JP2020169106A - Method and apparatus for immobilizing hydrogen - Google Patents

Method and apparatus for immobilizing hydrogen Download PDF

Info

Publication number
JP2020169106A
JP2020169106A JP2019071942A JP2019071942A JP2020169106A JP 2020169106 A JP2020169106 A JP 2020169106A JP 2019071942 A JP2019071942 A JP 2019071942A JP 2019071942 A JP2019071942 A JP 2019071942A JP 2020169106 A JP2020169106 A JP 2020169106A
Authority
JP
Japan
Prior art keywords
hydrogen
reaction vessel
reaction
hydrogen gas
sodium metaborate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019071942A
Other languages
Japanese (ja)
Other versions
JP7412893B2 (en
JP2020169106A5 (en
Inventor
津田 訓範
Kuninori Tsuda
訓範 津田
正勝 藤野
Masakatsu Fujino
正勝 藤野
八左右 吉田
Yazo Yoshida
八左右 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSF CO Ltd
Original Assignee
KSF CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSF CO Ltd filed Critical KSF CO Ltd
Priority to JP2019071942A priority Critical patent/JP7412893B2/en
Publication of JP2020169106A publication Critical patent/JP2020169106A/en
Publication of JP2020169106A5 publication Critical patent/JP2020169106A5/ja
Priority to JP2023222041A priority patent/JP2024023988A/en
Application granted granted Critical
Publication of JP7412893B2 publication Critical patent/JP7412893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a method and an apparatus for immobilizing hydrogen excellent in reaction efficiency between sodium metaborate and hydrogen without requiring a catalyst separation process.SOLUTION: The invention relates to a hydrogen immobilization method for immobilizing hydrogen by producing sodium borohydride through bringing sodium metaborate into contact with hydrogen gas in a reaction vessel into which sodium metaborate is charged. The invention relates to a hydrogen immobilization apparatus comprising a reaction vessel to which sodium metaborate is charged, a hydrogen gas supply means for supplying hydrogen gas to the reaction vessel, and a reaction control means for reacting the supplied hydrogen gas with sodium metaborate in the reaction vessel.SELECTED DRAWING: Figure 1

Description

本発明は、水素固定化方法及び水素固定化装置に関する。 The present invention relates to a hydrogen immobilization method and a hydrogen immobilization apparatus.

水素は、多くの化学プロセスにおいて重要な材料であり、近年では、自動車用の燃料電池をはじめとしたクリーンエネルギー源としての利用が期待されている。 Hydrogen is an important material in many chemical processes, and in recent years, it is expected to be used as a clean energy source for fuel cells for automobiles and the like.

水素をエネルギー源として利用する場合に、水素を固定化した水素貯蔵材として水素化ホウ素ナトリウム(NaBH)を利用する方法が検討されている(特許文献1)。この水素化ホウ素ナトリウムは、水と容易に加水分解反応し、水素とメタホウ酸ナトリウムとになることから、水素ガスの取り出しやメタホウ酸ナトリウムの再利用による、エネルギー源の効率的な利用が図られるものである。 When hydrogen is used as an energy source, a method of using sodium borohydride (NaBH 4 ) as a hydrogen-immobilized hydrogen storage material has been studied (Patent Document 1). This sodium borohydride easily hydrolyzes with water to form hydrogen and sodium metaborate, so that the energy source can be efficiently used by taking out hydrogen gas and reusing sodium metaborate. It is a thing.

特許文献1では、メタホウ酸ナトリウム(NaBO)と金属アルミ単体とを含む混合物を水素雰囲気下で加熱し、金属アルミ表面にプロタイド(H)を生成させて、水素貯蔵材としての水素化ホウ素ナトリウムを製造している(下式(1))。
NaBO+4/3Al+2H → NaBH+2/3Al ・・・(1)
In Patent Document 1, a mixture containing sodium metaborate (NaBO 2 ) and a simple substance of metallic aluminum is heated in a hydrogen atmosphere to generate protide (H ) on the surface of metallic aluminum to generate boron borohydride as a hydrogen storage material. Manufactures sodium (formula (1) below).
NaBO 2 + 4/3 Al + 2H 2 → NaBH 4 + 2/3 Al 2 O 3 ... (1)

特開2014−181174号公報Japanese Unexamined Patent Publication No. 2014-181174

上述のように、特許文献1の水素化ホウ素ナトリウムの製造においては、メタホウ酸ナトリウムとアルミとを混在させるため、反応後に副生成物である酸化アルミを分離する必要があった。 As described above, in the production of sodium borohydride of Patent Document 1, since sodium metaborate and aluminum are mixed, it is necessary to separate aluminum oxide, which is a by-product, after the reaction.

本発明は、触媒を用いなくても、メタホウ酸ナトリウムと水素との反応効率に優れる水素固定方法及び水素固定装置を提供することを目的とする。 An object of the present invention is to provide a hydrogen immobilization method and a hydrogen immobilization apparatus having excellent reaction efficiency between sodium metaborate and hydrogen without using a catalyst.

本発明は、以下の[1]〜[6]のいずれかにより、上記課題を解決するものである。
[1]メタホウ酸ナトリウムが投入された反応容器内で、メタホウ酸ナトリウムと水素ガスを接触させて水素化ホウ素ナトリウムを生成することで水素を固定化する水素固定化方法;
[2]反応容器内に触媒を含まない、上記[1]に記載の水素固定化方法;
[3]応容器内の温度が100〜500℃である、上記[1]または[2]に記載の水素固定化方法;
[4]水素ガスは、水素吸蔵性能を有する金属と水蒸気との反応により生成した水素ガスである、上記[1]〜[3]のいずれかに記載の水素固定化方法;
[5]メタホウ酸ナトリウムを投入する反応容器と、該反応容器に水素ガスを供給する水素ガス供給手段と、反応容器内において、供給した水素ガスとメタホウ酸ナトリウムとを反応させる反応制御手段とを備えた、水素固定化装置;
[6]水素ガス供給手段が、水素吸蔵性能を有する金属と水蒸気との反応により生成した水素ガスを加圧条件下に供給する手段である、上記[5]に記載の水素固定化装置。
The present invention solves the above problems by any of the following [1] to [6].
[1] A hydrogen immobilization method for immobilizing hydrogen by contacting sodium metaborate with hydrogen gas to generate sodium borohydride in a reaction vessel in which sodium metaborate is charged;
[2] The hydrogen immobilization method according to the above [1], which does not contain a catalyst in the reaction vessel;
[3] The hydrogen immobilization method according to the above [1] or [2], wherein the temperature inside the container is 100 to 500 ° C.
[4] The hydrogen immobilization method according to any one of the above [1] to [3], wherein the hydrogen gas is a hydrogen gas generated by the reaction of a metal having a hydrogen storage performance and water vapor;
[5] A reaction vessel into which sodium metaborate is charged, a hydrogen gas supply means for supplying hydrogen gas to the reaction vessel, and a reaction control means for reacting the supplied hydrogen gas with sodium metaborate in the reaction vessel. Equipped with hydrogen immobilization device;
[6] The hydrogen immobilization apparatus according to the above [5], wherein the hydrogen gas supply means is a means for supplying hydrogen gas generated by a reaction between a metal having a hydrogen storage performance and water vapor under pressurized conditions.

本発明によれば、触媒を用いなくても、メタホウ酸ナトリウムと水素との反応効率に優れる水素固定方法及び水素固定装置を提供することができる。 According to the present invention, it is possible to provide a hydrogen fixing method and a hydrogen fixing device having excellent reaction efficiency between sodium metaborate and hydrogen without using a catalyst.

本発明の実施の形態の少なくとも1つに対応する、水素固定化方法の実施に用いる装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the apparatus used for carrying out the hydrogen immobilization method corresponding to at least one of the Embodiments of this invention. 水素化固定化方法の実施に用いる反応容器の構造を説明するための概略図である。It is a schematic diagram for demonstrating the structure of the reaction vessel used for carrying out the hydrogenation immobilization method.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下、効果に関する記載は、本発明の実施の形態の効果の一側面であり、ここに記載するものに限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Hereinafter, the description regarding the effect is one aspect of the effect of the embodiment of the present invention, and is not limited to what is described here.

[第一の実施の形態]
本発明の水素固定化方法の第一の実施の形態の概要について説明をする。本発明の水素固定化方法は、メタホウ酸ナトリウム(NaBO)の水素化による水素固定化方法であって、以下の化学反応式(1)により表される。
NaBO+4H → NaBH+2HO ・・・(1)
[First Embodiment]
The outline of the first embodiment of the hydrogen immobilization method of the present invention will be described. The hydrogen immobilization method of the present invention is a hydrogen immobilization method by hydrogenation of sodium metaborate (NaBO 2 ), and is represented by the following chemical reaction formula (1).
NaBO 2 + 4H 2 → NaBH 4 + 2H 2 O ・ ・ ・ (1)

上記反応は、メタホウ酸ナトリウムを充填した反応容器内に加圧条件下で水素ガスを接触させて反応を進行させ水素化ホウ素ナトリウムを生成することにより実施する。図1は、本発明の実施の形態の少なくとも1つに対応する、水素固定化方法の実施に用いる装置の構成を示す概略図である。水素固定化装置100は、メタホウ酸ナトリウムを投入する反応容器1と、該反応容器1に水素ガスを供給する水素ガス供給手段2と、反応容器1内において、供給した水素ガスとメタホウ酸ナトリウムとを反応させる反応制御手段4を少なくとも備える。 The above reaction is carried out by bringing hydrogen gas into contact with a reaction vessel filled with sodium metaborate under pressurized conditions to proceed the reaction and produce sodium borohydride. FIG. 1 is a schematic diagram showing a configuration of an apparatus used for carrying out a hydrogen immobilization method corresponding to at least one of the embodiments of the present invention. The hydrogen immobilization device 100 includes a reaction vessel 1 for charging sodium metaborate, a hydrogen gas supply means 2 for supplying hydrogen gas to the reaction vessel 1, and hydrogen gas and sodium metaborate supplied in the reaction vessel 1. At least the reaction control means 4 for reacting with

(メタホウ酸ナトリウム)
原料となる金属ホウ素塩であるメタホウ酸ナトリウムは、水和物でも無水物であってもよい。例えば、メタホウ酸ナトリウムと水素とを接触させる前段階として、メタホウ酸ナトリウムの水和物を除去して無水メタホウ酸ナトリウムとする工程を備えてもよい。除去方法は特に限定されないが、たとえば、加熱により除去することができる。
(Sodium metaborate)
Sodium metaborate, which is a metal boron salt as a raw material, may be hydrated or anhydrous. For example, as a preliminary step of bringing sodium metaborate into contact with hydrogen, a step of removing the hydrate of sodium metaborate to obtain anhydrous sodium metaborate may be provided. The removal method is not particularly limited, but it can be removed by heating, for example.

メタホウ酸ナトリウムは、反応容器1に原料粉を直接投入して反応に供することができる。または、反応容器1に原料タンクを備え、所定量をタンクなどから自動で投入できるように構成してもよい。 Sodium metaborate can be subjected to the reaction by directly putting the raw material powder into the reaction vessel 1. Alternatively, the reaction vessel 1 may be provided with a raw material tank so that a predetermined amount can be automatically charged from the tank or the like.

本実施の形態1では、原料であるメタホウ酸ナトリウムをカートリッジに充填し、このカートリッジに充填した状態で、後述の反応容器に自動で搭載し、反応に供する場合について詳述する。 In the first embodiment, a case where a cartridge is filled with sodium metaborate, which is a raw material, and the cartridge is automatically loaded in a reaction vessel to be described later and subjected to a reaction, will be described in detail.

カートリッジに充填した状態で反応に供することで、カートリッジ内で反応により生成した水素化ホウ素ナトリウムを水素供給源としての利用を容易なものとすることができる。すなわち、生成した水素化ホウ素ナトリウムは、水と容易に反応し水素を生成することから、例えば、燃料電池自動車に搭載される燃料電池への水素供給源としてカートリッジのまま活用することが可能である。 By subjecting the cartridge to the reaction in a state of being filled, the sodium borohydride produced by the reaction in the cartridge can be easily used as a hydrogen supply source. That is, since the produced sodium borohydride easily reacts with water to generate hydrogen, it can be used as a cartridge as a hydrogen supply source for a fuel cell mounted on a fuel cell vehicle, for example. ..

カートリッジ3の形状は特に限定されるものではないが、充填された水素化ホウ素ナトリウムを水素発生源として運搬し、利用する点から、円筒状であることが望ましい。また、カートリッジ3の材質としては、水素化ホウ素ナトリウムが運搬中に水分と接触することを防いだり、生成する水素ガスの圧力に耐えるために、ステンレス系の金属や、耐熱耐水素性を持つ樹脂が好ましい。 The shape of the cartridge 3 is not particularly limited, but it is preferably cylindrical from the viewpoint of transporting and using the filled sodium borohydride as a hydrogen generation source. Further, as the material of the cartridge 3, a stainless metal or a resin having heat resistance and hydrogen resistance is used to prevent sodium borohydride from coming into contact with moisture during transportation and to withstand the pressure of the generated hydrogen gas. preferable.

(反応容器)
反応容器1としては、上記水素化反応に耐性のある材料を内壁に用いるものであれば、いずれの形状も採用することができる。反応容器1には、反応容器内の温度が所定の範囲を超える場合に冷却する、冷却装置6などを備えることができる。また、反応容器1には、原料となるメタホウ酸ナトリウムが投入されていない状態では運転ができなくなるインターロック機構(不図示)や、反応容器1全体の接地、反応容器1内の圧力を調整する安全弁7を設けるなどの安全装置を適宜備える。
(Reaction vessel)
As the reaction vessel 1, any shape can be adopted as long as the material resistant to the hydrogenation reaction is used for the inner wall. The reaction vessel 1 may be provided with a cooling device 6 or the like that cools the reaction vessel when the temperature inside the reaction vessel exceeds a predetermined range. Further, the reaction vessel 1 is adjusted with an interlock mechanism (not shown) that cannot be operated without sodium metaborate as a raw material, grounding of the entire reaction vessel 1, and pressure inside the reaction vessel 1. A safety device such as a safety valve 7 is appropriately provided.

反応容器1は、図2に示すように、水素ガス供給口21を備えた蓋部22と、カートリッジ3を保持するカートリッジ保持部24を備えた反応室23とを含む。図では4つのカートリッジを垂直に保持した状態を示しているが、反応室23の体積にあわせて、適宜より多数のカートリッジを保持するようにしたり、また、カートリッジを水平に保持するように構成してもよい。 As shown in FIG. 2, the reaction vessel 1 includes a lid portion 22 provided with a hydrogen gas supply port 21 and a reaction chamber 23 provided with a cartridge holding portion 24 for holding the cartridge 3. Although the figure shows a state in which the four cartridges are held vertically, a larger number of cartridges may be held as appropriate according to the volume of the reaction chamber 23, or the cartridges may be held horizontally. You may.

反応室23には、カートリッジ3および反応室23全体を加熱する、ヒーター等による加熱手段や、温度センサを備えることができる。また、水冷等による冷却手段を備えていてもよい。さらに、反応室23内のメタホウ酸ナトリウムと水素ガスとを攪拌する攪拌翼を反応室23底部に備えても良い。加熱条件下で攪拌しながら反応させることで、水素固定化反応を効率良く進行させることができる。また、反応室23内の反応が後述の制御手段により制御される構成とすることが好ましい。 The reaction chamber 23 may be provided with a heating means such as a heater for heating the cartridge 3 and the entire reaction chamber 23, and a temperature sensor. Further, a cooling means such as water cooling may be provided. Further, a stirring blade for stirring sodium metaborate and hydrogen gas in the reaction chamber 23 may be provided at the bottom of the reaction chamber 23. By reacting with stirring under heating conditions, the hydrogen immobilization reaction can proceed efficiently. Further, it is preferable that the reaction in the reaction chamber 23 is controlled by the control means described later.

(水素ガス供給手段)
反応容器1には、反応に用いられる水素ガスを供給する水素ガス供給手段2を備える。水素ガスは、例えばタンク5に充填されており、このタンク5から流量を調整した水素ガスを、水素ガスフィルタ装置8などを通して水素ガス濃度を調整する。濃度が調整された水素ガスは、適宜、マスフロメータ9や電磁バブル10を介して反応容器1に供給される。マスフロメータ9は流量を調整し、電磁バルブ10は反応容器への水素ガスの吸気と排気の調整に用いられる。
(Hydrogen gas supply means)
The reaction vessel 1 is provided with a hydrogen gas supply means 2 for supplying hydrogen gas used for the reaction. The hydrogen gas is filled in the tank 5, for example, and the hydrogen gas whose flow rate is adjusted from the tank 5 is adjusted to the hydrogen gas concentration through the hydrogen gas filter device 8 or the like. The hydrogen gas whose concentration has been adjusted is appropriately supplied to the reaction vessel 1 via the mass flow meter 9 and the electromagnetic bubble 10. The mass flow meter 9 adjusts the flow rate, and the solenoid valve 10 is used for adjusting the intake and exhaust of hydrogen gas to the reaction vessel.

これらのタンク5、水素ガスフィルタ装置8、マスフロメータ9、電磁バルブ10や、上述の冷却装置6などは、いずれも反応制御手段4に接続され、水素化反応時の反応容器1内の温度や圧力、水素ガス濃度を反応が効率的に進行するように制御される。この制御は事前入力により自動化してもよい。 These tank 5, hydrogen gas filter device 8, mass flow meter 9, solenoid valve 10, and the above-mentioned cooling device 6 are all connected to the reaction control means 4, and the temperature and pressure in the reaction vessel 1 during the hydrogenation reaction are all connected. , The hydrogen gas concentration is controlled so that the reaction proceeds efficiently. This control may be automated by pre-input.

本発明においては、上記タンク5に充填される水素ガスを、水素吸蔵性能を有する金属と水蒸気との反応により生成した水素ガスとすることが望ましい。具体的には、特開2017−190275号公報に記載される副生水素製造方法による、水素吸蔵性能を有する金属Mと高圧水蒸気との反応であって、金属Mの酸化物Mαβ(α、βはそれぞれ1〜4のいずれかの整数であり、αとβは同じあっても異なるものであってもよい。)を生成する反応により発生する水素ガスである。このような反応により発生した水素ガスを、配管によりタンク5に供給できるようにすることで、プラント全体の効率を向上させることができる。 In the present invention, it is desirable that the hydrogen gas filled in the tank 5 is a hydrogen gas generated by the reaction of a metal having a hydrogen storage performance and water vapor. Specifically, it is a reaction between a metal M having a hydrogen storage performance and high-pressure steam by the by-product hydrogen production method described in JP-A-2017-190275, wherein the oxide M α O β of the metal M ( α and β are each an integer of 1 to 4, and α and β may be the same or different.) This is a hydrogen gas generated by a reaction for producing. By making it possible to supply the hydrogen gas generated by such a reaction to the tank 5 by piping, the efficiency of the entire plant can be improved.

上記金属Mは、粒状金属をペレット化したものであることが好ましく、マグネシウム、アルミニウム及び鉄からなる群より選ばれる少なくとも1種の金属であることが好ましい。 The metal M is preferably a pellet of granular metal, and is preferably at least one metal selected from the group consisting of magnesium, aluminum and iron.

高圧水蒸気の温度は、用いる金属Mによって適宜調節する。金属Mに接触する水蒸気の温度が、用いる金属Mの融点以上となることで、上記式(1)の反応が進行する。それゆえ、金属Mがマグネシウムの場合、マグネシウムに接触する際の水蒸気の温度は650℃以上であることが好ましく、金属Mがアルミニウムの場合、アルミニウムに接触する際の水蒸気の温度は、660℃以上であることが好ましく、金属Mが鉄の場合は、鉄に接触する際の水蒸気の温度が、1535℃以上であることが好ましい。 The temperature of the high-pressure steam is appropriately adjusted depending on the metal M used. When the temperature of the water vapor in contact with the metal M becomes equal to or higher than the melting point of the metal M to be used, the reaction of the above formula (1) proceeds. Therefore, when the metal M is magnesium, the temperature of the water vapor when it comes into contact with magnesium is preferably 650 ° C. or higher, and when the metal M is aluminum, the temperature of the water vapor when it comes into contact with aluminum is 660 ° C. or higher. When the metal M is iron, the temperature of the water vapor when it comes into contact with iron is preferably 1535 ° C. or higher.

水素吸蔵性能を有する金属と高圧水蒸気との反応により生成した水素ガスをタンク5に貯留し、反応容器1への水素ガスの供給流量を調整する。 Hydrogen gas generated by the reaction between a metal having a hydrogen storage performance and high-pressure steam is stored in the tank 5, and the supply flow rate of the hydrogen gas to the reaction vessel 1 is adjusted.

(反応制御手段)
反応制御手段4は、反応容器1内において、供給した水素ガスとメタホウ酸ナトリウムとの反応を進行させるために、主としてタンク5からの水素ガスの反応容器1への供給量の調整や、反応室の加熱などにより、反応容器内の温度及び容器内の圧力を調整するものである。
(Reaction control means)
The reaction control means 4 mainly adjusts the amount of hydrogen gas supplied from the tank 5 to the reaction vessel 1 and adjusts the supply amount of the hydrogen gas to the reaction vessel 1 in order to proceed the reaction between the supplied hydrogen gas and sodium metaborate in the reaction vessel 1. The temperature inside the reaction vessel and the pressure inside the vessel are adjusted by heating or the like.

本発明においては、上記反応式(1)は、水素ガスとメタホウ酸ナトリウムを接触させることによって、従来のように反応容器1内にメタホウ酸ナトリウムと混合させておくアルミやマグネシウムなどの触媒が存在しなくても、十分に水素固定化反応を進行させることができる。 In the present invention, in the above reaction formula (1), there is a catalyst such as aluminum or magnesium which is mixed with sodium metaborate in the reaction vessel 1 as in the conventional case by contacting hydrogen gas with sodium metaborate. Even if this is not done, the hydrogen immobilization reaction can be sufficiently proceeded.

反応容器内の温度は100℃以上であることが好ましく、200℃以上であることがより好ましく、300℃以上であることがさらに好ましい。また、反応容器内の温度は、500℃以下であることが好ましく、400℃以下であることがより好ましく、350℃以下であることがさらに好ましい。反応容器1の内圧にもよるが、反応容器1内の温度をこのような温度範囲とすることによって、上記水素固定化反応を効率よく進行させることができる。 The temperature in the reaction vessel is preferably 100 ° C. or higher, more preferably 200 ° C. or higher, and even more preferably 300 ° C. or higher. The temperature inside the reaction vessel is preferably 500 ° C. or lower, more preferably 400 ° C. or lower, and even more preferably 350 ° C. or lower. Although it depends on the internal pressure of the reaction vessel 1, the hydrogen immobilization reaction can be efficiently promoted by setting the temperature inside the reaction vessel 1 in such a temperature range.

(水素固定化方法)
上記のような水素固定化装置の構成を用いた具体的な水素固定化方法のフローについて説明する。
(Hydrogen immobilization method)
The flow of a specific hydrogen immobilization method using the configuration of the hydrogen immobilization apparatus as described above will be described.

まず、原料となるメタホウ酸ナトリウムを充填したカートリッジ3を反応容器2内のカートリッジ保持部24に保持させる。このような操作は、自動化により行なうことができる。 First, the cartridge 3 filled with sodium metaborate, which is a raw material, is held by the cartridge holding portion 24 in the reaction vessel 2. Such an operation can be performed by automation.

反応容器1の蓋部22を占めて反応容器1を密閉する。反応容器1に接続した水素ガス供給手段から水素ガス供給口21を通じて、水素ガスを反応容器1内に供給開始する。反応容器1内の圧力が所定の圧力となったところで、反応室23とカートリッジ3とが所定の温度となるまで、反応容器1内を加熱する。所定の温度を維持するように加熱条件を制御しながら、メタホウ酸ナトリウム1モルに対して水素ガス4モルとなるまで、水素ガスの供給を継続する。 The reaction vessel 1 is sealed by occupying the lid portion 22 of the reaction vessel 1. Hydrogen gas is started to be supplied into the reaction vessel 1 from the hydrogen gas supply means connected to the reaction vessel 1 through the hydrogen gas supply port 21. When the pressure in the reaction vessel 1 reaches a predetermined pressure, the inside of the reaction vessel 1 is heated until the reaction chamber 23 and the cartridge 3 reach a predetermined temperature. While controlling the heating conditions so as to maintain a predetermined temperature, the supply of hydrogen gas is continued until the amount of hydrogen gas becomes 4 mol with respect to 1 mol of sodium metaborate.

上記のように水素化を行うことにより、水素化ホウ素ナトリウムが生成する。投入したメタホウ酸ナトリウムの反応量は、反応容器に供給した全水素ガス流量により概算することができる。 By performing hydrogenation as described above, sodium borohydride is produced. The reaction amount of the charged sodium metaborate can be estimated from the total hydrogen gas flow rate supplied to the reaction vessel.

反応が終了すれば、反応容器からカートリッジを取り出すことが可能となり、一連の工程が終了する。反応炉からカートリッジを取り出す方法として、自動的にカートリッジを取り出す機構を搭載しても良い。その後、新たなカートリッジが搭載され、連続的に固定化方法を実施することができる。 When the reaction is completed, the cartridge can be taken out from the reaction vessel, and a series of steps is completed. As a method of taking out the cartridge from the reactor, a mechanism for automatically taking out the cartridge may be installed. After that, a new cartridge is mounted and the immobilization method can be continuously implemented.

(その他工程)
生成する水素化ホウ素ナトリウムは反応活性が高いことから、例えば、水素化反応後に反応容器1内を真空生成装置11により真空にする工程を備えてもよい。また、水素化ホウ素ナトリウムをカートリッジなどの容器に充填する工程を備えてもよい。
(Other processes)
Since the sodium borohydride produced has high reaction activity, for example, a step of evacuating the inside of the reaction vessel 1 by the vacuum generator 11 after the hydrogenation reaction may be provided. Further, a step of filling a container such as a cartridge with sodium borohydride may be provided.

以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
原料として、直径20cmの円筒形のカートリッジ3本に、それぞれメタホウ酸ナトリウムを充填した。反応容器の上蓋を開け、全てのカートリッジを反応容器内の所定位置(カートリッジ保持部)に搭載した。次に、水素ガス供給手段2から反応容器1内に水素ガスを供給した。該水素ガスは別途の金属マグネシウムと高圧水蒸気との反応によりタンク5に貯留されたものを用いた。
(Example 1)
As a raw material, three cylindrical cartridges having a diameter of 20 cm were filled with sodium metaborate. The top lid of the reaction vessel was opened, and all the cartridges were mounted at predetermined positions (cartridge holders) in the reaction vessel. Next, hydrogen gas was supplied into the reaction vessel 1 from the hydrogen gas supply means 2. As the hydrogen gas, one stored in the tank 5 by the reaction of another metallic magnesium and high-pressure steam was used.

カートリッジに充填したホウ酸ナトリウムと、水素ガスの温度が200℃になるようにカートリッジと反応容器とを加熱し、その後、反応系を200℃に維持した。水素ガス供給手段2から反応容器1内に、カートリッジ3に充填したメタホウ酸ナトリウム1モルに対して4モル以上の水素ガスが供給されたところで水素ガスの供給を停止し、反応を終了させた。反応によりメタホウ酸ナトリウムが水素化され、水素化ホウ素ナトリウムが得られ、水素が固定化された。 The cartridge and the reaction vessel were heated so that the temperature of the sodium borate filled in the cartridge and the hydrogen gas became 200 ° C., and then the reaction system was maintained at 200 ° C. When 4 mol or more of hydrogen gas was supplied from the hydrogen gas supply means 2 into the reaction vessel 1 with respect to 1 mol of sodium metaborate filled in the cartridge 3, the supply of hydrogen gas was stopped to end the reaction. By the reaction, sodium metaborate was hydrogenated to obtain sodium borohydride, and hydrogen was immobilized.

本発明の水素固定方法及び水素固定装置によれば、原料であるメタホウ酸ナトリウムのみが反応容器内で水素ガスと反応し、水素化ホウ素ナトリウムを生成することができるので、従来のような分離工程を必要としない、効率化された水素化ホウ素ナトリウムの製造に有用である。 According to the hydrogen fixing method and the hydrogen fixing device of the present invention, only sodium metaborate, which is a raw material, can react with hydrogen gas in the reaction vessel to produce sodium borohydride. It is useful for the production of efficient sodium borohydride, which does not require.

100 水素固定化装置
1 反応容器
2 水素ガス供給手段
3 カートリッジ
4 反応制御手段
100 Hydrogen immobilization device 1 Reaction vessel 2 Hydrogen gas supply means 3 Cartridge 4 Reaction control means

Claims (6)

メタホウ酸ナトリウムが投入された反応容器内で、メタホウ酸ナトリウムと水素ガスを接触させて水素化ホウ素ナトリウムを生成することで水素を固定化する水素固定化方法。 A hydrogen immobilization method in which hydrogen is immobilized by contacting sodium metaborate with hydrogen gas to generate sodium borohydride in a reaction vessel containing sodium metaborate. 反応容器内に触媒を含まない、請求項1に記載の水素固定化方法。 The hydrogen immobilization method according to claim 1, wherein the reaction vessel does not contain a catalyst. 反応容器内の温度が100〜500℃である、請求項1または2に記載の水素固定化方法。 The hydrogen immobilization method according to claim 1 or 2, wherein the temperature in the reaction vessel is 100 to 500 ° C. 水素ガスは、水素吸蔵性能を有する金属と水蒸気との反応により生成した水素ガスである、請求項1〜3のいずれかに記載の水素固定化方法。 The hydrogen immobilization method according to any one of claims 1 to 3, wherein the hydrogen gas is a hydrogen gas generated by the reaction of a metal having a hydrogen storage performance and water vapor. メタホウ酸ナトリウムを投入する反応容器と、
該反応容器に水素ガスを供給する水素ガス供給手段と、
反応容器内において、供給した水素ガスとメタホウ酸ナトリウムとを反応させる反応制御手段とを備えた、水素固定化装置。
A reaction vessel to put sodium metaborate and
A hydrogen gas supply means for supplying hydrogen gas to the reaction vessel,
A hydrogen immobilization device provided with a reaction control means for reacting the supplied hydrogen gas with sodium metaborate in the reaction vessel.
水素ガス供給手段が、水素吸蔵性能を有する金属と水蒸気との反応により生成した水素ガスを加圧条件下に供給する手段である、請求項5に記載の水素固定化装置。 The hydrogen immobilization apparatus according to claim 5, wherein the hydrogen gas supply means is a means for supplying hydrogen gas generated by a reaction between a metal having a hydrogen storage performance and water vapor under pressurized conditions.
JP2019071942A 2019-04-04 2019-04-04 Sodium borohydride manufacturing method and sodium borohydride manufacturing device Active JP7412893B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019071942A JP7412893B2 (en) 2019-04-04 2019-04-04 Sodium borohydride manufacturing method and sodium borohydride manufacturing device
JP2023222041A JP2024023988A (en) 2019-04-04 2023-12-27 Sodium borohydride manufacturing method and sodium borohydride manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071942A JP7412893B2 (en) 2019-04-04 2019-04-04 Sodium borohydride manufacturing method and sodium borohydride manufacturing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023222041A Division JP2024023988A (en) 2019-04-04 2023-12-27 Sodium borohydride manufacturing method and sodium borohydride manufacturing device

Publications (3)

Publication Number Publication Date
JP2020169106A true JP2020169106A (en) 2020-10-15
JP2020169106A5 JP2020169106A5 (en) 2022-03-23
JP7412893B2 JP7412893B2 (en) 2024-01-15

Family

ID=72745328

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019071942A Active JP7412893B2 (en) 2019-04-04 2019-04-04 Sodium borohydride manufacturing method and sodium borohydride manufacturing device
JP2023222041A Pending JP2024023988A (en) 2019-04-04 2023-12-27 Sodium borohydride manufacturing method and sodium borohydride manufacturing device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023222041A Pending JP2024023988A (en) 2019-04-04 2023-12-27 Sodium borohydride manufacturing method and sodium borohydride manufacturing device

Country Status (1)

Country Link
JP (2) JP7412893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238829A1 (en) * 2022-06-06 2023-12-14 株式会社オン Borohydride compound production device and method for producing borohydride compound

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109003A (en) * 1994-10-11 1996-04-30 Japan Steel Works Ltd:The Generation of high purity hydrogen and cartridge case
JP2004224593A (en) * 2003-01-20 2004-08-12 Materials & Energy Research Institute Tokyo Ltd Manufacturing method for tetrahydroborate
JP2004224684A (en) * 2002-11-27 2004-08-12 Materials & Energy Research Institute Tokyo Ltd Manufacturing method of tetrahydroborate
JP2012206932A (en) * 2011-03-16 2012-10-25 Hydro Fuel Development Inc Method and apparatus for generating hydrogen gas
JP2014181174A (en) * 2013-03-19 2014-09-29 Hydric Power Systems:Kk Method of producing metal boron hydride
CN105502291A (en) * 2015-12-30 2016-04-20 先进储能材料国家工程研究中心有限责任公司 Recovery method of sodium borohydride solution
JP2017190275A (en) * 2016-04-15 2017-10-19 株式会社Ksf Byproduct hydrogen generation device
JP2018536616A (en) * 2015-11-06 2018-12-13 エイチツーフューエル・カスケード・ビー.ブイ.H2FUEL Cascade B.V. Method for producing metal borohydride and molecular hydrogen
JP2019043791A (en) * 2017-08-31 2019-03-22 浩章 皆川 Hydrogen generating agent comprising calcium oxide powder and aluminum powder
JP2019199368A (en) * 2018-05-14 2019-11-21 新東工業株式会社 Method for producing tetrahydroborate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843845B2 (en) 2000-07-03 2011-12-21 トヨタ自動車株式会社 Fuel cell system and control method thereof
US20030008183A1 (en) 2001-06-15 2003-01-09 Ztek Corporation Zero/low emission and co-production energy supply station
KR100488726B1 (en) 2002-12-13 2005-05-11 현대자동차주식회사 Hydrogen supply system for a fuel-cell system
JP2010013290A (en) 2008-03-14 2010-01-21 Hydric Power Systems:Kk New reducing method of boron oxide
CN106477523B (en) 2016-09-20 2019-05-14 华南理工大学 A kind of method that Room Temperature Solid State ball milling directly synthesizes sodium borohydride

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109003A (en) * 1994-10-11 1996-04-30 Japan Steel Works Ltd:The Generation of high purity hydrogen and cartridge case
JP2004224684A (en) * 2002-11-27 2004-08-12 Materials & Energy Research Institute Tokyo Ltd Manufacturing method of tetrahydroborate
JP2004224593A (en) * 2003-01-20 2004-08-12 Materials & Energy Research Institute Tokyo Ltd Manufacturing method for tetrahydroborate
JP2012206932A (en) * 2011-03-16 2012-10-25 Hydro Fuel Development Inc Method and apparatus for generating hydrogen gas
JP2014181174A (en) * 2013-03-19 2014-09-29 Hydric Power Systems:Kk Method of producing metal boron hydride
JP2018536616A (en) * 2015-11-06 2018-12-13 エイチツーフューエル・カスケード・ビー.ブイ.H2FUEL Cascade B.V. Method for producing metal borohydride and molecular hydrogen
CN105502291A (en) * 2015-12-30 2016-04-20 先进储能材料国家工程研究中心有限责任公司 Recovery method of sodium borohydride solution
JP2017190275A (en) * 2016-04-15 2017-10-19 株式会社Ksf Byproduct hydrogen generation device
JP2019043791A (en) * 2017-08-31 2019-03-22 浩章 皆川 Hydrogen generating agent comprising calcium oxide powder and aluminum powder
JP2019199368A (en) * 2018-05-14 2019-11-21 新東工業株式会社 Method for producing tetrahydroborate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238829A1 (en) * 2022-06-06 2023-12-14 株式会社オン Borohydride compound production device and method for producing borohydride compound

Also Published As

Publication number Publication date
JP7412893B2 (en) 2024-01-15
JP2024023988A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US8951312B2 (en) Compact, safe and portable hydrogen generation apparatus for hydrogen on-demand applications
JP2024023988A (en) Sodium borohydride manufacturing method and sodium borohydride manufacturing device
JP5900992B2 (en) Hydrogen gas generation method and apparatus
EP2192083A1 (en) Energy supply system
CN115768718A (en) Process for the thermal decomposition of ammonia and reactor for carrying out said process
CN212425434U (en) Integrated kilowatt-level fuel cell sodium borohydride hydrolysis hydrogen production device
CN212315530U (en) Hydrogen production device by hydrolysis of sodium borohydride of kilowatt-level fuel cell
JP2007320792A (en) Hydrogen gas generating method and hydrogen gas generator
CN215756432U (en) Hydrogen production system
WO1998030493A2 (en) Hydrogen gas generation
CN114380276B (en) Hydrogen generator
US20050069486A1 (en) Method and apparatus for generating hydrogen gas
US7998454B2 (en) Method of producing magnesium-based hydrides and apparatus for producing magnesium-based hydrides
CN107910572A (en) A kind of hydrogen storage material reaction chamber and its fuel cell power generating system
JP6130655B2 (en) Periodic table Group 1 and 2 hydride production method, production apparatus and method of use thereof
JP2017190275A (en) Byproduct hydrogen generation device
CN108698817B (en) Method for producing metal borohydrides and molecular hydrogen
KR101648107B1 (en) A hybrid hydrogen generating system using the reative metal fuel
CN113264502A (en) Hydrogen production device by hydrolysis of sodium borohydride of kilowatt-level fuel cell
CN109455723B (en) Production equipment and method of high-conductivity silicon monoxide
JP2014177387A (en) Apparatus for recovering hydrogen compound decomposition hydrogen and method thereof
JP7418970B2 (en) By-product hydrogen generator
JP7316713B1 (en) Hydrogen gas production method and apparatus
JP7301799B2 (en) Hydrogen production method and hydrogen production apparatus
US11826750B2 (en) Dehydrogenation reaction apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7412893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150