JP2020177784A - イオン分析装置 - Google Patents

イオン分析装置 Download PDF

Info

Publication number
JP2020177784A
JP2020177784A JP2019078463A JP2019078463A JP2020177784A JP 2020177784 A JP2020177784 A JP 2020177784A JP 2019078463 A JP2019078463 A JP 2019078463A JP 2019078463 A JP2019078463 A JP 2019078463A JP 2020177784 A JP2020177784 A JP 2020177784A
Authority
JP
Japan
Prior art keywords
radical
frequency
ion
power supply
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019078463A
Other languages
English (en)
Other versions
JP7109026B2 (ja
JP2020177784A5 (ja
Inventor
高橋 秀典
Shusuke Takahashi
秀典 高橋
元 和田
Hajime Wada
元 和田
▲祐▼次 島袋
Yuji Shimabukuro
▲祐▼次 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Doshisha Co Ltd
Original Assignee
Shimadzu Corp
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Doshisha Co Ltd filed Critical Shimadzu Corp
Priority to JP2019078463A priority Critical patent/JP7109026B2/ja
Publication of JP2020177784A publication Critical patent/JP2020177784A/ja
Publication of JP2020177784A5 publication Critical patent/JP2020177784A5/ja
Application granted granted Critical
Publication of JP7109026B2 publication Critical patent/JP7109026B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

【課題】試料成分由来のプリカーサイオンを解離させるのに十分な温度のラジカルを該プリカーサイオンに照射する。【解決手段】プリカーサイオンが導入される反応室2と、ラジカル生成室51と、ラジカル生成室に原料ガスを供給する原料ガス供給源と、原料ガスからラジカルと荷電粒子を生成するための第1周波数の高周波電力を供給する第1電力供給部531と、ラジカルを輸送するラジカル輸送路541と、ラジカル生成室又は/及びラジカル輸送路において荷電粒子を励振するための、第1周波数よりも低い第2周波数の高周波電力を供給する第2電力供給部532と、第1電力供給部と同時に又は第1電力供給部から所定時間だけ遅れて第2電力供給部を動作させる制御部と、反応室において生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部とを備えるイオン分析装置。【選択図】図2

Description

本発明は、イオン分析装置に関する。
高分子化合物を同定したりその構造を解析したりするために、高分子化合物由来のイオン(プリカーサイオン)を1又は複数回解離させてプロダクトイオン(フラグメントイオンとも呼ばれる。)を生成し、それを質量電荷比に応じて分離し検出する質量分析法が広く利用されている。質量分析においてイオンを解離させる代表的な方法として、イオンに窒素ガス等の不活性ガス分子を衝突させる、衝突誘起解離(CID: Collision-Induced Dissociation)法が知られている。CID法では不活性分子との衝突エネルギーによってイオンを解離させるため、様々なイオンを解離させることができるが、イオンが解離する位置の選択性が低い。そのため、CID法は、構造解析のために特定の部位でイオンを解離させる必要がある場合には不向きである。例えば、ペプチドなどを分析する場合は、アミノ酸の結合位置で特異的に解離させることが望まれるが、CID法ではそれが難しい。
ペプチドをアミノ酸の結合位置で特異的に解離させるイオン解離法として、従来より、プリカーサイオンに負イオンを衝突させる電子移動解離(ETD: Electron Transfer Dissociation)法や、プリカーサイオンに電子を照射する電子捕獲解離(ECD: Electron Capture Dissociation)法が用いられている。これらは、不対電子誘導型の解離法と呼ばれるものであり、ペプチド主鎖のN-Cα結合を解離させてc/z系列のプロダクトイオンを生成する。
ETD法やECD法では、プリカーサイオンが正イオンである場合、解離時にイオンの価数が減少する。即ち、1価の正イオンを解離させると中性分子が生成される。このため、2価以上の正イオンしか分析することができない。従って、ETD法やECD法は、1価の正イオンを多く生成するMALDI法と組み合わせるには不向きである。
本発明者は、ペプチド由来のプリカーサイオンに対して水素ラジカルを照射することによって不対電子誘導型の解離を生じさせる水素付着解離(HAD: Hydrogen Attachment/Abstraction Dissociation)法を提案している(特許文献1)。HAD法ではプリカーサイオンの価数を変化させずに解離させることから、MALDI法との組み合わせに適している。HAD法によってもc/z系列のプロダクトイオンを生成することができる。
本発明者は、ヒドロキシラジカル、酸素ラジカル、あるいは窒素ラジカルを用いることによって、ペプチド由来のプリカーサイオンをアミノ酸の結合位置で特異的に解離させることも提案している(特許文献2)。これらのペプチド由来のプリカーサイオンに対してラジカルを照射すると、a/x系列のプロダクトイオンやb/y系列のプロダクトイオンが生成される。
国際公開第2015/133259号 国際公開第2018/186286号
Yuji Shimabukuro, Hidenori Takahashi, Shinichi Iwamoto, Koichi Tanaka, Motoi Wada, "Tandem Mass Spectrometry of Peptide Ions by Microwave Excited Hydrogen and Water Plasmas", Analytical Chemistry 2018, 90 (12) pp. 7239-7245 U. Fantz and D. Wunderlich, "A novel diagnostic technique for H-(D-) densities in negative hydrogen ion sources", New J. Phys., 8, 301 (2006).
プリカーサイオンとラジカルの反応効率は、ラジカルが持つエネルギーによって異なる。ラジカルが持つエネルギーは、主に当該ラジカルが有する運動エネルギーであり、ラジカル温度で表すことができる。ラジカル温度が低いラジカルをプリカーサイオンに照射しても十分な反応が起こらない。本発明者らは、非特許文献1において、電子サイクロトロン共鳴(ECR: Electron Cyclotron Resonance)−誘導結合プラズマ(ICP: Inductively Coupled Plasma)源で生成した水素ラジカルをペプチド由来のプリカーサイオンに照射しても十分な解離が生じなかったことを報告し、その要因がペプチドに照射したラジカルのラジカル温度が、ペプチド由来のプリカーサイオンを解離させるのには十分でなかったことにあると考察した。
ここではラジカルを照射してプリカーサイオンを解離させることにより生成したプロダクトイオンを質量分析する場合を例に説明したが、プロダクトイオンをイオン移動度に応じて分離し測定する場合にも上記同様の問題があった。
本発明が解決しようとする課題は、試料成分由来のプリカーサイオンを解離させるのに十分な温度のラジカルを該プリカーサイオンに照射することができるイオン分析装置を提供することである。
上記課題を解決するために成された本発明は、試料成分由来のプリカーサイオンにラジカルを照射することにより生成されるプロダクトイオンを分析するイオン分析装置であって、
前記プリカーサイオンが導入される反応室と、
ラジカル生成室と、
前記ラジカル生成室に原料ガスを供給する原料ガス供給源と、
前記ラジカル生成室において前記原料ガスからラジカルと荷電粒子を生成するための第1周波数の高周波電力を供給する第1電力供給部と、
前記ラジカルを前記反応室に輸送するラジカル輸送路と、
前記ラジカル生成室又は/及び前記ラジカル輸送路において、前記荷電粒子を励振するための、前記第1周波数よりも低い第2周波数の高周波電力を供給する第2電力供給部と、
前記第1電力供給部と同時に、又は該第1電力供給部から所定時間だけ遅れて第2電力供給部を動作させる制御部と、
前記反応室において生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
を備える。
前記第1周波数の高周波電力の供給は、ラジカル生成室に設けられた電極に高周波電圧を印加することにより行ってもよく、あるいはラジカル生成室を構成する部材の外周面に巻回したコイルに高周波電流を流すことにより行ってもよい。第2周波数の高周波電力の供給についても同様に、ラジカル生成室又は/及びラジカル輸送路に設けられた電極に高周波電圧を印加することにより行ってもよく、あるいはラジカル生成室又は/及びラジカル輸送路を構成する部材の外周面に巻回したコイルに高周波電流を流すことにより行ってもよい。
本発明に係るイオン分析装置では、まず、ラジカル生成室に原料ガスを供給し、第1周波数の高周波電力を供給して原料ガスからラジカルを生成する。このとき、原料ガスからは、ラジカルだけでなく荷電粒子(イオンや電子)も生成される。本発明に係るイオン分析装置では、これに加えて第2周波数の高周波電力を供給することによりイオンを励振して運動エネルギーを上昇させる。こうして運動エネルギーを上昇させたイオンに電子が結合することにより運動エネルギーが大きいラジカル(ラジカル温度が高いラジカル)が生成される。イオンの励振は、ラジカル生成室又は/及びラジカル輸送路において行うことができる。ラジカル生成室でイオンを励振する場合には、第1電力供給部と同時あるいはそれよりも少し遅れて第2電力供給部を動作させればよい。また、ラジカル輸送路でイオンを励振する場合には、第1電力供給部から所定時間だけ遅れて、具体的にはラジカル生成室内で生成された荷電粒子がラジカル輸送路に到達するタイミングで、第2電力供給部を動作させればよい。これにより、試料成分由来のプリカーサイオンを解離させるのに十分な温度のラジカルを該プリカーサイオンに照射することができる。
本発明に係るイオン分析装置の一実施例であるイオントラップ−飛行時間型質量分析装置の概略構成図。 本実施例の質量分析装置のラジカル源及びその周辺部のラジカル構成図。 本実施例の質量分析装置を用いて生成した水素ラジカルの発光スペクトル、及び比較例の発光スペクトル。 本実施例の質量分析装置を用いて生成した水素ラジカルをフラーレンイオンに照射して取得したマススペクトル、及び比較例のマススペクトル。
本発明に係るイオン分析装置の実施例について、以下、図面を参照して説明する。本実施例のイオン分析装置は、イオントラップ−飛行時間型(IT-TOF型)質量分析装置である。
図1に本実施例のイオントラップ−飛行時間型質量分析装置(以下、単に「質量分析装置」とも呼ぶ。)の概略構成を示す。本実施例の質量分析装置は、真空雰囲気に維持される図示しない真空チャンバの内部に、試料中の成分をイオン化するイオン源1と、イオン源1で生成されたイオンを高周波電場の作用により捕捉するイオントラップ2と、イオントラップ2から射出されたイオンを質量電荷比に応じて分離する飛行時間型質量分離部3と、分離されたイオンを検出するイオン検出器4とを備える。本実施例のイオントラップ質量分析装置はさらに、原料ガスからラジカルを生成し、イオントラップ2内に捕捉したイオンを照射するためのラジカル生成・照射部5と、不活性ガス供給部6と、トラップ電圧発生部7と、制御・処理部8とを備える。制御・処理部8は上述の各部の動作を制御する。
本実施例の質量分析装置のイオン源1には、ESI源やMALDIイオン源など、試料成分のイオン化に適した種類のイオン源が用いられる。本実施例のイオントラップ2は、円環状のリング電極21と、該リング電極21を挟んで対向配置された一対のエンドキャップ電極(入口側エンドキャップ電極22、出口側エンドキャップ電極24)とを含む三次元イオントラップである。リング電極21にはラジカル粒子導入口26とラジカル粒子排出口27が、入口側エンドキャップ電極22にはイオン導入孔23が、出口側エンドキャップ電極24にはイオン射出孔25が、それぞれ形成されている。トラップ電圧発生部7は、制御・処理部8からの指示に応じてリング電極21、入口側エンドキャップ電極22、及び出口側エンドキャップ電極24のそれぞれに対して所定のタイミングで高周波電圧と直流電圧のいずれか一方又はそれらを合成した電圧を印加する。
ラジカル生成・照射部5は、内部にラジカル生成室51が形成されたラジカル源54と、ラジカル生成室51を排気する真空ポンプ(真空排気部)57と、ラジカルの原料となるガス(原料ガス)を供給する原料ガス供給源52と、高周波電力供給部53とを備えている。高周波電力供給部53は、第1周波数の高周波電力を供給する第1高周波電源531と、第2周波数の高周波電力を供給する第2高周波電源532とを含む(図2参照)。原料ガス供給源52からラジカル生成室51に至る流路には、原料ガスの流量を調整するためのバルブ56が設けられている。
本実施例ではラジカル生成・照射部5において水素ラジカルを生成する。水素ラジカルを生成するための原料ガスとしては、例えば水素ガス、水蒸気(水)、あるいはアンモニアガスを用いることができる。原料ガスとして水素ガスを用いると、高純度での水素ラジカルを生成することができる。また、原料ガスとして水蒸気を用いると、その取り扱いが安全且つ簡便である。さらに、原料ガスとしてアンモニアガスを用いると、アンモニア分子から水素分子を離脱させ、その水素分子から多くの水素ラジカルを生成することができる。
図2の断面図を参照してラジカル源54及びその周辺部の構成を説明する。ラジカル源54は、アルミナ等の誘電体(例えば酸化アルミニウム、石英、窒化アルミニウム)からなる管状体541を有しており、その内部空間がラジカル生成室51となる。管状体541は、中空筒状の磁石544の内部に挿入された状態でプランジャー545により固定される。管状体541のうち、磁石544の内側に位置する部分の外周には第1スパイラルアンテナ542(図2の破線)が巻回されている。管状体541のうち、第1スパイラルアンテナ542が巻回された部分の内側の領域が本発明におけるラジカル生成室に相当し、それよりも先端部側(図2の左側)の領域が本発明におけるラジカル輸送路に相当する。本実施例の第1スパイラルアンテナ542は、導電性の(例えばタングステンからなる)コイルを15回、周回させたものである。また、該筒状体541の外周のうち、該第1スパイラルアンテナ542よりも先端部側(図2の左側)には第2スパイラルアンテナ543(図2の破線)が巻回されている。本実施例の第2スパイラルアンテナ543は、導電性の(例えばタングステンからなる)コイルを20回、周回させたものである。第1スパイラルアンテナ542及び第2スパイラルアンテナの材質及び巻き数は一例であって、適宜に変更することができる。
また、ラジカル源54には、高周波電力投入部546が設けられている。高周波電力投入部546には、高周波電力供給部53(第1高周波電源531及び第2高周波電源532)から2系統の高周波電力が供給される。第1高周波電源531から供給される第1周波数の高周波電力は第1スパイラルアンテナ542に、第2高周波電源532から供給される第2周波数の高周波電力は第2スパイラルアンテナ543に供給される。
さらに、ラジカル源54は、該ラジカル源54の先端部分を中間真空室59に差し込んだ状態で固定するためのフランジ547を備えている。フランジ547の内部には、磁石544と対を成す、該磁石544と同径の中空筒状の磁石548が収容されている。磁石544、548は必須のものではないが、これらにより管状体541の内部(ラジカル生成室51)に磁場が発生し、その作用によりプラズマの発生及び維持が容易になる。
ラジカル生成室51は、真空ポンプ57により排気されたあと、所定量の原料ガスが供給される。原料ガスの供給量は、例えばラジカル生成室51内の圧力が0.01〜1Paになる程度の量である。一方、イオントラップ2の内部は、通常、10-3Pa程度の超高真空に維持される。そして、中間真空室59はその中間の圧力に維持される。中間真空室59とイオントラップ2の内部の圧力差を維持するために、両者の間にはスキマー55が設けられている。また、中間真空室59内の、ラジカル源54の出口端とスキマー55の間には偏向58が設けられている。本実施例の偏向部58は、対向配置された2枚の平板電極を有しており、図示しない電源から一方の平板電極に正電圧が、他方の平板電極に負電圧が印加されている。これにより、ラジカル源54から放出される荷電粒子が、1対の平板電極58の間に形成される電場の作用により偏向される。なお、偏向部は、荷電粒子を偏向させるものであればよく、電場の代わりに磁場を形成するものなど、適宜の構成を採ることができる。
不活性ガス供給部6は、1乃至複数種類の不活性ガス(窒素ガス、ヘリウムガス、アルゴンガス等)をイオントラップ2内に供給する。これらの不活性ガスは、イオントラップ2に導入されたイオンを冷却したり、イオントラップ2に導入されたイオンに衝突させて該イオンを解離させたりするために用いられる。
次に、本実施例の質量分析装置における分析動作について、ペプチド混合物を分析する場合を例に説明する。分析の開始前に、イオン源1(大気圧イオン源の場合を除く)イオントラップ2、飛行時間型質量分離部3を収容する真空チャンバ、中間真空室59、及びラジカル生成室51が、それぞれ真空ポンプ(真空ポンプ57のみ図示し、他は図示略)により所定の真空度まで排気される。
続いてイオン源1により試料成分(ペプチド混合物)をイオン化する。イオン源1で生成されたイオンはパケット状にイオン源1から射出され、入口側エンドキャップ電極22に形成されているイオン導入孔23を経てイオントラップ2の内部に導入される。イオントラップ2内に導入された試料成分由来のイオンは、トラップ電圧発生部7からリング電極21に印加される電圧によってイオントラップ2内に形成される高周波電場で捕捉される。そのあと、トラップ電圧発生部7からリング電極21等に所定の電圧が印加され、それによって特定の質量電荷比(又は特定の質量電荷比範囲内の質量電荷比)を有するイオン以外の質量電荷のイオンが励振され、イオントラップ2から排除される。これにより、イオントラップ2内に、特定の質量電荷比(又は特定の質量電荷比範囲内の質量電荷比)を有するプリカーサイオンが選択的に捕捉される。
続いて、不活性ガス供給部6のバルブ62を開放し、不活性ガス供給源61からイオントラップ2内にヘリウムガスなどの不活性ガスを導入する。これによりプリカーサイオンがクーリングされ、イオントラップ2の中心付近に収束される。
試料成分のイオン化及びイオントラップ2への捕捉と並行して、以下のようにラジカルを生成する。
まず、バルブ56を開き、原料ガス供給源52から管状体541の内部(ラジカル生成室51)に原料ガスを供給する。また、第1高周波電源531から高周波電力投入部546を通じて、第1スパイラルアンテナ542に第1周波数の高周波電力を供給する。本実施例における第1周波数は2.45GHz(マイクロ波)である。第1スパイラルアンテナ542に第1周波数の高周波電力が供給されることにより、管状体541の内部(ラジカル生成室51)において真空放電が生じ、原料ガスからラジカル、荷電粒子(イオンや電子)が生成される。生成されたラジカル及び荷電粒子はラジカル生成室51と中間真空室59の圧力差によって中間真空室59に向かって引き込まれ、移動していく。
第1スパイラルアンテナ542への第1周波数の高周波電力の供給と同時に、あるいはそれよりも少し遅れて、第2高周波電源532から第2スパイラルアンテナ543に第2周波数の高周波電力が供給される。本実施例における第2周波数は13.56MHz(ラジオ波)である。第1高周波電源531からの第1周波数の高周波電力の供給、及び第2高周波電源532からの第2周波数の高周波電力の供給のタイミング制御は制御・処理部8により行われる。
第2スパイラルアンテナ543に第2周波数の高周波電力が供給されることにより、管状体541の内部に所定の電位差を有し13.56MHzの周波数で振動する電場が形成され、中間真空室59に向かって移動するイオンが励振し、その運動エネルギーが高められる。そして、運動エネルギーが高められたイオンが、電子と結合することにより、運動エネルギーが高い(ラジカル温度が高い)ラジカルが生成される。また、真空放電によって生成されたラジカルに運動エネルギーが高められたイオンが衝突し、イオンが持つ運動エネルギーの一部がラジカルに伝達されることによっても、ラジカルの温度が上昇しうる。こうして、高温のラジカルが生成される。高温のラジカルはラジカル源54の出口端を出射し、スキマー55を通ってイオントラップ2内に照射される。
上述のとおり、ラジカル生成室51ではラジカルだけでなく、荷電粒子(イオンや電子)も生成される。イオンの一部は電子との結合によりラジカル化されるが、残りのイオンや電子はラジカルとともにラジカル源54から出射する。ラジカル源54から出射した荷電粒子は、偏向部58に到達すると、該偏向部58に形成された電場の作用により偏向される。一方、ラジカルは中性粒子であるため、偏向部58で偏向されることなくスキマー55を通過してイオントラップ2内に照射される。これにより、イオンや電子がイオントラップ2内に捕捉されたプリカーサイオンに照射され不所望の反応や解離が生じることが防止される。
ラジカル生成・照射部5におけるバルブ56の開度等は一定の状態に維持されており、イオンには所定流量のラジカルが照射される。また、プリカーサイオンへのラジカルの照射時間も適宜に設定されている。この照射時間に応じてバルブ56を開閉、あるいは第1周波数の電力の供給を開始・停止する。バルブ56の開度やラジカルの照射時間は、予備実験の結果等に基づき事前に決めておくことができる。ラジカルが照射されると、プリカーサイオンに不対電子誘導型の解離が生じてペプチド由来のプロダクトイオンが生成される。生成された各種プロダクトイオンはイオントラップ2内に捕捉され、不活性ガス供給部6から供給される窒素ガス等の不活性ガスによってクーリングされる。そのあと、所定のタイミングでトラップ電圧発生部7から入口側エンドキャップ電極22と出口側エンドキャップ電極24に直流電圧が印加され、これにより形成される電位差によってイオントラップ2内に捕捉されていたイオンは加速エネルギーを受け、イオン射出孔25を通して一斉に射出される。ここで生成されるプロダクトイオンには、フラグメントイオンとアダクトイオンの両方が含まれ得る。
こうして一定の加速エネルギーを持ったプロダクトイオンが飛行時間型質量分離部3の飛行空間に導入され、飛行空間を飛行する間に質量電荷比に応じて分離されイオン検出器4に入射する。イオン検出器4はイオンを順次検出し、検出信号を制御・処理部8に出力する。制御・処理部8は、例えばイオントラップ2からのイオンの射出時点を時刻ゼロとする飛行時間スペクトルを作成する。そして、予め用意された質量校正情報を用いて飛行時間を質量電荷比に換算することにより、プロダクトイオンスペクトルを作成する。制御・処理部8ではこのマススペクトルから得られる情報(質量情報)等に基づく所定のデータ処理を行うことで、試料成分(ペプチド混合物)を同定する。プロダクトイオンのうち、フラグメントイオンの質量電荷比からペプチドの部分構造が分かる。本実施例では水素ラジカルを照射するため、ペプチド主鎖のN-Cα結合を解離させてc/z系列のプロダクトイオンを選択的に生成することができる。
従来のイオン分析装置では、ラジカル生成・照射部5において誘導結合型の真空放電により生成したラジカルをイオントラップ2内に捕捉したプリカーサイオンに照射しても、ラジカル温度が低いために十分な乖離反応を生じさせることができない場合があった。容量結合型の真空放電によりラジカルを生成すると、誘導結合型の真空放電よりも高温のラジカルを生成することが可能であるが、ラジカル生成室からイオントラップに移動する間に、流路の壁面に付着するなどしてラジカル温度が低下してしまう。
これに対し、上記実施例の質量分析装置では、ラジカル生成室51においてラジカルとともに生成されたイオンを励振して運動エネルギーを高め、これに電子を結合させて高温のラジカルを生成する。上記実施例ではラジカル生成室51の近傍位置でイオンを励振する構成としたが、ラジカル生成室51からイオントラップ2までの輸送経路が長い場合には、イオントラップ2に近い位置で、あるいはラジカル生成室51からイオントラップ2に至る輸送路の全部又は一部の領域でイオンを励振し、高温のラジカルを生成するように構成することができる。そのため、ラジカル輸送経路を短くする必要がなく、ラジカル源54の配置の自由度を高くすることができる。
次に、上記実施例のイオン分析装置のラジカル源54において2系統の高周波電力を供給することによるラジカル温度の上昇効果を確認した測定の結果を説明する。
この測定では、中間真空室59の壁面に透明な窓を設けておき、ラジカル生成室51に0.1Paの水素ガスを供給し、上記実施例のように第1周波数の高周波電力(2.45GHz, 10W)と第2周波数の高周波電力(13.56MHz, 100W)の両方を供給した場合の水素ラジカルの発光スペクトルを測定した。また、比較のために、従来同様に第1周波数の高周波電力(2.45GHz, 10W)のみを供給した場合(比較例)についても発光スペクトルを測定した。
図3に測定結果を示す。本実施例の発光スペクトルでは3つのピークが、比較例の発光スペクトルでは2つのピークが確認された。これらのピークは、長波長側から順に、バルマーアルファ(Balmerα)線(656.28nm)、バルマーベータ(Balmerβ)線(486.13nm)、バルマーガンマ(Balmerγ)(434.05nm)である。バルマーガンマ(Balmerγ)(434.05nm)は本実施例の発光スペクトルのみで確認された。各ピークの強度は、それぞれの波長の光に相当するエネルギー以上の内部エネルギーを持つ水素ラジカルの量を反映している。水素ラジカルが持つ内部エネルギーの大きさの分布はラジカル温度に依存し、ラジカル温度が高いほど、短波長のバルマー線が現れる。本実施例の発光スペクトルにおいてのみ、バルマーガンマ(Balmerγ)(434.05nm)のピークが確認されていることから、本実施例により、比較例よりも高温の水素ラジカルが生成されたことが分かる。
また、Balmerα線の強度とBalmerβ線の強度の比からラジカル温度を推定することができる。本実施例ではこの比(Balmerα線の強度/Balmerβ線の強度)は約4.08倍である一方、比較例ではこの比が約6.36倍である。この比が大きいほど温度が低いことから(例えば非特許文献2)、本実施例では従来(比較例)よりも高温のラジカルが生成されていることが分かる。また、ピーク強度の比較から、生成されているラジカルの量も従来に比べて増加していることが分かる。
次に、上記実施例のイオン分析装置のラジカル源54において2系統の高周波電力を供給することによるラジカル生成量の増加を確認した測定の結果を説明する。
この測定では、第1周波数の高周波電力(2.45GHz, 10W)と第2周波数の高周波電力(13.56MHz, 100W)の両方を供給して生成した水素ラジカルを、フラーレン由来のプリカーサイオンに照射し、生成されたプロダクトイオンのスペクトル(プロダクトイオンスペクトル)を測定した。また、比較のために、第1周波数の高周波電力(2.45GHz, 10W)のみを供給して水素ラジカルを照射したマススペクトルを測定した(比較例)。さらに、参考のために、高周波電力を供給することなくフラーレンイオンのマススペクトルを測定した(参考例)。
図4に測定結果を示す。上段は参考例のマススペクトル、中段は比較例のマススペクトル、下段は本実施例のマススペクトルである。上段の参考例は高周波電力を供給していない、即ちイオン源1で生成されたフラーレンイオンそのもののマススペクトルである。フラーレンのラジカル付加反応は発熱反応である。つまり、ラジカル付加反応のエネルギー閾値は0であり、フラーレン由来のプリカーサイオンに照射されたラジカルは全て付着するため、参考例のマススペクトルからのマスシフト量の大小によりプリカーサイオンに照射されたラジカルの量を見積もることができる。
比較例のマススペクトルは、参考例のマススペクトルに比べて、スペククトルの重心が約+7だけ高質量電荷比側にシフトしている。一方、本実施例のマススペクトルは、参考例のマススペクトルに比べて、スペククトルの重心が約+27も高質量電荷比側にシフトしている。このように、本実施例のイオン分析装置を用いることにより、ラジカル温度が高くなるだけでなく、生成されるラジカル量も大きく増加したことが分かる。
上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
本実施例における第1周波数の2.45GHz、及び第2周波数の13.56MHzという数値は、電波法による制約等を鑑みて設定した具体的な一例に過ぎず、適宜に変更することができる。第1周波数は、ラジカル生成室に真空放電を生じさせることが可能な周波数であればよく、100MHzよりも高い周波数であることが好ましく、1GHzよりも高い周波数であることがより好ましい。一方、第2周波数は、イオンを励振させることができる周波数であればよく、例えば100MHz以下の適宜の周波数とすることができる。イオンの励振という観点のみを考えると低周波数の方が有利であるが、低周波数になると波長が長くなり、イオンを励振するために十分な電位差を生じさせるためには空間を広く取る必要が生じて装置が大型化する。この点を考慮すると、第2周波数は、400kHz以上であることが好ましく、また、2MHz以上であることがより好ましい。また、上記実施例では2種類の異なる周波数の電力を供給する構成としたが、3種類以上の異なる周波数の電力を供給する構成とすることもできる。例えば、後述するように、原料ガスとして空気を用いると、酸素イオンや窒素イオン、ヒドロキシイオンが生成される。こうした場合に、イオンの質量電荷比に応じて異なる周波数の電力を組み合わせることによって複数種類のイオンを励振させることができる。
上記実施例では、ラジカル生成室51の外周に巻回した第1スパイラルアンテナ542に第1周波数の高周波電力を供給し、それよりも下流側(イオントラップ2側)に巻回した第2スパイラルアンテナ543に第2周波数の高周波電力を供給する構成としたが、第1スパイラルアンテナ542と第2スパイラルアンテナ543の両方を共通化した1つのスパイラルアンテナを使用し、そのスパイラルアンテナに第1周波数の高周波電力と第2周波数の高周波電力を重畳したものを供給することによっても上記同様に高温のラジカルを生成することができる。
上記実施例ではラジカル生成・照射部5に誘導結合型の真空放電によって水素ラジカルを生成する構成のラジカル源54を使用したが、本発明者が特許文献2において提案したような構成のラジカル源を用いて、容量結合型の真空放電によりラジカルを生成する構成を採ることもできる。その場合も上記実施例と同様に、第1周波数の高周波電力と第2周波数の高周波電力を供給することにより上記実施例と同様の効果を得ることができる。
上記実施例では、水素ラジカルを生成する場合を例に説明したが、他の種類のラジカルについても高温ラジカルを生成するメカニズムは同様である。従って、ヒドロキシラジカル、酸素ラジカル、窒素ラジカル等、他の種類のラジカルを生成・照射する際にも上記同様の構成を採ることができる。原料ガスとして水蒸気を用いることにより、ヒドロキシルラジカル、酸素ラジカル、及び水素ラジカルを生成することができる。原料ガスとして空気を用いることにより、主として酸素ラジカルと窒素ラジカルを生成することができる。さらに、原料ガスとして酸素ガスを用いることにより酸素ラジカルを生成することができる。加えて、原料ガスとして窒素ガスを用いることにより窒素ラジカルを生成することができる。上記実施例のように水素ラジカルをペプチド由来のプリカーサイオンに照射することによりc/z系列のプロダクトイオンを生成することができるのに対し、ヒドロキシルラジカル、酸素ラジカル、あるいは窒素ラジカルをペプチド由来のプリカーサイオンに照射することによりa/x系列やb/y系列のプロダクトイオンを生成することができる。
上記実施例では三次元イオントラップを備えたイオントラップ−飛行時間型質量分析装置としたが、三次元イオントラップに代えてリニアイオントラップや衝突セルを使用し、それらにプリカーサイオンが導入されるタイミングでラジカルを照射するように構成することもできる。また、上記実施例及び変形例では飛行時間型質量分離部をリニア型としたが、リフレクトロン型やマルチターン型等の飛行時間型質量分離部を用いてもよい。また、飛行時間型質量分離部以外に、例えばイオントラップ2自体のイオン分離機能を利用して質量分離を行うものや、オービトラップなど、他の形態の質量分離部を用いることもできる。
上記実施例では、イオンを質量電荷比に応じて分離して検出する質量分析装置について説明したが、イオンの移動度に応じてイオンを分離し検出するイオン移動度分析装置、あるいは質量電荷比と移動度の両方に応じてイオンを分離する装置においても上記実施例と同様のラジカル生成・照射部5を用いることができる。
[態様]
上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1態様)
本発明の第1態様は、試料成分由来のプリカーサイオンにラジカルを照射することにより生成されるプロダクトイオンを分析するイオン分析装置であって、
前記プリカーサイオンが導入される反応室と、
ラジカル生成室と、
前記ラジカル生成室に原料ガスを供給する原料ガス供給源と、
前記ラジカル生成室において前記原料ガスからラジカルと荷電粒子を生成するための第1周波数の高周波電力を供給する第1電力供給部と、
前記ラジカルを前記反応室に輸送するラジカル輸送路と、
前記ラジカル生成室又は/及び前記ラジカル輸送路において、前記荷電粒子を励振するための、前記第1周波数よりも低い第2周波数の高周波電力を供給する第2電力供給部と、
前記第1電力供給部と同時に、又は該第1電力供給部から所定時間だけ遅れて第2電力供給部を動作させる制御部と、
前記反応室において生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
を備える。
前記第1周波数の高周波電力の供給は、ラジカル生成室に設けられた電極に高周波電圧を印加することにより行ってもよく、あるいはラジカル生成室を構成する部材の外周面に巻回したコイルに高周波電流を供給することにより行ってもよい。第2周波数の高周波電力の供給についても同様に、ラジカル生成室又は/及びラジカル輸送路に設けられた電極に高周波電圧を印加することにより行ってもよく、あるいはラジカル生成室又は/及びラジカル輸送路を構成する部材の外周面に巻回したコイルに高周波電流を供給することにより行ってもよい。
第1態様のイオン分析装置では、まず、ラジカル生成室に原料ガスを供給し、第1周波数の高周波電圧を印加して原料ガスからラジカルを生成する。このとき、原料ガスからは、ラジカルだけでなく荷電粒子(イオンや電子)も生成される。本発明に係るイオン分析装置では、第2周波数の高周波電力を供給することによりイオンを励振して運動エネルギーを上昇させる。こうして運動エネルギーを上昇させたイオンに電子が結合することにより運動エネルギーが大きいラジカル(ラジカル温度が高いラジカル)が生成される。イオンの励振は、ラジカル生成室又は/及びラジカル輸送路において行うことができる。ラジカル生成室でイオンを励振する場合には、第1電力供給部と同時あるいはそれよりも少し遅れて第2電力供給部を動作させればよい。また、ラジカル輸送路でイオンを励振する場合には、第1電力供給部から所定時間だけ遅れて、具体的には第1電力供給部によりラジカル生成室内で生成された荷電粒子がラジカル輸送路に到達するタイミングで、第2電力供給部を動作させればよい。これにより、試料成分由来のプリカーサイオンを解離させるのに十分な温度のラジカルを該プリカーサイオンに照射することができる。
(第2態様)
本発明の第2態様のイオン分析装置は、上記第1態様のイオン分析装置において、
さらに、
前記ラジカル生成室を排気する真空排気部を備え、
前記第1周波数の高周波電力を供給することにより前記ラジカル生成室に真空放電を生じさせる。
第2態様のイオン分析装置では、真空放電によりラジカル及び荷電粒子を生成する。真空(低圧)下では、ラジカル生成室内に存在する中性粒子(原子及び分子)の量が少ないため、励振により運動エネルギーを高めたイオンがこれらの中性粒子に衝突してエネルギーが低下することを防止でき、効率よく高温のラジカルを生成することができる。また、生成したラジカルが中性粒子と再結合して消失することを抑制してラジカルの利用効率を高めることができる。
(第3態様)
本発明の第3態様のイオン分析装置は、上記第2態様のイオン分析装置において、
前記真空放電が誘電結合型のものである。
第3態様のイオン分析装置では、誘電結合型の真空放電によりラジカル及び荷電粒子を生成する。誘導結合型の放電系では、電力供給用のアンテナを真空系外に設置することができるため、電極由来の金属不純物の混入を防ぐとともに、アンテナの寿命を大幅に伸ばすことができる。さらに、容量結合型と比較して、電子密度が高く、従って生成されるラジカル密度も高くなる。
(第4態様)
本発明の第4態様のイオン分析装置は、上記第1態様から第3態様のいずれかのイオン分析装置において、
前記第1周波数が100MHzよりも高く、前記第2周波数が100MHz以下である。
ラジカル源の構成にも依存するが、第1周波数を100MHzよりも高く、第2周波数を100MHz以下とすることにより、種々の形態のラジカル源を用いて第1周波数の高周波電力の供給によりラジカル及び荷電粒子を生成し、第2周波数の高周波電力の供給により荷電粒子を励振して高温のラジカルを生成することができる。
(第5態様)
本発明の第5態様のイオン分析装置は、上記第1態様から第4態様のいずれかのイオン分析装置において、
前記原料ガスが、前記第1周波数の高周波電力の供給によって、少なくとも水素ラジカルを生成する種類のものである。
第5態様のイオン分析装置は、ペプチド主鎖のN-Cα結合を解離させてc/z系列のプロダクトイオンを生成するために好適に用いることができる。また、水素ラジカルを生成する元になる水素イオンは最も軽量のイオンであり、容易に励振するため、第2周波数を高く設定し、装置を小型化することができる。
(第6態様)
本発明の第6態様のイオン分析装置は、上記第5態様のイオン分析装置において、
前記原料ガスが水素ガス、水蒸気、又はアンモニアガスである。
第6態様のイオン分析装置において、原料ガスが水素ガスである場合には、純度が高い水素ラジカルを生成することができる。また、原料ガスが水蒸気である場合には、原料ガスを安全に取り扱うことができる。さらに、原料ガスがアンモニアガスである場合には、アンモニア分子から水素が離脱し、多くの水素ラジカルを生成することができる。
(第7態様)
本発明の第7態様のイオン分析装置は、上記第1態様から第6態様のいずれかのイオン分析装置において、
前記ラジカル輸送路と前記反応室の間に、前記荷電粒子を偏向させる偏向部が設けられている。
第7態様のイオン分析装置では、偏向部によって荷電粒子の進行方向を変化させてラジカルのみを反応室に導入することができる。
1…イオン源
2…イオントラップ
21…リング電極
22…入口側エンドキャップ電極
23…イオン導入孔
24…出口側エンドキャップ電極
25…イオン射出孔
26…ラジカル粒子導入口
27…ラジカル粒子排出口
3…飛行時間型質量分離部
4…イオン検出器
5…ラジカル生成・照射部
51…ラジカル生成室
52…原料ガス供給源
53…高周波電力供給部
531…第1高周波電源
532…第2高周波電源
54…ラジカル源
541…筒状体
542…第1スパイラルアンテナ
543…第2スパイラルアンテナ
544、548…磁石
545…プランジャー
546…高周波電力投入部
547…フランジ
55…スキマー
56…バルブ
57…真空ポンプ
58…偏向部
59…中間真空室
6…不活性ガス供給部
61…不活性ガス供給源
62…バルブ
7…トラップ電圧発生部
8…制御・処理部

Claims (7)

  1. 試料成分由来のプリカーサイオンにラジカルを照射することにより生成されるプロダクトイオンを分析するイオン分析装置であって、
    前記プリカーサイオンが導入される反応室と、
    ラジカル生成室と、
    前記ラジカル生成室に原料ガスを供給する原料ガス供給源と、
    前記ラジカル生成室において前記原料ガスからラジカルと荷電粒子を生成するための第1周波数の高周波電力を供給する第1電力供給部と、
    前記ラジカルを前記反応室に輸送するラジカル輸送路と、
    前記ラジカル生成室又は/及び前記ラジカル輸送路において、前記荷電粒子を励振するための、前記第1周波数よりも低い第2周波数の高周波電力を供給する第2電力供給部と、
    前記第1電力供給部と同時に、又は該第1電力供給部から所定時間だけ遅れて第2電力供給部を動作させる制御部と、
    前記反応室において生成されたプロダクトイオンを質量電荷比及びイオン移動度の少なくとも一方に応じて分離し検出する分離検出部と
    を備えるイオン分析装置。
  2. さらに、
    前記ラジカル生成室を排気する真空排気部を備え、
    前記第1周波数の高周波電力を供給することにより前記ラジカル生成室に真空放電を生じさせる、請求項1に記載のイオン分析装置。
  3. 前記真空放電が誘電結合型のものである、請求項2に記載のイオン分析装置。
  4. 前記第1周波数が100MHzよりも高く、前記第2周波数が100MHz以下である、請求項1から3のいずれかに記載のイオン分析装置。
  5. 前記原料ガスが、前記第1周波数の高周波電力の供給によって、少なくとも水素ラジカルを生成する種類のものである、請求項1から4のいずれかに記載のイオン分析装置。
  6. 前記原料ガスが水素ガス、水蒸気、又はアンモニアガスである、請求項5に記載のイオン分析装置。
  7. 前記ラジカル輸送路と前記反応室の間に、前記荷電粒子を偏向させる偏向部が設けられている、請求項1から6のいずれかに記載のイオン分析装置。
JP2019078463A 2019-04-17 2019-04-17 イオン分析装置 Active JP7109026B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019078463A JP7109026B2 (ja) 2019-04-17 2019-04-17 イオン分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019078463A JP7109026B2 (ja) 2019-04-17 2019-04-17 イオン分析装置

Publications (3)

Publication Number Publication Date
JP2020177784A true JP2020177784A (ja) 2020-10-29
JP2020177784A5 JP2020177784A5 (ja) 2021-11-18
JP7109026B2 JP7109026B2 (ja) 2022-07-29

Family

ID=72936828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019078463A Active JP7109026B2 (ja) 2019-04-17 2019-04-17 イオン分析装置

Country Status (1)

Country Link
JP (1) JP7109026B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201705A1 (ja) 2021-03-23 2022-09-29 株式会社島津製作所 質量分析装置及び質量分析方法
WO2022209076A1 (ja) 2021-03-29 2022-10-06 株式会社島津製作所 質量分析装置及び質量分析方法
WO2023002712A1 (ja) 2021-07-21 2023-01-26 株式会社島津製作所 質量分析装置及び質量分析方法
WO2023013161A1 (ja) * 2021-08-02 2023-02-09 株式会社島津製作所 質量分析装置及び質量分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915800A (zh) * 2010-07-08 2010-12-15 中国科学院合肥物质科学研究院 一种微型解吸附离子迁移谱仪
WO2018190013A1 (ja) * 2017-04-10 2018-10-18 株式会社島津製作所 イオン分析装置及びイオン解離方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915800A (zh) * 2010-07-08 2010-12-15 中国科学院合肥物质科学研究院 一种微型解吸附离子迁移谱仪
WO2018190013A1 (ja) * 2017-04-10 2018-10-18 株式会社島津製作所 イオン分析装置及びイオン解離方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201705A1 (ja) 2021-03-23 2022-09-29 株式会社島津製作所 質量分析装置及び質量分析方法
WO2022209076A1 (ja) 2021-03-29 2022-10-06 株式会社島津製作所 質量分析装置及び質量分析方法
WO2023002712A1 (ja) 2021-07-21 2023-01-26 株式会社島津製作所 質量分析装置及び質量分析方法
WO2023013161A1 (ja) * 2021-08-02 2023-02-09 株式会社島津製作所 質量分析装置及び質量分析方法

Also Published As

Publication number Publication date
JP7109026B2 (ja) 2022-07-29

Similar Documents

Publication Publication Date Title
JP6229790B2 (ja) イオン分析装置
JP7109026B2 (ja) イオン分析装置
JP6713646B2 (ja) イオン分析装置
JP3936908B2 (ja) 質量分析装置及び質量分析方法
CN110494955B (zh) 离子分析装置及离子裂解方法
US20050258353A1 (en) Method and apparatus for ion fragmentation in mass spectrometry
EP2871665B1 (en) Plasma-based electron capture dissociation (ecd) apparatus and related systems and methods
JP2005044594A (ja) 質量分析計
US20220344140A1 (en) Ion analyzer
US9589775B2 (en) Plasma cleaning for mass spectrometers
JP3767317B2 (ja) 質量分析装置
CN111656483A (zh) 离子化装置和质谱分析装置
JP7074210B2 (ja) イオン分析装置
JP7202581B2 (ja) イオン分析装置
US12009197B2 (en) Method and apparatus
JP7403774B2 (ja) イソアスパラギン酸の分析方法、及び質量分析装置
US12020919B2 (en) Method for analyzing isoaspartic acid and mass spectrometer
GB2606024A (en) Apparatus and method
WO2019211886A1 (ja) 飛行時間型質量分析装置
JP2009146913A (ja) 質量分析計

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220708

R150 Certificate of patent or registration of utility model

Ref document number: 7109026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150