JP2020178472A - In-facility charge/discharge control system - Google Patents

In-facility charge/discharge control system Download PDF

Info

Publication number
JP2020178472A
JP2020178472A JP2019080147A JP2019080147A JP2020178472A JP 2020178472 A JP2020178472 A JP 2020178472A JP 2019080147 A JP2019080147 A JP 2019080147A JP 2019080147 A JP2019080147 A JP 2019080147A JP 2020178472 A JP2020178472 A JP 2020178472A
Authority
JP
Japan
Prior art keywords
charge
power
discharge
plan
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019080147A
Other languages
Japanese (ja)
Inventor
佐藤 大介
Daisuke Sato
大介 佐藤
森 昌吾
Shogo Mori
昌吾 森
近藤 直
Naoshi Kondo
直 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2019080147A priority Critical patent/JP2020178472A/en
Publication of JP2020178472A publication Critical patent/JP2020178472A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide an in-facility charge/discharge control system that can eliminate the need for a stationary storage battery and actively utilize a solar power generation device to cut peaks.SOLUTION: An in-facility charge/discharge control system 10 includes: charge/discharge devices 20, 21, 22 that charge/discharge batteries 100a, 101a, 102a of electric vehicles 100, 101, 102; a charge/discharge control device 30 that controls the charge/discharge device; a solar power generation unit 40 that generates electricity from sunlight; and a storage device 50 that stores a facility's power demand plan, a solar power generation plan, and an electric vehicle operation plan. The charge/discharge control device calculates a time when the power becomes surplus and a time when the power is insufficient with respect to the contracted power of the facility from the power demand plan and the solar power generation plan of the facility that is stored in the storage device, and outputs a charge/discharge command to the charge/discharge device from the operation plan of the electric vehicle that is stored in the storage device.SELECTED DRAWING: Figure 1

Description

本発明は、施設内の充放電制御システムに関するものである。 The present invention relates to an in-facility charge / discharge control system.

特許文献1に開示の電力マネジメント装置においては、複数の産業車両の運行管理情報を取得するとともに運行管理情報を用いて少なくとも1台の産業車両の二次電池の充電状態に基づく給電情報を作成し、給電情報は、電力ネットワークへの給電の可否、電力ネットワークへ給電可能な時間帯、及び電力ネットワークへ給電可能な電力量の少なくとも1つを含む。 In the electric power management device disclosed in Patent Document 1, the operation management information of a plurality of industrial vehicles is acquired, and the power supply information based on the charge state of the secondary battery of at least one industrial vehicle is created by using the operation management information. , The power supply information includes at least one of the availability of power supply to the power network, the time zone in which power can be supplied to the power network, and the amount of power that can be supplied to the power network.

特開2017−158363号公報JP-A-2017-158363

ところで、施設内の発電装置において、工場や複合施設等では太陽光発電を使って消費電力のピークを抑制しているが、電力が必要な夕方18時〜20時は太陽光発電が落ちてしまうため、目標のピークを超えてしまうことがある。通常は定置式蓄電池を使用して電力ピークの低いときに充電し、太陽光発電が落ちる夕方に放電することによって系統電力のピークを低減させることが行われている。ところが、高価な蓄電池を用意しなければならず電力設備コストの増大につながり、設置場所も確保しなければならない。また、定置式蓄電池の代用として、電動車両(業務用車、従業員車両など)を活用することも考えられるがこの種の電動車両は不定期に使用されるため安定した蓄電を行うことができない。 By the way, in the power generation equipment in the facility, the peak of power consumption is suppressed by using solar power generation in factories and complex facilities, but the solar power generation drops from 18:00 to 20:00 in the evening when power is required. Therefore, the peak of the target may be exceeded. Normally, a stationary storage battery is used to charge the battery when the power peak is low, and then discharge the battery in the evening when the photovoltaic power generation falls to reduce the peak of the system power. However, it is necessary to prepare an expensive storage battery, which leads to an increase in the cost of electric power equipment, and it is also necessary to secure an installation place. It is also conceivable to use electric vehicles (commercial vehicles, employee vehicles, etc.) as a substitute for stationary storage batteries, but this type of electric vehicle is used irregularly and cannot store stable electricity. ..

本発明の目的は、定置型蓄電池を不要にできるとともに太陽光発電装置を積極利用し、ピークカットすることができる施設内の充放電制御システムを提供することにある。 An object of the present invention is to provide an in-facility charge / discharge control system capable of eliminating the need for a stationary storage battery and actively utilizing a photovoltaic power generation device to cut peaks.

上記課題を解決するための施設内の充放電制御システムは、電動車両の電池を充放電する充放電装置と、前記充放電装置を制御する充放電制御装置と、太陽光により発電する太陽光発電装置と、施設の電力需要計画、太陽光発電計画、前記電動車両の稼働計画を記憶する記憶装置と、を備え、前記充放電制御装置は、前記記憶装置に記憶された施設の電力需要計画、太陽光発電計画から、施設の契約電力に対して電力が余剰となる時刻及び不足する時刻を算出し、前記記憶装置に記憶された電動車両の稼働計画から、充放電指令を前記充放電装置に出力することを要旨とする。 The charge / discharge control system in the facility for solving the above problems includes a charge / discharge device for charging / discharging the battery of the electric vehicle, a charge / discharge control device for controlling the charge / discharge device, and solar power generation generated by sunlight. The charge / discharge control device includes a device, a storage device for storing a facility power demand plan, a solar power generation plan, and an operation plan of the electric vehicle, and the charge / discharge control device is a facility power demand plan stored in the storage device. From the solar power generation plan, the time when the power becomes surplus and the time when the power is insufficient with respect to the contracted power of the facility is calculated, and the charge / discharge command is sent to the charge / discharge device from the operation plan of the electric vehicle stored in the storage device. The gist is to output.

これによれば、施設の電力需要計画、太陽光発電計画から、施設の契約電力に対して電力が余剰となる時刻及び不足する時刻に基づいて、電動車両の稼働計画から、充放電指令を出力することにより、電動車両の電池を施設内の電力バッファとして使用して、定置型蓄電池を不要にできる。また、太陽光発電装置を積極利用し、太陽光発電電力でピークカットすることができる。 According to this, a charge / discharge command is output from the operation plan of the electric vehicle based on the time when the power becomes surplus and the time when the power becomes insufficient with respect to the contracted power of the facility from the power demand plan and the solar power generation plan of the facility. By doing so, the battery of the electric vehicle can be used as a power buffer in the facility, and the stationary storage battery can be eliminated. In addition, it is possible to actively use the photovoltaic power generation device and cut the peak with the photovoltaic power generation.

また、施設内の充放電制御システムにおいて、前記太陽光発電計画は、過去の発電履歴と当日の天気予報から算出されるとよい。
また、施設内の充放電制御システムにおいて、前記電動車両は、産業車両または社用車であるとよい。
Further, in the charge / discharge control system in the facility, the photovoltaic power generation plan may be calculated from the past power generation history and the weather forecast of the day.
Further, in the charge / discharge control system in the facility, the electric vehicle may be an industrial vehicle or a company vehicle.

本発明によれば、定置型蓄電池を不要にできるとともに太陽光発電装置を積極利用し、ピークカットすることができる。 According to the present invention, it is possible to eliminate the need for a stationary storage battery and to actively utilize a photovoltaic power generation device to cut peaks.

施設内の充放電制御システムの構成図。Configuration diagram of the charge / discharge control system in the facility. 施設内の充放電制御システムの動作フロー図。Operation flow diagram of the charge / discharge control system in the facility. (a)はバッテリフォークリフトの稼働計画を示す説明図、(b)は工場の電力需要計画を示す説明図。(A) is an explanatory diagram showing an operation plan of a battery forklift, and (b) is an explanatory diagram showing an electric power demand plan of a factory. (a)は天気予報晴れの場合の電力需要計画を示す説明図、(b)は天気予報晴れの場合のバッテリフォークリフトの充放電計画を示す説明図。(A) is an explanatory diagram showing an electric power demand plan when the weather forecast is sunny, and (b) is an explanatory diagram showing a charge / discharge plan of a battery forklift when the weather forecast is sunny. (a)は天気予報くもりの場合の電力需要計画を示す説明図、(b)は天気予報くもりの場合のバッテリフォークリフトの充放電計画を示す説明図。(A) is an explanatory diagram showing an electric power demand plan in the case of weather forecast cloudy weather, and (b) is an explanatory diagram showing a charge / discharge plan of a battery forklift in the case of weather forecast cloudy weather. 月毎の日射量を示す図。The figure which shows the amount of solar radiation every month.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示すように、施設内の充放電制御システム10は、充放電装置20,21,22と、充放電制御装置30と、太陽光発電装置40と、記憶装置としての上位制御装置50と、工場内エネルギー監視システム(FEMS)60を備える。施設は、工場であり、他にも、物流センタ等であってもよい。上位制御装置50としてサーバを挙げることができる。
Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings.
As shown in FIG. 1, the charge / discharge control system 10 in the facility includes charge / discharge devices 20, 21 and 22, a charge / discharge control device 30, a photovoltaic power generation device 40, and a host control device 50 as a storage device. , Equipped with an in-factory energy monitoring system (FEMS) 60. The facility is a factory, and may also be a distribution center or the like. A server can be mentioned as the upper control device 50.

電動車両としてのバッテリフォークリフト100に電池(二次電池)100aが搭載されている。電動車両としてのバッテリフォークリフト101に電池(二次電池)101aが搭載されている。電動車両としてのバッテリフォークリフト102に電池(二次電池)102aが搭載されている。電池(二次電池)100a,101a,102aとして、例えばリチウム電池が用いられる。 A battery (secondary battery) 100a is mounted on a battery forklift 100 as an electric vehicle. A battery (secondary battery) 101a is mounted on the battery forklift 101 as an electric vehicle. A battery (secondary battery) 102a is mounted on the battery forklift 102 as an electric vehicle. As the batteries (secondary batteries) 100a, 101a, 102a, for example, a lithium battery is used.

バッテリフォークリフト100,101,102は、工場で荷の搬送等に使用される。複数台の充放電装置20,21,22は工場内での充放電ステーションに配置されている。 The battery forklifts 100, 101, 102 are used in factories for transporting loads and the like. A plurality of charge / discharge devices 20, 21, 22 are arranged at a charge / discharge station in the factory.

施設内の充放電制御システム10は、バッテリフォークリフト100,101,102の電池100a,101a,102aを充放電することができる。充放電装置20,21,22は、それぞれ、バッテリフォークリフト100,101,102とコネクタを用いて接続することができる。なお、バッテリフォークリフト100,101,102は同じ機種であり、電池100a,101a,102aも同じ電池である。 The charge / discharge control system 10 in the facility can charge / discharge the batteries 100a, 101a, 102a of the battery forklifts 100, 101, 102. The charging / discharging devices 20, 21 and 22, can be connected to the battery forklifts 100, 101 and 102 using connectors, respectively. The battery forklifts 100, 101, 102 are the same model, and the batteries 100a, 101a, 102a are also the same batteries.

工場分電盤70は系統電源90と接続されており、系統電源90から系統電力の供給を受ける。その供給電力は電力計75で計測される。工場分電盤70はブレーカ71,72,73,74を有する。工場分電盤70はバッテリフォークリフト充電用分電盤80とブレーカ71を介して接続されている。工場分電盤70は工場負荷91とブレーカ72を介して接続されている。工場分電盤70は工場負荷92とブレーカ73を介して接続されている。工場分電盤70は工場負荷93とブレーカ74を介して接続されている。 The factory distribution board 70 is connected to the grid power supply 90, and receives the grid power supply from the grid power supply 90. The supplied power is measured by a power meter 75. The factory distribution board 70 has breakers 71, 72, 73, 74. The factory distribution board 70 is connected to the battery forklift charging distribution board 80 via a breaker 71. The factory distribution board 70 is connected to the factory load 91 via a breaker 72. The factory distribution board 70 is connected to the factory load 92 via a breaker 73. The factory distribution board 70 is connected to the factory load 93 via a breaker 74.

バッテリフォークリフト充電用分電盤80はブレーカ81,82,83を有する。バッテリフォークリフト充電用分電盤80は充放電装置20とブレーカ81を介して接続されている。バッテリフォークリフト充電用分電盤80は充放電装置21とブレーカ82を介して接続されている。バッテリフォークリフト充電用分電盤80は充放電装置22とブレーカ83を介して接続されている。 The battery forklift charging distribution board 80 has breakers 81, 82, 83. The battery forklift charging distribution board 80 is connected to the charging / discharging device 20 via a breaker 81. The battery forklift charging distribution board 80 is connected to the charging / discharging device 21 via a breaker 82. The battery forklift charging distribution board 80 is connected to the charging / discharging device 22 via a breaker 83.

このように、充放電装置20,21,22は、バッテリフォークリフト充電用分電盤80のブレーカ81,82,83、工場分電盤70のブレーカ71及び電力計75を介して系統電源90と接続されている。充放電装置20,21,22は、バッテリフォークリフト100,101,102の電池100a,101a,102aを充放電する。 In this way, the charging / discharging devices 20, 21 and 22 are connected to the system power supply 90 via the breakers 81, 82, 83 of the battery forklift charging distribution board 80, the breaker 71 of the factory distribution board 70, and the wattmeter 75. Has been done. The charging / discharging devices 20, 21 and 22 charge / discharge the batteries 100a, 101a, 102a of the battery forklifts 100, 101, 102.

充放電制御装置30は、充放電装置20,21,22と通信線L1により接続されており、充放電制御装置30は、充放電装置20,21,22を制御して電池100a,101a,102aの充放電を制御する。 The charge / discharge control device 30 is connected to the charge / discharge devices 20, 21 and 22 by a communication line L1, and the charge / discharge control device 30 controls the charge / discharge devices 20, 21 and 22 to control the batteries 100a, 101a and 102a. Controls the charge and discharge of.

充放電制御装置30は上位制御装置50と通信線L10により接続されている。
太陽光発電装置40は、太陽光により発電する。太陽光発電装置40は、工場分電盤70のブレーカ71,72,73,74を介してバッテリフォークリフト充電用分電盤80、工場負荷91,92,93と接続されている。
The charge / discharge control device 30 is connected to the host control device 50 by a communication line L10.
The photovoltaic power generation device 40 generates electricity by sunlight. The photovoltaic power generation device 40 is connected to the battery forklift charging distribution board 80 and the factory load 91, 92, 93 via the breakers 71, 72, 73, 74 of the factory distribution board 70.

記憶装置としての上位制御装置50は、施設としての工場の電力需要計画、太陽光発電計画、バッテリフォークリフト100,101,102の稼働計画を記憶する。また、上位制御装置(サーバ等)50は、充電の際の履歴を、充放電装置20,21,22から得ることができる。 The host control device 50 as a storage device stores the power demand plan, the photovoltaic power generation plan, and the operation plans of the battery forklifts 100, 101, and 102 of the factory as a facility. Further, the host control device (server or the like) 50 can obtain a history of charging from the charging / discharging devices 20, 21 and 22.

工場内エネルギー監視システム(FEMS)60は、電力計75と接続されており、工場内の配電設備等の電力使用量のモニタ等を行っている。充放電制御装置30は工場内エネルギー監視システム(FEMS)60と通信線L20により接続されている。充放電制御装置30は工場内エネルギー監視システム(FEMS)60と連携して、工場内エネルギー監視システム(FEMS)60から工場全体の電力情報を入手する。 The factory energy monitoring system (FEMS) 60 is connected to a power meter 75 and monitors the power consumption of power distribution equipment and the like in the factory. The charge / discharge control device 30 is connected to the factory energy monitoring system (FEMS) 60 by a communication line L20. The charge / discharge control device 30 cooperates with the factory energy monitoring system (FEMS) 60 to obtain power information of the entire factory from the factory energy monitoring system (FEMS) 60.

次に、作用について説明する。
概略の動作として、例えば図4(a)、図4(b)は、晴れの日の電力需要計画、バッテリフォークリフトの充放電計画であり、図4(a)における12時〜14時のように太陽光発電電力でピークカットすることができ、ピーク目標(契約電力)に対し余剰電力が生じるので、ピーク目標(契約電力)に対し太陽光発電により余裕がある12時〜14時において、系統電力でバッテリフォークリフト100の電池の充電を行う。つまり、図4(b)における12時〜14時のように系統電源の余剰電力でバッテリフォークリフト100の電池を充電する。一方、例えば図4(a)における18時〜20時のように太陽光発電電力が低下した時(例えば夕方になり工場で大きな電力が必要となった時)には18時〜20時にバッテリフォークリフト100,102の電池の放電を行う。つまり、図4(b)における18時〜20時のようにバッテリフォークリフト100,102の電池から放電して契約電力を超えないようにする。
Next, the action will be described.
As a schematic operation, for example, FIGS. 4 (a) and 4 (b) are a power demand plan and a battery forklift charge / discharge plan on a sunny day, as in 12:00 to 14:00 in FIG. 4 (a). The peak can be cut by the solar power generation, and surplus power is generated for the peak target (contract power). Therefore, the grid power is available from 12:00 to 14:00 when the solar power generation has a margin for the peak target (contract power). Charges the battery of the battery forklift 100. That is, the battery of the battery forklift 100 is charged with the surplus power of the system power supply as shown in FIG. 4B from 12:00 to 14:00. On the other hand, when the photovoltaic power generation is low (for example, when a large amount of power is required at the factory in the evening) as in FIG. 4A from 18:00 to 20:00, the battery forklift is lifted from 18:00 to 20:00. The batteries of 100 and 102 are discharged. That is, as in the case of 18:00 to 20:00 in FIG. 4B, the batteries of the battery forklifts 100 and 102 are discharged so as not to exceed the contract power.

図2に示すように、施設内の充放電制御システム10の動作フローとして、上位制御装置50において、工場内エネルギー監視システム(FEMS)60から電力需要設定または履歴を得る。上位制御装置50において、電力需要設定または履歴と、工場生産計画及び工場稼働時間とから、電力需要計画(予測)が作られる。 As shown in FIG. 2, as an operation flow of the charge / discharge control system 10 in the facility, the power demand setting or history is obtained from the energy monitoring system (FEMS) 60 in the factory in the upper control device 50. In the upper control device 50, a power demand plan (forecast) is created from the power demand setting or history, the factory production plan, and the factory operating time.

上位制御装置50において、太陽光発電履歴と、外部機器から得た天気予報から、太陽光発電計画(予測)が作られる。つまり、太陽光発電計画は、図2に示すように、過去の発電履歴と当日の天気予報から算出される。 In the upper control device 50, a photovoltaic power generation plan (forecast) is created from the photovoltaic power generation history and the weather forecast obtained from an external device. That is, as shown in FIG. 2, the photovoltaic power generation plan is calculated from the past power generation history and the weather forecast for the day.

上位制御装置50において、バッテリフォークリフト稼働計画または履歴が作られる。
充放電制御装置30において、契約電力(設定)と、電力需要計画(予測)と、太陽光発電計画(予測)から、工場の契約電力に対して電力が余剰となる電力余剰時刻が算出されるとともに電力が不足する電力不足時刻が算出される。
A battery forklift operation plan or history is created in the host controller 50.
In the charge / discharge control device 30, the power surplus time at which the power becomes surplus with respect to the contract power of the factory is calculated from the contract power (setting), the power demand plan (forecast), and the solar power generation plan (forecast). At the same time, the power shortage time is calculated.

充放電制御装置30において、バッテリフォークリフト稼働計画または履歴から、バッテリフォークリフト休止時刻が算出される。
充放電制御装置30において、電力余剰時刻、電力不足時刻、バッテリフォークリフト休止時刻から、放電を行うバッテリフォークリフトが選定されるとともに、充電時刻及び放電時刻が決定される。
In the charge / discharge control device 30, the battery forklift stop time is calculated from the battery forklift operation plan or history.
In the charge / discharge control device 30, the battery forklift to be discharged is selected from the surplus power time, the insufficient power time, and the battery forklift stop time, and the charge time and the discharge time are determined.

充放電制御装置30において、充放電指令として放電を行うバッテリフォークリフト、充電時刻、放電時刻が充放電装置20,21,22に通知(指示)される。これにより、図4(a)、図4(b)を用いて説明したような充放電が行われる。 In the charge / discharge control device 30, the battery forklift for discharging, the charge time, and the discharge time are notified (instructed) to the charge / discharge devices 20, 21, 22 as charge / discharge commands. As a result, charging / discharging as described with reference to FIGS. 4 (a) and 4 (b) is performed.

これら一連の充放電動作について具体的に説明する。
図3(a)に示すある日のバッテリフォークリフトの稼働計画(設定または過去のバッテリフォークリフトの履歴からの推定)において、例えば、3台のバッテリフォークリフトのうちのバッテリフォークリフト100は1日(0時〜24時)のうち、2時〜10時まで稼働し、10時〜12時まで充電され、その他の時間は休止する。3台のバッテリフォークリフトのうちのバッテリフォークリフト101は1日(0時〜24時)のうち、10時〜18時まで稼働し、18時〜20時まで充電され、その他の時間は休止する。3台のバッテリフォークリフトのうちのバッテリフォークリフト102は1日(0時〜24時)中休止する。
A series of these charge / discharge operations will be specifically described.
In the operation plan of the battery forklift truck on a certain day (estimated from the setting or the history of the past battery forklift truck) shown in FIG. Of 24:00), it operates from 2:00 to 10:00, is charged from 10:00 to 12:00, and rests at other times. Of the three battery forklifts, the battery forklift 101 operates from 10:00 to 18:00, is charged from 18:00 to 20:00, and rests at other times during the day (0:00 to 24:00). Of the three battery forklifts, the battery forklift 102 is inactive during the day (0:00 to 24:00).

図3(b)に示すある日の工場の電力需要計画(設定、または、「過去の電力の履歴」「工場生産計画」「工場稼働時間」からの推定)において、1日(0時〜24時)のうち、0時〜10時まではピーク目標を超えない。1日(0時〜24時)のうち、10時〜20時まではピーク目標を超える。1日(0時〜24時)のうち、20時〜24時まではピーク目標を超えない。 One day (0:00 to 24) in the power demand plan (setting or estimation from "past power history", "factory production plan", and "factory operating time" of a factory on a certain day shown in FIG. 3 (b). Of the hours), the peak target is not exceeded from 0:00 to 10:00. The peak target is exceeded from 10:00 to 20:00 in the day (0:00 to 24:00). The peak target is not exceeded from 20:00 to 24:00 in the day (0:00 to 24:00).

図3(a)、図3(b)に対し、天気予報晴れの場合には図4(a)、図4(b)に示すようにバッテリフォークリフトの充放電計画を立案する。また、図3(a)、図3(b)に対し、天気予報くもりの場合には図5(a)、図5(b)に示すようにバッテリフォークリフトの充放電計画を立案する。 With respect to FIGS. 3 (a) and 3 (b), when the weather forecast is fine, a charge / discharge plan for the battery forklift is drawn up as shown in FIGS. 4 (a) and 4 (b). Further, with respect to FIGS. 3 (a) and 3 (b), in the case of cloudy weather forecast, a charge / discharge plan for the battery forklift is formulated as shown in FIGS. 5 (a) and 5 (b).

図4(a)に示す天気予報晴れの場合の電力需要計画においては、図3(b)に示す工場の電力需要計画に対し太陽光発電量(予測)として、1日(0時〜24時)のうち、8時〜18時までは発電でき、太陽光発電電力で電力需要が集中する時間帯である12時〜14時の系統電源からの供給電力量を低く抑えることができ、ピークカットすることができる。 In the power demand plan for the sunny weather forecast shown in FIG. 4 (a), the amount of photovoltaic power generation (forecast) is calculated as the amount of photovoltaic power generation (forecast) for the power demand plan of the factory shown in FIG. 3 (b). ), Power can be generated from 8:00 to 18:00, and the amount of power supplied from the grid power supply from 12:00 to 14:00, which is the time zone when the power demand is concentrated by photovoltaic power generation, can be kept low, and the peak cut. can do.

よって、図4(b)に示す天気予報晴れの場合のバッテリフォークリフトの充放電計画において、12時〜14時はピーク目標(契約電力)に対し電力余剰時刻であり、18時〜20時はピーク目標(契約電力)に対し電力不足時刻である。そして、3台のバッテリフォークリフトのうちのバッテリフォークリフト100は1日(0時〜24時)のうち、2時〜10時まで計画通り稼働し、12時〜14時まで充電し、18時〜20時まで放電し、20時〜22時までピークを超えていない時に系統電力で充電する。その他の時間は休止する。3台のバッテリフォークリフトのうちのバッテリフォークリフト101は1日(0時〜24時)のうち、10時〜18時まで計画通り稼働し、20時〜22時までピークを超えていない時に系統電力で充電し、その他の時間は休止する。3台のバッテリフォークリフトのうちのバッテリフォークリフト102は1日(0時〜24時)のうち18時〜20時まで放電し、20時〜22時までピークを超えていない時に系統電力で充電し、その他の時間は休止する。 Therefore, in the charge / discharge plan of the battery forklift when the weather forecast is sunny as shown in FIG. 4 (b), 12:00 to 14:00 is the power surplus time with respect to the peak target (contract power), and 18:00 to 20:00 is the peak. It is the power shortage time with respect to the target (contract power). The battery forklift 100 of the three battery forklifts operates as planned from 2:00 to 10:00 during the day (0:00 to 24:00), charges from 12:00 to 14:00, and is charged from 18:00 to 20. It discharges until time and charges with system power when the peak is not exceeded from 20:00 to 22:00. Rest at other times. Of the three battery forklifts, the battery forklift 101 operates as planned from 10:00 to 18:00 during the day (0:00 to 24:00), and uses grid power when the peak is not exceeded from 20:00 to 22:00. Charge and rest at other times. Of the three battery forklifts, the battery forklift 102 discharges from 18:00 to 20:00 in a day (0:00 to 24:00), and charges with system power when the peak is not exceeded from 20:00 to 22:00. Rest at other times.

このように、充放電制御装置30は、図2に示すように、上位制御装置50に記憶された施設としての工場の電力需要計画、太陽光発電計画から、図4(a)、図4(b)に示すように、施設としての工場の契約電力に対して電力が余剰となる時刻及び不足する時刻を算出する。充放電制御装置30は、図2に示すように、上位制御装置50に記憶されたバッテリフォークリフト100,101,102の稼働計画から、バッテリフォークリフトの稼働時間外において充放電指令を充放電装置20,21,22に出力する。 As described above, as shown in FIG. 2, the charge / discharge control device 30 is shown in FIGS. 4 (a) and 4 (a) and 4 (a) from the power demand plan and the photovoltaic power generation plan of the factory as facilities stored in the upper control device 50. As shown in b), the time when the power becomes surplus and the time when the power becomes insufficient with respect to the contracted power of the factory as a facility are calculated. As shown in FIG. 2, the charge / discharge control device 30 issues a charge / discharge command outside the operating hours of the battery forklift from the operation plans of the battery forklifts 100, 101, 102 stored in the host control device 50. Output to 21 and 22.

このようにして、天気予報晴れの場合において、図2に示すように、工場の電力需要計画、太陽光発電計画から、電力余剰/不足時刻を算出し、バッテリフォークリフト100,101,102の稼働計画から充放電を指令することで、バッテリフォークリフトの電池を工場の電力バッファとして活用することができる。 In this way, when the weather forecast is sunny, as shown in FIG. 2, the power surplus / shortage time is calculated from the power demand plan and the solar power generation plan of the factory, and the operation plans of the battery forklifts 100, 101, 102 are calculated. By instructing charge / discharge from, the battery of the battery forklift can be used as a power buffer in the factory.

図5(a)に示す天気予報くもりの場合の電力需要計画において、図3(b)に示す工場の電力需要計画に対し太陽光発電量(予測)として、1日(0時〜24時)中発電できない。 In the power demand plan for the weather forecast cloudy weather shown in FIG. 5 (a), the amount of photovoltaic power generation (forecast) is one day (0:00 to 24:00) with respect to the power demand plan of the factory shown in FIG. 3 (b). Medium power generation is not possible.

よって、図5(b)に示す天気予報くもりの場合のバッテリフォークリフトの充放電計画において、12時〜14時はピーク目標(契約電力)に対し電力不足時刻である。そして、3台のバッテリフォークリフトのうちのバッテリフォークリフト100は1日(0時〜24時)のうち、2時〜10時まで計画通り稼働し、20時〜22時までピークを超えていない時に系統電力で充電し、その他の時間は休止する。3台のバッテリフォークリフトのうちのバッテリフォークリフト101は1日(0時〜24時)のうち、10時〜18時まで計画通り稼働し、20時〜22時までピークを超えていない時に系統電力で充電し、その他の時間は休止する。3台のバッテリフォークリフトのうちのバッテリフォークリフト102は1日(0時〜24時)のうち12時〜14時まで放電し、20時〜22時までピークを超えていない時に系統電力で充電し、その他の時間は休止する。 Therefore, in the charge / discharge plan of the battery forklift in the case of the weather forecast cloudiness shown in FIG. 5B, 12:00 to 14:00 is the power shortage time with respect to the peak target (contract power). The battery forklift 100 of the three battery forklifts operates as planned from 2:00 to 10:00 during the day (0:00 to 24:00), and the system operates when the peak is not exceeded from 20:00 to 22:00. It charges with electricity and pauses at other times. Of the three battery forklifts, the battery forklift 101 operates as planned from 10:00 to 18:00 during the day (0:00 to 24:00), and uses grid power when the peak is not exceeded from 20:00 to 22:00. Charge and rest at other times. Of the three battery forklifts, the battery forklift 102 discharges from 12:00 to 14:00 in a day (0:00 to 24:00), and charges with system power from 20:00 to 22:00 when the peak is not exceeded. Rest at other times.

このように、充放電制御装置30は、図2に示すように、上位制御装置50に記憶された施設としての工場の電力需要計画、太陽光発電計画から、図5(a)、図5(b)に示すように、施設としての工場の契約電力に対して電力が不足する時刻を算出する。充放電制御装置30は、図2に示すように、上位制御装置50に記憶されたバッテリフォークリフト100,101,102の稼働計画から、充放電指令を充放電装置20,21,22に出力する。 As described above, as shown in FIG. 2, the charge / discharge control device 30 is based on the power demand plan and the photovoltaic power generation plan of the factory as facilities stored in the upper control device 50, and FIGS. As shown in b), the time when the power is insufficient with respect to the contract power of the factory as a facility is calculated. As shown in FIG. 2, the charge / discharge control device 30 outputs a charge / discharge command to the charge / discharge devices 20, 21, 22 from the operation plans of the battery forklifts 100, 101, 102 stored in the host control device 50.

このようにして、天気予報くもりの場合においても、図2に示すように、工場の電力需要計画、太陽光発電計画から、電力不足時刻を算出し、バッテリフォークリフト100,101,102の稼働計画から充放電を指令することで、バッテリフォークリフトの電池を工場の電力バッファとして活用することができる。 In this way, even in the case of cloudy weather forecast, as shown in FIG. 2, the power shortage time is calculated from the power demand plan and the solar power generation plan of the factory, and from the operation plans of the battery forklifts 100, 101, 102. By instructing charge / discharge, the battery of the battery forklift can be used as a power buffer in the factory.

図6に示す、ある地方での月毎の日射量において、晴れの日には雨の日に比べて日射量が多く太陽光発電量も多い。特に、6月が晴れの日も雨の日も日射量が多く、12月が晴れの日も雨の日も日射量が少なくなる。この図6に示すデータを用いて図4(a)に示した太陽光発電計画に反映することができる。 In the monthly amount of solar radiation in a certain region shown in FIG. 6, the amount of solar radiation is larger on a sunny day than on a rainy day, and the amount of solar power generation is also large. In particular, the amount of solar radiation is high on both sunny and rainy days in June, and the amount of solar radiation is low on both sunny and rainy days in December. The data shown in FIG. 6 can be reflected in the photovoltaic power generation plan shown in FIG. 4 (a).

上記実施形態によれば、以下のような効果を得ることができる。
(1)施設内の充放電制御システム10の構成として、電動車両としてのバッテリフォークリフト100,101,102の電池100a,101a,102aを充放電する充放電装置20,21,22と、充放電装置20,21,22を制御する充放電制御装置30と、太陽光により発電する太陽光発電装置40と、施設の電力需要計画、太陽光発電計画、バッテリフォークリフト100,101,102の稼働計画を記憶する記憶装置としての上位制御装置50と、を備える。充放電制御装置30は、上位制御装置50に記憶された施設の電力需要計画、太陽光発電計画から、施設の契約電力に対して電力が余剰となる時刻及び不足する時刻を算出し、上位制御装置50に記憶されたバッテリフォークリフト100,101,102の稼働計画から、充放電指令を充放電装置20,21,22に出力する。
According to the above embodiment, the following effects can be obtained.
(1) As a configuration of the charge / discharge control system 10 in the facility, a charge / discharge device 20, 21, 22 for charging / discharging the batteries 100a, 101a, 102a of the battery forklifts 100, 101, 102 as an electric vehicle, and a charge / discharge device. Stores the charge / discharge control device 30 that controls 20, 21 and 22, the solar power generation device 40 that generates electricity from sunlight, the facility's power demand plan, the solar power generation plan, and the operation plans of the battery forklifts 100, 101, 102. It is provided with a higher-level control device 50 as a storage device. The charge / discharge control device 30 calculates the time when the power becomes surplus and the time when the power is insufficient with respect to the contracted power of the facility from the power demand plan and the solar power generation plan of the facility stored in the upper control device 50, and performs higher control. From the operation plan of the battery fork lifts 100, 101, 102 stored in the device 50, the charge / discharge command is output to the charge / discharge devices 20, 21, 22.

よって、電動車両としてのバッテリフォークリフト100,101,102の電池100a,101a,102aを施設内の電力バッファとして使用して、定置型蓄電池を不要にできる。また、太陽光発電装置を積極利用し、太陽光発電電力で契約電力を超えないようにピークカットすることができる。 Therefore, the batteries 100a, 101a, 102a of the battery forklifts 100, 101, 102 as an electric vehicle can be used as a power buffer in the facility, and the stationary storage battery can be eliminated. In addition, by actively using the photovoltaic power generation device, it is possible to cut the peak of the photovoltaic power generation so as not to exceed the contract power.

(2)太陽光発電計画は、過去の発電履歴(例えば図6に示したように月毎や日毎の日射量に応じた発電履歴)と当日の天気予報から算出されるので、太陽光発電計画が立てやすい。 (2) The photovoltaic power generation plan is calculated from the past power generation history (for example, the power generation history according to the amount of solar radiation for each month or day as shown in Fig. 6) and the weather forecast for the day. Is easy to stand up.

(3)電動車両は、産業車両であるバッテリフォークリフト100,101,102であるので、稼働計画が立てやすい。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
(3) Since the electric vehicle is a battery forklift 100, 101, 102 which is an industrial vehicle, it is easy to make an operation plan.
The embodiment is not limited to the above, and may be embodied as follows, for example.

○ 工場内エネルギー監視システム(FEMS)60を用いて施設全体の電力情報を入手したが、ビル内エネルギー監視システム(BEMS)を用いて施設全体の電力情報を入手してもよい。 ○ Although the power information of the entire facility was obtained using the energy monitoring system (FEMS) 60 in the factory, the power information of the entire facility may be obtained using the energy monitoring system (BEMS) in the building.

○ 施設全体の電力情報はエネルギー監視システム(EMS)から入手せずに、自前で電力計を設置して入手してもよい。
○ 電池100a,101a,102aとしてリチウム電池を例示したが、電池の種類は問わない。
○ You may install a power meter on your own and obtain the power information of the entire facility without obtaining it from the energy monitoring system (EMS).
○ Lithium batteries have been exemplified as batteries 100a, 101a, 102a, but the type of battery does not matter.

○ 上位制御装置50としてサーバを例示したが、サーバ以外の記憶装置を用いてもよい。
○ 電動車両としてのバッテリフォークリフトは図1では3台であったが、その数は問わない。
○ Although the server is illustrated as the upper control device 50, a storage device other than the server may be used.
○ The number of battery forklifts as electric vehicles was three in Fig. 1, but the number does not matter.

○ 充放電装置は図1では3台であったが、その数は問わない。
○ 電動車両は、バッテリフォークリフトであったが、電動車両は、バッテリフォークリフト以外の産業車両でもよく、また、産業車両以外の車両、例えば電動タイプの社用車でもよい。電動車両は産業車両または社用車であると、稼働計画が立てやすい。
○ The number of charging / discharging devices was three in Fig. 1, but the number does not matter.
○ The electric vehicle was a battery forklift, but the electric vehicle may be an industrial vehicle other than the battery forklift, or a vehicle other than the industrial vehicle, for example, an electric type company vehicle. If the electric vehicle is an industrial vehicle or a company vehicle, it is easy to make an operation plan.

○ バッテリフォークリフト100,101,102は異なる機種でもよく、電池100a,101a,102aも異なる電池でもよい。 ○ The battery forklifts 100, 101, 102 may be different models, and the batteries 100a, 101a, 102a may also be different batteries.

10…施設内の充放電制御システム、20,21,22…充放電装置、30…充放電制御装置、40…太陽光発電装置、50…上位制御装置、100,101,102…バッテリフォークリフト、100a,101a,102a…電池。 10 ... Charge / discharge control system in the facility, 20, 21, 22 ... Charge / discharge device, 30 ... Charge / discharge control device, 40 ... Solar power generation device, 50 ... Upper control device, 100, 101, 102 ... Battery forklift, 100a , 101a, 102a ... Batteries.

Claims (3)

電動車両の電池を充放電する充放電装置と、
前記充放電装置を制御する充放電制御装置と、
太陽光により発電する太陽光発電装置と、
施設の電力需要計画、太陽光発電計画、前記電動車両の稼働計画を記憶する記憶装置と、
を備え、
前記充放電制御装置は、前記記憶装置に記憶された施設の電力需要計画、太陽光発電計画から、施設の契約電力に対して電力が余剰となる時刻及び不足する時刻を算出し、前記記憶装置に記憶された電動車両の稼働計画から、充放電指令を前記充放電装置に出力する
ことを特徴とする施設内の充放電制御システム。
A charging / discharging device that charges / discharges the battery of an electric vehicle,
A charge / discharge control device that controls the charge / discharge device,
A photovoltaic power generator that uses sunlight to generate electricity,
A storage device that stores the facility's power demand plan, solar power generation plan, and operation plan of the electric vehicle,
With
The charge / discharge control device calculates the time when the power becomes surplus and the time when the power is insufficient with respect to the contracted power of the facility from the power demand plan and the solar power generation plan of the facility stored in the storage device, and the storage device. An in-facility charge / discharge control system characterized in that a charge / discharge command is output to the charge / discharge device from the operation plan of the electric vehicle stored in.
前記太陽光発電計画は、過去の発電履歴と当日の天気予報から算出される
ことを特徴とする請求項1に記載の施設内の充放電制御システム。
The charge / discharge control system in a facility according to claim 1, wherein the photovoltaic power generation plan is calculated from a past power generation history and a weather forecast of the day.
前記電動車両は、産業車両または社用車である
ことを特徴とする請求項1または2に記載の施設内の充放電制御システム。
The charge / discharge control system in a facility according to claim 1 or 2, wherein the electric vehicle is an industrial vehicle or a company vehicle.
JP2019080147A 2019-04-19 2019-04-19 In-facility charge/discharge control system Pending JP2020178472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019080147A JP2020178472A (en) 2019-04-19 2019-04-19 In-facility charge/discharge control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019080147A JP2020178472A (en) 2019-04-19 2019-04-19 In-facility charge/discharge control system

Publications (1)

Publication Number Publication Date
JP2020178472A true JP2020178472A (en) 2020-10-29

Family

ID=72936339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019080147A Pending JP2020178472A (en) 2019-04-19 2019-04-19 In-facility charge/discharge control system

Country Status (1)

Country Link
JP (1) JP2020178472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021121934A1 (en) 2021-08-24 2023-03-02 Deutsche Post Ag Procedure for load management
US11710177B2 (en) 2020-10-16 2023-07-25 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus and electricity transaction system for electricity transaction by mobile object
US11763379B2 (en) 2020-10-16 2023-09-19 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus for electricity transaction by mobile object

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191736A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Battery charge and discharge system, energy management system, and electric vehicle
JP2012196028A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Electric power management system
JP2012222860A (en) * 2011-04-04 2012-11-12 Denso Corp Power supply system
JP2014096928A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Charging schedule management device, method, and program, and charging schedule management system comprising charging schedule management device
JP2016106525A (en) * 2013-02-08 2016-06-16 三菱電機株式会社 Energy management system, controller, energy management method, and program
JP2017127129A (en) * 2016-01-14 2017-07-20 積水化学工業株式会社 Storage battery control method
JP2017158363A (en) * 2016-03-03 2017-09-07 三菱重工業株式会社 Power management device and power management method, and logistics network system
JP2018153011A (en) * 2017-03-14 2018-09-27 積水化学工業株式会社 Power control system
JP2020022262A (en) * 2018-07-31 2020-02-06 株式会社豊田自動織機 Charging system for industrial vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191736A (en) * 2011-03-10 2012-10-04 Mitsubishi Electric Corp Battery charge and discharge system, energy management system, and electric vehicle
JP2012196028A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Electric power management system
JP2012222860A (en) * 2011-04-04 2012-11-12 Denso Corp Power supply system
JP2014096928A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Charging schedule management device, method, and program, and charging schedule management system comprising charging schedule management device
JP2016106525A (en) * 2013-02-08 2016-06-16 三菱電機株式会社 Energy management system, controller, energy management method, and program
JP2017127129A (en) * 2016-01-14 2017-07-20 積水化学工業株式会社 Storage battery control method
JP2017158363A (en) * 2016-03-03 2017-09-07 三菱重工業株式会社 Power management device and power management method, and logistics network system
JP2018153011A (en) * 2017-03-14 2018-09-27 積水化学工業株式会社 Power control system
JP2020022262A (en) * 2018-07-31 2020-02-06 株式会社豊田自動織機 Charging system for industrial vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710177B2 (en) 2020-10-16 2023-07-25 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus and electricity transaction system for electricity transaction by mobile object
US11763379B2 (en) 2020-10-16 2023-09-19 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus for electricity transaction by mobile object
DE102021121934A1 (en) 2021-08-24 2023-03-02 Deutsche Post Ag Procedure for load management

Similar Documents

Publication Publication Date Title
EP3469685B1 (en) Method and apparatus for controlling power flow in a hybrid power system
Shivashankar et al. Mitigating methods of power fluctuation of photovoltaic (PV) sources–A review
Saboori et al. Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators
US9937810B2 (en) Charging and discharging of DC microgrid energy storage
Khodayar et al. Integration of high reliability distribution system in microgrid operation
JP6592360B2 (en) Power management method
JP6664680B1 (en) Power control device, power control method, bidirectional inverter, and power control system
JP2015080401A (en) Methods and systems for controlling electric network
US11916422B2 (en) Battery charge and discharge power control in a power grid
WO2014143908A1 (en) System and method for energy distribution
CN102427230A (en) Wind-light storage combined dispatching method and system used for distributed microgrid island operation
JP2020178472A (en) In-facility charge/discharge control system
WO2020153443A1 (en) Energy management system and method for controlling same
CN110783959A (en) New forms of energy power generation system's steady state control system
JP7203551B2 (en) power supply system
Bhattarai et al. Overvoltage mitigation using coordinated control of demand response and grid-tied photovoltaics
Lim et al. Control of Photovoltaic-Variable Speed Diesel Generator battery-less hybrid energy system
JP2017046507A (en) System stabilization system
JP7252116B2 (en) Renewable energy power generation system
Vo et al. Amsterdam ArenA stadium: Real-time smart battery energy storage system coordination for voltage support
CN113988355A (en) Wind-solar energy storage joint debugging joint transportation optimization control method and device for virtual power plant for sharing energy storage
JP6543187B2 (en) Battery control method
Shaaban et al. Optimal coordination for electric vehicles in smart grids with high penetration of PV generation
Kumar et al. Electric Vehicles as Energy Storage: V2G Capacity Estimation
WO2021152667A1 (en) Power supply management apparatus and power supply management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018