thickness of the bonding layer (membrane) in the bonding portion of a graphite sheet, and the apparent thermal conductivity when the total thickness of the bonded body is 2 mm. 異方性を持つ黒鉛シートの熱伝導率の低下を防止する積層(接合)構造を示す接合体の説明用斜視図である。It is explanatory perspective view of the bonded body which shows the laminated (junction) structure which prevents the decrease of thermal conductivity of a graphite sheet which has anisotropy. 本発明の実施例1による接合体断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of a cross section of a zygote according to Example 1 of the present invention. 本発明の実施例2による接合体断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of a cross section of a zygote according to Example 2 of the present invention. 本発明の実施例3による接合体断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of a cross section of a zygote according to Example 3 of the present invention. 本発明の実施例6による接合体断面の走査電子顕微鏡写真である。6 is a scanning electron micrograph of a cross section of a bonded body according to Example 6 of the present invention. 本発明の実施例7による接合体断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of a cross section of a zygote according to Example 7 of the present invention.

以下本発明の実施形態を図面を参照しながら説明する。
黒鉛は高耐熱,高熱伝導,良導体などの特性を備えているが、既述のようにこれらの特性を損なわずその特性を活かした実用性に富んだ接合法は少ない。本発明の発明者等は、いくつかの金属,酸化物を薄層の接合体として用いることが黒鉛の接合に適していることを見出したために、これらによる黒鉛の接合構造とその接合法を提供するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Graphite has properties such as high heat resistance, high thermal conductivity, and good conductor, but as mentioned above, there are few practical joining methods that utilize these properties without impairing these properties. Since the inventors of the present invention have found that the use of some metals and oxides as a thin-layer bonded body is suitable for bonding graphite, they provide a graphite bonding structure and a bonding method thereof. Is what you do.

高結晶性の熱分解黒鉛(Pyrolytic Graphite:PG)や人造黒鉛等の高結晶性黒鉛は高純度の炭素であって熱的安定性に優れている。とりわけPG材はほぼ単結晶の黒鉛であり、1000W/m/K以上に達する非常に高い熱伝導率を結晶ab軸に沿った面内に有している一方、結晶c軸方向には数W/m/Kと大きな異方性を有している高結晶性黒鉛の高熱伝導特性を活用し、電子機器等の放熱に利用しようとした場合、PG同士の接合部の熱抵抗が大きな問題となる。本発明では主としてPG同士を低熱抵抗に接合し、高性能な放熱機構を構成するための接合構造と接合方法を提供するとともに、この方法の応用により、熱伝導の異方性を緩和しようとするものである。 Highly crystalline graphite such as highly crystalline pyrolytic graphite (PG) and artificial graphite is high-purity carbon and has excellent thermal stability. In particular, the PG material is almost single crystal graphite and has a very high thermal conductivity of 1000 W / m / K or more in the plane along the crystal ab axis, while several W in the crystal c-axis direction. When trying to utilize the high thermal conductivity characteristics of highly crystalline graphite, which has a large anisotropy of / m / K, for heat dissipation of electronic devices, etc., the thermal resistance at the junction between PGs becomes a major problem. Become. The present invention mainly provides a bonding structure and a bonding method for bonding PGs to each other with low thermal resistance to form a high-performance heat dissipation mechanism, and attempts to alleviate the anisotropy of heat conduction by applying this method. It is a thing.

この発明の黒鉛の接合部の構造においては接合層が鉄,コバルト,ニッケル,酸化チタン,酸化バナジウムからなり、生成される接合層が十分に薄いこと、放熱用途に使用するためには、後で詳述するように接合層が鉄,コバルト,ニッケルの金属である場合は20ミクロン以下、酸化チタン,酸化バナジウムの酸化物からなる場合は5ミクロン以下が望ましい。これらの上記条件を満たすことで、接合層による面積当たりの熱抵抗(熱抵抗率)は5×10-7K/m2/W以下となる。 In the structure of the graphite junction of the present invention, the junction layer is composed of iron, cobalt, nickel, titanium oxide, and vanadium oxide, and the resulting junction layer is sufficiently thin, so that it can be used for heat dissipation later. As described in detail, it is desirable that the bonding layer is 20 microns or less when the bonding layer is a metal of iron, cobalt, or nickel, and 5 microns or less when the bonding layer is composed of an oxide of titanium oxide or vanadium oxide. By satisfying these above conditions, the thermal resistance (thermal resistance) per area of the bonding layer is 5 × 10 -7 K / m 2 / W or less.

シート状又はプレート状の黒鉛は結晶方位に依存する高熱伝導面が存在するが、この発明のシート状黒鉛2枚以上を接合した板材においては、高熱伝導面を板厚方向と板面内のもう一方向、次の面の高熱伝導方向を板厚方向と板面内の別方向とすることで黒鉛の熱伝導異方性を緩和した積層構造にするものである。 Sheet-shaped or plate-shaped graphite has a high thermal conductive surface that depends on the crystal orientation, but in the plate material in which two or more sheet-shaped graphite sheets of the present invention are joined, the high thermal conductive surface is set in the plate thickness direction and in the plate surface. By setting the high heat conduction direction of one direction and the next surface to the plate thickness direction and another direction in the plate surface, a laminated structure in which the heat conduction anisotropy of graphite is relaxed is formed.

接合層の元となる物質は、代表的な実施形態としては酸化物粉末を溶媒で懸濁液としてスプレーなどで黒鉛に噴霧することで供給される。すなわち、酸化物は金属と異なり、脆いために微粒化が容易であり、これをアルコール系溶媒に懸濁させてエアブラシなどを用いて噴霧することで薄く均一な接合層の形成が可能である。 As a typical embodiment, the substance that is the source of the bonding layer is supplied by spraying oxide powder as a suspension with a solvent onto graphite by spraying or the like. That is, unlike metals, oxides are brittle and therefore easily atomized, and by suspending them in an alcohol solvent and spraying them with an airbrush or the like, a thin and uniform bonding layer can be formed.

別の方法として,スパッタリング等の成膜法で接合層の元となる物質を供給することもできる。接合前の状態としては、鉄,コバルト,ニッケルは金属であっても酸化物であっても良いが、酸化チタン,酸化バナジウムは酸化物として成膜される。 As another method, a substance that is the source of the bonding layer can be supplied by a film forming method such as sputtering. As for the state before bonding, iron, cobalt, and nickel may be metals or oxides, but titanium oxide and vanadium oxide are formed as oxides.

接合は900℃以上(酸化鉄は1200℃以上)の真空,高温,加圧処理を行い、PGのように高結晶性かつ単結晶に近い黒鉛の場合、結晶の方位をコントロールして接合することで熱拡散のできる放熱板が構成できる。黒鉛としてはPGのほかに多結晶黒鉛,グラフェン,炭素繊維等の高結晶性黒鉛が対象となる。 The bonding should be performed under vacuum, high temperature, and pressure treatment at 900 ° C or higher (1200 ° C or higher for iron oxide), and in the case of graphite with high crystallinity and close to single crystal such as PG, the crystal orientation should be controlled for bonding. A heat dissipation plate capable of heat diffusion can be constructed with. In addition to PG, high crystalline graphite such as polycrystalline graphite, graphene, and carbon fiber is targeted as graphite.

黒鉛材同士の接合に際しては、先ず黒鉛材表面に接合層の元となる原料を固定する。固定には酸化物状態のセラミックス粉末を使用する場合は、懸濁液として噴霧により塗布する方法か、スパッタリングなどの成膜法で膜を形成する方法を採ることが出来る。接合には真空中で接合面垂直方向に1cm2あたり数10〜数100kg重の荷重をかけながら加熱する。このことで酸化物の接合層原料を用いた場合は酸化物が完全にまたは一部が黒鉛材の炭素により還元され黒鉛材同士を接合する。 When joining graphite materials, the raw material that is the source of the bonding layer is first fixed to the surface of the graphite material. When an oxide-state ceramic powder is used for fixing, a method of applying by spraying as a suspension or a method of forming a film by a film forming method such as sputtering can be adopted. For joining, heat in a vacuum in the direction perpendicular to the joining surface while applying a load of several to several hundreds of kg per 1 cm 2 . As a result, when the oxide bonding layer raw material is used, the oxide is completely or partially reduced by the carbon of the graphite material, and the graphite materials are bonded to each other.

図1(A)〜(C)は上記接合状態を示す模式図で、図示するようにグラファイト等の高結晶性黒鉛からなる一対のシート状又はプレート状の黒鉛シート1,1を重ね合せ、この重ね合せ面間にこの例では微粉砕された酸化鉄(Fe23)を接合材2として介在させ、真空環境下で加熱・加圧することにより、上下の黒鉛と酸化鉄により炭化物を生成させることにより、上下の黒鉛シート1,1間に接合層3を生成させ、黒鉛シート1,1同士を一体的に接合する状態を表している。 1 (A) to 1 (C) are schematic views showing the above-mentioned bonding state, and as shown in the drawing, a pair of sheet-shaped or plate-shaped graphite sheets 1 and 1 made of highly crystalline graphite such as graphite are superposed. In this example, finely pulverized iron oxide (Fe 2 O 3 ) is interposed between the overlapping surfaces as the bonding material 2, and by heating and pressurizing in a vacuum environment, carbides are generated by the upper and lower graphite and iron oxide. As a result, the bonding layer 3 is generated between the upper and lower graphite sheets 1, 1 and the graphite sheets 1, 1 are integrally bonded to each other.

この接合作業には放電プラズマ焼結装置を使用することが出来る。この装置は加熱のためのパルス大電流をサンプル直接印加するが、電流によって拡散が促進され、各種焼結体を迅速に焼結できる。 A discharge plasma sintering apparatus can be used for this joining operation. This device applies a large pulse current for heating directly to the sample, but the current promotes diffusion and allows various sintered bodies to be quickly sintered.

図2はこの発明の実施に使用する公知の放電プラズマ焼結装置4の説明図で、真空容器からなる本体部6内の上下にパルス大電流を発生させて通電し、プラズマを発生するプラズマ発生装置7と、内部に図2(A)のように重ね合わされた黒鉛シート1,1を位置決め収容する導電性のダイス8及びダイス8内で上記積層された黒鉛シート1を加圧するポンチを備えた加圧装置9とで構成されている。 FIG. 2 is an explanatory view of a known discharge plasma sintering apparatus 4 used for carrying out the present invention, in which a large pulse current is generated up and down in a main body 6 composed of a vacuum vessel to energize and generate plasma. The apparatus 7 is provided with a conductive die 8 for positioning and accommodating the graphite sheets 1 and 1 stacked as shown in FIG. 2 (A) inside, and a punch for pressurizing the laminated graphite sheet 1 in the die 8. It is composed of a pressurizing device 9.

なお、上記放電プラズマ焼結法においては、真空中で高温加熱し、一軸加圧で実施することが重要であるが、この条件を実現できる装置としてホットプレス,雰囲気制御炉(ただし加圧は重石などで弱く欠けるにとどまる),HIPなどが挙げられる。 In the above discharge plasma sintering method, it is important to heat at a high temperature in a vacuum and carry out by uniaxial pressurization. As a device capable of realizing this condition, a hot press and an atmosphere control furnace (however, pressurization is a heavy stone). It is only weakly chipped due to such factors), HIP, etc.

放電プラズマ焼結法はホットプレスに類似の方法であるが、大きく異なるのはパルス大電流をサンプルに直接加える点であり(ホットプレスは外部ヒータによって昇温する)、このことにより、微細なプラズマが生じて試料の表面(本発明では黒鉛材と接合材粉末表面)の不純物を除去し密着性を上げることができる。また電流による拡散の促進により、多孔の粉末接合材を焼結して空孔を減らし、黒鉛材の凹凸に接合材が入り込むことで接合強度を向上させることが期待できる。 The discharge plasma sintering method is similar to the hot press, except that a large pulse current is applied directly to the sample (the hot press is heated by an external heater), which results in fine plasma. Is generated, and impurities on the surface of the sample (the surface of the graphite material and the bonding material powder in the present invention) can be removed to improve the adhesion. Further, by promoting diffusion by an electric current, it can be expected that the porous powder bonding material is sintered to reduce pores, and the bonding material enters the unevenness of the graphite material to improve the bonding strength.

上記のように接合層原料の供給に酸化物粉末の噴霧を用いる場合には、様々な溶媒を用いることが可能であるが、特にエタノール,メタノール,プロパノールなどの低級アルコールが望ましく、安全性からエタノールが最も望ましい。アルコールは親水基と親油基を有しており、酸化物粉末とは親水基により良くなじむほか、黒鉛表面とは親油基がなじむため均一な塗付にはアルコール溶媒の使用が望ましい。 When spraying oxide powder is used to supply the raw material for the bonding layer as described above, various solvents can be used, but lower alcohols such as ethanol, methanol and propanol are particularly desirable, and ethanol is preferable from the viewpoint of safety. Is the most desirable. Alcohol has a hydrophilic group and a lipophilic group, and it is desirable to use an alcohol solvent for uniform coating because the oxide powder is more compatible with the hydrophilic group and the lipophilic group is compatible with the graphite surface.

接合材原料の供給に気相成膜法を用いる場合にはスパッタリング等の物理蒸着法(PVD)の使用が可能で且つ望ましい。ターゲット材種類により多様な接合材を選択可能であり、鉄,コバルト,ニッケルのような金属状態で接合部を形成する接合材の場合、酸化物ではない金属状態での成膜も可能である。成膜された接合材は後述するように薄膜化の必要があるため、膜厚の制御性に優れたスパッタリングのような成膜法が望ましい。 When the vapor deposition method is used to supply the raw material for the bonding material, it is possible and desirable to use a physical vapor deposition method (PVD) such as sputtering. A variety of bonding materials can be selected depending on the type of target material, and in the case of bonding materials that form joints in metallic states such as iron, cobalt, and nickel, film formation in metal states other than oxides is also possible. Since the formed bonding material needs to be thinned as described later, a film forming method such as sputtering having excellent film thickness controllability is desirable.

接合層原料が黒鉛材表面に固定された状態で加圧,加熱されると、酸化鉄は1200℃以上、酸化コバルト,酸化ニッケルは900℃以上で黒鉛の炭素による還元を受けて金属となる。酸化チタンや酸化バナジウムも900℃以上で還元により価数が変化する。 When the bonding layer raw material is pressurized and heated while being fixed to the surface of the graphite material, iron oxide is reduced at 1200 ° C. or higher, cobalt oxide and nickel oxide are reduced at 900 ° C. or higher by carbon of graphite to become a metal. The valences of titanium oxide and vanadium oxide also change due to reduction at 900 ° C. or higher.

また、上記加熱温度は、接合材の種類に依存せず、接合温度は700℃〜1800℃望ましくは900℃〜1500℃の範囲、接合圧力は1MPa〜50MPa望ましくは5MPa〜30MPaの範囲である。 The heating temperature does not depend on the type of the bonding material, the bonding temperature is in the range of 700 ° C. to 1800 ° C., preferably 900 ° C. to 1500 ° C., and the bonding pressure is in the range of 1 MPa to 50 MPa, preferably 5 MPa to 30 MPa.

接合温度については、低温側は接合に必要な還元反応または焼結を進めるのに必要なためである。高温側は1500℃以上(望ましくは)では接合装置(炉)がこの温度以上のスペックのものでは高価となるためで,さらに1800℃までとしたのは異方性のある黒鉛材,接合層材の熱膨張率差による接合不良が予想されるためである。 This is because the low temperature side is necessary for advancing the reduction reaction or sintering required for bonding. On the high temperature side, if the bonding equipment (furnace) has specifications above this temperature at 1500 ° C or higher (preferably), it will be expensive. Further, the temperature up to 1800 ° C is made of anisotropic graphite material or bonding layer material. This is because poor bonding is expected due to the difference in the coefficient of thermal expansion.

接合作業後に鉄,コバルト,ニッケルのような金属として接合層を形成するものは、接合温度において塑性流動により黒鉛板間の空間を充填し、炭素が金属内に拡散することで強固な接合状態となる。接合作業後に酸化チタン,酸化バナジウムのように酸化物として接合増を形成するものは、焼結により粒子間および黒鉛板間の空間を充填し、強固に接合される。 Those that form a bonding layer as a metal such as iron, cobalt, and nickel after the bonding work fill the space between the graphite plates by plastic flow at the bonding temperature, and carbon diffuses into the metal to create a strong bonding state. Become. Titanium oxide, vanadium oxide, and other oxides that form an additional bond after the bonding work fill the spaces between the particles and graphite plates by sintering, and are firmly bonded.

ここで酸化物が炭素(黒鉛材に由来)により還元をうけるか否かは極めて重要であり、この点はエリンガム図で判断できる。即ちエリンガム図の各種金属の酸化反応の線と、炭素-一酸化炭素平衡線の交点の温度以上となると還元(金属)が安定となり、鉄,コバルト,ニッケルは1000K(700℃程度)であるが、Vは1800K(約1500℃),チタンは1900K(約1600℃)である。 Here, it is extremely important whether or not the oxide is reduced by carbon (derived from the graphite material), and this point can be judged from the Ellingham diagram. That is, the reduction (metal) becomes stable when the temperature exceeds the intersection of the oxidation reaction lines of various metals in the Ellingham diagram and the carbon-carbon monoxide equilibrium line, and iron, cobalt, and nickel are 1000K (about 700 ° C). , V is 1800K (about 1500 ° C.), and titanium is 1900K (about 1600 ° C.).

本発明によって形成された接合部は、図3のような接合構造になる。二枚の黒鉛シート1,1の間に接合層3が形成された接合体について、板厚方向の熱抵抗は黒鉛シート、接合層材それぞれの熱抵抗と、接合材と黒鉛の界面熱抵抗を直列回路で合成したものと考えることが出来る。物質xの熱抵抗Rxは熱伝導率λ(物質固有の値)を用いて次のように表される。
Rx=t/(Sλ) (1)

Rx:熱抵抗(K/W)
t:厚さ(伝熱方向長さ)(m)
S:断面積(m2
λ:熱伝導率(W/m/K)
The joint portion formed by the present invention has a joint structure as shown in FIG. For the bonded body in which the bonding layer 3 is formed between the two graphite sheets 1 and 1, the thermal resistance in the plate thickness direction is the thermal resistance of each of the graphite sheet and the bonding layer material, and the interfacial thermal resistance of the bonding material and graphite. It can be considered that it was synthesized by a series circuit. The thermal resistance Rx of the substance x is expressed as follows using the thermal conductivity λ (value peculiar to the substance).
Rx = t / (Sλ) (1)

Rx: Thermal resistance (K / W)
t: Thickness (length in heat transfer direction) (m)
S: Cross-sectional area (m 2 )
λ: Thermal conductivity (W / m / K)

また、接合部jの熱抵抗Rjは接合部熱抵抗率ρjを用いて以下のように表される。
Rjj/S (2)

Rj:接合部の熱抵抗(K/W)
S:断面積(m2)
ρj:接合部の熱抵抗率(Km2/W)
The thermal resistance Rj of the joint j is expressed as follows using the thermal resistivity ρ j of the joint.
R j = ρ j / S (2)

R j : Thermal resistance of the joint (K / W)
S: Cross-sectional area (m 2 )
ρ j : Thermal resistance of the joint (Km 2 / W)

ここで、ある厚さttotalの間に一層の接合部jを有する黒鉛Grについて、厚さ方向の熱抵抗Rtotalは黒鉛固有の熱伝導率λGrを用いて
Rtotal=RGr1+Rj+RGr2= ttotal/(SλGr)+ρj/S (3)
と表される。
Here, for graphite Gr having one layer of junction j between a certain thickness t total , the thermal resistance R total in the thickness direction uses the thermal conductivity λGr peculiar to graphite.
R total = R Gr1 + R j + R Gr2 = t total / (Sλ Gr ) + ρ j / S (3)
It is expressed as.

一方、この物体についてレーザーフラッシュ法などを用いて熱伝導率を実測した際に得られる見かけ熱伝導率λtotalを用いると
Rtotal = ttotal/(Sλtotal) (4)
とも表される。
式(3)(4)より、接合部の熱抵抗率ρj
ρj=(1/λtotal-1/λGr)ttotal (5)
により算出できる。
On the other hand, if the apparent thermal conductivity λ total obtained when the thermal conductivity is actually measured using the laser flash method or the like for this object is used.
R total = t total / (Sλ total ) (4)
Also expressed as.
From equations (3) and (4), the thermal resistivity ρ j of the joint is ρ j = (1 / λ total -1 / λ Gr ) t total (5)
Can be calculated by

部材の性能指標となる接合部の熱抵抗率は熱伝導率の実測値より(5)式により評価できるが、より詳細に接合層の構造を検討することで構成要件の指標にもなる。 The thermal resistance of the joint, which is a figure of merit of the member, can be evaluated by Eq. (5) from the measured value of thermal conductivity, but it can also be an index of the constituent requirements by examining the structure of the joint layer in more detail.

図4は接合材を用いて接合部を形成した場合の熱回路を示し、先の見かけ熱伝導率λtotalで(5)式により算出されるρjは界面熱抵抗Riはカピッツァ抵抗とも呼ばれ、界面熱伝達率κi(物質の組み合わせ固有の値)より次のように表される。
Ri=1/(Sκi) (6)
また接合に用いた物質yによる熱抵抗は熱伝導率λyにより
Ry=t/(Sλy) (7)
となる。
Fig. 4 shows the thermal circuit when the joint is formed using the bonding material. Ρ j calculated by Eq. (5) with the apparent thermal conductivity λ total is also called the interfacial thermal resistance R i is also called the capitza resistance. It is expressed as follows from the interfacial heat transfer coefficient κi (value unique to the combination of substances).
Ri = 1 / (Sκ i ) (6)
The thermal resistance due to the substance y used for bonding depends on the thermal conductivity λ y.
R y = t / (Sλ y ) (7)
Will be.

したがって接合材yによって接合された黒鉛板材Gr2枚(1と2)の全熱抵抗は、
Rtotal=RGr1+RGr2+Ry+2Rj= t1/(SλGr)+ t2/(SλGr)+ tx/(Sλx)+2/(Sκ)
ここで、接合層厚さが十分小さく
t1+t2>>tx
であるなら
ttotal=t1+t2
とみなせるので
Rtotal= ttotal/(SλGr) + tx/(Sλx)+2/(Sκ)
となる。
Therefore, the total thermal resistance of the two Gr2 graphite plates (1 and 2) joined by the joining material y is
R total = R Gr1 + R Gr2 + R y + 2R j = t 1 / (Sλ Gr ) + t 2 / (Sλ Gr ) + t x / (Sλ x ) + 2 / (Sκ)
Here, the joint layer thickness is sufficiently small.
t 1 + t 2 >> t x
If
t total = t 1 + t 2
Because it can be regarded as
R total = t total / (Sλ Gr ) + t x / (Sλ x ) + 2 / (Sκ)
Will be.

ここで接合層3の熱抵抗率は接合層厚さが1〜20μmの場合、鉄,コバルト,ニッケルといった金属(熱伝導率50から100)では10-8〜10-7K/m2W,酸化チタン,酸化バナジウムといった酸化物では10-7〜10-6K/m2Wとなるのに対し、黒鉛と異材の界面熱抵抗率は10-9〜10-8K/m2W(物質・材料研究機構のウェブサイトMatNavi掲載の界面熱伝達率データより計算)となり、接合層の熱抵抗より十分小さいため無視できるものとする。するとこの板材の見かけの熱伝導率は
λtotal=S/(ttotalRtotal)
として試算できる。
Here, the thermal resistance of the bonding layer 3 is 10 -8 to 10 -7 K / m 2 W for metals such as iron, cobalt, and nickel (thermal conductivity 50 to 100) when the bonding layer thickness is 1 to 20 μm. Oxides such as titanium oxide and vanadium oxide have a thermal resistance of 10 -7 to 10 -6 K / m 2 W, whereas the interfacial thermal resistance of graphite and dissimilar materials is 10 -9 to 10 -8 K / m 2 W (substance). -Calculated from the interfacial heat transfer coefficient data posted on the website of the Materials Research Organization, MatNavi), which is sufficiently smaller than the thermal resistance of the bonding layer and can be ignored. Then, the apparent thermal conductivity of this plate is λ total = S / (t total R total ).
Can be calculated as.

PGは非常に熱伝導率が高く、1400W/(mK)と金属で最も高い銀,銅(約400W/(mK))の3倍以上である。PG接合体を高熱伝導率を活かした放熱板として活用するには少なくとも見かけの熱伝導率1000W/(mK)以上は必要と考えられる。 PG has a very high thermal conductivity of 1400 W / (mK), which is more than three times that of silver and copper (about 400 W / (mK)), which are the highest in metals. In order to utilize the PG junction as a heat radiating plate utilizing high thermal conductivity, it is considered that at least an apparent thermal conductivity of 1000 W / (mK) or more is required.

そこで黒鉛接合板の総厚さ2mm(半導体実装用基板として良く用いられる厚さ)として試算したところ、PG接合品の見かけ熱伝導率を1000W/m/K以上に保つには接合部熱抵抗率が5.7×10-7(Km2/W)以下である必要があり、接合材が鉄,コバルト,ニッケルの場合には厚さ20μm以下、接合材が酸化チタン,酸化バナジウムといった酸化物の場合には厚さ5μm以下であることが望ましい。 Therefore, when the total thickness of the graphite-bonded plate was calculated as 2 mm (thickness often used as a substrate for semiconductor mounting), the thermal resistivity of the joint was calculated to keep the apparent thermal conductivity of the PG-bonded product at 1000 W / m / K or more. Must be 5.7 x 10 -7 (Km 2 / W) or less, if the bonding material is iron, cobalt, nickel, the thickness is 20 μm or less, and if the bonding material is an oxide such as titanium oxide, vanadium oxide. Is preferably 5 μm or less in thickness.

実際の接合にあたっては被接合材と接合材の濡れ性などの影響による空孔発生など、理想的な接触状態が両者に実現しない場合もあるが、接合層に使う材料の熱伝導率を元に望ましい厚さを推算すると上述のようになる。 In actual bonding, the ideal contact state may not be realized for both, such as the occurrence of vacancies due to the influence of the wettability of the material to be bonded and the material to be bonded, but based on the thermal conductivity of the material used for the bonding layer. The desired thickness is estimated as described above.

他方図3の接合体について、接合部層3の膜厚が接合体全体の厚さより十分小さい場合、全体の見かけ熱伝導率は以下の式で表される。
λtotal=ttotal(ttotalGr+tjj)-1
On the other hand, for the bonded body of FIG. 3, when the film thickness of the joint layer 3 is sufficiently smaller than the thickness of the entire bonded body, the overall apparent thermal conductivity is expressed by the following formula.
λ total = t total (t total / λ Gr + t j / λ j ) -1

この式から、接合体全体の厚さを2mmとした場合に、接合層の熱伝導率が10W/m/Kの場合と100W/m/Kの場合の接合体見かけ熱伝導率を接合層厚さに対して計算した図は図5に示すようになる。 From this equation, when the total thickness of the bonded body is 2 mm, the apparent thermal conductivity of the bonded body when the thermal conductivity of the bonded layer is 10 W / m / K and 100 W / m / K is the joint layer thickness. The calculated figure is shown in FIG.

元来の黒鉛の高熱伝導性を損なわない(用途によりますが)数値として20%減の1200W/m/Kを基準とすると接合層が100W/m/K級(鉄,コバルト,ニッケル)であれば20μm程度が上限,10W/m/K級(チタン,バナジウム)の場合は5μm程度が上限と考えられる。この計算は界面熱抵抗や接合不良を考慮しない理想的なものである。 If the bonding layer is 100 W / m / K class (iron, cobalt, nickel) based on 1200 W / m / K, which is a 20% reduction as a numerical value that does not impair the high thermal conductivity of the original graphite (depending on the application). The upper limit is about 20 μm, and in the case of 10 W / m / K class (titanium, vanadium), the upper limit is considered to be about 5 μm. This calculation is ideal without considering interfacial thermal resistance and poor bonding.

下限については薄ければ薄いほど良いが、接合材の黒鉛の平滑度を加工で向上させるにも限界があり、接合材はその隙間を埋めることを期待されるので、下限は0.5μm程度が望ましいとの結論が得られる。 The thinner the lower limit, the better, but there is a limit to improving the smoothness of graphite in the bonding material by processing, and the bonding material is expected to fill the gap, so the lower limit is about 0.5 μm. We can conclude that it is desirable.

このように熱抵抗の十分小さな接合が実現できた場合、PGのような単結晶に近い異方性の大きな黒鉛の欠点を緩和,克服した構造体を作製することが可能となる。図6にその概略図を示す。この例では積層する隣接黒鉛シート1の黒鉛の結晶方位を、略90°交差させて接合することで、擬等方性を形成させている。このような構造とすることで、板厚方向には全てPGの高熱伝導方向,水平方向には断面積の半分程度が高熱伝導方向に配置され、厚さ方向と水平方向それぞれに高い熱伝導率を活かすことが出来る。 When a junction having a sufficiently small thermal resistance can be realized in this way, it becomes possible to produce a structure in which the defects of graphite having a large anisotropy close to a single crystal such as PG are alleviated and overcome. FIG. 6 shows a schematic diagram thereof. In this example, pseudo-isotropic properties are formed by joining the graphite crystal orientations of the adjacent graphite sheets 1 to be laminated so as to intersect each other by approximately 90 °. With such a structure, the high thermal conductivity direction of PG is arranged in the plate thickness direction, and about half of the cross-sectional area is arranged in the high thermal conductivity direction in the horizontal direction, and the thermal conductivity is high in each of the thickness direction and the horizontal direction. Can be utilized.

上記実施形態では、接合材として金属又は酸化物を微粉砕したものを用いた例につき説明したが、後述する実施例7で示すように、黒鉛との関係で接合時に炭化物生成を行い易く且つ加工性、コスト面で優位性のある鉄についても、これを薄厚の金属箔に加工し、真空下での加熱加圧により黒鉛シート同士の接合積層が可能である。 In the above embodiment, an example in which a finely pulverized metal or oxide is used as the bonding material has been described, but as shown in Example 7 described later, it is easy to generate carbides at the time of bonding and processing in relation to graphite. Iron, which is superior in terms of properties and cost, can also be processed into a thin metal foil, and graphite sheets can be joined and laminated by heating and pressurizing under vacuum.

また次に述べる実施例1〜7ではいずれも接合体の接合層は1.6〜30μmの範囲で薄膜に形成されているが、熱伝導率と界面熱抵抗には差異があるものの、放熱材の適用対象に応じていずれも十分に利用可能なものと考えられる。
以下本発明の実施例につき詳細に説明する。尚、実施例1〜7中、実施例4と同5については観察サンプル制作上のトラブルにより、実施品の写真データが得られなかったため、実施品の接合部断面の顕微鏡写真データの添付を割愛した。
Further, in Examples 1 to 7 described below, the bonding layer of the bonded body is formed as a thin film in the range of 1.6 to 30 μm, and although there is a difference in thermal conductivity and interfacial thermal resistance, the heat radiating material It is considered that all of them can be sufficiently used depending on the application target of.
Hereinafter, examples of the present invention will be described in detail. In Examples 1 to 7, with respect to Examples 4 and 5, photographic data of the actual product could not be obtained due to a trouble in producing an observation sample, so attachment of micrograph data of the cross section of the joint of the actual product is omitted. did.

[実施例1]
20×20×1mmに加工した電極用黒鉛(密度約1.7g/cm3,熱伝導率91W/m/K(実測))を二枚準備した。Fe2O3粉末(粒径1μm以下)をエタノールで懸濁させた液をエアブラシにて電極用黒鉛材の片面に、乾燥後1cm2あたり約0.025gとなるよう塗布した。 電極用黒鉛はPGより安価であるが化学的には同じ物質であるため、接合可否の評価に用いることが出来る。また電極用黒鉛にも低熱抵抗の接合品としての用途もある。
[Example 1]
Two sheets of graphite for electrodes processed to 20 × 20 × 1 mm (density: about 1.7 g / cm 3 , thermal conductivity: 91 W / m / K (actual measurement)) were prepared. A solution of Fe 2 O 3 powder (particle size 1 μm or less) suspended in ethanol was applied to one side of the graphite material for electrodes with an airbrush so as to be about 0.025 g per 1 cm 2 after drying. Graphite for electrodes is cheaper than PG, but it is chemically the same substance, so it can be used for evaluation of joinability. Graphite for electrodes is also used as a bonded product with low thermal resistance.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた。電極用黒鉛材のFe2O3塗付面を合わせ、20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し、50℃/minで1300℃まで加熱を行い1300℃で10分保持し、その後炉冷した。図7にその断面写真を示す。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. Align the Fe 2 O 3 coated surfaces of the graphite material for the electrode, insert the graphite material for the electrode inside the graphite mold with a 20 mm square through hole, and use a 20 mm square graphite punch from above and below to approximately 400 kgf (10 MPa as pressure). A load was applied. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 1300 ° C. at 50 ° C./min, held at 1300 ° C. for 10 minutes, and then cooled in a furnace. FIG. 7 shows a cross-sectional photograph thereof.

その結果、電極用黒鉛は強固に接合された。切断面を観察すると、電極用黒鉛の接合部に0.5〜1μm程度の厚さの接合層が観察された。
仕上がり厚さは1.90mmとなり,見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、90W/m/Kであったため,界面熱抵抗値は約2.3×10-7Km2/Wと算出された。
As a result, the graphite for the electrode was firmly bonded. When observing the cut surface, a bonding layer having a thickness of about 0.5 to 1 μm was observed at the bonding portion of graphite for electrodes.
The finished thickness was 1.90 mm, and the apparent thermal conductivity was measured by the laser flash method (NETZSCH, LFA457) and found to be 90 W / m / K, so the interfacial thermal resistance value was about 2.3 × 10 -7 Km. It was calculated as 2 / W.

[実施例2]
20×20×0.8mmに加工した電極用黒鉛(密度約1.7g/cm3,熱伝導率91W/m/K(実測))を二枚準備した。Co2O3粉末(粒径1μm以下)をエタノールで懸濁させた液をエアブラシにて電極用黒鉛材の片面に、乾燥後1cm2あたり約0.025gとなるよう塗布した。
[Example 2]
Two sheets of graphite for electrodes (density of about 1.7 g / cm 3 , thermal conductivity of 91 W / m / K (actual measurement)) processed to 20 × 20 × 0.8 mm were prepared. A solution of Co 2 O 3 powder (particle size 1 μm or less) suspended in ethanol was applied to one side of the graphite material for electrodes with an airbrush so as to be about 0.025 g per 1 cm 2 after drying.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた。 電極用黒鉛材のCo2O3塗付面を合わせ,20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し,50℃/minで900℃まで加熱を行い900℃で10分保持し、その後炉冷した。図8にその断面写真を示す。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. Align the Co 2 O 3 coated surfaces of the graphite material for the electrode, insert the graphite material for the electrode inside the graphite mold with a 20 mm square through hole, and use a 20 mm square graphite punch from above and below to approximately 400 kgf (pressure 10 MPa). A load was applied. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 900 ° C. at 50 ° C./min, held at 900 ° C. for 10 minutes, and then cooled in a furnace. FIG. 8 shows a cross-sectional photograph thereof.

その結果、電極用黒鉛は強固に接合された。切断面を観察すると、電極用黒鉛の接合部に1μm程度の厚さの接合層が観察された。
仕上がり厚さは1.60mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、90W/m/Kであったため,界面熱抵抗値は約1.0×10-8Km2/Wと算出された。
As a result, the graphite for the electrode was firmly bonded. When observing the cut surface, a bonding layer having a thickness of about 1 μm was observed at the bonding portion of graphite for electrodes.
The finished thickness was 1.60 mm, and the apparent thermal conductivity was measured by the laser flash method (NETZSCH, LFA457) and found to be 90 W / m / K, so the interfacial thermal resistance value was approximately 1.0 x 10 -8 Km. It was calculated as 2 / W.

[実施例3]
20×20×0.8mmに加工した電極用黒鉛(密度約1.7g/cm3,熱伝導率91W/m/K(実測))を二枚準備した。V2O5粉末(粒径1μm以下)をエタノールで懸濁させた液をエアブラシにて電極用黒鉛材の片面に、乾燥後1cm2あたり約0.02gとなるよう塗布した。
[Example 3]
Two sheets of graphite for electrodes (density of about 1.7 g / cm 3 , thermal conductivity of 91 W / m / K (actual measurement)) processed to 20 × 20 × 0.8 mm were prepared. A solution of V 2 O 5 powder (particle size 1 μm or less) suspended in ethanol was applied to one side of the graphite material for electrodes with an airbrush so as to be about 0.02 g per 1 cm 2 after drying.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた。 電極用黒鉛材のV2O5塗付面を合わせ、20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し、50℃/minで900℃まで加熱を行い900℃で10分保持し、その後炉冷した。図9はその断面写真である。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. Align the V 2 O 5 coated surfaces of the graphite material for the electrode, insert the graphite material for the electrode inside the graphite mold with 20 mm square through holes, and use a 20 mm square graphite punch from above and below to approximately 400 kgf (10 MPa as pressure). A load was applied. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 900 ° C. at 50 ° C./min, held at 900 ° C. for 10 minutes, and then cooled in a furnace. FIG. 9 is a cross-sectional photograph thereof.

その結果、電極用黒鉛は強固に接合された。切断面を観察すると、電極用黒鉛の接合部に1μm程度の厚さの接合層が観察された。
仕上がり厚さは1.61mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、82W/m/Kであったため、界面熱抵抗値は約1.9×10-6Km2/Wと算出された。
As a result, the graphite for the electrode was firmly bonded. When observing the cut surface, a bonding layer having a thickness of about 1 μm was observed at the bonding portion of graphite for electrodes.
The finished thickness was 1.61 mm, and the apparent thermal conductivity was measured by the laser flash method (NETZSCH, LFA457) and found to be 82 W / m / K, so the interfacial thermal resistance value was approximately 1.9 x 10 -6 Km. It was calculated as 2 / W.

[実施例4]
20×20×0.8mmに加工した電極用黒鉛(密度約1.7g/cm3,熱伝導率91W/m/K(実測))を二枚準備した。TiO2粉末(粒径1μm以下)をエタノールで懸濁させた液をエアブラシにて電極用黒鉛材の片面に、乾燥後1cm2あたり約0.02gとなるよう塗布した。
[Example 4]
Two sheets of graphite for electrodes (density of about 1.7 g / cm 3 , thermal conductivity of 91 W / m / K (actual measurement)) processed to 20 × 20 × 0.8 mm were prepared. A solution in which TiO 2 powder (particle size 1 μm or less) was suspended in ethanol was applied to one side of a graphite material for electrodes with an airbrush so as to be about 0.02 g per 1 cm 2 after drying.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた.電極用黒鉛材のTiO2塗付面を合わせ,20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し、50℃/minで900℃まで加熱を行い900℃で10分保持し、その後炉冷した。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. Align the TiO 2 coated surfaces of the graphite material for the electrode, insert the graphite material for the electrode inside the graphite mold with a 20 mm square through hole, and use a 20 mm square graphite punch from above and below to obtain approximately 400 kgf (pressure of 10 MPa). A load was applied. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 900 ° C. at 50 ° C./min, held at 900 ° C. for 10 minutes, and then cooled in a furnace.

その結果、電極用黒鉛は接合された。切断面を観察すると、電極用黒鉛の接合部に1μm程度の厚さの接合層が観察された。 As a result, graphite for electrodes was bonded. When observing the cut surface, a bonding layer having a thickness of about 1 μm was observed at the bonding portion of graphite for electrodes.

仕上がり厚さは1.6mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、77W/m/Kであったため、界面熱抵抗値は約3.3×10-6Km2/Wと算出された。 The finished thickness was 1.6 mm, and the apparent thermal conductivity was measured by laser flash method (NETZSCH, LFA457) and found to be 77 W / m / K, so the interfacial thermal resistance value was approximately 3.3 x 10 -6 Km. It was calculated as 2 / W.

[実施例5]
20×20×0.8mmに加工した電極用黒鉛(密度約1.7g/cm3,熱伝導率91W/m/K(実測))を二枚準備した。Ni粉末(粒径2μm)をエタノールで懸濁させた液をエアブラシにて電極用黒鉛材の片面に、乾燥後1cm2あたり約0.025gとなるよう塗布した。
[Example 5]
Two sheets of graphite for electrodes (density of about 1.7 g / cm 3 , thermal conductivity of 91 W / m / K (actual measurement)) processed to 20 × 20 × 0.8 mm were prepared. A solution of Ni powder (particle size 2 μm) suspended in ethanol was applied to one side of the graphite material for electrodes with an airbrush so as to be about 0.025 g per 1 cm 2 after drying.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた。 電極用黒鉛材のNi塗付面を合わせ、20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し、50℃/minで900℃まで加熱を行い900℃で10分保持し、その後炉冷した。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. Align the Ni-coated surfaces of the graphite material for the electrode, insert the graphite material for the electrode into the graphite mold with a 20 mm square through hole, and load about 400 kgf (10 MPa as pressure) with a 20 mm square graphite punch from above and below. Was applied. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 900 ° C. at 50 ° C./min, held at 900 ° C. for 10 minutes, and then cooled in a furnace.

その結果、電極用黒鉛は接合された。切断面を観察すると、電極用黒鉛の接合部に1μm程度の厚さの接合層が観察された。 As a result, graphite for electrodes was bonded. When observing the cut surface, a bonding layer having a thickness of about 1 μm was observed at the bonding portion of graphite for electrodes.

仕上がり厚さは1.6mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、89W/m/Kであったため、界面熱抵抗値は約5.34×10-7Km2/Wと算出された。 The finished thickness was 1.6 mm, and the apparent thermal conductivity was measured by the laser flash method (NETZSCH, LFA457) and found to be 89 W / m / K, so the interfacial thermal resistance value was approximately 5.34 x 10 -7 Km. It was calculated as 2 / W.

[実施例6]
20×20×1mmに加工したPG(密度約2.25g/cm3,熱伝導率1420W/m/K(実測))を二枚準備した。このPG板はほぼ単結晶の黒鉛であり、黒鉛結晶ab軸方向が板材の厚さ方向と角型面の一つの辺と平行な方向となるよう切り出した。Fe2O3粉末(粒径1μm以下)をエタノールで懸濁させた液をエアブラシにてPG材の片面に、乾燥後1cm2あたり約0.025gとなるよう塗布した。
[Example 6]
Two PGs (density of about 2.25 g / cm 3 , thermal conductivity of 1420 W / m / K (actual measurement)) processed to 20 × 20 × 1 mm were prepared. This PG plate is substantially single crystal graphite, and is cut out so that the graphite crystal ab axial direction is parallel to the thickness direction of the plate material and one side of the square surface. A solution of Fe 2 O 3 powder (particle size 1 μm or less) suspended in ethanol was applied to one side of the PG material with an airbrush so as to be about 0.025 g per 1 cm 2 after drying.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた。 PG材のFe2O3塗付面を、面内の黒鉛結晶ab軸方向が直交するように合わせ、20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し、50℃/minで1300℃まで加熱を行い1300℃で10分保持し、その後炉冷した。図10はその断面写真である。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. Align the Fe 2 O 3 coated surface of the PG material so that the in-plane graphite crystal ab axis direction is orthogonal, insert the graphite material for the electrode into the graphite mold with a 20 mm square through hole, and 20 mm square from the top and bottom. A load of about 400 kgf (10 MPa as a pressure) was applied to the graphite punch. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 1300 ° C. at 50 ° C./min, held at 1300 ° C. for 10 minutes, and then cooled in a furnace. FIG. 10 is a cross-sectional photograph thereof.

その結果,PG材は強固に接合された。切断面を観察すると、PGの接合部に1μm程度の厚さの接合層が観察された。分析の結果この接合層は鉄であった。 As a result, the PG material was firmly joined. When observing the cut surface, a joint layer having a thickness of about 1 μm was observed at the joint portion of the PG. As a result of analysis, this junction layer was iron.

仕上がり厚さは1.93mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、1360W/m/Kであったため、界面熱抵抗値は約6.0×10-8Km2/Wと算出された。 The finished thickness was 1.93 mm, and the apparent thermal conductivity was measured by the laser flash method (NETZSCH, LFA457) and found to be 1360 W / m / K, so the interfacial thermal resistance value was approximately 6.0 x 10 -8 Km. It was calculated as 2 / W.

[実施例7]
20×20×1mmに加工したPG(密度約2.25g/cm3)を二枚準備した。このPG板はほぼ単結晶の黒鉛であり、黒鉛結晶ab軸方向が板材の厚さ方向と角型面の一つの辺と平行な方向となるよう切り出した。
[Example 7]
Two PGs (density of about 2.25 g / cm 3 ) processed to 20 × 20 × 1 mm were prepared. This PG plate is substantially single crystal graphite, and is cut out so that the graphite crystal ab axial direction is parallel to the thickness direction of the plate material and one side of the square surface.

加熱には放電プラズマ焼結装置(住友石炭(現富士電波工機)製SPS3.20)を用いた。PG材を、面内の黒鉛結晶ab軸方向が直交するように合わせ、間に厚さ30μmの鉄箔を挟み込んだ。20mm角の貫通孔を有する黒鉛型内部に電極用黒鉛材を挿入し、上下より20mm角の黒鉛製ポンチで約400kgf(圧力として10MPa)となる荷重を印加した。10Pa以下の真空中で黒鉛型にパルス電流を通電し、50℃/minで1300℃まで加熱を行い1300℃で10分保持し、その後炉冷した。図11はその断面写真である。 A discharge plasma sintering device (SPS3.20 manufactured by Sumitomo Coal (currently Fuji Radio Industrial Co., Ltd.)) was used for heating. The PG materials were aligned so that the in-plane graphite crystal ab axial directions were orthogonal to each other, and an iron foil having a thickness of 30 μm was sandwiched between them. A graphite material for electrodes was inserted into a graphite mold having a 20 mm square through hole, and a load of about 400 kgf (10 MPa as a pressure) was applied from above and below with a 20 mm square graphite punch. A pulse current was applied to the graphite mold in a vacuum of 10 Pa or less, the graphite mold was heated to 1300 ° C. at 50 ° C./min, held at 1300 ° C. for 10 minutes, and then cooled in a furnace. FIG. 11 is a cross-sectional photograph thereof.

その結果、PG材は強固に接合された。切断面を観察すると、PGの接合部に30μm程度の厚さの接合層が観察された。分析の結果この接合層は鉄であった。 As a result, the PG material was firmly bonded. When observing the cut surface, a joint layer having a thickness of about 30 μm was observed at the joint portion of the PG. As a result of analysis, this junction layer was iron.

仕上がり厚さは1.98mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、890W/m/Kであったため、界面熱抵抗値は約8.2×10-7Km2/Wと算出された。 The finished thickness was 1.98 mm, and the apparent thermal conductivity was measured by the laser flash method (NETZSCH, LFA457) and found to be 890 W / m / K, so the interfacial thermal resistance value was approximately 8.2 x 10 -7 Km. It was calculated as 2 / W.

[比較例]
20×20×1mmに加工したPG(密度約2.25g/cm3)を二枚準備した。このPG板はほぼ単結晶の黒鉛であり、黒鉛結晶ab軸方向が板材の厚さ方向と角型面の一つの辺と平行な方向となるよう切り出した。
[Comparison example]
Two PGs (density of about 2.25 g / cm 3 ) processed to 20 × 20 × 1 mm were prepared. This PG plate is substantially single crystal graphite, and is cut out so that the graphite crystal ab axial direction is parallel to the thickness direction of the plate material and one side of the square surface.

このPG材に市販の熱伝導グリスを塗付し面内の黒鉛結晶ab軸方向が直交するように擦り合わせて一体化したものの熱抵抗を測定したところ仕上がり厚さは2.00mmとなり、見かけ熱伝導率をレーザーフラッシュ法(NETZSCH, LFA457)によって測定したところ、520W/m/Kであったため、界面熱抵抗値は約2.4×10-6Km2/Wと算出された。 This PG material was coated with commercially available heat conductive grease and rubbed against each other so that the in-plane graphite crystal ab axis direction was orthogonal to each other, and integrated. When the thermal resistance was measured, the finished thickness was 2.00 mm, and the apparent heat was obtained. When the conductivity was measured by the laser flash method (NETZSCH, LFA457), it was 520 W / m / K, so the interfacial thermal resistance value was calculated to be about 2.4 × 10 -6 Km 2 / W.

1 黒鉛シート
2 接合材
3 接合層
1 Graphite sheet 2 Bonding material 3 Bonding layer

Claims (14)

高結晶性黒鉛よりなるプレート状又はシート状の複数枚の黒鉛シート(1)の積層面間に、黒鉛シート同士を接合する金属又は酸化物よりなる接合層(3)を形成した高結晶性黒鉛の接合構造。 Highly crystalline graphite in which a bonding layer (3) made of metal or oxide that bonds graphite sheets to each other is formed between the laminated surfaces of a plurality of plate-shaped or sheet-shaped graphite sheets (1) made of highly crystalline graphite. Joint structure. 金属が鉄,コバルト又はニッケルである請求項1に記載の高結晶性黒鉛の接合構造。 The bonded structure of high crystalline graphite according to claim 1, wherein the metal is iron, cobalt or nickel. 酸化物が酸化チタン又は酸化バナジウムである請求項1又は2に記載の高結晶性黒鉛の接合構造。 The bonded structure of highly crystalline graphite according to claim 1 or 2, wherein the oxide is titanium oxide or vanadium oxide. 接合層(3)の平均膜厚が0.5〜20μmである請求項2に記載の高結晶性黒鉛の接合構造。 The bonded structure of high crystalline graphite according to claim 2, wherein the bonded layer (3) has an average film thickness of 0.5 to 20 μm. 金属が鉄であって接合層(3)の平均膜厚が50μm以下である請求項2に記載の高結晶性黒鉛の接合構造。 The bonded structure of high crystalline graphite according to claim 2, wherein the metal is iron and the average film thickness of the bonded layer (3) is 50 μm or less. 接合層の平均膜厚が0.5〜5μmである請求項3に記載の高結晶性黒鉛の接合構造。 The bonded structure of high crystalline graphite according to claim 3, wherein the average film thickness of the bonded layer is 0.5 to 5 μm. 積層された黒鉛シート(1)の黒鉛の結晶方位を交差させた状態で重ね合わせて接合した請求項1〜6のいずれかに記載の高結晶性黒鉛の接合構造。 The bonded structure of high crystalline graphite according to any one of claims 1 to 6, wherein the laminated graphite sheet (1) is laminated and bonded in a state where the crystal orientations of graphite are crossed. 高結晶性黒鉛よりなるプレート状又はシート状の複数枚の黒鉛シート(1)を積層し、各黒鉛シート(1)の積層面間に金属又は酸化物よりなる薄膜の接合材(2)を介在させ、積層された上記黒鉛シート(1)を減圧下で加熱加圧することにより、上記黒鉛シート(1)の積層面間において炭化物を生成し黒鉛シート同士を接合する接合層(3)を形成する高結晶性黒鉛の接合方法。 A plurality of plate-shaped or sheet-shaped graphite sheets (1) made of highly crystalline graphite are laminated, and a thin bonding material (2) made of metal or oxide is interposed between the laminated surfaces of each graphite sheet (1). By heating and pressurizing the laminated graphite sheets (1) under reduced pressure, carbides are generated between the laminated surfaces of the graphite sheets (1) to form a bonding layer (3) for joining the graphite sheets to each other. A method for joining highly crystalline graphite. 接合材(2)に鉄,コバルト,ニッケル又はこれらの酸化物又は酸化チタン,酸化バナジウムのいずれかを使用する請求項8に記載の高結晶性黒鉛の接合方法。 The method for joining highly crystalline graphite according to claim 8, wherein iron, cobalt, nickel or oxides thereof or titanium oxide or vanadium oxide is used as the bonding material (2). 接合材(2)として酸化鉄,酸化コバルト,酸化バナジウム,酸化チタン,ニッケルのいずれかを微粉末化したものを黒鉛シート(1)の積層面に付着させ、接合層(3)として成膜させる請求項8又は9に記載の高結晶性黒鉛の接合方法。 A fine powder of iron oxide, cobalt oxide, vanadium oxide, titanium oxide, or nickel as the bonding material (2) is adhered to the laminated surface of the graphite sheet (1) to form a film as the bonding layer (3). The method for joining highly crystalline graphite according to claim 8 or 9. 微粉末化した接合材(2)を低級アルコールを添加した懸濁液として黒鉛シート(1)の積層面に塗布し乾燥させる請求項10に記載の高結晶性黒鉛の接合方法。 The method for joining highly crystalline graphite according to claim 10, wherein the finely powdered bonding material (2) is applied to the laminated surface of the graphite sheet (1) as a suspension to which a lower alcohol is added and dried. 接合材(2)をスパッタリングその他の物理蒸着法により黒鉛シート(1)の積層面に付着させる請求項10に記載の高結晶性黒鉛の接合方法。 The method for joining highly crystalline graphite according to claim 10, wherein the bonding material (2) is adhered to the laminated surface of the graphite sheet (1) by sputtering or other physical vapor deposition method. 微粉末化した接合材(2)の粒径が2μm以下である請求項10〜12のいずれかに記載の高結晶性黒鉛の接合方法。 The method for joining highly crystalline graphite according to any one of claims 10 to 12, wherein the finely powdered bonding material (2) has a particle size of 2 μm or less. 接合材(2)として鉄箔を使用する請求項8又は9に記載の高結晶性黒鉛の接合方法。 The method for joining high crystalline graphite according to claim 8 or 9, wherein an iron foil is used as the joining material (2).
JP2019085076A 2019-04-26 2019-04-26 Joining structure of high crystalline graphite, and joining method Pending JP2020181926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085076A JP2020181926A (en) 2019-04-26 2019-04-26 Joining structure of high crystalline graphite, and joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085076A JP2020181926A (en) 2019-04-26 2019-04-26 Joining structure of high crystalline graphite, and joining method

Publications (1)

Publication Number Publication Date
JP2020181926A true JP2020181926A (en) 2020-11-05

Family

ID=73024881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085076A Pending JP2020181926A (en) 2019-04-26 2019-04-26 Joining structure of high crystalline graphite, and joining method

Country Status (1)

Country Link
JP (1) JP2020181926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243225A1 (en) * 2022-06-14 2023-12-21 パナソニックIpマネジメント株式会社 Bonded material of crystalline graphite material and metallic material, and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022479A (en) * 2012-07-16 2014-02-03 Nippon Soken Inc Heat diffusion device
JP2017112334A (en) * 2015-12-18 2017-06-22 株式会社サーモグラフィティクス Heat conduction structure, manufacturing method of the same, cooling device, and semiconductor module
JP2017139325A (en) * 2016-02-03 2017-08-10 株式会社村田製作所 Semiconductor module and manufacturing method for semiconductor module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022479A (en) * 2012-07-16 2014-02-03 Nippon Soken Inc Heat diffusion device
JP2017112334A (en) * 2015-12-18 2017-06-22 株式会社サーモグラフィティクス Heat conduction structure, manufacturing method of the same, cooling device, and semiconductor module
JP2017139325A (en) * 2016-02-03 2017-08-10 株式会社村田製作所 Semiconductor module and manufacturing method for semiconductor module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243225A1 (en) * 2022-06-14 2023-12-21 パナソニックIpマネジメント株式会社 Bonded material of crystalline graphite material and metallic material, and production method therefor

Similar Documents

Publication Publication Date Title
KR101499409B1 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
KR101483921B1 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
EP1956110B1 (en) Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber
JP5107186B2 (en) Heating device
JP6580385B2 (en) Composite of aluminum and carbon particles and method for producing the same
Guillemet et al. An innovative process to fabricate copper/diamond composite films for thermal management applications
WO2018088045A1 (en) Metal-carbon particle composite material and method for manufacturing same
Alayli et al. Spark Plasma Sintering constrained process parameters of sintered silver paste for connection in power electronic modules: Microstructure, mechanical and thermal properties
JP2020181926A (en) Joining structure of high crystalline graphite, and joining method
WO2019188614A1 (en) Semiconductor package
CN113084176B (en) Self-supporting diamond film/Cu composite heat sink material and preparation method thereof
JP7328941B2 (en) Graphite laminates, graphite plates, and methods of making graphite laminates
JP6821409B2 (en) Method for manufacturing metal-carbon particle composite material
JP2016222962A (en) Composite body of aluminium and carbon particle, and method for manufacturing the same
JP2013243212A (en) Thermal diffusion device
JP2020191347A (en) Cooling device
JP2012050987A (en) Heat dissipation base board having electric insulation
JP5809896B2 (en) BORON CARBIDE-CONTAINING CERAMIC-OXIDE CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
CN111386601A (en) Insulating substrate and heat dissipation device
JP7350215B1 (en) Cooling plates and parts for semiconductor manufacturing equipment
JP2018022738A (en) Method for producing insulating substrate and insulating substrate
JP6682403B2 (en) Insulating substrate manufacturing method and insulating substrate
JP6875211B2 (en) Method for manufacturing metal-carbon particle composite material
JP6853443B2 (en) Manufacturing method of board for power module
JP6670605B2 (en) Manufacturing method of insulating substrate

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725