JP2020179340A - Operational method of organic wastewater treatment facility and organic wastewater treatment facility - Google Patents

Operational method of organic wastewater treatment facility and organic wastewater treatment facility Download PDF

Info

Publication number
JP2020179340A
JP2020179340A JP2019083497A JP2019083497A JP2020179340A JP 2020179340 A JP2020179340 A JP 2020179340A JP 2019083497 A JP2019083497 A JP 2019083497A JP 2019083497 A JP2019083497 A JP 2019083497A JP 2020179340 A JP2020179340 A JP 2020179340A
Authority
JP
Japan
Prior art keywords
tank
biological treatment
treatment tank
membrane separation
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019083497A
Other languages
Japanese (ja)
Inventor
壮一郎 矢次
Soichiro Yatsugi
壮一郎 矢次
義雄 北川
Yoshio Kitagawa
北川  義雄
由樹 松林
Yoshiki Matsubayashi
由樹 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2019083497A priority Critical patent/JP2020179340A/en
Publication of JP2020179340A publication Critical patent/JP2020179340A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide an operational method of an organic wastewater treatment facility and the organic wastewater treatment facility, capable of reducing water content of an excess sludge in biological treatment for volume reduction, thereby reducing costs needed for final disposal of the excess sludge.SOLUTION: The operational method of the organic wastewater treatment facility containing a first biological treatment tank 1 to which an organic waste water flows and a second biological treatment tank 2 installed with a membrane separation apparatus 7 includes: a membrane separation step in which a tank liquid in the first biological treatment tank 1 is supplied to the second biological treatment tank 2, the tank liquid in the second biological treatment tank 2 is circulated to the first biological treatment tank 1, the tank liquid in the second biological treatment tank 2 is subjected to membrane separation with the membrane separation apparatus 7 to obtain a treated water, and the tank liquid in the second biological treatment tank 2 is discharged; and a membrane concentration step in which the tank liquid in the second biological treatment tank 2 is not circulated to the first biological treatment tank 1, the tank liquid in the second biological treatment tank 2 is subjected to membrane separation in the membrane separation apparatus 7 to obtain a treated water, and the tank liquid in the second biological treatment tank 2 is not discharged.SELECTED DRAWING: Figure 1

Description

本発明は、有機性排水処理設備の運転方法および有機性排水処理設備に関し、有機性排水を処理する設備において生じる余剰汚泥を処分する技術にかかる。 The present invention relates to an operation method of an organic wastewater treatment facility and an organic wastewater treatment facility, and relates to a technique for disposing of excess sludge generated in the facility for treating organic wastewater.

従来、有機性排水の処理方法の一つにオキシデーションディッチ法がある。これは、例えば、有機性排水が2.5m以下の浅い水路を巡回する形状の水槽において有機性排水を長時間にわたって貯留し、水面を撹拌することで有機性排水を好気条件下において処理するものである。水槽は、処理施設への流入水量に対して広い設置面積が必要なため、小規模な施設で採用されている。 Conventionally, there is an oxidation ditch method as one of the treatment methods for organic wastewater. For example, organic wastewater is stored for a long time in a water tank having a shape that circulates in a shallow water channel with organic wastewater of 2.5 m or less, and the organic wastewater is treated under aerobic conditions by stirring the water surface. It is a thing. Water tanks are used in small facilities because they require a large installation area for the amount of water flowing into the treatment facility.

また、有機性排水の処理方法には、膜分離装置を利用した膜分離活性汚泥処理方法があり、例えば、特許文献1に記載するものがある。 Further, as a method for treating organic wastewater, there is a membrane separation activated sludge treatment method using a membrane separation device, and for example, there is one described in Patent Document 1.

これは、前段の脱窒槽において被処理水と後段の硝化槽から循環返送する混合液とを無酸素状態で攪拌混合する。そして、硝化槽に浸漬した膜分離装置によって混合液を吸引濾過して処理水を得るものである。 This involves stirring and mixing the water to be treated and the mixed solution that is circulated and returned from the nitrification tank in the subsequent stage in an oxygen-free state in the denitrification tank in the first stage. Then, the mixed solution is suction-filtered by a membrane separation device immersed in a nitrification tank to obtain treated water.

特開平07−68294Japanese Patent Application Laid-Open No. 07-68294

有機性排水処理では、経時的に微生物が増加するので、過剰な微生物を余剰汚泥として引き抜いて処分する必要がある。生物処理槽の余剰汚泥をそのまま排出処分する場合には、容量が多すぎて運搬にかかる処理コストが高くなる。 In organic wastewater treatment, microorganisms increase over time, so it is necessary to extract and dispose of excess microorganisms as excess sludge. When the excess sludge in the biological treatment tank is discharged and disposed of as it is, the capacity is too large and the treatment cost for transportation becomes high.

余剰汚泥の容量を少なくするために、汚泥処理設備(脱水設備)で含水率を83%程度にまで下げた状態の余剰汚泥を排出処分することが一般的である。しかし、処理能力が数百m3/日程度の極小規模の排水処理施設で、汚泥処理設備を設置すると、発生する余剰汚泥量に対する建設費の割合が高くなり、非効率な設備投資となる。 In order to reduce the capacity of excess sludge, it is common to discharge and dispose of excess sludge in a sludge treatment facility (dehydration facility) with the water content reduced to about 83%. However, if a sludge treatment facility is installed in a very small-scale wastewater treatment facility with a treatment capacity of several hundred m3 / day, the ratio of the construction cost to the amount of surplus sludge generated will increase, resulting in inefficient capital investment.

このため、オキシデーションディッチを行う小規模な処理施設では、脱水設備を使用せずに、重力沈殿濃縮を行う濃縮工程を実施して余剰汚泥をある程度に減容して搬出することが一般的である。しかし、重力沈殿濃縮しても余剰汚泥は含水率99%程度にしか濃縮できず、結果として排出処分するためのバキューム搬出費用がかさむ。また、濃縮工程、貯留工程で汚泥の腐敗や臭気が発生する問題がある。 For this reason, in small-scale treatment facilities that perform oxidation ditch, it is common to carry out a concentration process that performs gravity precipitation concentration to reduce the volume of excess sludge to some extent without using a dehydration facility. is there. However, even if gravity sedimentation is concentrated, excess sludge can be concentrated only to a water content of about 99%, and as a result, the cost of carrying out vacuum for discharge and disposal increases. In addition, there is a problem that sludge putrefaction and odor are generated in the concentration process and the storage process.

本発明は上記課題を解決するものであり、生物処理において余剰汚泥の含水率を低減して減容化し、余剰汚泥の排出処分に要する費用を低減できる有機性排水処理設備の運転方法および有機性排水処理設備を提供することを目的とする。 The present invention solves the above problems, and is capable of reducing the water content of excess sludge in biological treatment to reduce its volume, and reducing the cost required for discharging and disposing of excess sludge. The purpose is to provide wastewater treatment equipment.

上記課題を解決するために、本発明の有機性排水処理設備の運転方法は、有機性排水が流入する第1の生物処理槽と、膜分離装置を設置した第2の生物処理槽を有する有機性排水処理施設の運転方法であって、第1の生物処理槽の槽内液を第2の生物処理槽へ供給し、第2の生物処理槽の槽内液を第1の生物処理槽へ循環し、第2の生物処理槽の槽内液を膜分離装置で膜分離して処理水を得、第2の生物処理槽の槽内液を排出する膜分離工程と、
第2の生物処理槽の槽内液を第1の生物処理槽へ循環せず、第2の生物処理槽の槽内液を膜分離装置で膜分離して処理水を得、第2の生物処理槽の槽内液を排出しない膜濃縮工程を有することを特徴とする。
In order to solve the above problems, the method of operating the organic waste treatment facility of the present invention is an organic having a first biological treatment tank into which organic wastewater flows and a second biological treatment tank equipped with a membrane separation device. A method of operating a sex wastewater treatment facility, in which the liquid in the first biological treatment tank is supplied to the second biological treatment tank, and the liquid in the second biological treatment tank is supplied to the first biological treatment tank. A membrane separation step of circulating and separating the liquid in the tank of the second biological treatment tank with a membrane separation device to obtain treated water and discharging the liquid in the tank of the second biological treatment tank.
The liquid in the tank of the second biological treatment tank is not circulated to the first biological treatment tank, but the liquid in the tank of the second biological treatment tank is membrane-separated by a membrane separation device to obtain treated water, and the second organism is obtained. It is characterized by having a membrane concentration step that does not discharge the liquid in the treatment tank.

本発明の有機性排水処理設備の運転方法において、第1の生物処理水槽は、第2の生物処理水槽の槽内滞留時間に対して槽内滞留時間が3から50倍の槽容量を有することを特徴とする。 In the operation method of the organic wastewater treatment facility of the present invention, the first biological treatment water tank has a tank capacity of 3 to 50 times the in-tank residence time of the second biological treatment water tank. It is characterized by.

本発明の有機性排水処理設備の運転方法において、第1の生物処理槽には周回流が流れていることを特徴とする。 The method of operating the organic wastewater treatment facility of the present invention is characterized in that a circular flow flows through the first biological treatment tank.

本発明の有機性排水処理設備の運転方法において、膜濃縮工程では、膜分離工程における膜分離装置の透過流束よりも低減した透過流束で運転することを特徴とする。 In the operation method of the organic wastewater treatment facility of the present invention, the membrane concentration step is characterized by operating with a permeation flux that is less than that of the permeation flux of the membrane separation device in the membrane separation step.

本発明の有機性排水処理設備の運転方法において、第1の生物処理槽が無酸素槽であり、第2の生物処理槽が好気槽であることを特徴とする。 The method for operating an organic wastewater treatment facility of the present invention is characterized in that the first biological treatment tank is an oxygen-free tank and the second biological treatment tank is an aerobic tank.

本発明の有機性排水処理設備は、有機性排水が流入する第1の生物処理槽と、膜分離装置を設置した第2の生物処理槽と、第1の生物処理槽の槽内液を第2の生物処理槽へ供給する給送路と、第2の生物処理槽の槽内液を第1の生物処理槽へ返送する返送路と、膜分離装置に接続した処理水路と、第2の生物処理槽から汚泥を排出する汚泥排出路と、複数の運転モードを有する制御装置を備え、制御装置は、給送路により第1の生物処理槽の槽内液を第2の生物処理槽へ供給し、返送路により第2の生物処理槽から第1の生物処理槽へ槽内液を循環し、膜分離装置で膜分離した処理水を処理水路により系外へ取り出す膜分離運転モードと、返送路による第2の生物処理槽から第1の生物処理槽への槽内液の循環を停止し、汚泥排出路による第2の生物処理槽からの余剰汚泥の排出を停止する状態で、処理水路による処理水の系外への取り出しを継続して第2の生物処理槽内の余剰汚泥を膜分離装置で濃縮する膜濃縮運転モードを有することを特徴とする。 In the organic waste treatment facility of the present invention, the first biological treatment tank into which the organic waste flows, the second biological treatment tank in which the membrane separation device is installed, and the liquid in the first biological treatment tank are the first. A supply channel for supplying to the biological treatment tank No. 2, a return passage for returning the liquid in the tank of the second biological treatment tank to the first biological treatment tank, a treatment water channel connected to the membrane separation device, and a second. It is equipped with a sludge discharge path for discharging sludge from the biological treatment tank and a control device having a plurality of operation modes, and the control device transfers the liquid in the tank of the first biological treatment tank to the second biological treatment tank by the supply path. A membrane separation operation mode in which the liquid in the tank is circulated from the second biological treatment tank to the first biological treatment tank by the return route, and the treated water separated by the membrane separation device is taken out of the system by the treatment water channel. Treatment in a state where the circulation of the liquid in the tank from the second biological treatment tank to the first biological treatment tank by the return route is stopped and the discharge of excess sludge from the second biological treatment tank by the sludge discharge passage is stopped. It is characterized by having a membrane concentration operation mode in which excess sludge in the second biological treatment tank is continuously taken out of the system by a water channel and concentrated by a membrane separator.

本発明の有機性排水処理設備において、第1の生物処理槽は、第2の生物処理槽の槽内滞留時間に対して槽内滞留時間が3から50倍の槽容量を有することを特徴とする。 In the organic wastewater treatment facility of the present invention, the first biological treatment tank is characterized by having a tank capacity of 3 to 50 times the in-tank residence time of the second biological treatment tank. To do.

本発明の有機性排水処理設備において、第1の生物処理槽は、周回流路を有し、周回流路の途中に周回流路を巡る周回流を発生させる周回流発生手段を有することを特徴とする。 In the organic wastewater treatment facility of the present invention, the first biological treatment tank is characterized by having a circumferential flow path and having a circular flow generating means for generating a circular flow around the circular flow path in the middle of the circular flow path. And.

本発明の有機性排水処理設備において、膜濃縮運転モードにおいて膜分離装置は、膜分離運転モードにおける膜分離装置の透過流束よりも低減した透過流束で運転することを特徴とする。 In the organic wastewater treatment facility of the present invention, the membrane separation device in the membrane concentration operation mode is operated with a permeation flux that is less than that of the permeation flux of the membrane separation device in the membrane separation operation mode.

本発明の有機性排水処理設備において、第1の生物処理槽が無酸素槽であり、第2の生物処理槽が好気槽であることを特徴とする。 The organic wastewater treatment facility of the present invention is characterized in that the first biological treatment tank is an oxygen-free tank and the second biological treatment tank is an aerobic tank.

以上の本発明によれば、濃縮専用の膜分離装置を追加することなく、膜分離運転モード(膜分離工程)において生物処理を行って系内に流入する有機性排水を処理し、膜濃縮運転モード(膜濃縮工程)において第2の生物処理槽の活性汚泥および第1の生物処理槽から流入する活性汚泥を濃縮して含水率を低減し、第2の生物処理槽から排出する余剰汚泥を減容化できる。このため、余剰汚泥の排出処分に要する費用を低減できる。 According to the above invention, without adding a membrane separation device dedicated to concentration, biological treatment is performed in the membrane separation operation mode (membrane separation step) to treat the organic wastewater flowing into the system, and the membrane concentration operation is performed. In the mode (membrane concentration step), the activated sludge in the second biological treatment tank and the activated sludge flowing in from the first biological treatment tank are concentrated to reduce the water content, and the excess sludge discharged from the second biological treatment tank is discharged. Volume can be reduced. Therefore, the cost required for discharging and disposing of excess sludge can be reduced.

第1の生物処理槽の槽容量を第2の生物処理槽に対して3から50倍の槽内滞留時間を有する大容量とすることで、第1の生物処理槽内に多量の活性汚泥を滞留させることができる。また、系内に新たに流入する有機性排水が第1の生物処理槽の汚泥濃度に与える影響が小さくなるので、流量調整槽を設けて第1の生物処理槽に流入する有機性排水の流入量を制限せずとも、膜分離運転モード(膜分離工程)、膜濃縮運転モード(膜濃縮工程)のいずれにおいても第1の生物処理槽の汚泥濃度が安定し、一定の汚泥濃度の活性汚泥を多量に貯留できる。 By increasing the tank capacity of the first biological treatment tank to a large capacity having a residence time in the tank 3 to 50 times that of the second biological treatment tank, a large amount of activated sludge can be discharged into the first biological treatment tank. Can be retained. In addition, since the effect of the organic wastewater newly flowing into the system on the sludge concentration of the first biological treatment tank is reduced, a flow rate adjusting tank is provided to allow the organic wastewater flowing into the first biological treatment tank to flow in. Even if the amount is not limited, the sludge concentration in the first biological treatment tank is stable in both the membrane separation operation mode (membrane separation step) and the membrane concentration operation mode (membrane concentration step), and the activated sludge has a constant sludge concentration. Can be stored in large quantities.

このため、膜濃縮運転モードにおいて第1の生物処理槽から第2の生物処理槽に多くの活性汚泥を供給でき、活性汚泥をより高い濃度に濃縮できる。 Therefore, in the membrane concentration operation mode, a large amount of activated sludge can be supplied from the first biological treatment tank to the second biological treatment tank, and the activated sludge can be concentrated to a higher concentration.

また、膜分離装置のろ過速度(透過流束)を低減した状態で膜濃縮運転モードを長く行うことで、膜分離装置の曝気強度を上げずとも、ろ過膜の目詰まりを回避しつつ活性汚泥の濃縮ができる。 In addition, by performing the membrane concentration operation mode for a long time while reducing the filtration rate (permeation flux) of the membrane separation device, activated sludge can be avoided while avoiding clogging of the filtration membrane without increasing the aeration intensity of the membrane separation device. Can be concentrated.

第1の生物処理槽が、周回流路を有し、周回流路の途中に周回流路を巡る周回流を発生させる周回流発生手段を有することで、第1の生物処理槽の槽内液の均質化、汚泥濃度の均一化ができる。 The liquid in the tank of the first biological treatment tank has the first biological treatment tank having a circular flow path and having a circular flow generating means for generating a circular flow around the circular flow path in the middle of the circular flow path. Can be homogenized and sludge concentration can be homogenized.

第1の生物処理槽が無酸素槽で、第2の生物処理槽が好気槽である場合には、大容量の無酸素槽に多量の活性汚泥を貯留することで、膜濃縮運転モードにおいて好気槽から無酸素槽への活性汚泥の循環が止まる状態でも、長い時間にわたって無酸素槽の汚泥濃度を維持できるので、膜濃縮運転モードを長く行うことができ、高い濃度の濃縮汚泥を多量に造れる。また、膜濃縮運転モードにおける時間的な制約が減少することで、膜分離装置のろ過速度(透過流束)を低減した状態で膜濃縮運転モードを長く行うことができ、膜分離装置の曝気強度を上げずとも、ろ過膜の目詰まりを回避しつつ活性汚泥の濃縮ができる。 When the first biological treatment tank is an oxygen-free tank and the second biological treatment tank is an aerobic tank, a large amount of activated sludge is stored in a large-capacity oxygen-free tank in the membrane concentration operation mode. Even when the circulation of activated sludge from the aerobic tank to the oxygen-free tank is stopped, the sludge concentration in the oxygen-free tank can be maintained for a long time, so that the membrane concentration operation mode can be performed for a long time, and a large amount of high-concentration concentrated sludge is produced. Can be made into. In addition, by reducing the time constraint in the membrane concentration operation mode, the membrane concentration operation mode can be performed for a long time while the filtration rate (permeation flux) of the membrane separation device is reduced, and the aeration strength of the membrane separation device can be extended. Activated sludge can be concentrated while avoiding clogging of the filtration membrane without increasing the amount.

無酸素槽が、周回流路を有し、周回流路の途中に周回流路を巡る周回流を発生させる周回流発生手段、および好気槽との循環手段を有することで、無酸素槽の槽内液の均質化、汚泥濃度の均一化ができ、腐敗を抑制できる。 The oxygen-free tank has a circumferential flow path, and has a circular flow generating means for generating a circular flow around the circular flow path in the middle of the circular flow path and a circulation means with the aerobic tank. The liquid in the tank can be homogenized, the sludge concentration can be homogenized, and spoilage can be suppressed.

本発明の実施の形態における有機性排水処理設備を示す模式図Schematic diagram showing an organic wastewater treatment facility according to an embodiment of the present invention. 本発明の他の実施の形態における有機性排水処理設備を示す模式図Schematic diagram showing an organic wastewater treatment facility according to another embodiment of the present invention. 従来のオキシデーションディッチを転用する手順を示す模式図Schematic diagram showing the procedure for diverting a conventional oxidation ditch

以下、本発明の実施の形態を図面に基づいて説明する。図1において、本実施の形態の有機性排水処理設備は、第1の生物処理槽をなす無酸素槽(兼流量調整槽)1と第2の生物処理槽をなす好気槽2からなる。本発明において第1の生物処理槽は無酸素槽1に限るものではなく、第2の生物処理槽は好気槽2に限るものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the organic wastewater treatment facility of the present embodiment includes an oxygen-free tank (cum-flow rate adjusting tank) 1 forming a first biological treatment tank and an aerobic tank 2 forming a second biological treatment tank. In the present invention, the first biological treatment tank is not limited to the oxygen-free tank 1, and the second biological treatment tank is not limited to the aerobic tank 2.

無酸素槽1は、十分な流量調整機能を有する排水処理施設であり、ここでは、既存のオキシデーションディッチを無酸素槽1に転用して使用する。転用の方法は後述する。 The oxygen-free tank 1 is a wastewater treatment facility having a sufficient flow rate adjusting function, and here, the existing oxidation ditch is diverted to the oxygen-free tank 1 and used. The method of diversion will be described later.

無酸素槽1は、周回流路3を有し、周回流路の途中に周回流路3を巡る循環流4を発生させる循環流発生手段5を有している。循環流発生手段5は、攪拌装置やポンプ装置等で構成される。周回流路3には、新たに有機性排水が流入する排水流入路6が接続している。また、無酸素槽1は、好気槽2の槽内滞留時間に対して槽内滞留時間が3から50倍、好ましくは5から30倍、より好ましくは10から25倍の槽容量を有する。 The oxygen-free tank 1 has a circulation flow path 3, and has a circulation flow generating means 5 for generating a circulation flow 4 circulating around the circulation flow path 3 in the middle of the circulation flow path 3. The circulating flow generating means 5 is composed of a stirring device, a pump device, and the like. A drainage inflow passage 6 through which organic wastewater newly flows is connected to the circulation flow path 3. Further, the oxygen-free tank 1 has a tank capacity of 3 to 50 times, preferably 5 to 30 times, more preferably 10 to 25 times the in-tank residence time of the aerobic tank 2.

好気槽2は、膜分離装置7、MLSS濃度計(図示省略)を備えている。膜分離装置7は槽外に設置するものでもよいが、ここでは槽内に浸漬した浸漬型膜分離装置からなる。好気槽2は、無酸素槽1の槽内液を好気槽2へ供給する給送路8と、好気槽2の槽内液を無酸素槽1へ返送する返送路9で無酸素槽1に接続している。給送路8はポンプ10を有し、返送路9はバルブ11を有している。 The aerobic tank 2 includes a membrane separation device 7 and an MLSS densitometer (not shown). The membrane separation device 7 may be installed outside the tank, but here it is composed of an immersion type membrane separation device immersed in the tank. The aerobic tank 2 is anoxic in a supply path 8 for supplying the in-tank liquid of the anoxic tank 1 to the aerobic tank 2 and a return path 9 for returning the in-tank liquid of the aerobic tank 2 to the anoxic tank 1. It is connected to the tank 1. The supply path 8 has a pump 10 and the return path 9 has a valve 11.

膜分離装置7には、平膜、チューブ膜等の種々のろ過膜を使用でき、ろ過膜を透過した処理水を取り出す処理水路12が接続しており、処理水路12は吸引ポンプ13を有している。膜分離装置7のケーシング14の下方には散気装置(図示省略)を配置しており、散気装置には空気を供給するブロワ15が接続している。また、好気槽2には、余剰汚泥を排出する汚泥排出路16が接続している。汚泥排出路16は汚泥ポンプ17を有し、汚泥処理設備18に接続している。本実施の形態では、汚泥排出路16が汚泥処理設備18に接続しているが、汚泥排出路16から取り出す余剰汚泥はバキューム車等により排出処理することも可能である。 Various filtration membranes such as a flat membrane and a tube membrane can be used for the membrane separation device 7, and a treatment water channel 12 for taking out the treated water that has passed through the filtration membrane is connected, and the treatment water channel 12 has a suction pump 13. ing. An air diffuser (not shown) is arranged below the casing 14 of the membrane separation device 7, and a blower 15 for supplying air is connected to the air diffuser. Further, a sludge discharge path 16 for discharging excess sludge is connected to the aerobic tank 2. The sludge discharge path 16 has a sludge pump 17 and is connected to the sludge treatment facility 18. In the present embodiment, the sludge discharge path 16 is connected to the sludge treatment facility 18, but the excess sludge taken out from the sludge discharge path 16 can be discharged by a vacuum truck or the like.

以下、上記した構成における作用を説明する。無酸素槽1では、排水流入路6から新たな有機性排水が周回流路3に流入し、周回流路3の流路内の槽内液が周回流発生手段5により生じる周回流4に乗って周回し、ポンプ10と給送路8、返送路9により好気槽2と無酸素槽1を循環する。このため、無酸素槽1の槽内液の均質化、汚泥濃度の均一化ができ、腐敗を抑制できる。
(膜分離運転モード)
膜分離運転モード(膜分離工程)では、給送路8のポンプ10により無酸素槽1の槽内液を好気槽2へ供給し、返送路9を通して好気槽2から無酸素槽1へ硝化液を循環させ、生物学的な硝化脱窒処理を行って系内に流入する有機性排水を処理する。無酸素槽1は好気槽2に対して5から30倍の槽内滞留時間を有する大容量であるので、好気槽2の槽内液を、返送路9を通して無酸素槽1へ送ることで、無酸素槽1には多量の活性汚泥が滞留する。
The operation in the above configuration will be described below. In the oxygen-free tank 1, new organic wastewater flows into the circumferential flow path 3 from the drainage inflow passage 6, and the liquid in the tank in the flow path of the circular flow path 3 rides on the circular flow 4 generated by the circular flow generating means 5. The aerobic tank 2 and the oxygen-free tank 1 are circulated by the pump 10, the supply path 8, and the return path 9. Therefore, the liquid in the oxygen-free tank 1 can be homogenized, the sludge concentration can be homogenized, and putrefaction can be suppressed.
(Membrane separation operation mode)
In the membrane separation operation mode (membrane separation step), the liquid in the anoxic tank 1 is supplied to the aerobic tank 2 by the pump 10 of the supply path 8, and the aerobic tank 2 is sent to the oxygen-free tank 1 through the return path 9. The nitrification solution is circulated and biological nitrification denitrification treatment is performed to treat the organic wastewater flowing into the system. Since the oxygen-free tank 1 has a large capacity having a residence time in the tank 5 to 30 times that of the aerobic tank 2, the liquid in the tank of the aerobic tank 2 is sent to the oxygen-free tank 1 through the return path 9. Therefore, a large amount of activated sludge stays in the oxygen-free tank 1.

また、膜分離装置7ではブロワ15から送る空気をケーシング14の内部に散気しつつ、吸引ポンプ13により膜分離装置7に駆動圧を与え、膜分離した処理水を処理水路12により系外へ取り出す。 Further, in the membrane separation device 7, the air sent from the blower 15 is dispersed inside the casing 14, and a driving pressure is applied to the membrane separation device 7 by the suction pump 13, and the treated water separated by the membrane is discharged to the outside of the system by the treatment water channel 12. Take it out.

そして、計画的に設定したタイミングにおいて、膜濃縮運転モードに移行する。
(膜濃縮運転モード)
膜濃縮運転モード(膜濃縮工程)では、バルブ11を閉じて好気槽2から無酸素槽1への硝化液の循環を生じさせない状態で、好気槽2に設置したレベルスイッチもしくは水位計(図示省略)によりポンプ10を制御し、膜分離装置7が水面上に露出しないように無酸素槽1の槽内液を好気槽2に供給する。
Then, at a systematically set timing, the mode shifts to the membrane concentration operation mode.
(Membrane concentration operation mode)
In the membrane concentration operation mode (membrane concentration step), the level switch or water level gauge installed in the aerobic tank 2 (the level switch or the water level gauge) is installed in the aerobic tank 2 in a state where the valve 11 is closed and the nitrifying liquid is not circulated from the aerobic tank 2 to the anoxic tank 1. The pump 10 is controlled by (not shown), and the liquid in the anoxic tank 1 is supplied to the aerobic tank 2 so that the membrane separation device 7 is not exposed on the water surface.

そして、汚泥排出路16による好気槽2からの余剰汚泥の排出を停止する状態で、処理水路12による処理水の系外への取り出しを継続して好気槽2内の余剰汚泥を膜分離装置7で濃縮する。このとき、膜分離装置7は、膜分離運転モードにおける膜分離装置7の透過流束よりも低減した透過流束で運転する。好気槽2のMLSS計で計測する槽内液のMLSS濃度が、ここでは設定濃度の30000mg/l程度に高まった後に、好気槽2の濃縮された余剰汚泥を、汚泥排出路16を通して汚泥ポンプ17で引き抜く。 Then, in a state where the discharge of excess sludge from the aerobic tank 2 by the sludge discharge channel 16 is stopped, the excess sludge in the aerobic tank 2 is membrane-separated by continuing to take out the treated water through the treated water channel 12 to the outside of the system. Concentrate with device 7. At this time, the membrane separation device 7 operates with a permeation flux that is smaller than that of the permeation flux of the membrane separation device 7 in the membrane separation operation mode. After the MLSS concentration of the liquid in the tank measured by the MLSS meter of the aerobic tank 2 has increased to about 30,000 mg / l, which is the set concentration, the concentrated excess sludge of the aerobic tank 2 is passed through the sludge discharge channel 16. Pull out with pump 17.

本実施の形態では、引き抜いた余剰汚泥を、直接に汚泥処理設備18に送るので、汚泥処理設備18において汚泥脱水機が稼働する時間に対応させて膜濃縮運転モードで運転して余剰汚泥を引き抜く。あるいは、別途の施設において処理する場合には、濃縮した余剰汚泥はバキューム搬出する。 In the present embodiment, the extracted excess sludge is sent directly to the sludge treatment facility 18, so that the sludge treatment facility 18 is operated in the membrane concentration operation mode in accordance with the operating time of the sludge dehydrator to extract the excess sludge. .. Alternatively, when treating at a separate facility, the concentrated excess sludge is vacuumed out.

なお、槽内液のMLSS濃度が何かのトラブル等によって設定濃度を超えて異常な濃度になった場合は、膜濃縮運転モードを停止し、バルブ11を開にして返送路9による好気槽2から無酸素槽1への硝化液の循環を再開し、好気槽2での汚泥濃度を減少させてろ過膜の目詰まりを防止する。MLSS濃度計を設けずに、膜濃縮運転モードにおいて膜ろ過した流量から好気槽2のMLSS濃度を予測して制御することも可能である。 If the MLSS concentration of the liquid in the tank exceeds the set concentration due to some trouble or the like and becomes an abnormal concentration, the membrane concentration operation mode is stopped, the valve 11 is opened, and the aerobic tank is provided by the return path 9. The circulation of the nitrifying liquid from 2 to the anoxic tank 1 is restarted, the sludge concentration in the aerobic tank 2 is reduced, and clogging of the filter membrane is prevented. It is also possible to predict and control the MLSS concentration of the aerobic tank 2 from the flow rate of the membrane filtration in the membrane concentration operation mode without providing the MLSS concentration meter.

また、余剰汚泥の引き抜き予定時刻を制御システムに入力して自動的に膜濃縮運転モードに切り替わるように構成することも可能である。 It is also possible to input the scheduled extraction time of excess sludge to the control system and automatically switch to the membrane concentration operation mode.

この膜濃縮運転モードを行うことで、余剰汚泥を引き抜く操作の一回当たりにおける余剰汚泥の固形物量を増加させることができる。このため、従来のように、余剰汚泥を重力濃縮等の貯留工程を経ることなく汚泥処理設備18に送ることができ、汚泥の腐敗を回避できる。 By performing this membrane concentration operation mode, it is possible to increase the amount of solid matter of the excess sludge in each operation of drawing out the excess sludge. Therefore, as in the conventional case, excess sludge can be sent to the sludge treatment facility 18 without going through a storage step such as gravity concentration, and sludge decay can be avoided.

このため、膜濃縮運転モードにおいて好気槽2および無酸素槽1から流入する活性汚泥を濃縮して含水率を低減し、好気槽2から排出する余剰汚泥を減容化して、余剰汚泥の排出処分に要する費用を低減できる。 Therefore, in the membrane concentration operation mode, the activated sludge flowing in from the aerobic tank 2 and the anoxic tank 1 is concentrated to reduce the water content, and the excess sludge discharged from the aerobic tank 2 is reduced in volume to reduce the excess sludge. The cost required for waste disposal can be reduced.

また、無酸素槽1が好気槽2に対して3から50倍の24時間以上の槽内滞留時間を有する大容量であるので、無酸素槽1の槽内に多量の活性汚泥が滞留する。また、無酸素槽1が大容量であることで、系内に新たに流入する有機性排水が無酸素槽1の汚泥濃度に与える影響が小さくなるので、通常の5時間程度の槽内滞留時間を有する流量調整槽を設けて無酸素槽1に流入する有機性排水の流入量を調整せずとも、十分な流量調整バッファを確保でき、膜分離運転モード、膜濃縮運転モードのいずれにおいても無酸素槽1の汚泥濃度が安定し、一定の汚泥濃度の活性汚泥を多量に貯留できる。 Further, since the oxygen-free tank 1 has a large capacity having a residence time of 24 hours or more, which is 3 to 50 times that of the aerobic tank 2, a large amount of activated sludge stays in the tank of the oxygen-free tank 1. .. Further, since the oxygen-free tank 1 has a large capacity, the influence of the organic wastewater newly flowing into the system on the sludge concentration of the oxygen-free tank 1 is reduced, so that the normal residence time in the tank is about 5 hours. A sufficient flow rate adjustment buffer can be secured without adjusting the inflow amount of the organic sludge flowing into the oxygen-free tank 1 by providing a flow rate adjustment tank having the above, and there is no case in either the membrane separation operation mode or the membrane concentration operation mode. The sludge concentration in the oxygen tank 1 is stable, and a large amount of activated sludge with a constant sludge concentration can be stored.

このため、膜濃縮運転モードにおいて無酸素槽1から好気槽2に多くの活性汚泥を供給でき、活性汚泥をより高い濃度に濃縮できる。 Therefore, a large amount of activated sludge can be supplied from the oxygen-free tank 1 to the aerobic tank 2 in the membrane concentration operation mode, and the activated sludge can be concentrated to a higher concentration.

また、大容量の無酸素槽1に多量の活性汚泥を貯留することで、膜濃縮運転モードにおいて好気槽2から無酸素槽1への活性汚泥の循環が止まる状態でも、長い時間にわたって無酸素槽1の汚泥濃度を維持できるので、膜濃縮運転モードを長く行うことができ、高い濃度の濃縮汚泥を多量に造れる。また、膜濃縮運転モードにおける時間的な制約が減少することで、膜分離装置7のろ過速度(透過流束)を低減した状態で膜濃縮運転モードを長く行うことができ、膜分離装置7の散気装置による散気の曝気強度を上げずとも、ろ過膜の目詰まりを回避しつつ活性汚泥の濃縮ができる。 Further, by storing a large amount of activated sludge in the large-capacity oxygen-free tank 1, even in a state where the circulation of activated sludge from the aerobic tank 2 to the oxygen-free tank 1 is stopped in the membrane concentration operation mode, oxygen-free for a long time. Since the sludge concentration in the tank 1 can be maintained, the membrane concentration operation mode can be performed for a long time, and a large amount of concentrated sludge with a high concentration can be produced. Further, by reducing the time constraint in the membrane concentration operation mode, the membrane concentration operation mode can be performed for a long time while the filtration rate (permeation flux) of the membrane separation device 7 is reduced, and the membrane separation device 7 can be operated for a long time. Activated sludge can be concentrated while avoiding clogging of the filtration membrane without increasing the aeration intensity of the air diffused by the air diffuser.

本実施の形態によれば、別途に膜濃縮設備を設置する場合に比較して、通常の水処理施設のみで膜濃縮を実施できるので、設備工事費を抑制できる。 According to this embodiment, the membrane concentration can be performed only in a normal water treatment facility as compared with the case where a separate membrane concentration facility is installed, so that the facility construction cost can be suppressed.

本実施の形態では、無酸素槽1を大容量とすることで、別途に流量調整槽を設けていない。しかし、図2に示すように、流量調整槽51を無酸素槽52の前段に組み合わせ、無酸素槽52の後段に大容量の好気槽53を配置し、好気槽53の後段に小容量の膜分離槽54を配置する構成とし、好気槽53に散気装置55を配置し、散気装置55に空気を供給するブロア56を接続し、返送路9に循環ポンプ57を設ける構成においても本発明は実施できる。この場合、膜分離槽54の小容量化によって濃縮効率が向上する。 In the present embodiment, the oxygen-free tank 1 has a large capacity, so that a separate flow rate adjusting tank is not provided. However, as shown in FIG. 2, the flow rate adjusting tank 51 is combined with the front stage of the oxygen-free tank 52, the large-capacity aerobic tank 53 is arranged after the oxygen-free tank 52, and the small capacity is arranged after the aerobic tank 53. In the configuration in which the membrane separation tank 54 is arranged, the air diffuser 55 is arranged in the aerobic tank 53, the blower 56 for supplying air is connected to the air diffuser 55, and the circulation pump 57 is provided in the return path 9. The present invention can also be carried out. In this case, the concentration efficiency is improved by reducing the capacity of the membrane separation tank 54.

図3に示すように、既存のオキシデーションディッチ61と最終沈殿池62を有する設備63を、本発明に転用する場合には、改築中はオキシデーションディッチ61の運転を継続する。そして、設備63の傍らに膜分離装置7を備えた好気槽2および膜分離装置7に付随する補機ユニット64を配置する。改築後は、オキシデーションディッチ61を無酸素槽1に転用して使用し、最終沈殿池62を薬洗設備65に使用する
本実施の形態の有機性排水処理設備を運転する場合には、以下のような運用が可能である。
1.制御システムは、有機性排水処理設備の運転状況から濃縮汚泥を引き抜くべき
タイミングを管理者にメール等で通知する。
2.通知を見た管理者は、濃縮汚泥の引き抜き作業の予定時間を制御システムに入力する。
3.制御システムは、管理者が入力した予定時間と現在の排水処理の状況から膜分離運転モードから膜濃縮運転モードへの切り替えの予定開始時刻を逆算する。
4.制御システムは、予定開始時刻で自動的に膜濃縮運転モードを実施する。
5.システム不具合等が発生して膜濃縮運転モードを停止する場合には、管理者に連絡する。
As shown in FIG. 3, when the equipment 63 having the existing oxidation ditch 61 and the final settling basin 62 is diverted to the present invention, the operation of the oxidation ditch 61 is continued during the renovation. Then, an aerobic tank 2 provided with the membrane separation device 7 and an auxiliary machine unit 64 attached to the membrane separation device 7 are arranged beside the equipment 63. After the renovation, the oxidation ditch 61 is diverted to the oxygen-free tank 1 and the final settling basin 62 is used for the chemical washing facility 65. When operating the organic wastewater treatment facility of the present embodiment, the following It is possible to operate like this.
1. 1. The control system notifies the administrator by e-mail or the like when the concentrated sludge should be extracted from the operating status of the organic wastewater treatment facility.
2. Upon seeing the notification, the administrator inputs the scheduled time for the extraction work of the concentrated sludge into the control system.
3. 3. The control system back-calculates the scheduled start time of switching from the membrane separation operation mode to the membrane concentration operation mode based on the scheduled time input by the administrator and the current wastewater treatment status.
4. The control system automatically implements the membrane concentration operation mode at the scheduled start time.
5. If a system malfunction occurs and the membrane concentration operation mode is stopped, contact the administrator.

よって、管理者が常駐していないような施設においても、管理者が操作や計算を行わずとも濃縮汚泥の引き抜き作業をスムーズに実施できる。 Therefore, even in a facility where a manager is not resident, the concentrated sludge extraction work can be smoothly carried out without the manager performing operations or calculations.

1 無酸素槽
2 好気槽
3 周回流路
4 循環流
5 循環流発生手段
6 排水流入路
7 膜分離装置
8 給送路
9 返送路
10 ポンプ
11 バルブ
12 処理水路
13 吸引ポンプ
14 ケーシング
15 ブロワ
16 汚泥排出路
1 Anoxic tank 2 Aerobic tank 3 Circular flow path 4 Circulation flow 5 Circulation flow generation means 6 Drainage inflow path 7 Membrane separation device 8 Supply path 9 Return path 10 Pump 11 Valve 12 Treatment water channel 13 Suction pump 14 Casing 15 Blower 16 Sludge drainage channel

Claims (10)

有機性排水が流入する第1の生物処理槽と、膜分離装置を設置した第2の生物処理槽を有する有機性排水処理施設の運転方法であって、
第1の生物処理槽の槽内液を第2の生物処理槽へ供給し、第2の生物処理槽の槽内液を第1の生物処理槽へ循環し、第2の生物処理槽の槽内液を膜分離装置で膜分離して処理水を得、第2の生物処理槽の槽内液を排出する膜分離工程と、
第2の生物処理槽の槽内液を第1の生物処理槽へ循環せず、第2の生物処理槽の槽内液を膜分離装置で膜分離して処理水を得、第2の生物処理槽の槽内液を排出しない膜濃縮工程を有することを特徴とする有機性排水処理施設の運転方法。
It is a method of operating an organic wastewater treatment facility having a first biological treatment tank into which organic wastewater flows in and a second biological treatment tank equipped with a membrane separation device.
The liquid in the tank of the first biological treatment tank is supplied to the second biological treatment tank, the liquid in the tank of the second biological treatment tank is circulated to the first biological treatment tank, and the tank of the second biological treatment tank is used. A membrane separation step in which the internal liquid is separated by a membrane separation device to obtain treated water and the liquid in the second biological treatment tank is discharged.
The liquid in the tank of the second biological treatment tank is not circulated to the first biological treatment tank, but the liquid in the tank of the second biological treatment tank is membrane-separated by a membrane separation device to obtain treated water, and the second organism is obtained. A method of operating an organic wastewater treatment facility, which comprises a membrane concentration step that does not discharge the liquid in the treatment tank.
第1の生物処理水槽は、第2の生物処理水槽の槽内滞留時間に対して槽内滞留時間が3から50倍の槽容量を有することを特徴とする請求項1に記載の有機性排水処理設備の運転方法。 The organic wastewater according to claim 1, wherein the first biological treatment water tank has a tank capacity of 3 to 50 times the in-tank residence time of the second biological treatment water tank. How to operate the processing equipment. 第1の生物処理槽には周回流が流れていることを特徴とする請求項1または請求項2に記載の有機性排水処理設備の運転方法。 The method for operating an organic wastewater treatment facility according to claim 1 or 2, wherein a circular flow flows through the first biological treatment tank. 膜濃縮工程では、膜分離工程における膜分離装置の透過流束よりも低減した透過流束で運転することを特徴とする請求項1から3の何れか1項に記載の有機性排水処置設備の運転方法。 The organic wastewater treatment facility according to any one of claims 1 to 3, wherein in the membrane concentration step, the operation is performed with a permeation flux that is less than that of the permeation flux of the membrane separation device in the membrane separation step. how to drive. 第1の生物処理槽が無酸素槽であり、第2の生物処理槽が好気槽であることを特徴とする請求項1から4の何れか1項に記載の有機性排水処理設備の運転方法。 The operation of the organic wastewater treatment facility according to any one of claims 1 to 4, wherein the first biological treatment tank is an oxygen-free tank and the second biological treatment tank is an aerobic tank. Method. 有機性排水が流入する第1の生物処理槽と、膜分離装置を設置した第2の生物処理槽と、第1の生物処理槽の槽内液を第2の生物処理槽へ供給する給送路と、第2の生物処理槽の槽内液を第1の生物処理槽へ返送する返送路と、膜分離装置に接続した処理水路と、第2の生物処理槽から汚泥を排出する汚泥排出路と、複数の運転モードを有する制御装置を備え、
制御装置は、給送路により第1の生物処理槽の槽内液を第2の生物処理槽へ供給し、返送路により第2の生物処理槽から第1の生物処理槽へ槽内液を循環し、膜分離装置で膜分離した処理水を処理水路により系外へ取り出す膜分離運転モードと、
返送路による第2の生物処理槽から第1の生物処理槽への槽内液の循環を停止し、汚泥排出路による第2の生物処理槽からの余剰汚泥の排出を停止する状態で、処理水路による処理水の系外への取り出しを継続して第2の生物処理槽内の余剰汚泥を膜分離装置で濃縮する膜濃縮運転モードを有することを特徴とする有機性排水処理設備。
A first biological treatment tank into which organic wastewater flows, a second biological treatment tank equipped with a membrane separation device, and a supply of liquid in the first biological treatment tank to a second biological treatment tank. A passage, a return passage for returning the liquid in the second biological treatment tank to the first biological treatment tank, a treatment water channel connected to the membrane separation device, and a sludge discharge for discharging sludge from the second biological treatment tank. Equipped with a road and a control device with multiple operation modes
The control device supplies the liquid in the tank of the first biological treatment tank to the second biological treatment tank by the supply path, and supplies the liquid in the tank from the second biological treatment tank to the first biological treatment tank by the return path. A membrane separation operation mode in which the treated water that circulates and is separated by the membrane separation device is taken out of the system through the treatment channel.
Treatment in a state where the circulation of the liquid in the tank from the second biological treatment tank to the first biological treatment tank by the return path is stopped and the discharge of excess sludge from the second biological treatment tank by the sludge discharge path is stopped. An organic wastewater treatment facility having a membrane concentration operation mode in which excess sludge in a second biological treatment tank is continuously taken out of the system by a water channel and concentrated by a membrane separation device.
第1の生物処理槽は、第2の生物処理槽の槽内滞留時間に対して槽内滞留時間が3から50倍の槽容量を有することを特徴とする請求項6に記載の有機性排水処理設備。 The organic wastewater according to claim 6, wherein the first biological treatment tank has a tank capacity of 3 to 50 times the residence time in the tank of the second biological treatment tank. Processing equipment. 第1の生物処理槽は、周回流路を有し、周回流路の途中に周回流路を巡る周回流を発生させる周回流発生手段を有することを特徴とする請求項6または請求項7に記載の有機性排水処理設備。 The first biological treatment tank has a circular flow path, and has a circular flow generating means for generating a circular flow around the circular flow path in the middle of the circular flow path, according to claim 6 or 7. Described organic waste treatment equipment. 膜濃縮運転モードにおいて膜分離装置は、膜分離運転モードにおける膜分離装置の透過流束よりも低減した透過流束で運転することを特徴とする請求項6から8の何れか1項に記載の有機性排水処理設備。 The invention according to any one of claims 6 to 8, wherein in the membrane concentration operation mode, the membrane separation device operates with a permeation flux that is smaller than that of the permeation flux of the membrane separation device in the membrane separation operation mode. Organic wastewater treatment equipment. 第1の生物処理槽が無酸素槽であり、第2の生物処理槽が好気槽であることを特徴とする請求項6から9の何れか1項に記載の有機性排水処理設備。 The organic wastewater treatment facility according to any one of claims 6 to 9, wherein the first biological treatment tank is an oxygen-free tank and the second biological treatment tank is an aerobic tank.
JP2019083497A 2019-04-25 2019-04-25 Operational method of organic wastewater treatment facility and organic wastewater treatment facility Pending JP2020179340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019083497A JP2020179340A (en) 2019-04-25 2019-04-25 Operational method of organic wastewater treatment facility and organic wastewater treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019083497A JP2020179340A (en) 2019-04-25 2019-04-25 Operational method of organic wastewater treatment facility and organic wastewater treatment facility

Publications (1)

Publication Number Publication Date
JP2020179340A true JP2020179340A (en) 2020-11-05

Family

ID=73023178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019083497A Pending JP2020179340A (en) 2019-04-25 2019-04-25 Operational method of organic wastewater treatment facility and organic wastewater treatment facility

Country Status (1)

Country Link
JP (1) JP2020179340A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165172A (en) * 1997-12-05 1999-06-22 Inax Corp Membrane separation purification tank and drainage treatment method using the tank
JP2003320400A (en) * 2002-04-26 2003-11-11 Hitachi Plant Eng & Constr Co Ltd Concentration method for sludge
JP2008068174A (en) * 2006-09-13 2008-03-27 Kubota Corp Sewage treatment apparatus
JP2010012458A (en) * 2008-06-06 2010-01-21 Asahi Kasei Chemicals Corp Method for treating organic wastewater and apparatus for treating wastewater
JP2017221915A (en) * 2016-06-16 2017-12-21 三菱ケミカル株式会社 Apparatus for treating waste water and method for treating waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165172A (en) * 1997-12-05 1999-06-22 Inax Corp Membrane separation purification tank and drainage treatment method using the tank
JP2003320400A (en) * 2002-04-26 2003-11-11 Hitachi Plant Eng & Constr Co Ltd Concentration method for sludge
JP2008068174A (en) * 2006-09-13 2008-03-27 Kubota Corp Sewage treatment apparatus
JP2010012458A (en) * 2008-06-06 2010-01-21 Asahi Kasei Chemicals Corp Method for treating organic wastewater and apparatus for treating wastewater
JP2017221915A (en) * 2016-06-16 2017-12-21 三菱ケミカル株式会社 Apparatus for treating waste water and method for treating waste water

Similar Documents

Publication Publication Date Title
CN104891655B (en) Device and method for treating high ammonia nitrogen wastewater
CN105601038A (en) Wastewater advanced treatment method using post-ozonation reflux and secondary oxidation
JP2020049432A (en) Operating method of organic wastewater treatment device and organic wastewater treatment device
JP5192608B1 (en) Water quality purification device and water quality purification method using this water quality purification device
JPH09294996A (en) Method and apparatus for treating organic waste water
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
KR20200042273A (en) Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
KR100566321B1 (en) Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
JP2020179340A (en) Operational method of organic wastewater treatment facility and organic wastewater treatment facility
JP2019181400A (en) Wastewater treatment system and wastewater treatment method
US20030150817A1 (en) Method and apparatus for treating wastewater
JPH10151480A (en) Wastewater treatment apparatus and operation method
JP2010269203A (en) Waste water treatment apparatus and method of controlling the same
KR100566320B1 (en) Submerged membrane coupled advanced wastewater treatment method and its system
JP3592677B2 (en) Water treatment equipment
JP4307275B2 (en) Wastewater treatment method
JP3763444B2 (en) Organic wastewater treatment method
JP3257946B2 (en) Sewage treatment method and sewage treatment apparatus
CN205953778U (en) Integrated treatment of track traffic sewage and recycling system
JP2006007103A (en) Membrane separation type sewage treatment apparatus and operating method therefor
KR101999329B1 (en) sludge concentrating and dehydrating system in Wastewater treatment process and and method of maintaining performance the same
JP7195968B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment
JP2004305926A (en) Immersion membrane separation type activated sludge treatment method
KR20150081920A (en) advanced treatment device of wastewater and advanced treatment method of wastewater
JPS6019097A (en) Sewage treating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328