JP2020171693A - 医用情報処理装置及び医用情報処理方法 - Google Patents

医用情報処理装置及び医用情報処理方法 Download PDF

Info

Publication number
JP2020171693A
JP2020171693A JP2020069908A JP2020069908A JP2020171693A JP 2020171693 A JP2020171693 A JP 2020171693A JP 2020069908 A JP2020069908 A JP 2020069908A JP 2020069908 A JP2020069908 A JP 2020069908A JP 2020171693 A JP2020171693 A JP 2020171693A
Authority
JP
Japan
Prior art keywords
scan
intensity
denoise
medical information
information processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020069908A
Other languages
English (en)
Other versions
JP7419145B2 (ja
Inventor
博司 高井
Hiroshi Takai
博司 高井
健輔 篠田
Kensuke Shinoda
健輔 篠田
伸行 小沼
Nobuyuki Konuma
伸行 小沼
成仁 南部
Naruhito Nambu
成仁 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to EP20169009.6A priority Critical patent/EP3723037B1/en
Priority to US16/845,176 priority patent/US11669938B2/en
Publication of JP2020171693A publication Critical patent/JP2020171693A/ja
Priority to US18/304,012 priority patent/US20230260088A1/en
Priority to JP2023175119A priority patent/JP2023171516A/ja
Application granted granted Critical
Publication of JP7419145B2 publication Critical patent/JP7419145B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

【課題】デノイズ強度を精度良く推定することである。【解決手段】実施形態に係る医用情報処理装置は、第1算出部と、第2算出部とを備える。第1算出部は、第1スキャンにより収集される第1データからノイズ強度を算出する。第2算出部は、前記ノイズ強度と、前記第1スキャンの撮像条件と第2スキャンの撮像条件との違いとに基づいて、前記第2スキャンで得られる第2データに対して施されるデノイズ処理に用いられるデノイズ強度を算出する。【選択図】図1

Description

本発明の実施形態は、医用情報処理装置及び医用情報処理方法に関する。
近年、磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)に適用可能なデノイズ処理として、シュリンケージ方式と呼ばれる方法が知られている。この方式では、画像に含まれるデノイズ強度(ノイズ量)を推定し、推定したデノイズ強度に基づいてデノイズ処理における閾値を決定する。デノイズ性能を確保するためには、画像に含まれるデノイズ強度を精度良く推定する必要がある。
特開2015−181840号公報
本発明が解決しようとする課題は、デノイズ強度を精度良く推定することができる医用情報処理装置及び医用情報処理方法を提供することである。
実施形態に係る医用情報処理装置は、第1算出部と、第2算出部とを備える。第1算出部は、第1スキャンにより収集される第1データからノイズ強度を算出する。第2算出部は、前記ノイズ強度と、前記第1スキャンの撮像条件と第2スキャンの撮像条件との違いとに基づいて、前記第2スキャンで得られる第2データに対して施されるデノイズ処理に用いられるデノイズ強度を算出する。
図1は、第1の実施形態に係るMRI装置の全体的な構成例を示す図である。 図2は、第1の実施形態に係るMRI装置による処理手順を示すフローチャートである。 図3は、第1の実施形態に係るMRI装置の処理機能を説明するための図である。 図4は、第1の実施形態に係るMRI装置の処理機能を説明するための図である。 図5は、第2の実施形態に係るMRI装置の処理機能を説明するための図である。
以下、図面を参照して、実施形態に係る医用情報処理装置及び医用情報処理方法を説明する。なお、実施形態は、以下の実施形態に限られるものではない。また、一つの実施形態に記載した内容は、原則として他の実施形態にも同様に適用可能である。
(第1の実施形態)
図1は、第1の実施形態に係るMRI装置の全体的な構成例を示す図である。例えば、図1に示すように、本実施形態に係るMRI装置100は、静磁場磁石1、傾斜磁場コイル2、傾斜磁場電源3、WB(Whole Body)コイル4、受信コイル装置5、寝台6、送信回路7、受信回路8、架台9、インタフェース10、ディスプレイ11、記憶回路12、及び処理回路13,14,15,16を備える。なお、MRI装置100に被検体S(例えば、人体)は含まれない。また、MRI装置100は、医用情報処理装置の一例である。
静磁場磁石1は、被検体Sが配置される撮像空間に静磁場を発生させる。具体的には、静磁場磁石1は、中空の略円筒状(中心軸に直交する断面の形状が楕円状となるものを含む)に形成されており、内周側に配置された撮像空間に静磁場を発生させる。例えば、静磁場磁石1は、略円筒状に形成された冷却容器と、当該冷却容器内に充填された冷却材(例えば、液体ヘリウム等)に浸漬された超伝導磁石等の磁石とを有する。なお、静磁場磁石1は、例えば、永久磁石を用いて静磁場を発生させるものであってもよい。
傾斜磁場コイル2は、被検体Sが配置される撮像空間に傾斜磁場を発生させる。具体的には、傾斜磁場コイル2は、中空の略円筒状(中心軸に直交する断面の形状が楕円状となるものを含む)に形成されており、径方向に積層された略円筒状の複数の傾斜磁場コイルを有する。ここで、複数の傾斜磁場コイルは、傾斜磁場電源3から供給される電流に基づいて、内周側に配置された撮像空間に、互いに直交するX軸、Y軸、及びZ軸の各軸方向に沿った傾斜磁場を発生させる。
より具体的には、傾斜磁場コイル2は、X軸方向に沿った傾斜磁場を発生させるXコイルと、Y軸方向に沿った傾斜磁場を発生させるYコイルと、Z軸方向に沿った傾斜磁場を発生させるZコイルとを有する。ここで、X軸、Y軸、及びZ軸は、MRI装置100に固有の装置座標系を構成する。例えば、X軸は、傾斜磁場コイル2の中心軸に直交する水平方向に設定され、Y軸は、傾斜磁場コイル2の中心軸に直交する鉛直方向に設定される。また、Z軸は、傾斜磁場コイル2の中心軸に沿って設定される。
傾斜磁場電源3は、傾斜磁場コイル2が有するXコイル、Yコイル、及びZコイルそれぞれに個別に電流を供給することで、X軸、Y軸、及びZ軸の各軸方向に沿った傾斜磁場を撮像空間に発生させる。具体的には、傾斜磁場電源3は、Xコイル、Yコイル、及びZコイルそれぞれに適宜に電流を供給することによって、互いに直交するリードアウト方向、位相エンコード方向、及びスライス方向それぞれに沿った傾斜磁場を発生させる。ここで、リードアウト方向に沿った軸、位相エンコード方向に沿った軸、及びスライス方向に沿った軸は、撮像の対象となるスライス領域又はボリューム領域を規定するための論理座標系を構成する。
なお、以下では一例として、論理座標系を構成するリードアウト方向に沿った軸、位相エンコード方向に沿った軸、及びスライス方向に沿った軸が、装置座標系を構成するX軸、Y軸、及びZ軸にそれぞれ対応する場合を説明する。しかしながら、論理座標系と装置座標系との対応関係は、これに限定されるものではなく、任意に変更可能である。
そして、リードアウト方向、位相エンコード方向、及びスライス方向それぞれに沿った傾斜磁場は、静磁場磁石1によって発生する静磁場に重畳されることによって、被検体Sから発生した磁気共鳴(Magnetic Resonance:MR)信号に空間的な位置情報を付与する。具体的には、リードアウト方向の傾斜磁場Groは、リードアウト方向の位置に応じてMR信号の周波数を変化させることで、リードアウト方向に沿った位置情報をMR信号に付与する。また、位相エンコード方向の傾斜磁場Gpeは、位相エンコード方向に沿ってMR信号の位相を変化させることで、位相エンコード方向に沿った位置情報をMR信号に付与する。また、スライス方向の傾斜磁場Gssは、スライス方向に沿った位置情報をMR信号に付与する。例えば、スライス方向の傾斜磁場Gssは、撮像領域がスライス領域の場合には、スライス領域の方向、厚さ、枚数を決めるために用いられ、撮像領域がボリューム領域である場合には、スライス方向の位置に応じてMR信号の位相を変化させるために用いられる。
WBコイル4は、傾斜磁場コイル2の内側に配置されており、被検体Sが配置される撮像空間にRF(Radio Frequency)磁場を印加する送信コイルの機能と、当該RF磁場の影響によって被検体Sから発生するMR信号を受信する受信コイルの機能とを有するRFコイルである。具体的には、WBコイル4は、中空の略円筒状(円筒の中心軸に直交する断面の形状が楕円状となるものを含む)に形成されており、送信回路7から供給される高周波パルス信号に基づいて、円筒内に配置された撮像空間にRF磁場を印加する。また、WBコイル4は、RF磁場の影響によって被検体Sから発生するMR信号を受信し、受信したMR信号を受信回路8へ出力する。
受信コイル装置5は、被検体Sから発生したMR信号を受信するRFコイルである。例えば、受信コイル装置5は、被検体Sの部位ごとに用意され、被検体Sの撮像が行われる際に、撮像対象の部位の近傍に配置される。受信コイル装置5は、WBコイル4によって印加されるRF磁場の影響によって被検体Sから発生したMR信号を受信する1つ以上の独立したコイルエレメント(以下、単に「エレメント」とも記載する)を有する。受信コイル装置5は、エレメントによって受信したMR信号を増幅し、MR信号を受信回路8へ出力する。なお、受信コイル装置5は、被検体SにRF磁場を印加する送信コイルの機能をさらに有していてもよい。その場合には、受信コイル装置5は、送信回路7に接続され、送信回路7から供給されるRFパルス信号に基づいて、被検体SにRF磁場を印加する。
寝台6は、被検体Sが載置される天板6aを備え、被検体Sの撮像が行われる際に、被検体Sが載置された天板6aを撮像空間に移動する。例えば、寝台6は、天板6aの長手方向が静磁場磁石1の中心軸と平行になるように設置されている。
送信回路7は、静磁場中に置かれた対象原子核に固有の共鳴周波数(ラーモア周波数)に対応するRFパルス信号をWBコイル4に出力する。具体的には、送信回路7は、パルス発生器、RF発生器、変調器、及び増幅器を有する。パルス発生器は、RFパルス信号の波形を生成する。RF発生器は、共鳴周波数のRF信号を発生する。変調器は、RF発生器によって発生したRF信号の振幅をパルス発生器によって発生した波形で変調することで、RFパルス信号を生成する。増幅器は、変調器によって発生したRFパルス信号を増幅してWBコイル4に出力する。
受信回路8は、WBコイル4又は受信コイル装置5によって受信されたMR信号に基づいてMR信号データを生成する。そして、受信回路8は、生成したMR信号データを処理回路14に出力する。
架台9は、略円筒状(中心軸に直交する断面の形状が楕円状となるものを含む)に形成された中空のボア9aを有し、静磁場磁石1、傾斜磁場コイル2、及びWBコイル4を支持している。具体的には、架台9は、静磁場磁石1の内周側に傾斜磁場コイル2を配置し、傾斜磁場コイル2の内周側にWBコイル4を配置し、WBコイル4の内周側にボア9aを配置した状態で、静磁場磁石1、傾斜磁場コイル2、及びWBコイル4それぞれを支持している。ここで、架台9が有するボア9a内の空間が、被検体Sの撮像が行われる際に被検体Sが配置される撮像空間となる。
なお、ここでは、MRI装置100が、静磁場磁石1、傾斜磁場コイル2及びWBコイル4それぞれが略円筒状に形成された、いわゆるトンネル型の構成を有する場合の例を説明するが、実施形態はこれに限られない。例えば、MRI装置100は、被検体Sが配置される撮像空間を挟んで対向するように一対の静磁場磁石、一対の傾斜磁場コイルユニット及び一対のRFコイルを配置した、いわゆるオープン型の構成を有していてもよい。この場合には、一対の静磁場磁石、一対の傾斜磁場コイルユニット及び一対のRFコイルによって挟まれた空間が、トンネル型の構成におけるボアに相当する。
インタフェース10は、操作者から各種指示及び各種情報の入力操作を受け付ける。具体的には、インタフェース10は、処理回路16に接続されており、操作者から受け取った入力操作を電気信号へ変換して処理回路16に出力する。例えば、インタフェース10は、撮像条件や関心領域(Region Of Interest:ROI)の設定等を行うためのトラックボール、スイッチボタン、マウス、キーボード、操作面へ触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一体化されたタッチスクリーン、光学センサを用いた非接触入力回路、及び音声入力回路等によって実現される。なお、本明細書において、インタフェース10は、マウス、キーボード等の物理的な操作部品を備えるものだけに限られない。例えば、装置とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、この電気信号を制御回路へ出力する電気信号の処理回路もインタフェース10の例に含まれる。
ディスプレイ11は、各種情報及び各種画像を表示する。具体的には、ディスプレイ11は、処理回路16に接続されており、処理回路16から送られる各種情報及び各種画像データを表示用の電気信号に変換して出力する。例えば、ディスプレイ11は、液晶モニタやCRT(Cathode Ray Tube)モニタ、タッチパネル等によって実現される。
記憶回路12は、各種データを記憶する。具体的には、記憶回路12は、MR信号データや画像データを記憶する。例えば、記憶回路12は、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子やハードディスク、光ディスク等によって実現される。
処理回路13は、寝台制御機能13aを有する。寝台制御機能13aは、制御用の電気信号を寝台6へ出力することで、寝台6の動作を制御する。例えば、寝台制御機能13aは、インタフェース10を介して、天板6aを長手方向、上下方向又は左右方向へ移動させる指示を操作者から受け付け、受け付けた指示に従って天板6aを移動するように、寝台6が有する天板6aの移動機構を動作させる。
処理回路14は、収集機能14aを有する。収集機能14aは、各種のパルスシーケンスを実行することで、被検体SのMR信号データを収集する。具体的には、収集機能14aは、処理回路16から出力されるシーケンス実行データに従って、傾斜磁場電源3、送信回路7及び受信回路8を駆動することで、パルスシーケンスを実行する。ここで、シーケンス実行データは、パルスシーケンスを表すデータであり、傾斜磁場電源3が傾斜磁場コイル2に電流を供給するタイミング及び供給する電流の強さ、送信回路7がWBコイル4に供給するRFパルス信号の強さや供給タイミング、受信回路8がMR信号を検出する検出タイミング等を規定した情報である。そして、収集機能14aは、パルスシーケンスを実行した結果として、受信回路8からMR信号データを受信し、受信したMR信号データを記憶回路12に記憶させる。ここで、収集機能14aによって受信されたMR信号データの集合は、前述したリードアウト傾斜磁場、位相エンコード傾斜磁場、及びスライス傾斜磁場によって付与された位置情報に応じて2次元又は3次元に配列されることで、k空間を構成するデータとして記憶回路12に記憶される。
処理回路15は、再構成機能15aを有する。再構成機能15aは、記憶回路12に記憶されたMR信号データに基づいて画像データを生成する。具体的には、再構成機能15aは、収集機能14aによって記憶回路12に記憶されたMR信号データを読み出し、読み出したMR信号データに後処理、すなわち、フーリエ変換(Fourier Transform:FT)等の再構成処理を施すことで画像データを生成する。また、再構成機能15aは、生成した画像データを記憶回路12に記憶させる。
処理回路16は、主制御機能16a、第1算出機能16b、第2算出機能16c、及びデノイズ処理機能16dを有する。主制御機能16aは、MRI装置100が有する各構成要素を制御することで、MRI装置100の全体制御を行う。具体的には、主制御機能16aは、操作者から各種指示及び各種情報の入力操作を受け付けるためのGUI(Graphical User Interface)をディスプレイ11に表示する。そして、主制御機能16aは、インタフェース10を介して受け付けられた入力操作に応じて、MRI装置100が有する各構成要素を制御する。例えば、主制御機能16aは、インタフェース10を介して操作者から撮像条件の入力を受け付ける。そして、主制御機能16aは、受け付けた撮像条件に基づいてシーケンス実行データを生成し、当該シーケンス実行データを処理回路14に送信することで、各種のパルスシーケンスを実行する。また、例えば、主制御機能16aは、操作者からの要求に応じて、記憶回路12から画像データを読み出してディスプレイ11に出力する。なお、第1算出機能16b、第2算出機能16c、及びデノイズ処理機能16dについては後述する。
ここで、上述した処理回路13,14,15,16は、例えば、プロセッサによって実現される。この場合に、各処理回路が有する処理機能は、例えば、コンピュータによって実行可能なプログラムの形態で記憶回路12に記憶される。各処理回路は、記憶回路12から各プログラムを読み出して実行することで、各プログラムに対応する機能を実現する。ここで、各処理回路は、複数のプロセッサによって構成され、各プロセッサがプログラムを実行することによって各処理機能を実現するものとしてもよい。また、各処理回路が有する処理機能は、単一又は複数の処理回路に適宜に分散又は統合されて実現されてもよい。また、ここでは、単一の記憶回路12が各処理機能に対応するプログラムを記憶するものとして説明したが、複数の記憶回路を分散して配置して、処理回路が個別の記憶回路から対応するプログラムを読み出す構成としても構わない。
以上、第1の実施形態に係るMRI装置100の構成について説明した。かかる構成のもと、MRI装置100は、デノイズ強度を精度良く推定するために、以下の処理機能を実行する。
第1の実施形態に係るMRI装置100は、パラレルイメージング(Parallel Imaging:PI)による高速撮像を実行可能である。PIでは、例えば、コイルの配置によって感度が異なることを利用して、k空間データを複数のコイルで同時に間引き撮像し、得られたk空間データから、アーティファクトを抑えつつ画像(再構成画像)を再構成する。なお、以下の説明では、PIが実行される場合を説明するが、実施形態はこれに限定されるものではない。
図2を用いて、第1の実施形態に係るMRI装置100による処理手順を説明する。図2は、第1の実施形態に係るMRI装置100による処理手順を示すフローチャートである。図2に示す処理手順は、例えば、操作者により入力された撮像開始要求を契機として開始される。
なお、図2では、図3及び図4を参照しつつ説明する。図3及び図4は、第1の実施形態に係るMRI装置100の処理機能を説明するための図である。
図2に示すように、主制御機能16aは、撮像条件を設定する(ステップS101)。例えば、主制御機能16aは、インタフェース10を介して操作者から撮像条件の入力を受け付ける。そして、主制御機能16aは、受け付けた撮像条件に基づいてシーケンス実行データを生成し、生成したシーケンス実行データを収集機能14aに送信する。
続いて、収集機能14aは、準備スキャンを実行する(ステップS102)。例えば、収集機能14aは、主制御機能16aから出力されるシーケンス実行データに従って、傾斜磁場電源3、送信回路7及び受信回路8を駆動することで、準備スキャンを実行する。準備スキャンには、例えば、位置決め用の画像を収集するスキャンや、静磁場の不均一性を補正するシミングスキャン、感度マップを収集するスキャン(感度マップスキャン)などが含まれる。
感度マップスキャンにおいて、収集機能14aは、「ノイズデータ」及び「コイル感度情報」を収集する。例えば、収集機能14aは、WBコイル4及び各エレメントのそれぞれについて、RF磁場を印加せずにスキャンを行うノイズスキャンを実行することで、「ノイズデータ」を収集する。ノイズデータは、通常、ノイズスキャンで得られた信号値のチャンネル間のずれを補正するためのノイズゲイン、及び、エレメント間の相関を示すノイズマトリクスの算出に利用される。また、収集機能14aは、WBコイル4及び各エレメントのそれぞれについて個別のスキャンを行う。そして、収集機能14aは、WBコイル4によりスキャンされた情報(又は画像データ)と、各エレメントによりスキャンされた情報(又は画像データ)とを比較することによって、各エレメントの「コイル感度情報」を生成する。
なお、ノイズデータのみを純粋に収集するためには、RFパルスを送信させずにノイズスキャンを実行するのが好適である。ただし、発生するNMR(Nuclear Magnetic Resonance)信号(MR信号)がノイズ量の推定に影響しない程度であれば、RFパルスが印加されても良い。例えば、ノイズスキャンにおいて、フリップアングルを極めて小さくしたRFパルスが印加されても良い。
言い換えると、準備スキャンは、一定の強さ以上のRFパルスを送信させずにノイズデータを収集するスキャンを含む。ここで、一定の強さ以上のRFパルスは、発生するNMR信号がノイズ量の推定に影響しない程度のRFパルスである。
そして、第1算出機能16bは、ノイズ強度及び準備スキャン時の換算係数を算出する(ステップS103)。例えば、第1算出機能16bは、準備スキャンにより収集されるノイズデータからノイズ強度を算出する。
図3を用いて、ノイズ強度の算出処理について説明する。図3に示すように、例えば、再構成機能15aは、ノイズスキャンにより収集された各チャンネル(各エレメント)の収集データに対して高速フーリエ変換(Fast Fourier Transform:FFT)することで、実空間のデータであるノイズデータを生成する。そして、第1算出機能16bは、全スライス及び全チャンネルのノイズデータの各画素値の複素平均値及び標準偏差を複素計算により算出する。第1算出機能16bは、ここで算出した標準偏差をノイズ強度「NoiseSD_map」として出力する。つまり、第1算出機能16bは、ノイズ強度を、準備スキャンにより収集されたk空間データを実空間に変換したデータに基づいて算出する。
また、第1算出機能16bは、準備スキャンの撮像条件に基づいて準備スキャン時の換算係数を算出する。なお、換算係数は、準備スキャンの撮像条件と本スキャンの撮像条件との違いを調整するための係数である。準備スキャン時(感度マップスキャン時)の換算係数は、第1換算係数の一例である。
例えば、第1算出機能16bは、下記の式(1)を用いて、準備スキャン時の換算係数を算出する。式(1)において、Rgは、受信回路8での信号増幅率を示す。Nexは、k空間での加算回数を示す。Nxは、周波数エンコード方向のマトリクスサイズを示す。Nyは、位相エンコード方向のマトリクスサイズを示す。Nzは、3DFT時のスライスエンコード数を示す。BWは、画素当たりのバンド幅(BW=BandWidth/Nx)を示す。gは、パラレルイメージングでの展開処理によるノイズ成分の増幅度を表すファクタである。Aは、圧縮センシング(Compressed Sensing:CS)を用いた高速撮像における高速化率を示す。
Figure 2020171693
式(1)に含まれるRg、Nex、Nx、Ny、Nz、BW、g、及びAの各パラメータは、撮像条件から取得可能である。つまり、第1算出機能16bは、準備スキャンの撮像条件から、Rg、Nex、Nx、Ny、Nz、BW、g、及びAの各パラメータを取得する。そして、第1算出機能16bは、取得した各パラメータを式(1)に適用することで、準備スキャン時の換算係数「C_map」を算出する。
このように、第1算出機能16bは、ノイズ強度「NoiseSD_map」、及び、準備スキャン時の換算係数「C_map」を算出する。なお、図3及び式(1)はあくまで一例であり、実施形態はこれに限定されるものではない。例えば、換算係数には任意の係数を乗算しても良い。また、上記の式(1)が適用されるのは3DFTやCSに限定されるものではない。例えば2DFTの場合にはNzは「1」となる。また、CSが適用されない場合にはAは「1」となる。
収集機能14aは、本スキャンを実行する(ステップS104)。例えば、収集機能14aは、主制御機能16aから出力されるシーケンス実行データに従って、傾斜磁場電源3、送信回路7及び受信回路8を駆動することで、本スキャンを実行する。なお、本スキャンは、例えば、診断画像を生成するのに実行するものである。
再構成機能15aは、再構成画像を生成する(ステップS105)。例えば、再構成機能15aは、感度マップを利用して、本スキャンにより収集されたMR信号から折り返しの無い画像(再構成画像)を再構成する。そして、再構成機能15aは、再構成した画像データを記憶回路12に格納する。なお、ここで生成される再構成画像は、デノイズ処理前の画像データである。
第1算出機能16bは、本スキャン時の換算係数を算出する(ステップS106)。例えば、第1算出機能16bは、本スキャンの撮像条件に基づいて本スキャン時の換算係数を算出する。なお、本スキャン時の換算係数は、第2換算係数の一例である。
例えば、第1算出機能16bは、本スキャンの撮像条件から、Rg、Nex、Nx、Ny、Nz、BW、g、及びAの各パラメータを取得する。そして、第1算出機能16bは、取得した各パラメータを式(1)に適用することで、本スキャン時の換算係数「C」を算出する。
第2算出機能16cは、ノイズ強度、準備スキャン時の換算係数、及び本スキャン時の換算係数に基づいて、デノイズ強度を算出する(ステップS107)。そして、デノイズ処理機能16dは、デノイズ強度に基づいて、再構成画像に対するデノイズ処理を実行する(ステップS108)。
図4を用いて、デノイズ強度の算出処理及びデノイズ処理について説明する。例えば、第2算出機能16cは、第1算出機能16bにより算出されたノイズ強度「NoiseSD_map」、準備スキャン時の換算係数「C_map」、及び本スキャン時の換算係数「C」を取得する。そして、第2算出機能16cは、取得したパラメータを図4に示す式に適用することで、デノイズ強度「NoiseSD」を算出する。なお、図4に示す式(NoiseSD=NoiseSD_map*C/C_map*α)において、αは、調整係数である。
言い換えると、第2算出機能16cは、ノイズ強度、準備スキャンの撮像条件に応じた第1換算係数、及び本スキャンの撮像条件に応じた第2換算係数に基づいて、デノイズ強度を算出する。具体的には、第2算出機能16cは、第1換算係数に対する2換算係数の比をノイズ強度に乗算した値に基づいて、デノイズ強度を算出する。
そして、デノイズ処理機能16dは、本スキャンにより収集される再構成画像をフィルタ入力画像として、デノイズ強度「NoiseSD」を用いたシュリンケージ方式によるデノイズ処理を実行する。シュリンケージ方式によるデノイズ処理については、公知の技術を任意に選択して適用可能である。例えば、デノイズ処理機能16dは、デノイズ強度を用いてシュリンケージ方式によるデノイズ処理の閾値を決定する。そして、デノイズ処理機能16dは、決定した閾値を用いてデノイズ処理を行う。これにより、デノイズ処理機能16dは、再構成画像からノイズが除去されたデノイズ画像を生成する。
このように、第2算出機能16cは、ノイズ強度と、準備スキャンの撮像条件及び本スキャンの撮像条件の違いとに基づいて、本スキャンで得られるデータに対して施されるデノイズ処理に用いられるデノイズ強度を算出する。そして、デノイズ処理機能16dは、第2算出機能16cによって算出されたデノイズ強度に基づいて、本スキャンにより収集される再構成画像に対するデノイズ処理を行う。
主制御機能16aは、デノイズ画像を表示させる(ステップS109)。例えば、主制御機能16aは、記憶回路12に格納されたデノイズ画像をディスプレイ11に表示させる。なお、デノイズ画像の表示に際して、主制御機能16aは、レンダリング処理などの公知の画像処理技術を適宜適用することができる。
なお、図2にて説明した処理手順はあくまで一例であり、図示の内容に限定されるものではない。例えば、MRI装置100は、処理内容に矛盾の無い範囲で処理手順を適宜入れ替えて実行可能である。例えば、ステップS103の算出処理は、ステップS107の処理の前に完了していれば、必ずしもステップS102の処理の直後に実行されなくても良い。例えば、ステップS103の算出処理は、ステップS106の算出処理と同時に実行されても良い。また、例えば、ステップS105の再構成処理は、ステップS108の処理の前に完了していれば、必ずしもステップS104の処理の直後に実行されなくても良い。
上述してきたように、第1の実施形態に係るMRI装置100において、第1算出機能16bは、準備スキャンにより収集されるノイズデータからノイズ強度を算出する。そして、第2算出機能16cは、準備スキャンの撮像条件と本スキャンの撮像条件との違いに基づいて、デノイズ処理に用いられるデノイズ強度をノイズ強度から算出する。これによれば、MRI装置100は、デノイズ強度を精度良く推定することができる。この結果、MRI装置100は、ノイズが精度良く除去された高画質な再構成画像を生成することができる。
また、MRI装置100は、特別なスキャンを追加することなく、上記のデノイズ強度の算出処理を実行可能である。このため、MRI装置100は、検査時間の延長を最小限に抑えつつ、デノイズ強度を精度良く推定することができる。
(第1の実施形態の変形例1)
第1の実施形態では、PIが実行される場合を説明したが、実施形態はこれに限定されるものではない。例えば、PIが実行されない場合においても、MRI装置100は、付加的にノイズスキャンを実行することで上述したデノイズ強度の算出処理を実行することが可能となる。例えば、PIが実行されない場合には、MRI装置100は、式(1)の「g」(パラレルイメージングでの展開処理によるノイズ成分の増幅度を表すファクタ)を「1」として、上記の処理を実行する。
(第1の実施形態の変形例2)
また、第1の実施形態では、準備スキャンの撮像条件と本スキャンの撮像条件との違いに基づいて本スキャンのデノイズ強度を算出する場合を説明したが、実施形態はこれに限定されるものではない。例えば、ノイズ強度を算出可能なスキャンであれば、そのスキャンは必ずしも「準備スキャン」でなくても良い。この場合、ノイズ強度を算出した「本スキャンA」の撮像条件と、デノイズ処理が行われる「本スキャンB」の撮像条件との違いに基づいて、デノイズ強度が算出されることとなる。
なお、本スキャンAは、「第1スキャン」と記載される場合がある。また、第1スキャンにより収集されるデータは、「第1データ」と記載される場合がある。また、本スキャンBは、「第2スキャン」と記載される場合がある。また、第2スキャンにより収集されるデータは、「第2データ」と記載される場合がある。
(第1の実施形態の変形例3)
また、第1の実施形態では、準備スキャンが本スキャンの前に実行される場合を説明したが、実施形態はこれに限定されるものではない。例えば、ノイズ強度を算出するためのスキャン(準備スキャンに相当するスキャン)は、本スキャンの後に実行されても良い。すなわち、ノイズ強度を算出するためのスキャンは、本スキャンとは別に行われるスキャンであれば良い。
(第2の実施形態)
第1の実施形態では、ノイズデータのノイズ強度の換算値をデノイズ強度として用いる場合を説明したが、実施形態はこれに限定されるものではない。第2の実施形態に係るMRI装置100は、本スキャンにより収集される再構成画像の背景領域の画素値に基づいて、デノイズ強度を推定することができる。
第2の実施形態に係るMRI装置100は、図1に示したMRI装置100と同様の構成を備えるが、第2算出機能16cの処理の一部及びデノイズ処理機能16dの処理の一部が相違する。以下、第2の実施形態では、第1の実施形態との相違点について説明する。
図5は、第2の実施形態に係るMRI装置100の処理機能を説明するための図である。図5に示すように、第2算出機能16cは、第1算出機能16bにより算出されたノイズ強度「NoiseSD_map」、準備スキャン時の換算係数「C_map」、及び本スキャン時の換算係数「C」を取得する。そして、第2算出機能16cは、取得したパラメータを図5に示す式(NoiseSDtmp=NoiseSD_map*C/C_map)に適用することで、仮のデノイズ強度「NoiseSDtmp」を算出する(S11)。
ここで、仮のデノイズ強度は、第1の実施形態にて説明した「デノイズ強度(NoiseSD)」を、調整係数(α)を「1」として算出した値に対応する。つまり、仮のデノイズ強度の算出に用いられるノイズ強度「NoiseSD_map」は、第1の実施形態に係る第1算出機能16bの処理により算出される値である(図3参照)。なお、「1」以外の調整係数を乗算した値を「仮のデノイズ強度」としても良い。つまり、仮のデノイズ強度は、デノイズ処理に直接的に利用されない点を除き、第1の実施形態にて説明したデノイズ強度と実質的に同じパラメータである。
そして、第2算出機能16cは、仮のデノイズ強度に基づいて閾値を設定する(S12)。この閾値は、再構成画像における背景領域を特定するための画素値の範囲に対応する。例えば、第2算出機能16cは、閾値の下限として「0.0」を設定する。また、第2算出機能16cは、閾値の上限として「P*NoiseSDtmp」を設定する。Pの値は、ノイズ分布を考慮して決定する。例えば、正規分布の場合であればPの値として「3」を選択し、分布の95%が含まれるようにする。
そして、第2算出機能16cは、フィルタ入力画像(再構成画像)において、信号強度(画素値)の絶対値が閾値の範囲内に含まれる画素を抽出する(S13)。この抽出された画素は、再構成画像の背景領域に概ね対応する。
そして、第2算出機能16cは、抽出された画素の画素値の標準偏差を複素計算により算出し、算出した標準偏差に調整係数(α)を乗算した値を、デノイズ強度「NoiseSD」として算出する(S14)。
そして、デノイズ処理機能16dは、フィルタ入力画像に対して、デノイズ強度「NoiseSD」を用いたシュリンケージ方式によるデノイズ処理を実行する(S15)。シュリンケージ方式によるデノイズ処理については、公知の技術を任意に選択して適用可能である。これにより、デノイズ処理機能16dは、再構成画像からノイズが除去されたデノイズ画像を生成する。
このように、第2の実施形態に係るMRI装置100において、第2算出機能16cは、デノイズ強度を用いて背景領域の信号値の範囲を決定し、再構成画像における背景領域の画素値の標準偏差を算出する。そして、デノイズ処理機能16dは、算出された標準偏差を用いてデノイズ処理を行う。これによれば、MRI装置100は、本スキャンにより収集される再構成画像の背景領域の画素値に基づいて、デノイズ強度を推定することができる。
すなわち、第2算出機能16cは、デノイズ強度(仮のデノイズ強度)を用いて再構成画像における背景領域を特定し、特定した背景領域に含まれる複数の画素の画素値の標準偏差を算出する。そして、デノイズ処理機能16dは、算出された標準偏差を用いてデノイズ処理を行う。
MRIにおいて、デノイズ強度は、本来、NMR信号が含まれない「背景領域」から推定するのが好適である。そこで、第2の実施形態に係るMRI装置100は、第1の実施形態にて説明した「デノイズ強度(NoiseSD)」をそのまま用いるのではなく、これを「仮のデノイズ強度(NoiseSDtmp)」として再構成画像の背景領域を推定する。そして、第2の実施形態に係るMRI装置100は、推定した再構成画像の背景領域に含まれる複数の画素の画素値に基づいて、真のデノイズ強度「NoiseSD」を算出する。これにより、第2の実施形態に係るMRI装置100は、デノイズ強度をより適切に算出することができる。
なお、図5の説明はあくまで一例であり、実施形態はこれに限定されるものではない。例えば、CSが適用される場合には、第2算出機能16cは、正則化係数を加味して閾値の上限を設定しても良い。
(その他の実施形態)
上述した実施形態以外にも、種々の異なる形態にて実施されてもよい。
(ノイズ強度を示す他のパラメータ)
上述した実施形態では、ノイズ強度として標準偏差を用いる場合を説明したが、実施形態はこれに限定されるものではない。上記の実施形態において標準偏差を用いたのは、MR画像(実空間画像)におけるノイズ分布がガウシアン分布に従うからである。例えば、デノイズ処理が実空間ではなく他の空間にて行われる場合には、ノイズ分布がガウシアン分布に従わない分布を有する場合がある。このような場合には、その分布に応じて、標準偏差ではなく他のパラメータ(平均値やその他の統計値など)がノイズ強度として利用されても良い。
(換算係数のパラメータ)
また、換算係数の算出に用いるパラメータは、式(1)に示したRg、Nex、Nx、Ny、Nz、BW、g、及びAに限定されるものではない。例えば、ゼロ埋め(zero padding/zero filling)が行われる場合には、換算係数の算出に用いるパラメータとして、ゼロ埋めされるデータ数を用いても良い。ゼロ埋めは、ノイズを含まない完全に「ゼロ」という値をk空間に配置することになる。このため、ゼロ埋めされたk空間データは、ゼロ埋めされたデータ数に応じてノイズ量が減ったように見える。このため、ゼロ埋めが行われる場合には、ゼロ埋めされたデータ数に応じて換算係数が小さくなるように調整するのが好適である。
言い換えると、第1算出機能16bは、準備スキャンの撮像条件に含まれる受信回路での信号増幅率、k空間での加算回数、周波数エンコード方向のマトリクスサイズ、位相エンコード方向のマトリクスサイズ、スライスエンコード数、画素当たりのバンド幅、パラレルイメージングでの展開性能を表すファクタ、圧縮センシングを用いた高速撮像における高速化率、及びゼロ埋めされるデータ数のうち少なくとも一つに基づいて、第1換算係数を算出する。
また、第1算出機能16bは、本スキャンの撮像条件に含まれる受信回路での信号増幅率、k空間での加算回数、周波数エンコード方向のマトリクスサイズ、位相エンコード方向のマトリクスサイズ、スライスエンコード数、画素当たりのバンド幅、パラレルイメージングでの展開性能を表すファクタ、圧縮センシングを用いた高速撮像における高速化率、及びゼロ埋めされるデータ数のうち少なくとも一つに基づいて、第2換算係数を算出する。
(医用情報処理装置)
上記の実施形態では、医用情報処理装置の一例としてMRI装置100が適用される場合を説明したが、実施形態はこれに限定されるものではない。例えば、医用情報処理装置として、パーソナルコンピュータやワークステーション等の情報処理装置が適用されても良い。
この場合、医用情報処理装置の処理回路は、第1算出機能16b、第2算出機能16c、及びデノイズ処理機能16dと各々同様の処理機能を実行する。そして、医用情報処理装置は、例えば、ノイズデータ、準備スキャンの撮像条件、及び本スキャンの撮像条件の情報をMRI装置から受信することで、各処理機能を実行し、デノイズ強度を算出することができる。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。更に、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、或いは、ワイヤードロジックによるハードウェアとして実現され得る。
また、上記の実施形態において説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部又は一部を手動的に行なうこともでき、或いは、手動的に行なわれるものとして説明した処理の全部又は一部を公知の方法で自動的に行なうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、上記の実施形態で説明した医用情報処理方法は、予め用意された医用情報処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。この医用情報処理プログラムは、インターネット等のネットワークを介して配布することができる。また、この医用情報処理方法は、ハードディスク、フレキシブルディスク(FD)、CD−ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上説明した少なくともひとつの実施形態によれば、デノイズ強度を精度良く推定することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
以上の実施形態に関し、発明の一側面および選択的な特徴として以下の付記を開示する。
(付記1)
第1スキャンにより収集される第1データからノイズ強度を算出する第1算出部と、
前記第1スキャンの撮像条件と第2スキャンの撮像条件との違いに基づいて、前記第2スキャンで得られる第2データに対して施されるデノイズ処理に用いられるデノイズ強度を前記ノイズ強度から算出する第2算出部と、
を備える、医用情報処理装置。
(付記2)
前記第2算出部は、前記ノイズ強度、前記第1スキャンの撮像条件に応じた第1換算係数、及び前記第2スキャンの撮像条件に応じた第2換算係数に基づいて、前記デノイズ強度を算出しても良い。
(付記3)
前記第2算出部は、前記第1換算係数に対する前記第2換算係数の比を前記ノイズ強度に乗算した値に基づいて、前記デノイズ強度を算出しても良い。
(付記4)
前記第1算出部は、前記第1スキャンの撮像条件に含まれる受信回路での信号増幅率、k空間での加算回数、周波数エンコード方向のマトリクスサイズ、位相エンコード方向のマトリクスサイズ、スライスエンコード数、画素当たりのバンド幅、パラレルイメージングでの展開性能を表すファクタ、圧縮センシングを用いた高速撮像における高速化率、及びゼロ埋めされるデータ数のうち少なくとも一つに基づいて、前記第1換算係数を算出しても良い。
(付記5)
前記第1算出部は、前記第2スキャンの撮像条件に含まれる受信回路での信号増幅率、k空間での加算回数、周波数エンコード方向のマトリクスサイズ、位相エンコード方向のマトリクスサイズ、スライスエンコード数、及び画素当たりのバンド幅に基づいて、前記第2換算係数を算出しても良い。
(付記6)
前記第1算出部は、前記第2スキャンの撮像条件に含まれるパラレルイメージングでの展開処理によるノイズ成分の増幅度を表すファクタに基づいて、前記第2換算係数を算出しても良い。
(付記7)
前記第1算出部は、前記第2スキャンの撮像条件に含まれる圧縮センシングを用いた高速撮像における高速化率に基づいて、前記第2換算係数を算出しても良い。
(付記8)
前記デノイズ強度に基づいて、前記第2スキャンにより収集される第2データに対する前記デノイズ処理を行うデノイズ処理部を更に備えても良い。
(付記9)
前記デノイズ処理部は、
前記デノイズ強度を用いてシュリンケージ方式によるデノイズ処理の閾値を決定し、
決定した前記閾値を用いて前記デノイズ処理を行っても良い。
(付記10)
前記第2算出部は、
前記デノイズ強度を用いて前記画像における背景領域を特定し、
特定した前記背景領域に含まれる複数の画素の画素値の標準偏差を算出し、
前記デノイズ処理部は、算出された前記標準偏差を用いて前記デノイズ処理を行っても良い。
(付記11)
前記第1スキャンは、一定の強さ以上のRFパルスを送信させずに前記第1データを収集するスキャンを含んでも良い。
(付記12)
前記一定の強さ以上のRFパルスは、発生するNMR(Nuclear Magnetic Resonance)信号がノイズ量の推定に影響しない程度のRFパルスであっても良い。
(付記13)
前記第1算出部は、前記ノイズ強度を、前記第1スキャンにより収集されたk空間データを実空間に変換したデータに基づいて算出しても良い。
(付記14)
前記医用情報処理装置は、磁気共鳴イメージング装置であっても良い。
(付記15)
前記第2スキャンは、診断画像を作成するための本スキャンであってもよく、
前記第1スキャンは、前記本スキャンとは別に行われるスキャンであってもよい。
(付記16)
第1スキャンにより収集される第1データからノイズ強度を算出し、
前記第1スキャンの撮像条件と第2スキャンの撮像条件との違いに基づいて、前記第2スキャンで得られる第2データに対して施されるデノイズ処理に用いられるデノイズ強度を前記ノイズ強度から算出する、
ことを含む、医用情報処理方法。
100 MRI装置
16 処理回路
16b 第1算出機能
16c 第2算出機能
16d デノイズ処理機能

Claims (16)

  1. 第1スキャンにより収集される第1データからノイズ強度を算出する第1算出部と、
    前記ノイズ強度と、前記第1スキャンの撮像条件と第2スキャンの撮像条件との違いとに基づいて、前記第2スキャンで得られる第2データに対して施されるデノイズ処理に用いられるデノイズ強度を算出する第2算出部と、
    を備える、医用情報処理装置。
  2. 前記第2算出部は、前記ノイズ強度、前記第1スキャンの撮像条件に応じた第1換算係数、及び前記第2スキャンの撮像条件に応じた第2換算係数に基づいて、前記デノイズ強度を算出する、
    請求項1に記載の医用情報処理装置。
  3. 前記第2算出部は、前記第1換算係数に対する前記第2換算係数の比を前記ノイズ強度に乗算した値に基づいて、前記デノイズ強度を算出する、
    請求項2に記載の医用情報処理装置。
  4. 前記第1算出部は、前記第1スキャンの撮像条件に含まれる受信回路での信号増幅率、k空間での加算回数、周波数エンコード方向のマトリクスサイズ、位相エンコード方向のマトリクスサイズ、スライスエンコード数、画素当たりのバンド幅、パラレルイメージングでの展開性能を表すファクタ、圧縮センシングを用いた高速撮像における高速化率、及びゼロ埋めされるデータ数のうち少なくとも一つに基づいて、前記第1換算係数を算出する、
    請求項2又は3に記載の医用情報処理装置。
  5. 前記第1算出部は、前記第2スキャンの撮像条件に含まれる受信回路での信号増幅率、k空間での加算回数、周波数エンコード方向のマトリクスサイズ、位相エンコード方向のマトリクスサイズ、スライスエンコード数、及び画素当たりのバンド幅に基づいて、前記第2換算係数を算出する、
    請求項2〜4のいずれか一つに記載の医用情報処理装置。
  6. 前記第1算出部は、前記第2スキャンの撮像条件に含まれるパラレルイメージングでの展開処理によるノイズ成分の増幅度を表すファクタに基づいて、前記第2換算係数を算出する、
    請求項2〜4のいずれか一つに記載の医用情報処理装置。
  7. 前記第1算出部は、前記第2スキャンの撮像条件に含まれる圧縮センシングを用いた高速撮像における高速化率に基づいて、前記第2換算係数を算出する、
    請求項2〜4のいずれか一つに記載の医用情報処理装置。
  8. 前記デノイズ強度に基づいて、前記第2スキャンにより収集される第2データに対する前記デノイズ処理を行うデノイズ処理部を更に備える、
    請求項1〜7のいずれか一つに記載の医用情報処理装置。
  9. 前記デノイズ処理部は、
    前記デノイズ強度を用いてシュリンケージ方式によるデノイズ処理の閾値を決定し、
    決定した前記閾値を用いて前記デノイズ処理を行う、
    請求項8に記載の医用情報処理装置。
  10. 前記第2算出部は、
    前記デノイズ強度を用いて前記第2データにおける背景領域を特定し、
    特定した前記背景領域に含まれる複数の画素の画素値の標準偏差を算出し、
    前記デノイズ処理部は、算出された前記標準偏差を用いて前記デノイズ処理を行う、
    請求項8又は9に記載の医用情報処理装置。
  11. 前記第1スキャンは、一定の強さ以上のRFパルスを送信させずに前記第1データを収集するスキャンを含む、
    請求項1〜10のいずれか一つに記載の医用情報処理装置。
  12. 前記一定の強さ以上のRFパルスは、発生するNMR(Nuclear Magnetic Resonance)信号がノイズ量の推定に影響しない程度のRFパルスである、
    請求項11に記載の医用情報処理装置。
  13. 前記第1算出部は、前記ノイズ強度を、前記第1スキャンにより収集されたk空間データを実空間に変換したデータに基づいて算出する、
    請求項1〜12のいずれか一つに記載の医用情報処理装置。
  14. 磁気共鳴イメージング装置である、
    請求項1〜13のいずれか一つに記載の医用情報処理装置。
  15. 前記第2スキャンは、診断画像を作成するための本スキャンであって、
    前記第1スキャンは、前記本スキャンとは別に行われるスキャンである、
    請求項1に記載の医用情報処理装置。
  16. 第1スキャンにより収集される第1データからノイズ強度を算出し、
    前記ノイズ強度と、前記第1スキャンの撮像条件と第2スキャンの撮像条件との違いとに基づいて、前記第2スキャンで得られる第2データに対して施されるデノイズ処理に用いられるデノイズ強度を算出する、
    ことを含む、医用情報処理方法。
JP2020069908A 2019-04-10 2020-04-08 医用情報処理装置及び医用情報処理方法 Active JP7419145B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20169009.6A EP3723037B1 (en) 2019-04-10 2020-04-09 Medical information processing apparatus and medical information processing method
US16/845,176 US11669938B2 (en) 2019-04-10 2020-04-10 Medical information processing apparatus and medical information processing method
US18/304,012 US20230260088A1 (en) 2019-04-10 2023-04-20 Medical information processing apparatus and medical information processing method
JP2023175119A JP2023171516A (ja) 2019-04-10 2023-10-10 医用情報処理装置及び医用情報処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019075110 2019-04-10
JP2019075110 2019-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023175119A Division JP2023171516A (ja) 2019-04-10 2023-10-10 医用情報処理装置及び医用情報処理方法

Publications (2)

Publication Number Publication Date
JP2020171693A true JP2020171693A (ja) 2020-10-22
JP7419145B2 JP7419145B2 (ja) 2024-01-22

Family

ID=72830261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069908A Active JP7419145B2 (ja) 2019-04-10 2020-04-08 医用情報処理装置及び医用情報処理方法

Country Status (1)

Country Link
JP (1) JP7419145B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112863533A (zh) * 2020-12-29 2021-05-28 深圳市联影高端医疗装备创新研究院 医疗成像设备中语音信号获取方法、装置、设备和介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759750A (ja) * 1993-08-30 1995-03-07 Hitachi Medical Corp 核磁気共鳴イメージング装置
JP2007244848A (ja) * 2006-02-17 2007-09-27 Toshiba Corp データ補正装置、データ補正方法、磁気共鳴イメージング装置およびx線ct装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024725A2 (en) 2003-09-04 2005-03-17 Koninklijke Philips Electronics N.V. Adaptive image homogeneity correction for high field magnetic resonance imaging
DE102007035176B4 (de) 2007-07-27 2010-03-18 Siemens Ag Verfahren zur Aufzeichnung und Verarbeitung einer Folge von zeitlich aufeinander folgenden Bilddatensätzen sowie Magnet-Resonanz-Gerät

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759750A (ja) * 1993-08-30 1995-03-07 Hitachi Medical Corp 核磁気共鳴イメージング装置
JP2007244848A (ja) * 2006-02-17 2007-09-27 Toshiba Corp データ補正装置、データ補正方法、磁気共鳴イメージング装置およびx線ct装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112863533A (zh) * 2020-12-29 2021-05-28 深圳市联影高端医疗装备创新研究院 医疗成像设备中语音信号获取方法、装置、设备和介质

Also Published As

Publication number Publication date
JP7419145B2 (ja) 2024-01-22

Similar Documents

Publication Publication Date Title
EP2730935B1 (en) Motional error correction in functional magnetic resonance imaging
US20230260088A1 (en) Medical information processing apparatus and medical information processing method
US9664764B2 (en) Magnetic resonance imaging apparatus and susceptibility-weighted imaging method using the same
JP7278785B2 (ja) 医用画像診断装置及び医用画像診断システム
CN110074786B (zh) 核磁共振匀场方法、装置、计算设备及核磁共振成像系统
JP2016093494A (ja) 磁気共鳴イメージング装置、画像処理装置及び画像処理方法
US10976397B2 (en) MRI apparatus utilizing non-ultrashort TE(UTE) imaging to generate a mask image for performance of mask processing
JP2021029777A (ja) 磁気共鳴データ収集方法及び磁気共鳴イメージング装置
JP7353735B2 (ja) 磁気共鳴イメージング装置
JP7179483B2 (ja) 磁気共鳴イメージング装置
US10607339B2 (en) Image processing apparatus
JP7419145B2 (ja) 医用情報処理装置及び医用情報処理方法
US10909729B2 (en) Image processing apparatus
JP7263219B2 (ja) 磁気共鳴イメージング装置
JP2016097291A (ja) 磁気共鳴イメージング装置
JP2019130310A (ja) 磁気共鳴イメージング装置及び画像処理装置
JP6579908B2 (ja) 磁気共鳴イメージング装置及び拡散強調画像計算方法
US11927655B2 (en) Magnetic resonance imaging apparatus
JP3884282B2 (ja) Mri装置
US11467238B2 (en) Method for uniform reconstruction of multi-channel surface-coil magnetic resonance data without use of a reference scan
US20240361414A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
EP4455708A1 (en) Diffusion weighted magnetic resonance imaging apparatus and method for virtual elastography
JP2016158863A (ja) 医用画像撮像装置及び撮像断面調整方法
JP2018108124A (ja) 磁気共鳴イメージング装置
JP2024036308A (ja) 画像処理装置、画像処理方法及び磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240110

R150 Certificate of patent or registration of utility model

Ref document number: 7419145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150