JP2020167375A - Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material - Google Patents

Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material Download PDF

Info

Publication number
JP2020167375A
JP2020167375A JP2019231360A JP2019231360A JP2020167375A JP 2020167375 A JP2020167375 A JP 2020167375A JP 2019231360 A JP2019231360 A JP 2019231360A JP 2019231360 A JP2019231360 A JP 2019231360A JP 2020167375 A JP2020167375 A JP 2020167375A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
shielding material
woven fabric
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019231360A
Other languages
Japanese (ja)
Inventor
秀彰 三枝
Hideaki Saegusa
秀彰 三枝
近藤 泰慶
Yasuyoshi Kondo
泰慶 近藤
信子 高濱
Nobuko Takahama
信子 高濱
シンユエ ジョー
Shinyue Joo
シンユエ ジョー
圭介 大山
Keisuke Oyama
圭介 大山
敬生 増田
Takao Masuda
敬生 増田
友洋 佐藤
Tomohiro Sato
友洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69887010&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020167375(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Publication of JP2020167375A publication Critical patent/JP2020167375A/en
Priority to JP2021198967A priority Critical patent/JP7016989B1/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/53Polyethers; Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a non-woven fabric base material for an electromagnetic wave shielding material and an electromagnetic wave shielding material, capable of exhibiting excellent electromagnetic wave shielding properties.SOLUTION: A nonwoven fabric for electromagnetic wave shielding material is a wet nonwoven fabric containing stretched polyester staple fibers with a fiber diameter of less than 3 μm and unstretched polyester staple fibers with a fiber diameter of 3 μm or more and 5 μm or less, with a mesh density of 7 g/m2 or less and a density of 0.5 to 0.8 g/cm3. The nonwoven fabric for electromagnetic wave shielding material also contains stretched polyester short fibers and unstretched polyester short fibers having a melting point of 220°C or more and 250°C or less and has a peel strength (longitudinal) of 2.0 N/m or more.SELECTED DRAWING: Figure 1

Description

本発明は、ウェブの搬送性に優れ、且つ優れた電磁波シールド性を発現できる電磁波シールド材用不織布及び電磁波シールド材に関する。 The present invention relates to a non-woven fabric for an electromagnetic wave shielding material and an electromagnetic wave shielding material capable of exhibiting excellent electromagnetic wave shielding properties while having excellent web transportability.

電子機器は電磁波を発生している。そして、電磁波を電子機器の外部に漏らさないようにするために、また、電磁波により電子機器が誤作動を起こさないようにするために、電磁波シールド材が使用されている。電磁波シールド材としては、板金、金属を含む塗料、金属メッシュ、発泡金属等が挙げられる。また、ポリエステル系短繊維から形成される不織布に金属めっき処理を施してなる電磁波シールド材が開示されている(例えば、特許文献1及び2参照)。 Electronic devices generate electromagnetic waves. Then, an electromagnetic wave shielding material is used in order to prevent the electromagnetic wave from leaking to the outside of the electronic device and to prevent the electronic device from malfunctioning due to the electromagnetic wave. Examples of the electromagnetic wave shielding material include sheet metal, paint containing metal, metal mesh, foamed metal and the like. Further, an electromagnetic wave shielding material obtained by subjecting a non-woven fabric made of polyester-based short fibers to a metal plating treatment is disclosed (see, for example, Patent Documents 1 and 2).

特許文献1には、非導電性繊維の織物、編物又は不織布の繊維の外周及び交叉部分の全周に連続した金属導電層を湿式めっき法により付着させた電磁波シールド材が開示されている。化学繊維として、ポリエステル繊維、ポリプロピレン繊維が、基材自体の引張強伸度特性が優れており、しかも、めっき前処理工程における特性劣化を防止することができるので、好ましいことが記載されている。 Patent Document 1 discloses an electromagnetic wave shielding material in which a continuous metal conductive layer is attached to the outer periphery of a non-woven fabric, knitted fabric, or non-woven fabric fiber and the entire circumference of a crossed portion by a wet plating method. It is described that polyester fibers and polypropylene fibers are preferable as chemical fibers because they have excellent tensile strength and elongation characteristics of the base material itself and can prevent deterioration of the characteristics in the plating pretreatment step.

特許文献2には、湿式不織布に金属皮膜処理を施してなる電磁波シールド材であって、単繊維繊度が1.1dtex以下のポリエステル繊維を含み、かつ厚さが10〜30μmの範囲内であることを特徴とする電磁波シールド材が開示されている。 Patent Document 2 describes an electromagnetic wave shielding material obtained by subjecting a wet non-woven fabric to a metal film treatment, containing polyester fibers having a single fiber fineness of 1.1 dtex or less, and having a thickness in the range of 10 to 30 μm. An electromagnetic wave shielding material characterized by the above is disclosed.

近年の電子機器の小型化、高周波数化及び高性能化に伴い、より薄く、高電磁波シールド性の電磁波シールド材が求められている。具体的には、厚さが15μm以下であること、且つ100MHz〜10GHzの広い周波数範囲に優れた電磁波シールド性を示す電磁波シールド材が求められている。 With the recent miniaturization, high frequency, and high performance of electronic devices, there is a demand for thinner and higher electromagnetic wave shielding materials. Specifically, there is a demand for an electromagnetic wave shielding material having a thickness of 15 μm or less and exhibiting excellent electromagnetic wave shielding properties in a wide frequency range of 100 MHz to 10 GHz.

特許文献1及び2のように、不織布に金属めっき処理等の金属皮膜処理を施す場合、生産性の良いロール トゥ ロール(Roll to Roll)で加工を行うが、搬送時の不織布に皺が生じ、搬送性に優れない問題があった。 When a metal film treatment such as metal plating is applied to a non-woven fabric as in Patent Documents 1 and 2, the non-woven fabric is processed by roll-to-roll with good productivity, but wrinkles occur in the non-woven fabric during transportation. There was a problem that the transportability was not excellent.

また、特許文献2の実施例では、単繊維繊度が0.1dtexのポリエステル延伸繊維と単繊維繊度が0.2dtexである未延伸バインダー繊維を含み、湿式不織布の原紙目付が8g/mであり、電磁波シールド材の目付が19g/mであり、厚さが12μmである電磁波シールド材が開示されている。しかし、薄い電磁波シールド材が求められるにつれ、特許文献2の電磁波シールド材では、電磁波シールド性が十分に確保できない問題があった。また、金属皮膜が剥がれる問題が生じる場合があった。 Further, in the example of Patent Document 2, a polyester drawn fiber having a single fiber fineness of 0.1 dtex and an undrawn binder fiber having a single fiber fineness of 0.2 dtex are included, and the base paper texture of the wet non-woven fabric is 8 g / m 2 . , An electromagnetic wave shielding material having a grain size of 19 g / m 2 and a thickness of 12 μm is disclosed. However, as a thin electromagnetic wave shielding material is required, there is a problem that the electromagnetic wave shielding material of Patent Document 2 cannot sufficiently secure the electromagnetic wave shielding property. In addition, there may be a problem that the metal film is peeled off.

また、不織布に金属めっき処理を施した電磁波シールド材においては、ポリエステル系短繊維と金属めっき処理によって形成される金属皮膜とが密着していることが要求され、そのためにめっき前処理工程として、ポリエステル系短繊維にアルカリ処理を施すことが知られている。 Further, in the electromagnetic wave shielding material in which the non-woven fabric is metal-plated, it is required that the polyester-based short fibers and the metal film formed by the metal plating are in close contact with each other. Therefore, as a pre-plating step, polyester is required. It is known that short fibers are subjected to alkali treatment.

特許文献1には、ポリエステル繊維は、めっき前処理工程における特性劣化を防止することができると記載されている。しかし、通常、不織布のアルカリ処理は湿式処理であり、繊維が水槽内に脱落し、著しく操業性を低下させる場合があった。また、脱落した繊維が不織布に再付着することによって、金属めっき処理で欠陥が発生するという問題が発生する場合もあった。 Patent Document 1 describes that polyester fibers can prevent deterioration of characteristics in the plating pretreatment step. However, the alkaline treatment of the non-woven fabric is usually a wet treatment, and the fibers may fall off in the water tank, which may significantly reduce the operability. In addition, the fallen fibers may reattach to the non-woven fabric, causing a problem that defects occur in the metal plating process.

実開昭48−40800号公報Jitsukaisho 48-40800 特開2014−75485号公報Japanese Unexamined Patent Publication No. 2014-75485

本発明の第1の課題は、搬送性に優れ、且つ優れた電磁波シールド性を発現できる電磁波シールド材用不織布、及び該電磁波シールド材用不織布を使用した電磁波シールド材を提供することにある。 A first object of the present invention is to provide a non-woven fabric for an electromagnetic wave shielding material which is excellent in transportability and can exhibit excellent electromagnetic wave shielding property, and an electromagnetic wave shielding material using the non-woven fabric for the electromagnetic wave shielding material.

本発明の第2の課題は、薄く、且つ優れた電磁波シールド性を発現でき、金属皮膜が剥がれ難い電磁波シールド材用不織布、及び該電磁波シールド材用不織布を使用した電磁波シールド材を提供することにある。 A second object of the present invention is to provide a non-woven fabric for an electromagnetic wave shielding material which is thin and can exhibit excellent electromagnetic wave shielding properties and whose metal film is hard to peel off, and an electromagnetic wave shielding material using the non-woven fabric for the electromagnetic wave shielding material. is there.

本発明の第3の課題は、電磁波シールド材用のめっき前処理工程であるアルカリ処理において、繊維脱落が少なく、高強度な電磁波シールド材用不織布、及び該電磁波シールド材用不織布を使用した電磁波シールド材を提供することにある。 A third object of the present invention is an electromagnetic wave shielding material non-woven fabric having less fiber loss and high strength in the alkali treatment, which is a plating pretreatment step for the electromagnetic wave shielding material, and an electromagnetic wave shielding using the electromagnetic wave shielding material non-woven fabric. It is to provide materials.

本発明者らは、上記課題を解決するために鋭意研究した結果、下記発明を見出した。 As a result of diligent research to solve the above problems, the present inventors have found the following inventions.

<1>湿式不織布である電磁波シールド材用不織布において、湿式不織布が、繊維径3μm以上12μm未満の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種以上の延伸ポリエステル系短繊維と、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することを特徴とする電磁波シールド材用不織布。 <1> In the non-woven fabric for electromagnetic wave shielding material which is a wet non-woven fabric, the wet non-woven fabric is selected from stretched polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm, and two or more kinds of stretched polyester short fibers having different fiber diameters. A non-woven fabric for an electromagnetic wave shielding material, which contains unstretched polyester-based short fibers having a fiber diameter of 3 μm or more and 5 μm or less as an essential component.

<2>湿式不織布である電磁波シールド材用不織布において、繊維径3μm未満の延伸ポリエステル系短繊維及び繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維を必須成分として含有し、目付が7g/m以下であり、密度が0.5〜0.8g/cmであることを特徴とする電磁波シールド材用不織布。 <2> A non-woven fabric for electromagnetic wave shielding material, which is a wet non-woven fabric, contains drawn polyester short fibers having a fiber diameter of less than 3 μm and unstretched polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less as essential components, and has a texture of 7 g / A non-woven fabric for an electromagnetic wave shielding material, which is m 2 or less and has a density of 0.5 to 0.8 g / cm 3 .

<3>湿式不織布である電磁波シールド材用不織布において、延伸ポリエステル系短繊維と融点が220℃以上250℃以下の未延伸ポリエステル系短繊維を含有し、該不織布の剥離強度(縦方向)が2.0N/m以上であることを特徴とする電磁波シールド材用不織布。 <3> The non-woven fabric for electromagnetic wave shielding material, which is a wet non-woven fabric, contains stretched polyester-based short fibers and unstretched polyester-based short fibers having a melting point of 220 ° C. or higher and 250 ° C. or lower, and the peeling strength (longitudinal direction) of the non-woven fabric is 2. A non-woven fabric for electromagnetic wave shielding material, which is characterized by having a concentration of 0.0 N / m or more.

<4>上記<1>〜<3>のいずれかに記載の電磁波シールド材用不織布に、金属皮膜処理が施されていることを特徴とする電磁波シールド材。 <4> The electromagnetic wave shielding material according to any one of <1> to <3> above, wherein the non-woven fabric for the electromagnetic wave shielding material is treated with a metal film.

<5>金属皮膜処理が、無電解金属めっき処理、電気めっき処理、金属蒸着処理及びスパッタリング処理からなる群から選択される1種以上の処理であることを特徴とする上記<4>記載の電磁波シールド材。 <5> The electromagnetic wave according to <4> above, wherein the metal film treatment is one or more treatments selected from the group consisting of electroless metal plating treatment, electroplating treatment, metal vapor deposition treatment, and sputtering treatment. Shield material.

<6>金属皮膜処理が、スパッタリングによってニッケル被覆を形成させる処理、電気めっきによって銅被覆を形成させる処理及び電気めっきによってニッケル被覆を形成させる処理をこの順に含むことを特徴とする上記<4>記載の電磁波シールド材。 <6> The above-mentioned <4>, wherein the metal film treatment includes a treatment of forming a nickel coating by sputtering, a treatment of forming a copper coating by electroplating, and a treatment of forming a nickel coating by electroplating in this order. Electroplating shield material.

<7>電磁波シールド材の厚さが15μm以下であり、電磁波シールド材の表面抵抗値が0.03Ω/□以下である上記<4>〜<6>のいずれかに記載の電磁波シールド材。 <7> The electromagnetic wave shielding material according to any one of <4> to <6> above, wherein the thickness of the electromagnetic wave shielding material is 15 μm or less, and the surface resistance value of the electromagnetic wave shielding material is 0.03Ω / □ or less.

本発明の第1の効果は、搬送性に優れ、且つ優れた電磁波シールド性を発現できる電磁波シールド材用不織布、及び該電磁波シールド材用不織布を使用した電磁波シールド材を提供できることである。 The first effect of the present invention is to provide a non-woven fabric for an electromagnetic wave shielding material which is excellent in transportability and can exhibit an excellent electromagnetic wave shielding property, and an electromagnetic wave shielding material using the non-woven fabric for the electromagnetic wave shielding material.

本発明の第2の効果は、薄く、且つ優れた電磁波シールド性を発現でき、金属皮膜が剥がれ難い電磁波シールド材用不織布、及び該電磁波シールド材用不織布を使用した電磁波シールド材を提供できることである。 The second effect of the present invention is to provide a non-woven fabric for an electromagnetic wave shielding material which is thin and can exhibit excellent electromagnetic wave shielding properties and whose metal film is hard to peel off, and an electromagnetic wave shielding material using the non-woven fabric for the electromagnetic wave shielding material. ..

本発明の第3の効果は、電磁波シールド材用のめっき前処理工程であるアルカリ処理において、繊維脱落が少なく、高強度な電磁波シールド材用不織布、及び該電磁波シールド材用不織布を使用した電磁波シールド材を提供できることである。 The third effect of the present invention is that in the alkali treatment, which is a plating pretreatment step for the electromagnetic wave shielding material, the non-woven fabric for the electromagnetic wave shielding material having less fiber loss and high strength, and the electromagnetic wave shielding using the non-woven fabric for the electromagnetic wave shielding material. It is possible to provide materials.

剥離強度を測定する際の電磁波シールド材用不織布の状態を示した概略図。The schematic diagram which showed the state of the non-woven fabric for an electromagnetic wave shielding material at the time of measuring the peel strength.

以下、本発明の電磁波シールド材用不織布及び電磁波シールド材について詳説する。 Hereinafter, the non-woven fabric for the electromagnetic wave shielding material and the electromagnetic wave shielding material of the present invention will be described in detail.

−電磁波シールド材用不織布<1>−
本発明の電磁波シールド材用不織布<1>は、繊維径3μm以上12μm未満の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種以上の延伸ポリエステル系短繊維と、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する湿式不織布であることを特徴とする。
-Non-woven fabric for electromagnetic wave shielding material <1>-
The non-woven fabric <1> for electromagnetic shielding material of the present invention is selected from drawn polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm, and two or more kinds of drawn polyester short fibers having different fiber diameters and a fiber diameter of 3 μm or more. It is a wet non-woven fabric containing unstretched polyester-based short fibers of 5 μm or less as an essential component.

一般的に、ロール トゥ ロール加工における搬送時の不織布には、MD(Machine Direction)方向にテンションがかかるため、不織布が伸びてしまい、それが原因で皺が生じてしまう。本発明の電磁波シールド材用不織布<1>は、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種以上の延伸ポリエステル系短繊維と、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有するため、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維から選択される繊維径が同一の1種の延伸ポリエステル系短繊維と、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する不織布と比べて、伸びにくく、そのため搬送時に皺になりにくい。また、延伸ポリエステル系短繊維の繊維径が12μm以上と大きい不織布を使用した場合、薄い電磁波シールド材が得られ難い。本発明の電磁波シールド材用不織布<1>は、繊維径が12μm未満の延伸ポリエステル系短繊維と繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを含むことによって、薄く、且つ搬送性に優れるという効果を達成できる。 In general, the non-woven fabric during transport in roll-to-roll processing is tensioned in the MD (Machine Direction) direction, so that the non-woven fabric is stretched, which causes wrinkles. The non-woven fabric for electromagnetic wave shielding material <1> of the present invention comprises two or more kinds of stretched polyester short fibers having different fiber diameters selected from stretched polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm, and a fiber diameter of 3 μm. Since it contains unstretched polyester-based short fibers of 5 μm or less as an essential component, it is selected from drawn polyester-based short fibers having a fiber diameter of 3 μm or more and less than 12 μm with one type of drawn polyester-based short fibers having the same fiber diameter. Compared with a non-woven fabric containing unstretched polyester-based short fibers having a fiber diameter of 3 μm or more and 5 μm or less as an essential component, it is less likely to stretch and therefore less likely to wrinkle during transportation. Further, when a non-woven fabric having a large fiber diameter of 12 μm or more of the drawn polyester-based short fibers is used, it is difficult to obtain a thin electromagnetic wave shielding material. The non-woven fabric for electromagnetic wave shielding material <1> of the present invention is thin and has a transportability by containing drawn polyester short fibers having a fiber diameter of less than 12 μm and undrawn polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less. The effect of being excellent can be achieved.

一般的に電磁波シールド性は、電磁波の吸収反射損失、反射損失、多重反射損失により達成される。本発明の電磁波シールド材用不織布<1>において、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種以上の延伸ポリエステル系短繊維を用いることにより、電磁波シールド材内に浸入した電磁波が電磁波シールド材内で反射を繰り返し易くなり、多重反射損失の向上による優れた電磁波シールド性が得られる。 Generally, electromagnetic wave shielding property is achieved by absorption / reflection loss, reflection loss, and multiple reflection loss of electromagnetic waves. In the non-woven fabric for electromagnetic wave shielding material <1> of the present invention, electromagnetic waves are obtained by using two or more kinds of stretched polyester short fibers having different fiber diameters selected from stretched polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm. The electromagnetic waves that have entered the shield material are easily reflected repeatedly in the electromagnetic wave shield material, and excellent electromagnetic wave shielding properties can be obtained by improving the multiple reflection loss.

本発明の電磁波シールド材用不織布<1>において、延伸ポリエステル系短繊維と未延伸ポリエステル系短繊維の質量含有比率は、10:90〜90:10であることが好ましく、20:80〜80:20であることがより好ましく、30:70〜70:30であることがさらに好ましい。未延伸ポリエステル系短繊維の含有率が湿式不織布を構成する繊維全体の10質量%未満であると、電磁波シールド材用不織布として必要な強度が発現しなくなることがある。一方、未延伸ポリエステル系短繊維の含有率が90質量%を超えると、均一性を損なう場合がある。 In the non-woven fabric for electromagnetic wave shielding material <1> of the present invention, the mass content ratio of the stretched polyester-based short fibers and the unstretched polyester-based short fibers is preferably 10:90 to 90:10, preferably 20:80 to 80: 10. It is more preferably 20 and even more preferably 30:70 to 70:30. If the content of the unstretched polyester-based short fibers is less than 10% by mass of the total fibers constituting the wet non-woven fabric, the strength required for the non-woven fabric for the electromagnetic wave shielding material may not be exhibited. On the other hand, if the content of the unstretched polyester-based short fibers exceeds 90% by mass, the uniformity may be impaired.

本発明の電磁波シールド材用不織布<1>において、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維以外の延伸ポリエステル系短繊維を使用しても良い。また、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維以外の未延伸ポリエステル系短繊維を使用しても良い。すなわち、繊維径が3μm未満の延伸ポリエステル系短繊維、繊維径が12μm以上の延伸ポリエステル系短繊維、繊維径が3μm未満の未延伸ポリエステル系短繊維、繊維径が5μm超の未延伸ポリエステル系短繊維を使用しても良い。これらは、単独で使用しても良いし、2種類以上の繊維径の繊維を併用しても良い。 In the non-woven fabric <1> for electromagnetic wave shielding material of the present invention, stretched polyester-based short fibers other than stretched polyester-based short fibers having a fiber diameter of 3 μm or more and less than 12 μm may be used. Further, unstretched polyester-based short fibers other than unstretched polyester-based short fibers having a fiber diameter of 3 μm or more and 5 μm or less may be used. That is, drawn polyester-based short fibers having a fiber diameter of less than 3 μm, drawn polyester-based short fibers having a fiber diameter of 12 μm or more, unstretched polyester-based short fibers having a fiber diameter of less than 3 μm, and undrawn polyester-based short fibers having a fiber diameter of more than 5 μm. Fiber may be used. These may be used alone or in combination with fibers having two or more kinds of fiber diameters.

本発明の電磁波シールド材用不織布<1>において、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維については、その質量含有率は、含有する全延伸ポリエステル系短繊維中、1〜100質量%であることが好ましく、3〜100質量%であることがより好ましい。繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維の含有率が全延伸ポリエステル系短繊維中1質量%未満である場合、薄く、且つ搬送性の優れた電磁波シールド材が得られない場合がある。 In the non-woven fabric for electromagnetic wave shielding material <1> of the present invention, the mass content of the drawn polyester-based short fibers having a fiber diameter of 3 μm or more and less than 12 μm is 1 to 100% by mass in the total stretched polyester-based short fibers contained. It is preferably 3 to 100% by mass, and more preferably 3 to 100% by mass. When the content of the drawn polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm is less than 1% by mass in the fully drawn polyester short fibers, a thin electromagnetic wave shielding material having excellent transportability may not be obtained. ..

また、本発明の電磁波シールド材用不織布<1>において、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維については、その質量含有率は、含有する全未延伸ポリエステル系短繊維中、1〜100質量%が好ましく、2〜100質量%がより好ましい。繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる場合がある。また、湿式不織布の強度が発現し難くなる場合がある。 Further, in the non-woven fabric <1> for electromagnetic wave shielding material of the present invention, the mass content of unstretched polyester-based short fibers having a fiber diameter of 3 μm or more and 5 μm or less is 1 among all unstretched polyester-based short fibers contained. ~ 100% by mass is preferable, and 2 to 100% by mass is more preferable. When the content of undrawn polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less is less than 1% by mass, the specific surface area may become small depending on the fiber diameter used in combination, and it may be difficult to exhibit excellent electromagnetic wave shielding properties. is there. In addition, it may be difficult to develop the strength of the wet non-woven fabric.

本発明の電磁波シールド材用不織布<1>の厚さは、電子機器で使用する目的から、7〜30μmであることが好ましく、15μm以下であることがより好ましい。目付(坪量)は5〜30g/mであることが好ましく、15g/m以下であることがより好ましい。目付が5g/m未満であると、均一性を得ることが難しくなり、電磁波シールド性の効果にバラつきが発生しやすくなる。 The thickness of the non-woven fabric <1> for an electromagnetic wave shielding material of the present invention is preferably 7 to 30 μm, more preferably 15 μm or less, for the purpose of being used in an electronic device. Basis weight (basis weight) is preferably from 5 to 30 g / m 2, and more preferably 15 g / m 2 or less. If the basis weight is less than 5 g / m 2 , it becomes difficult to obtain uniformity, and the effect of the electromagnetic wave shielding property tends to vary.

−電磁波シールド材用不織布<2>−
本発明の電磁波シールド材用不織布<2>は、繊維径3μm未満の延伸ポリエステル系短繊維及び繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維を必須成分として含有し、目付が7g/m以下であり、密度が0.5〜0.8g/cmである湿式不織布であることを特徴とする。
-Non-woven fabric for electromagnetic wave shielding material <2>-
The non-woven fabric <2> for electromagnetic shielding material of the present invention contains drawn polyester short fibers having a fiber diameter of less than 3 μm and unstretched polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less as essential components, and has a texture of 7 g / m. It is a wet non-woven fabric having a density of 2 or less and a density of 0.5 to 0.8 g / cm 3 .

一般的に、湿式不織布への金属皮膜処理では、湿式不織布を形成する繊維の比表面積(単位体積当たり表面積)が小さいと、単位体積当たりの金属の付着量が小さくなり、優れた電磁波シールド性を発現できない場合がある。本発明の電磁波シールド材用不織布<2>は、繊維径が3μm未満の延伸ポリエステル系短繊維と繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する湿式不織布であるため、比表面積を増やすことができ、優れた電磁波シールド性が発現できる。湿式不織布が、繊維径が3μm以上の延伸ポリエステル系短繊維と繊維径が5μm超の未延伸ポリエステル系短繊維のみからなる場合では、優れた電磁波シールド性が発現できない。なお、繊維径が3μm未満の未延伸ポリエステル系短繊維は入手困難である。また、繊維径が3μm未満の延伸ポリエステル系短繊維の繊維径は、0.1μm以上であることが好ましい。繊維径が0.1μm未満である場合、強度が発現しない場合がある。 Generally, in the treatment of a metal film on a wet non-woven fabric, if the specific surface area (surface area per unit volume) of the fibers forming the wet non-woven fabric is small, the amount of metal adhered per unit volume is small, and excellent electromagnetic shielding properties are obtained. It may not be expressed. The non-woven fabric for electromagnetic wave shielding material <2> of the present invention is a wet non-woven fabric containing stretched polyester short fibers having a fiber diameter of less than 3 μm and unstretched polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less as essential components. Therefore, the specific surface area can be increased, and excellent electromagnetic shielding properties can be exhibited. When the wet non-woven fabric is composed of only drawn polyester-based short fibers having a fiber diameter of 3 μm or more and unstretched polyester-based short fibers having a fiber diameter of more than 5 μm, excellent electromagnetic wave shielding properties cannot be exhibited. It is difficult to obtain undrawn polyester short fibers having a fiber diameter of less than 3 μm. Further, the fiber diameter of the drawn polyester-based short fiber having a fiber diameter of less than 3 μm is preferably 0.1 μm or more. If the fiber diameter is less than 0.1 μm, the strength may not be exhibited.

本発明の電磁波シールド材用不織布<2>において、延伸ポリエステル系短繊維と未延伸ポリエステル系短繊維の質量含有比率は、20:80〜80:20であることが好ましく、30:70〜70:30であることがより好ましく、40:60〜60:40であることがさらに好ましい。未延伸ポリエステル系短繊維の含有率が湿式不織布を構成する繊維全体の20質量%未満であると、電磁波シールド材用不織布として必要な強度が発現しなくなることがある。一方、未延伸ポリエステル系短繊維の含有率が80質量%を超えると、均一性を損なう場合がある。 In the non-woven fabric for electromagnetic wave shielding material <2> of the present invention, the mass content ratio of the stretched polyester-based short fibers and the unstretched polyester-based short fibers is preferably 20:80 to 80:20, preferably 30:70 to 70:20. It is more preferably 30 and even more preferably 40:60 to 60:40. If the content of the unstretched polyester-based short fibers is less than 20% by mass of the total fibers constituting the wet non-woven fabric, the strength required for the non-woven fabric for the electromagnetic wave shielding material may not be exhibited. On the other hand, if the content of the unstretched polyester-based short fibers exceeds 80% by mass, the uniformity may be impaired.

本発明の電磁波シールド材用不織布<2>において、繊維径が3μm未満の延伸ポリエステル系短繊維と繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維以外の繊維を使用しても良い。すなわち、繊維径が3μm以上の延伸ポリエステル系短繊維、繊維径が3μm未満の未延伸ポリエステル系短繊維、繊維径5μm超の未延伸ポリエステル系短繊維を使用しても良い。これらは、単独で使用しても良いし、2種類以上の繊維径の繊維を併用してもよい。 In the non-woven fabric for electromagnetic wave shielding material <2> of the present invention, fibers other than drawn polyester short fibers having a fiber diameter of less than 3 μm and undrawn polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less may be used. That is, drawn polyester-based short fibers having a fiber diameter of 3 μm or more, undrawn polyester-based short fibers having a fiber diameter of less than 3 μm, and undrawn polyester-based short fibers having a fiber diameter of more than 5 μm may be used. These may be used alone or in combination with fibers having two or more kinds of fiber diameters.

本発明の電磁波シールド材用不織布<2>において、繊維径が3μm未満の延伸ポリエステル系短繊維については、その含有率は、全延伸ポリエステル系短繊維中、1〜100質量%であることが好ましく、3〜100質量%であることがより好ましい。繊維径が3μm未満の延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる場合がある。 In the non-woven fabric for electromagnetic wave shielding material <2> of the present invention, the content of the drawn polyester-based short fibers having a fiber diameter of less than 3 μm is preferably 1 to 100% by mass in the total drawn polyester-based short fibers. More preferably, it is 3 to 100% by mass. When the content of the drawn polyester-based short fibers having a fiber diameter of less than 3 μm is less than 1% by mass, the specific surface area becomes small depending on the fiber diameter used in combination, and it may be difficult to exhibit excellent electromagnetic wave shielding properties.

また、本発明の電磁波シールド材用不織布<2>において、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維については、その含有率は、全未延伸ポリエステル系短繊維中、1〜100質量%が好ましく、2〜100質量%がより好ましい。繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる、又は、優れた湿式不織布の強度が発現し難くなる場合がある。 Further, in the non-woven fabric <2> for electromagnetic wave shielding material of the present invention, the content of unstretched polyester-based short fibers having a fiber diameter of 3 μm or more and 5 μm or less is 1 to 100 mass among all unstretched polyester-based short fibers. % Is preferable, and 2 to 100% by mass is more preferable. When the content of undrawn polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less is less than 1% by mass, the specific surface area becomes small depending on the fiber diameter used in combination, and it becomes difficult to develop excellent electromagnetic wave shielding properties, or , It may be difficult to develop the strength of an excellent wet non-woven fabric.

本発明の電磁波シールド材用不織布<2>において、湿式不織布の目付は、7g/m以下であり、5g/m以下であることがより好ましく、4g/m以下であることがさらに好ましい。目付7g/mを超えると、金属皮膜処理後、さらに厚くなり、電磁波シールド材の厚さが15μm超えになる可能性があり、電子機器、通信機器、電化製品などに使えない場合がある。また、湿式不織布の目付は、3g/m以上であることが好ましい。なお、目付は、JIS P8124:2011に記載されている方法で測定した。 In the non-woven fabric for electromagnetic wave shielding material <2> of the present invention, the basis weight of the wet non-woven fabric is 7 g / m 2 or less, more preferably 5 g / m 2 or less, and further preferably 4 g / m 2 or less. .. If the basis weight exceeds 7 g / m 2 , the thickness of the electromagnetic wave shielding material may exceed 15 μm after the metal film treatment, and the electromagnetic wave shielding material may not be used for electronic devices, communication devices, electric appliances, and the like. The basis weight of the wet non-woven fabric is preferably 3 g / m 2 or more. The basis weight was measured by the method described in JIS P8124: 2011.

本発明の電磁波シールド材用不織布<2>において、湿式不織布の密度は0.5〜0.8g/cmであり、0.55〜0.65g/cmであることがより好ましい。密度が0.8g/cm以下であることによって、比表面積が上がるため、金属皮膜処理による金属皮膜が多くなり、電磁波シールド性が向上する。また、金属皮膜が剥がれ難くなる。また、密度が0.5g/cm以上であると、湿式不織布の強度が高くなり、金属皮膜処理で不具合が発生し難くなり、また、金属皮膜が剥がれ難くなる。なお、密度は、JIS P8118:2014に記載されている方法で測定した。 In the non-woven fabric for electromagnetic wave shielding material <2> of the present invention, the density of the wet non-woven fabric is 0.5 to 0.8 g / cm 3 , more preferably 0.5 to 0.65 g / cm 3 . When the density is 0.8 g / cm 3 or less, the specific surface area is increased, so that the metal film by the metal film treatment is increased and the electromagnetic wave shielding property is improved. In addition, the metal film is less likely to come off. Further, when the density is 0.5 g / cm 3 or more, the strength of the wet non-woven fabric becomes high, defects are less likely to occur in the metal film treatment, and the metal film is less likely to be peeled off. The density was measured by the method described in JIS P8118: 2014.

−電磁波シールド材用不織布<3>−
本発明の電磁波シールド材用不織布<3>は、延伸ポリエステル系短繊維と融点が220℃以上250℃以下の未延伸ポリエステル系短繊維とを含有する湿式不織布である。そして、本発明の電磁波シールド材用不織布<3>の剥離強度(縦方向)は2.0N/m以上である。
-Non-woven fabric for electromagnetic wave shielding material <3>-
The non-woven fabric for electromagnetic wave shielding material <3> of the present invention is a wet non-woven fabric containing stretched polyester-based short fibers and unstretched polyester-based short fibers having a melting point of 220 ° C. or higher and 250 ° C. or lower. The peel strength (longitudinal direction) of the electromagnetic wave shielding material non-woven fabric <3> of the present invention is 2.0 N / m or more.

本発明の電磁波シールド材用不織布<3>において、電磁波シールド材用不織布の剥離強度(縦方向)は2.0N/m以上であり、より好ましくは2.5N/m以上であり、さらに好ましくは3.0N/m以上である。剥離強度(縦方向)が2.0N/m未満の場合には、繊維同士の接着が弱すぎるために、アルカリ処理時に電磁波シールド材用不織布からの繊維脱落が多くなり、搬送ロールへの繊維の蓄積などが発生するため、定期的な洗浄が必要となって操業性が低下する問題や、脱落繊維が電磁波シールド材用不織布に再付着することによって、金属めっき処理での欠陥が生じる問題が起こる。本発明の電磁波シールド材用不織布<3>において、電磁波シールド材用不織布の剥離強度(縦方向)は、10.0N/m以下であることが好ましい。10.0N/mを超えると、電磁波シールド材用不織布の融着が進みすぎて、電磁波シールド材用不織布表面がフィルム化し、形態を保てなくなる場合がある。 In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, the peel strength (longitudinal direction) of the non-woven fabric for electromagnetic wave shielding material is 2.0 N / m or more, more preferably 2.5 N / m or more, still more preferably. It is 3.0 N / m or more. When the peeling strength (longitudinal direction) is less than 2.0 N / m, the adhesion between the fibers is too weak, so that the fibers are often dropped from the non-woven fabric for the electromagnetic wave shielding material during the alkali treatment, and the fibers are attached to the transport roll. Accumulation occurs, which causes problems such as the need for regular cleaning, which reduces operability, and the reattachment of fallen fibers to the non-woven fabric for electromagnetic wave shielding materials, which causes defects in the metal plating process. .. In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, the peel strength (longitudinal direction) of the non-woven fabric for electromagnetic wave shielding material is preferably 10.0 N / m or less. If it exceeds 10.0 N / m, the non-woven fabric for the electromagnetic wave shielding material may be fused too much, and the surface of the non-woven fabric for the electromagnetic wave shielding material may become a film and the shape may not be maintained.

本発明の電磁波シールド材用不織布<3>において、延伸ポリエステル系短繊維の繊維径は、1〜10μmであることが好ましく、2〜8μmであることがより好ましい。延伸ポリエステル系短繊維として、繊維径の異なる2種以上の延伸ポリエステル系短繊維を含むこともできる。延伸ポリエステル系短繊維の繊維径が10μm以下である場合、薄い電磁波シールド材を提供することが容易となる。また、好ましくは、延伸ポリエステル系短繊維として、繊維径が3μm以下のポリエステル系短繊維を必須成分として含むことが好ましい。繊維径が3μm以下のポリエステル系短繊維を含むことによって、電磁波シールド性がより向上する。 In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, the fiber diameter of the drawn polyester-based short fibers is preferably 1 to 10 μm, more preferably 2 to 8 μm. As the drawn polyester-based short fibers, two or more kinds of drawn polyester-based short fibers having different fiber diameters may be included. When the fiber diameter of the stretched polyester-based short fiber is 10 μm or less, it becomes easy to provide a thin electromagnetic wave shielding material. Further, it is preferable that the drawn polyester-based short fibers include polyester-based short fibers having a fiber diameter of 3 μm or less as an essential component. By including polyester-based short fibers having a fiber diameter of 3 μm or less, the electromagnetic wave shielding property is further improved.

本発明の電磁波シールド材用不織布<3>において、未延伸ポリエステル系短繊維の繊維径は、1〜8μmであることが好ましく、3〜5μmであることがより好ましい。繊維径がこの範囲である場合、湿式不織布の強度を高めながら、薄い電磁波シールド材を提供することが容易となる。未延伸ポリエステル系短繊維として、繊維径の異なる2種以上の未延伸ポリエステル系短繊維を含むこともできる。 In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, the fiber diameter of the unstretched polyester-based short fibers is preferably 1 to 8 μm, and more preferably 3 to 5 μm. When the fiber diameter is in this range, it becomes easy to provide a thin electromagnetic wave shielding material while increasing the strength of the wet non-woven fabric. As the undrawn polyester-based short fibers, two or more types of undrawn polyester-based short fibers having different fiber diameters can be included.

本発明の電磁波シールド材用不織布<3>において、延伸ポリエステル系短繊維と未延伸ポリエステル系短繊維の質量含有比率は、20:80〜80:20であることが好ましい。未延伸ポリエステル系短繊維の含有率が湿式不織布を構成する繊維全体の20質量%未満であると、電磁波シールド材用不織布として必要な強度が発現しなくなることがある。一方、未延伸ポリエステル系短繊維の含有率が80質量%を超えると、均一性を損なう場合がある。さらに、電磁波シールド性を向上させるために、繊維径が3μm以下の延伸ポリエステル系短繊維の含有率が、湿式不織布を構成する繊維全体の5〜80質量%であることがより好ましい。本発明の電磁波シールド材用不織布<3>において、最も好ましい繊維配合は、未延伸ポリエステル系短繊維が20〜80質量%、繊維径が3μmを超えて10μm以下の延伸ポリエステル系短繊維が0〜75質量%、繊維径が3μm以下の延伸ポリエステル系短繊維が5〜80質量%である。 In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, the mass content ratio of the stretched polyester-based short fibers and the unstretched polyester-based short fibers is preferably 20:80 to 80:20. If the content of the unstretched polyester-based short fibers is less than 20% by mass of the total fibers constituting the wet non-woven fabric, the strength required for the non-woven fabric for the electromagnetic wave shielding material may not be exhibited. On the other hand, if the content of the unstretched polyester-based short fibers exceeds 80% by mass, the uniformity may be impaired. Further, in order to improve the electromagnetic wave shielding property, it is more preferable that the content of the drawn polyester-based short fibers having a fiber diameter of 3 μm or less is 5 to 80% by mass of the total fibers constituting the wet non-woven fabric. In the non-woven fabric <3> for electromagnetic shielding material of the present invention, the most preferable fiber composition is 20 to 80% by mass of unstretched polyester-based short fibers and 0 to 0 to 10 μm or less of stretched polyester-based short fibers having a fiber diameter of more than 3 μm and 10 μm or less. 75% by mass and 5 to 80% by mass of drawn polyester-based short fibers having a fiber diameter of 3 μm or less.

本発明の電磁波シールド材用不織布<3>の厚さは、電子機器で使用する目的から、5〜30μmであることが好ましく、20μm以下であることがより好ましい。目付(坪量)は、3〜30g/mであることが好ましく、15g/m以下であることがより好ましい。目付が3g/m未満であると、均一性を得ることが難しくなり、電磁波シールド性の効果にバラつきが発生しやすくなり、電磁波シールド材用不織布自体の強度維持が困難になり、作業性に難がある。 The thickness of the non-woven fabric <3> for an electromagnetic wave shielding material of the present invention is preferably 5 to 30 μm, more preferably 20 μm or less, for the purpose of using it in an electronic device. Basis weight (basis weight) is preferably 3 to 30 g / m 2, and more preferably 15 g / m 2 or less. If the basis weight is less than 3 g / m 2 , it becomes difficult to obtain uniformity, the effect of the electromagnetic wave shielding property tends to vary, and it becomes difficult to maintain the strength of the non-woven fabric itself for the electromagnetic wave shielding material, resulting in workability. There is a difficulty.

―ポリエステル系短繊維―
本発明において、延伸ポリエステル系短繊維は、熱カレンダー処理によっても、溶融又は軟化しにくく、湿式不織布の骨格を形成する主体繊維である。
-Polyester-based short fibers-
In the present invention, the drawn polyester-based short fibers are the main fibers that are difficult to melt or soften even by the thermal calendar treatment and form the skeleton of the wet non-woven fabric.

本発明において、未延伸ポリエステル系短繊維は、熱カレンダー処理によって、溶融又は軟化し、湿式不織布の強度を高めるバインダー繊維として機能する。未延伸ポリエステル系短繊維の融点は、220℃〜250℃が好ましい。本発明の電磁波シールド材用不織布<3>において、未延伸ポリエステル系短繊維の融点は、220℃以上250℃以下である。未延伸ポリエステル系短繊維の融点が220℃未満の場合、熱カレンダー処理時の熱ロールに湿式不織布が貼り付いてしまい、シートにならない場合がある。250℃を超える場合、繊維が接着せずに湿式不織布の強度が発現しない場合がある。未延伸ポリエステル系短繊維の融点は、より好ましくは225℃以上250℃以下である。 In the present invention, the unstretched polyester-based short fibers function as binder fibers that are melted or softened by thermal calendar treatment to increase the strength of the wet non-woven fabric. The melting point of the unstretched polyester-based short fibers is preferably 220 ° C. to 250 ° C. In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, the melting point of the unstretched polyester-based short fibers is 220 ° C. or higher and 250 ° C. or lower. If the melting point of the unstretched polyester-based short fibers is less than 220 ° C., the wet non-woven fabric may stick to the thermal roll during the thermal calendar treatment, and the sheet may not be formed. If the temperature exceeds 250 ° C., the fibers may not adhere and the strength of the wet non-woven fabric may not be exhibited. The melting point of the unstretched polyester-based short fibers is more preferably 225 ° C. or higher and 250 ° C. or lower.

未延伸ポリエステル系短繊維の融点は、示差走査熱量測定装置にて窒素雰囲気で昇温速度10℃/min、25℃から300℃まで昇温した時のピーク温度である。 The melting point of the unstretched polyester-based short fiber is the peak temperature when the temperature is raised from 25 ° C. to 300 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere by a differential scanning calorimetry device.

なお、本発明の実施例において、ポリエステル系短繊維の繊維径は、不織布製造前の繊維径を記載している。ポリエステル系短繊維の繊維径は、顕微鏡で3000倍の湿式不織布又は電磁波シールド材断面の拡大写真を撮り、ポリエステル系短繊維の断面積を測定し、繊維の断面形状が真円として算出した直径として測定することができ、その場合、断面積が略同一である10本以上の繊維の算術平均値を求めることが好ましい。 In the examples of the present invention, the fiber diameter of the polyester-based short fiber is the fiber diameter before the production of the non-woven fabric. The fiber diameter of the polyester-based short fiber is determined by taking a magnified photograph of the cross section of the wet non-woven fabric or electromagnetic wave shielding material 3000 times with a microscope, measuring the cross-sectional area of the polyester-based short fiber, and calculating the cross-sectional shape of the fiber as a perfect circle. It can be measured, and in that case, it is preferable to obtain the arithmetic average value of 10 or more fibers having substantially the same cross-sectional area.

ポリエステル系短繊維の繊維長は、好ましくは1〜20mmであり、より好ましくは1〜10mmであり、さらに好ましくは2〜8mmである。ポリエステル系短繊維の繊維長が1mm未満である場合、湿式不織布として必要な強度が発現し難くなる場合がある。ポリエステル系短繊維の繊維長が20mm超の場合、均一性を損なう場合がある。 The fiber length of the polyester-based short fibers is preferably 1 to 20 mm, more preferably 1 to 10 mm, and even more preferably 2 to 8 mm. When the fiber length of the polyester-based short fiber is less than 1 mm, it may be difficult to develop the strength required for the wet non-woven fabric. If the fiber length of the polyester-based short fibers exceeds 20 mm, the uniformity may be impaired.

本発明において、ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等が挙げられる。ポリエステル系短繊維は、電磁波シールドの厚さを薄くするために繊維径を小さくできること、抄紙のしやすさ、めっき処理における湿式でのアルカリ処理時の寸法安定性から好ましい。ポリエステル系短繊維は、単独で使用しても良いし、2種類以上を併用しても良い。 In the present invention, examples of the polyester include polyethylene terephthalate, polyethylene isophthalate, polytrimethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate. Polyester-based short fibers are preferable because the fiber diameter can be reduced in order to reduce the thickness of the electromagnetic wave shield, the ease of papermaking, and the dimensional stability during wet alkali treatment in the plating treatment. The polyester-based short fibers may be used alone or in combination of two or more.

―湿式不織布―
繊維をシート状に形成せしめる方法としては、スパンボンド法、メルトブロー法、静電紡糸法、湿式法等の各種製造方法が挙げられるが、本発明の電磁波シールド材用不織布は湿式法(抄紙法)によってシート状に形成された湿式不織布であり、強度に優れ、均一性の高い不織布である。また、繊維間を接合する方法としては、ケミカルボンド法、熱融着法等の各種方法が挙げられる。これらの中でも、耐久性や強度に優れ、不織布表面が平滑であることから、熱融着法が好ましい。
-Wet non-woven fabric-
Examples of the method for forming the fibers into a sheet include various manufacturing methods such as a spunbond method, a melt blow method, an electrostatic spinning method, and a wet method. The non-woven fabric for an electromagnetic wave shielding material of the present invention is a wet method (papermaking method). It is a wet non-woven fabric formed in the form of a sheet, and is a non-woven fabric having excellent strength and high uniformity. Further, as a method for joining the fibers, various methods such as a chemical bond method and a heat fusion method can be mentioned. Among these, the heat fusion method is preferable because it has excellent durability and strength and the surface of the non-woven fabric is smooth.

湿式法における熱融着法としては、抄紙法で得られたシートを、多筒式ドライヤー、ヤンキードライヤー、エアースルードライヤー等の抄紙後に使用される乾燥機で熱乾燥する際に熱融着する方法を用いることができる。また、金属製熱ロール/金属製熱ロール、金属製熱ロール/弾性ロール、金属製熱ロール/コットンロールなどのロール組み合わせを有する熱カレンダー装置による熱カレンダー処理によって熱融着する方法も用いることができる。熱乾燥又は熱カレンダー処理により、バインダー成分が熱溶融し、熱融着が生じる。 As a heat fusion method in the wet method, a method of heat-sealing a sheet obtained by a paper making method when heat-drying with a dryer used after paper making such as a multi-cylinder dryer, a yankee dryer, or an air through dryer. Can be used. It is also possible to use a method of heat fusion by thermal calendar processing with a thermal calendar device having a roll combination such as a metal thermal roll / metal thermal roll, a metal thermal roll / elastic roll, and a metal thermal roll / cotton roll. it can. The binder component is thermally melted by heat drying or heat calendar treatment, and heat fusion occurs.

また、熱カレンダーの条件は以下に例示することができるが、これらに限定されるものではない。熱カレンダー処理における熱ロールの温度は、200℃以上215℃以下が好ましい。熱ロールの温度が200℃未満の場合、繊維同士が接着せずに強度が発現しないという問題が発生する場合がある。また、逆に、熱ロールの温度が215℃超である場合、熱ロールに湿式不織布が貼り付いてしまい、シートにならないという問題が発生する場合がある。熱ロールの温度は、より好ましくは203℃以上210℃以下であり、さらに好ましくは205℃以上である。なお、本発明の電磁波シールド材用不織布<3>において、電磁波シールド材用不織布の剥離強度を高めるためには、延伸ポリエステル系短繊維と融点が220℃以上250℃以下の未延伸ポリエステル系短繊維を含有する湿式不織布を、温度が200℃以上215℃以下である熱ロールを用いて熱カレンダー処理することが好ましい。より好ましい熱ロールの温度は、203℃以上210℃以下である。 The conditions of the thermal calendar can be exemplified below, but are not limited thereto. The temperature of the heat roll in the heat calendar treatment is preferably 200 ° C. or higher and 215 ° C. or lower. If the temperature of the heat roll is less than 200 ° C., there may be a problem that the fibers do not adhere to each other and the strength is not developed. On the contrary, when the temperature of the heat roll is higher than 215 ° C., the wet non-woven fabric may stick to the heat roll, which may cause a problem that the sheet cannot be formed. The temperature of the heat roll is more preferably 203 ° C. or higher and 210 ° C. or lower, and even more preferably 205 ° C. or higher. In the non-woven fabric for electromagnetic wave shielding material <3> of the present invention, in order to increase the peeling strength of the non-woven fabric for electromagnetic wave shielding material, stretched polyester-based short fibers and unstretched polyester-based short fibers having a melting point of 220 ° C. or higher and 250 ° C. or lower are used. It is preferable that the wet non-woven fabric containing the above-mentioned material is subjected to thermal calendar treatment using a thermal roll having a temperature of 200 ° C. or higher and 215 ° C. or lower. A more preferable temperature of the heat roll is 203 ° C. or higher and 210 ° C. or lower.

強度を発現するために、熱カレンダー処理における圧力(線圧)は、好ましくは50〜250kN/mであり、さらに好ましくは80〜150kN/mである。圧力が50kN/m未満である場合、表面の平滑性を損なう可能性があり、また、速度を低下させないと、厚さが薄くならない可能性がある。圧力が250kN/m超の場合、シートが圧力に耐えられずに破断する可能性がある。熱カレンダーの処理速度は1〜300m/minが好ましい。処理速度が1m/min以上であることで、作業効率が良好となる。処理速度が300m/min以下とすることで、湿式不織布に熱を伝導させ、熱融着の実効を得やすくなる。熱カレンダーのニップ回数は湿式不織布に熱を伝導することができれば特に限定するものではないが、金属製熱ロール/弾性ロールの組み合わせでは、湿式不織布の表裏から熱を伝導させるために2回以上ニップしても良い。 In order to develop the strength, the pressure (linear pressure) in the thermal calendar treatment is preferably 50 to 250 kN / m, more preferably 80 to 150 kN / m. If the pressure is less than 50 kN / m, the smoothness of the surface may be impaired, and the thickness may not be reduced unless the speed is reduced. If the pressure is more than 250 kN / m, the sheet may not withstand the pressure and break. The processing speed of the thermal calendar is preferably 1 to 300 m / min. When the processing speed is 1 m / min or more, the work efficiency is improved. By setting the treatment speed to 300 m / min or less, heat is conducted to the wet non-woven fabric, and it becomes easy to obtain the effect of heat fusion. The number of nip times of the thermal calendar is not particularly limited as long as heat can be conducted to the wet non-woven fabric, but in the combination of the metal thermal roll / elastic roll, the nip is performed twice or more in order to conduct heat from the front and back of the wet non-woven fabric. You may.

―電磁波シールド材―
本発明の電磁波シールド材は、本発明の電磁波シールド材用不織布に金属皮膜処理が施されていることを特徴とする。すなわち、本発明の電磁波シールド材は、本発明の電磁波シールド材用不織布及び金属皮膜を含むことを特徴とする。
-Electromagnetic wave shield material-
The electromagnetic wave shielding material of the present invention is characterized in that the non-woven fabric for the electromagnetic wave shielding material of the present invention is treated with a metal film. That is, the electromagnetic wave shielding material of the present invention is characterized by including the non-woven fabric for the electromagnetic wave shielding material and the metal film of the present invention.

本発明において、金属皮膜処理としては、無電解金属めっき処理、電気めっき処理、金属蒸着処理、スパッタリング処理などが挙げられる。これらの処理の中から選択される1以上の処理を施すことができる。中でも、薄くでき、表面抵抗値が低くなりやすく、金属皮膜が剥がれ難くなることから、スパッタリング処理してから電気めっき処理を行うことが好ましい。前記金属皮膜は1層でもよいし、2層以上の多層であってもよい。 In the present invention, examples of the metal film treatment include electroless metal plating treatment, electroplating treatment, metal vapor deposition treatment, and sputtering treatment. One or more processes selected from these processes can be performed. Above all, since it can be made thin, the surface resistance value tends to be low, and the metal film is difficult to peel off, it is preferable to perform the electroplating treatment after the sputtering treatment. The metal film may have one layer or two or more layers.

金属皮膜処理に用いられる金属の種類としては、金、銀、銅、亜鉛、アルミニウム、ニッケル、スズ、又はこれらの合金などが挙げられる。中でも、金、銀、銅、アルミニウム、ニッケル及びスズからなる群より選択される1種以上の金属が好ましく、導電性と製造コストとを考慮して、銅、ニッケルがより好ましい。 Examples of the type of metal used for the metal film treatment include gold, silver, copper, zinc, aluminum, nickel, tin, and alloys thereof. Among them, one or more metals selected from the group consisting of gold, silver, copper, aluminum, nickel and tin are preferable, and copper and nickel are more preferable in consideration of conductivity and manufacturing cost.

本発明では、金属皮膜処理が、スパッタリングによってニッケル被覆を形成させる処理、電気めっきによって銅被覆を形成させる処理及び電気めっきによってニッケル被覆を形成させる処理をこの順に含むことがより好ましい。まず、湿式不織布にスパッタリング処理で金属皮膜を形成する。スパッタリング処理における金属は、ニッケルが好ましい。スパッタリング処理後、電気めっきで金属皮膜を積層させる。電気めっきの金属は、銅が好ましい。さらに、防錆のため、ニッケル等の防錆性の良好な金属をその外層に積層してもよい。その積層方法は電気めっきによる方法が好ましい。 In the present invention, it is more preferable that the metal film treatment includes a treatment of forming a nickel coating by sputtering, a treatment of forming a copper coating by electroplating, and a treatment of forming a nickel coating by electroplating in this order. First, a metal film is formed on the wet non-woven fabric by sputtering treatment. Nickel is preferable as the metal in the sputtering treatment. After the sputtering process, the metal film is laminated by electroplating. Copper is preferable as the metal for electroplating. Further, for rust prevention, a metal having good rust prevention such as nickel may be laminated on the outer layer thereof. The laminating method is preferably a method by electroplating.

本発明の電磁波シールド材の厚さは、15μm以下であることが好ましく、13μm以下であることがより好ましく、12μm以下であることがさらに好ましい。電磁波シールド材の厚さが15μmよりも大きいと、電子機器、通信機器、電化製品などに使えない場合がある。また、電磁波シールド材の厚さは、7μm以上であることが好ましい。なお、厚さは、JIS P8118:2014に記載されている方法で測定した。 The thickness of the electromagnetic wave shielding material of the present invention is preferably 15 μm or less, more preferably 13 μm or less, and even more preferably 12 μm or less. If the thickness of the electromagnetic wave shielding material is larger than 15 μm, it may not be usable in electronic devices, communication devices, electric appliances, and the like. Further, the thickness of the electromagnetic wave shielding material is preferably 7 μm or more. The thickness was measured by the method described in JIS P8118: 2014.

また、本発明の電磁波シールド材の表面抵抗値が0.03Ω/□以下であることが好ましく、0.01Ω/□以下であることがより好ましい。また、40MHz〜18GHzでの電磁波シールド性が50dB以上であることが好ましい。さらに、40MHz〜10GHzでの電磁波シールド性が60dB以上であることが好ましい。さらに、40MHz〜1GHzでの電磁波シールド性が70dB以上であることが好ましい。 Further, the surface resistance value of the electromagnetic wave shielding material of the present invention is preferably 0.03 Ω / □ or less, and more preferably 0.01 Ω / □ or less. Further, it is preferable that the electromagnetic wave shielding property at 40 MHz to 18 GHz is 50 dB or more. Further, it is preferable that the electromagnetic wave shielding property at 40 MHz to 10 GHz is 60 dB or more. Further, it is preferable that the electromagnetic wave shielding property at 40 MHz to 1 GHz is 70 dB or more.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例1〜10は参考例であり、実施例において、%及び部は、断りの無い限り、全て質量基準である。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In addition, Examples 1 to 10 are reference examples, and in Examples,% and part are all based on mass unless otherwise specified.

≪本発明の電磁波シールド材用不織布<1>に関する実施例≫ << Example of Nonwoven Fabric <1> for Electromagnetic Wave Shielding Material of the Present Invention >>

[実施例1]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、通気度275cm/cm/sec、組織[上網:平織、下網:畝織]の抄造ワイヤーを設置した傾斜型抄紙機にて、湿式法で抄き上げ、135℃のシリンダードライヤーによって、未延伸PET系短繊維を熱融着させて強度を発現させ、目付10g/mの湿式不織布とした。さらに、この湿式不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダー装置を使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚さ15μmの電磁波シールド材用不織布を作製した。
[Example 1]
30 parts by mass of stretched polyethylene terephthalate (PET) short fiber with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and a stretched PET short fiber with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. 30 parts by mass of fibers and 40 parts by mass of unstretched PET-based short fibers having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm are dispersed in water by a pulper, and a uniform papermaking slurry having a concentration of 1% by mass is dispersed. Was prepared. This slurry for making is made by a wet method with a slanted paper machine equipped with a paper making wire having an air permeability of 275 cm 3 / cm 2 / sec and a structure [upper net: plain weave, lower net: ridge weave], and is made at 135 ° C. The unstretched PET-based short fibers were heat-sealed to develop strength with the cylinder dryer of No. 1 and obtained as a wet non-woven fabric having a grain size of 10 g / m 2 . Further, this wet non-woven fabric is subjected to a thermal roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min by using a one-nip thermal calendar device composed of a dielectric heating jacket roll (metal thermal roll) and an elastic roll. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm was prepared by performing a thermal calendar treatment under the above conditions.

[実施例2]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維10質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維50質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ17μmの電磁波シールド材用不織布を作製した。
[Example 2]
10 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 50 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 17 μm was prepared in the same manner as in Example 1 except that the fineness was 0.2 dtex (fiber diameter 4.3 μm) and the fiber length was 3 mm and 40 parts by mass of unstretched PET-based short fibers. Made.

[実施例3]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維50質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維10質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ16μmの電磁波シールド材用不織布を作製した。
[Example 3]
50 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 10 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 16 μm was prepared in the same manner as in Example 1 except that the fineness was 0.2 dtex (fiber diameter 4.3 μm) and the fiber length was 3 mm and 40 parts by mass of unstretched PET-based short fibers. Made.

[実施例4]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維45質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維45質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維10質量部とした以外は実施例1と同じようにして、厚さ16μmの電磁波シールド材用不織布を作製した。
[Example 4]
45 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 45 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 16 μm was prepared in the same manner as in Example 1 except that the fineness was 0.2 dtex (fiber diameter 4.3 μm) and the fiber length was 3 mm and 10 parts by mass of unstretched PET-based short fibers. Made.

[実施例5]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ14μmの電磁波シールド材用不織布を作製した。
[Example 5]
30 parts by mass of drawn PET short fibers with a fineness of 0.1 dtex (fiber diameter 3.0 μm) and a fiber length of 3 mm, and 30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 14 μm was prepared in the same manner as in Example 1 except that the fineness was 0.2 dtex (fiber diameter 4.3 μm) and the fiber length was 3 mm and 40 parts by mass of unstretched PET-based short fibers. Made.

[実施例6]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維10質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維30質量部とした以外は実施例1と同じようにして、厚さ14μmの電磁波シールド材用不織布を作製した。
[Example 6]
10 parts by mass of stretched PET short fibers with a fineness of 0.1 dtex (fiber diameter 3.0 μm) and a fiber length of 3 mm, and 30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm. And 30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm, and undrawn PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm. A non-woven fiber for electromagnetic wave shielding material having a thickness of 14 μm was produced in the same manner as in Example 1 except that the weight was 30 parts by mass.

[実施例7]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度1.7dtex(繊維径12.0μm)、繊維長5mmの延伸PET系短繊維10質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維30質量部とした以外は実施例1と同じようにして、厚さ16μmの電磁波シールド材用不織布を作製した。
[Example 7]
30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. And 10 parts by mass of stretched PET short fibers with a fineness of 1.7 dtex (fiber diameter 12.0 μm) and a fiber length of 5 mm, and unstretched PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm. A non-woven fiber for electromagnetic wave shielding material having a thickness of 16 μm was produced in the same manner as in Example 1 except that the weight was 30 parts by mass.

[実施例8]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維10質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維30質量部とした以外は実施例1と同じようにして、厚さ14μmの電磁波シールド材用不織布を作製した。
[Example 8]
10 parts by mass of drawn PET short fibers with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and 30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm. And 30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm, and undrawn PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm. A non-woven fiber for electromagnetic wave shielding material having a thickness of 14 μm was produced in the same manner as in Example 1 except that the weight was 30 parts by mass.

[実施例9]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維30質量部と、繊度1.2dtex(繊維径10.5μm)、繊維長5mmの未延伸PET系短繊維10質量部とした以外は実施例1と同じようにして、厚さ16μmの電磁波シールド材用不織布を作製した。
[Example 9]
30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. 30 parts by mass of unstretched PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm, and unstretched PET short fibers with a fineness of 1.2 dtex (fiber diameter 10.5 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 16 μm was produced in the same manner as in Example 1 except that the fibers were 10 parts by mass.

[実施例10]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維15質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維15質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維70質量部とした以外は実施例1と同じようにして、厚さ14μmの電磁波シールド材用不織布を作製した。
[Example 10]
15 parts by mass of stretched PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 15 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 14 μm was prepared in the same manner as in Example 1 except that the unstretched PET-based short fiber having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm was 70 parts by mass. Made.

[比較例1]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度1.2dtex(繊維径10.5μm)、繊維長5mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ17μmの電磁波シールド材用不織布を作製した。
[Comparative Example 1]
30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 17 μm was prepared in the same manner as in Example 1 except that the fibers had a fineness of 1.2 dtex (fiber diameter of 10.5 μm) and a fiber length of 5 mm and 40 parts by mass of unstretched PET-based short fibers. Made.

[比較例2]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維60質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ15μmの電磁波シールド材用不織布を作製した。
[Comparative Example 2]
60 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and 40 masses of undrawn PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm was produced in the same manner as in Example 1 except for the portion.

[比較例3]
繊度1.7dtex(繊維径12.0μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度3.3dtex(繊維径17.5μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ21μmの電磁波シールド材用不織布を作製した。
[Comparative Example 3]
30 parts by mass of stretched PET short fibers with a fineness of 1.7 dtex (fiber diameter 12.0 μm) and a fiber length of 5 mm and 30 parts by mass of drawn PET short fibers with a fineness of 3.3 dtex (fiber diameter 17.5 μm) and a fiber length of 5 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 21 μm was prepared in the same manner as in Example 1 except that the fineness was 0.2 dtex (fiber diameter 4.3 μm) and the fiber length was 3 mm and 40 parts by mass of unstretched PET-based short fibers. Made.

[比較例4]
繊度1.7dtex(繊維径12.0μm)、繊維長5mmの延伸PET系短繊維60質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ18μmの電磁波シールド材用不織布を作製した。
[Comparative Example 4]
60 parts by mass of drawn PET short fibers with a fineness of 1.7 dtex (fiber diameter 12.0 μm) and a fiber length of 5 mm, and 40 masses of undrawn PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 18 μm was produced in the same manner as in Example 1 except for the portion.

[比較例5]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維60質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚さ15μmの電磁波シールド材用不織布を作製した。
[Comparative Example 5]
60 parts by mass of drawn PET short fibers with a fineness of 0.1 dtex (fiber diameter 3.0 μm) and a fiber length of 3 mm, and 40 masses of undrawn PET short fibers with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm was produced in the same manner as in Example 1 except for the portion.

実施例及び比較例で作製した電磁波シールド材用不織布に対して無電解めっき法によってニッケル皮膜で覆い、次に、電気めっき法によって銅皮膜とニッケル皮膜を順に積層して、電磁波シールド材を作製した。 The non-woven fabric for electromagnetic wave shielding material produced in Examples and Comparative Examples was covered with a nickel film by an electroless plating method, and then a copper film and a nickel film were laminated in order by an electroplating method to prepare an electromagnetic wave shielding material. ..

<評価>
[搬送性]
電磁波シールド材用不織布を一定のテンションで搬送し、その時の皺の発生状況を下記基準で評価した。
<Evaluation>
[Transportability]
The non-woven fabric for the electromagnetic wave shielding material was conveyed with a constant tension, and the wrinkle generation state at that time was evaluated according to the following criteria.

「○」皺が入らずに、搬送性が非常に良い。
「△」電磁波シールド材用不織布の一部に皺が入るが、搬送性に問題は無い。
「×」加工ができない程に、電磁波シールド材用不織布の全体に皺が入り、搬送性が劣る。
"○" No wrinkles and very good transportability.
"△" There are wrinkles in a part of the non-woven fabric for electromagnetic wave shielding material, but there is no problem in transportability.
Wrinkles are formed on the entire non-woven fabric for electromagnetic wave shielding material to the extent that "x" processing cannot be performed, and the transportability is inferior.

[電磁波シールド性(電界)]
同軸管法による電磁波シールド性(電界)に基づき測定した。周波数40MHz〜3GHzの範囲では同軸管法39Dによって測定し、周波数500MHz〜18GHzの範囲では、同軸管法GPC7によって測定した。周波数500MHz〜3GHzは、同軸管法39Dと同軸管法7の両方で測定するが、低い数値を採用した。
[Electromagnetic wave shielding property (electric field)]
The measurement was performed based on the electromagnetic wave shielding property (electric field) by the coaxial tube method. The frequency range of 40 MHz to 3 GHz was measured by the coaxial tube method 39D, and the frequency range of 500 MHz to 18 GHz was measured by the coaxial tube method GPC7. The frequencies of 500 MHz to 3 GHz are measured by both the coaxial tube method 39D and the coaxial tube method 7, but low values are adopted.

電磁波シールド性に記載の数値が高い程、電磁波シールド性が優れていることを示す。 The higher the value described in the electromagnetic wave shielding property, the better the electromagnetic wave shielding property.

実施例1〜10の電磁波シールド材用不織布は、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種以上の延伸ポリエステル系短繊維と、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する湿式不織布であることから、搬送性に優れかつ優れた電磁波シールド性がある。実施例4の電磁波シールド材用不織布は、少し強度が低下したが、搬送性に問題は無く、電磁波シールド性も優れていた。 The non-woven fabric for electromagnetic wave shielding material of Examples 1 to 10 is selected from drawn polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm, and two or more kinds of drawn polyester short fibers having different fiber diameters and a fiber diameter of 3 μm. Since it is a wet non-woven fabric containing unstretched polyester-based short fibers of 5 μm or less as an essential component, it has excellent transportability and excellent electromagnetic wave shielding properties. The non-woven fabric for the electromagnetic wave shielding material of Example 4 had a slightly reduced strength, but there was no problem in transportability, and the electromagnetic wave shielding property was also excellent.

これに対し、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種以上の延伸ポリエステル系短繊維と、繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維とを必須成分として含有していない比較例1、2、3及び4の電磁波シールド材用不織布は、電磁波シールド性に劣るものであった。すなわち、未延伸ポリエステル系短繊維の繊維径が5μm超である比較例1の電磁波シールド材用不織布、繊維径が12μm以上の延伸ポリエステル系短繊維から選択される、繊維径が異なる2種の延伸ポリエステル系短繊維を含有している比較例3の電磁波シールド材用不織布、延伸ポリエステル系短繊維の繊維径が12μmである比較例4の電磁波シールド材用不織布、及び、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維を含有しているものの繊維径が同一の1種の延伸ポリエステル系短繊維のみ(繊維径5.3μm)を含有している比較例2の電磁波シールド材用不織布は、多重反射損失が低下したと考えられる。 On the other hand, two or more kinds of drawn polyester short fibers having different fiber diameters selected from drawn polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm, and unwoven polyester short fibers having a fiber diameter of 3 μm or more and 5 μm or less. The non-woven fabrics for electromagnetic wave shielding materials of Comparative Examples 1, 2, 3 and 4 which did not contain fibers as essential components were inferior in electromagnetic wave shielding properties. That is, two types of drawn fibers having different fiber diameters are selected from the non-woven fabric for electromagnetic wave shielding material of Comparative Example 1 in which the fiber diameter of the unstretched polyester short fibers exceeds 5 μm and the drawn polyester short fibers having a fiber diameter of 12 μm or more. The non-woven fabric for electromagnetic wave shielding material of Comparative Example 3 containing polyester-based short fibers, the non-woven fabric for electromagnetic wave shielding material of Comparative Example 4 in which the fiber diameter of the stretched polyester-based short fibers is 12 μm, and the fiber diameter of 3 μm or more and less than 12 μm. The non-woven fabric for electromagnetic wave shielding material of Comparative Example 2 containing only one type of stretched polyester-based short fibers having the same fiber diameter (fiber diameter of 5.3 μm), although it contains the stretched polyester-based short fibers of It is considered that the reflection loss has decreased.

また、繊維径が3μm以上12μm未満の延伸ポリエステル系短繊維を含有しているものの繊維径が同一の1種の延伸ポリエステル系短繊維のみ(繊維径3.0μm)を含有している比較例5の電磁波シールド材用不織布は、ウェブの搬送時に皺が入り、搬送性に劣る。小さい繊維径の延伸ポリエステル系短繊維のみを含むことによってウェブがしなやかになり、伸び易くなり、皺が入りやすくなったと考えられる。 Further, Comparative Example 5 in which the drawn polyester short fibers having a fiber diameter of 3 μm or more and less than 12 μm are contained, but only one type of drawn polyester short fibers having the same fiber diameter (fiber diameter 3.0 μm) is contained. The non-woven fabric for electromagnetic wave shielding material is inferior in transportability due to wrinkles when the web is transported. It is considered that the web became supple, easily stretched, and wrinkled easily by containing only the drawn polyester-based short fibers having a small fiber diameter.

≪本発明の電磁波シールド材用不織布<2>に関する実施例≫ << Examples of Nonwoven Fabric <2> for Electromagnetic Wave Shielding Material of the Present Invention >>

<評価>
(1)表面抵抗値
MIL DTL 83528Cに基づいて測定した。
<Evaluation>
(1) The surface resistance value was measured based on MIL DTL 83528C.

(2)電磁波シールド性(電界)
同軸管法による電磁波シールド性(電界)に基づき測定した。周波数40MHz〜3GHzの範囲では同軸管法39Dによって測定し、周波数500MHz〜18GHzの範囲では、同軸管法GPC7によって測定した。周波数500MHz〜3GHzは、同軸管法39Dと同軸管法GPC7の両方で測定するが、低い数値を採用した。
(2) Electromagnetic wave shielding property (electric field)
The measurement was performed based on the electromagnetic wave shielding property (electric field) by the coaxial tube method. The frequency range of 40 MHz to 3 GHz was measured by the coaxial tube method 39D, and the frequency range of 500 MHz to 18 GHz was measured by the coaxial tube method GPC7. The frequencies of 500 MHz to 3 GHz are measured by both the coaxial tube method 39D and the coaxial tube method GPC7, but low values are adopted.

(3)ピール評価
幅25mm×長さ150mmの電磁波シールド材試料に、粘着テープ(Nitto(登録商標)31Bテープ、日東電工株式会社製)を貼り付け、2kgのロールで300mm/分のスピードで10回ローリングする。その後、テープと試料を180度の角度にし、1000mm/分のスピードで剥がす。以下の基準によって評価した。
(3) Peel evaluation Adhesive tape (Nitto (registered trademark) 31B tape, manufactured by Nitto Denko KK) is attached to an electromagnetic wave shielding material sample with a width of 25 mm and a length of 150 mm, and a roll of 2 kg is used for 10 at a speed of 300 mm / min. Rolling times. Then, the tape and the sample are angled at 180 degrees and peeled off at a speed of 1000 mm / min. It was evaluated according to the following criteria.

<基準>
○:3回測定し、試料の破断及びテープへの金属粉の付着が無かった。
△:3回測定し、試料の破断及びテープへの金属粉の付着が1〜2回発生した。
×:3回測定し、試料の破断及びテープへの金属粉の付着が3回発生した。
<Criteria>
◯: The measurement was performed 3 times, and there was no breakage of the sample and no adhesion of metal powder to the tape.
Δ: The measurement was performed 3 times, and the sample was broken and the metal powder adhered to the tape once or twice.
X: The measurement was performed 3 times, and the sample was broken and the metal powder adhered to the tape 3 times.

[実施例11]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維20質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維40質量部と繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、通気度275cm/cm/sec、組織[上網:平織、下網:畝織]の抄造ワイヤーを設置した傾斜型抄紙機にて、湿式法で抄き上げ、135℃のシリンダードライヤーによって、バインダー用未延伸PET系短繊維を熱融着させて強度を発現させ、湿式不織布とした。さらに、この湿式不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダー装置を使用して、熱ロール温度200℃、線圧100kN/m、処理速度100m/分の条件で熱カレンダー処理し、目付6.5g/m、密度0.50g/cmの電磁波シールド材用不織布を作製した。
[Example 11]
20 parts by mass of stretched polyethylene terephthalate (PET) short fiber with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and a stretched PET short fiber with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm. 40 parts by mass of fibers and 40 parts by mass of unstretched PET-based short fibers for single component type binders having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were dispersed in water by a pulper to a concentration of 1% by mass. A uniform papermaking slurry was prepared. This slurry for making is made by a wet method with a slanted paper machine equipped with a paper making wire having an air permeability of 275 cm 3 / cm 2 / sec and a structure [upper net: plain weave, lower net: ridge weave], and is made at 135 ° C. The unstretched PET-based short fibers for the binder were heat-sealed to develop strength by using the cylinder dryer of the above, and a wet non-woven fabric was obtained. Further, this wet non-woven fabric is subjected to a thermal roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 100 m / min by using a 1-nip thermal calendar device composed of a dielectric heating jacket roll (metal thermal roll) and an elastic roll. A non-woven fabric for an electromagnetic wave shielding material having a grain size of 6.5 g / m 2 and a density of 0.50 g / cm 3 was prepared by performing a thermal calendar treatment under the conditions of.

次いで、前記電磁波シールド材用不織布を、無電解めっき処理によりニッケル皮膜で覆い、次に、電気めっき処理によって、銅皮膜とニッケル皮膜を順に積層して、金属皮膜処理を施し、厚さ17.5μmの電磁波シールド材を得た。 Next, the non-woven fabric for the electromagnetic wave shielding material was covered with a nickel film by electroless plating, and then a copper film and a nickel film were laminated in this order by electroplating, and a metal film treatment was performed to obtain a thickness of 17.5 μm. Obtained the electromagnetic wave shielding material of.

[実施例12]
繊維配合を、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維40質量部と、繊度0.3dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維20質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は、実施例11と同じようにして、湿式不織布を得た。この湿式不織布を、処理速度50m/分の条件とした以外は、実施例11と同じように熱カレンダー処理し、目付6.5g/m、密度0.63g/cmの電磁波シールド材用不織布を作製した。次いで、実施例11と同じように金属皮膜処理を施して、厚さ16.0μmの電磁波シールド材を得た。
[Example 12]
The fiber composition is as follows: 40 parts by mass of stretched PET short fibers having a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and drawn PET short fibers having a fineness of 0.3 dtex (fiber diameter 3.0 μm) and a fiber length of 3 mm. The same as in Example 11 except that 20 parts by mass of the fiber and 40 parts by mass of the unstretched PET-based short fiber for a single component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were used. , Wet non-woven fabric was obtained. This wet non-woven fabric was subjected to thermal calendar treatment in the same manner as in Example 11 except that the treatment speed was 50 m / min, and the non-woven fabric for electromagnetic wave shielding material having a basis weight of 6.5 g / m 2 and a density of 0.63 g / cm 3. Was produced. Next, a metal film treatment was performed in the same manner as in Example 11 to obtain an electromagnetic wave shielding material having a thickness of 16.0 μm.

[実施例13]
繊維配合を、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維60質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は、実施例11と同じようにして、湿式不織布を得た。この湿式不織布を、線圧125kN/m、処理速度40m/分の条件とした以外は、実施例11と同じように熱カレンダー処理し、目付6.5g/m、密度0.80g/cmの電磁波シールド材用不織布を作製した。次いで、実施例11と同じように金属皮膜処理を施して、厚さ15.5μmの電磁波シールド材を得た。
[Example 13]
The fiber composition is a single component type with a fineness of 0.06 dtex (fiber diameter of 2.4 μm), a fiber length of 3 mm and 60 parts by mass of drawn PET-based short fibers, and a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm. A wet nonwoven fabric was obtained in the same manner as in Example 11 except that 40 parts by mass of unstretched PET-based short fibers for binders were used. The wet non-woven fabric was subjected to thermal calendar treatment in the same manner as in Example 11 except that the linear pressure was 125 kN / m and the treatment speed was 40 m / min, and the basis weight was 6.5 g / m 2 and the density was 0.80 g / cm 3. A non-woven fabric for electromagnetic wave shielding material was produced. Next, a metal film treatment was performed in the same manner as in Example 11 to obtain an electromagnetic wave shielding material having a thickness of 15.5 μm.

[実施例14]
目付5.0g/mとした以外は、実施例11と同じようにして、湿式不織布を得た。この湿式不織布を、実施例13と同じように熱カレンダー処理し、密度0.80g/cmの電磁波シールド材用不織布を作製した。次いで、前記電磁波シールド材用不織布を、スパッタリング処理によりニッケル皮膜で覆い、電気めっき処理によって銅皮膜とニッケル皮膜を順に積層して、金属皮膜処理を施し、厚さ8.5μmの電磁波シールド材を得た。
[Example 14]
A wet non-woven fabric was obtained in the same manner as in Example 11 except that the basis weight was 5.0 g / m 2 . This wet non-woven fabric was subjected to a thermal calendar treatment in the same manner as in Example 13 to prepare a non-woven fabric for an electromagnetic wave shielding material having a density of 0.80 g / cm 3 . Next, the non-woven fabric for the electromagnetic wave shielding material is covered with a nickel film by sputtering treatment, and a copper film and a nickel film are laminated in this order by electroplating treatment, and a metal film treatment is performed to obtain an electromagnetic wave shielding material having a thickness of 8.5 μm. It was.

[実施例15]
目付5.0g/mとした以外は、実施例12と同じようにして、湿式不織布を得た。この湿式不織布を、実施例11と同じように熱カレンダー処理し、密度0.50g/cmの電磁波シールド材用不織布を作製した。次いで、前記電磁波シールド材用不織布を実施例14と同じように金属皮膜処理を施して、厚さ12.0μmの電磁波シールド材を得た。
[Example 15]
A wet non-woven fabric was obtained in the same manner as in Example 12 except that the basis weight was 5.0 g / m 2 . This wet non-woven fabric was subjected to a thermal calendar treatment in the same manner as in Example 11 to prepare a non-woven fabric for an electromagnetic wave shielding material having a density of 0.50 g / cm 3 . Next, the non-woven fabric for the electromagnetic wave shielding material was subjected to a metal film treatment in the same manner as in Example 14 to obtain an electromagnetic wave shielding material having a thickness of 12.0 μm.

[実施例16]
目付5.0g/mとした以外は、実施例13と同じようにして湿式不織布を得た。この湿式不織布を、実施例12と同じように熱カレンダー処理し、密度0.63g/cmの電磁波シールド材用不織布を作製した。次いで、実施例14と同じように金属皮膜処理を施して、厚さ10.0μmの電磁波シールド材を得た。
[Example 16]
A wet nonwoven fabric was obtained in the same manner as in Example 13 except that the basis weight was 5.0 g / m 2 . This wet non-woven fabric was subjected to a thermal calendar treatment in the same manner as in Example 12 to prepare a non-woven fabric for an electromagnetic wave shielding material having a density of 0.63 g / cm 3 . Next, a metal film treatment was performed in the same manner as in Example 14 to obtain an electromagnetic wave shielding material having a thickness of 10.0 μm.

[比較例11]
繊維配合を、繊度0.3dtex(繊維径5.3μm)、繊維長5mmの延伸PET系短繊維60質量部と、繊度1.2dtex(繊維径10.7μm)、繊維長5mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例11と同じようにして、目付10.0g/mの湿式不織布を得た。この湿式不織布を、線圧135kN/m、処理速度40m/分の条件とした以外は、実施例11と同じように熱カレンダー処理し、密度0.85g/cmの電磁波シールド材用不織布を作製した。次いで、実施例14と同じように金属皮膜処理を施して、厚さ16.0μmの電磁波シールド材を得た。
[Comparative Example 11]
The fiber composition is a single component type having a fineness of 0.3 dtex (fiber diameter of 5.3 μm) and a fiber length of 5 mm and 60 parts by mass of drawn PET-based short fibers and a fineness of 1.2 dtex (fiber diameter of 10.7 μm) and a fiber length of 5 mm. A wet non-woven fabric having a grain size of 10.0 g / m 2 was obtained in the same manner as in Example 11 except that 40 parts by mass of unstretched PET-based short fibers for binders were used. This wet non-woven fabric was subjected to thermal calendar treatment in the same manner as in Example 11 except that the conditions were a linear pressure of 135 kN / m and a treatment speed of 40 m / min to prepare a non-woven fabric for an electromagnetic wave shielding material having a density of 0.85 g / cm 3. did. Next, a metal film treatment was performed in the same manner as in Example 14 to obtain an electromagnetic wave shielding material having a thickness of 16.0 μm.

[比較例12]
線圧100kN/m、処理速度50m/分の条件とした以外は、比較例11と同じようにして、目付10.0g/m、密度0.63g/cmの電磁波シールド材用不織布を作製した。次いで、比較例11と同じように金属皮膜処理を施して、厚さ20.0μmの電磁波シールド材を得た。
[Comparative Example 12]
A non-woven fabric for an electromagnetic wave shielding material having a basis weight of 10.0 g / m 2 and a density of 0.63 g / cm 3 was produced in the same manner as in Comparative Example 11 except that the linear pressure was 100 kN / m and the processing speed was 50 m / min. did. Next, a metal film treatment was performed in the same manner as in Comparative Example 11 to obtain an electromagnetic wave shielding material having a thickness of 20.0 μm.

[比較例13]
線圧90kN/m、処理速度100m/分の条件とした以外は、比較例11と同じようにして、目付10.0g/m、密度0.45g/cmの電磁波シールド材用不織布を作製した。次いで、比較例11と同じように金属皮膜処理を施して、厚さ26.0μmの電磁波シールド材を得た。
[Comparative Example 13]
A non-woven fabric for an electromagnetic wave shielding material having a basis weight of 10.0 g / m 2 and a density of 0.45 g / cm 3 was produced in the same manner as in Comparative Example 11 except that the linear pressure was 90 kN / m and the processing speed was 100 m / min. did. Next, a metal film treatment was performed in the same manner as in Comparative Example 11 to obtain an electromagnetic wave shielding material having a thickness of 26.0 μm.

[比較例14]
比較例11と同じようにして、目付10.0g/m、密度0.85g/cmの電磁波シールド材用不織布を作製した。次いで、実施例11と同じように金属皮膜処理を施して、厚さ16.0μmの電磁波シールド材を得た。
[Comparative Example 14]
In the same manner as in Comparative Example 11, a non-woven fabric for an electromagnetic wave shielding material having a basis weight of 10.0 g / m 2 and a density of 0.85 g / cm 3 was produced. Next, a metal film treatment was performed in the same manner as in Example 11 to obtain an electromagnetic wave shielding material having a thickness of 16.0 μm.

[比較例15]
比較例12と同じようにして、目付10.0g/m、密度0.63g/cmの電磁波シールド材用不織布を作製した。次いで、比較例14と同じように金属皮膜処理を施して、厚さ20.0μmの電磁波シールド材を得た。
[Comparative Example 15]
In the same manner as in Comparative Example 12, a non-woven fabric for an electromagnetic wave shielding material having a basis weight of 10.0 g / m 2 and a density of 0.63 g / cm 3 was produced. Next, a metal film treatment was performed in the same manner as in Comparative Example 14 to obtain an electromagnetic wave shielding material having a thickness of 20.0 μm.

[比較例16]
比較例13と同じようにして、目付10.0g/m、密度0.45g/cmの電磁波シールド材用不織布を作製した。次いで、比較例14と同じように金属皮膜処理を施して、厚さ26.0μmの電磁波シールド材を得た。
[Comparative Example 16]
In the same manner as in Comparative Example 13, a non-woven fabric for an electromagnetic wave shielding material having a basis weight of 10.0 g / m 2 and a density of 0.45 g / cm 3 was produced. Next, a metal film treatment was performed in the same manner as in Comparative Example 14 to obtain an electromagnetic wave shielding material having a thickness of 26.0 μm.

繊維径3μm未満の延伸ポリエステル系短繊維及び繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維を必須成分として含有し、目付が7g/m以下であり、密度が0.5〜0.8g/cmである湿式不織布である電磁波シールド材用不織布に、金属皮膜処理を施してなる電磁波シールド材である実施例11〜16は、電磁波シールド性に優れ、金属皮膜が剥がれ難いという効果が達成できた。また、金属皮膜処理が、スパッタリングによってニッケル被覆を形成させる処理、電気めっきによって銅被覆を形成させる処理及び電気めっきによってニッケル被覆を形成させる処理をこの順に含み、厚さが15μm以下であり、表面抵抗値が0.03Ω/□以下である実施例14〜16の電磁波シールド材の方が、実施例11〜13の電磁波シールド材と比べて、電磁波シールド性により優れ、金属皮膜がより剥がれ難いことが分かる。 It contains drawn polyester-based short fibers with a fiber diameter of less than 3 μm and undrawn polyester-based short fibers with a fiber diameter of 3 μm or more and 5 μm or less as essential components, has a texture of 7 g / m 2 or less, and has a density of 0.5 to 0. Examples 11 to 16 which are electromagnetic shielding materials obtained by applying a metal film treatment to a non-woven fabric for an electromagnetic wave shielding material which is a wet non-woven fabric of 8 g / cm 3 have an excellent electromagnetic shielding property and an effect that the metal film is hard to peel off. I was able to achieve it. Further, the metal film treatment includes a treatment of forming a nickel coating by sputtering, a treatment of forming a copper coating by electroplating, and a treatment of forming a nickel coating by electroplating in this order, and the thickness is 15 μm or less and the surface resistance. The electromagnetic shielding materials of Examples 14 to 16 having a value of 0.03Ω / □ or less are superior in electromagnetic shielding properties to the electromagnetic shielding materials of Examples 11 to 13, and the metal film may be more difficult to peel off. I understand.

比較例11〜16は、繊維径が3μm以上の延伸PET系短繊維と繊維径が5μm超の未延伸PET系短繊維とを含有し、目付が7g/m超である湿式不織布である電磁波シールド材用不織布に金属皮膜処理を施してなる電磁波シールド材である。金属皮膜処理が、スパッタリングによってニッケル被覆を形成させる処理、電気めっきによって銅被覆を形成させる処理及び電気めっきによってニッケル被覆を形成させる処理をこの順に含んでいる比較例11及び13では、電磁波シールド性及びピール評価の結果が悪かった。比較例12の電磁波シールド材は、電磁波シールド性及びピール評価が良かったが、電磁波シールド材の厚さは20.0μmであり、薄くすることができなかった。比較例14〜16では、無電解めっき処理によりニッケル皮膜で覆い、次に、電気めっき処理によって、銅皮膜とニッケル皮膜を順に積層して、金属皮膜処理を施していて、ピール評価の結果は良かったが、電磁波シールド性は悪かった。 Comparative Examples 11 to 16 are electromagnetic waves which are wet non-woven fabrics containing drawn PET short fibers having a fiber diameter of 3 μm or more and unstretched PET short fibers having a fiber diameter of more than 5 μm and having a grain size of more than 7 g / m 2. An electromagnetic wave shielding material obtained by applying a metal film treatment to a non-woven fabric for a shielding material. In Comparative Examples 11 and 13, the metal film treatment includes a treatment of forming a nickel coating by sputtering, a treatment of forming a copper coating by electroplating, and a treatment of forming a nickel coating by electroplating in this order. The result of the peel evaluation was bad. The electromagnetic wave shielding material of Comparative Example 12 had good electromagnetic wave shielding properties and peel evaluation, but the thickness of the electromagnetic wave shielding material was 20.0 μm and could not be reduced. In Comparative Examples 14 to 16, the copper film and the nickel film were laminated in this order by electroless plating, and then the copper film and nickel film were laminated in order and treated with a metal film. The peel evaluation result was good. However, the electromagnetic wave shielding property was poor.

≪本発明の電磁波シールド材用不織布<3>に関する実施例≫ << Examples of Nonwoven Fabric <3> for Electromagnetic Wave Shielding Material of the Present Invention >>

[実施例21]
繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸ポリエチレンテレフタレート(PET)系短繊維30質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mm、融点246℃の単一成分型バインダー用未延伸PET系短繊維40質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、通気度275cm/cm/sec、組織[上網:平織、下網:畝織]の抄造ワイヤーを設置した傾斜型抄紙機にて、湿式法で抄き上げ、135℃のシリンダードライヤーによって、バインダー用未延伸PET系短繊維を熱融着させて強度を発現させ、目付10g/mの湿式不織布とした。さらに、この湿式不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダー装置を使用して、熱ロール温度202℃、線圧100kN/m、処理速度40m/分の条件で熱カレンダー処理し、厚さ15μm、剥離強度2.1N/mの電磁波シールド材用不織布を作製した。
[Example 21]
30 parts by mass of stretched polyethylene terephthalate (PET) short fiber with a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm, and a stretched PET short fiber with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm. 30 parts by mass of the fiber and 40 parts by mass of the unstretched PET-based short fiber for a single component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm), a fiber length of 3 mm and a melting point of 246 ° C. were dispersed in water by a pulper. A uniform papermaking slurry having a concentration of 1% by mass was prepared. This slurry for making is made by a wet method with a slanted paper machine equipped with a paper making wire having an air permeability of 275 cm 3 / cm 2 / sec and a structure [upper net: plain weave, lower net: ridge weave], and is made at 135 ° C. The unstretched PET-based short fibers for the binder were heat-sealed to develop strength by using the cylinder dryer of No. 1 (Cylinder Dryer) to obtain a wet non-woven fabric having a grain size of 10 g / m 2 . Further, this wet non-woven fabric is subjected to a thermal roll temperature of 202 ° C., a linear pressure of 100 kN / m, and a processing speed of 40 m / min by using a 1-nip thermal calendar device composed of a dielectric heating jacket roll (metal thermal roll) and an elastic roll. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 2.1 N / m was prepared by performing a thermal calendar treatment under the above conditions.

[実施例22]
熱ロール温度を208℃とした以外は実施例21と同じようにして、厚さ15μm、剥離強度3.1N/mの電磁波シールド材用不織布を作製した。
[Example 22]
A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 3.1 N / m was produced in the same manner as in Example 21 except that the thermal roll temperature was set to 208 ° C.

[実施例23]
熱ロール温度を205℃とした以外は実施例21と同じようにして、厚さ15μm、剥離強度4.2N/mの電磁波シールド材用不織布を作製した。
[Example 23]
A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 4.2 N / m was produced in the same manner as in Example 21 except that the thermal roll temperature was set to 205 ° C.

[実施例24]
延伸ポリエステル系短繊維の配合を、繊度0.6dtex(繊維径7.4μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維30質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度3.5N/mの電磁波シールド材用不織布を作製した。
[Example 24]
The blend of stretched polyester-based short fibers includes 30 parts by mass of drawn PET-based short fibers having a fineness of 0.6 dtex (fiber diameter of 7.4 μm) and a fiber length of 3 mm, and a fineness of 0.1 dtex (fiber diameter of 3.0 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 3.5 N / m was produced in the same manner as in Example 23 except that the stretched PET-based short fibers were 30 parts by mass.

[実施例25]
延伸ポリエステル系短繊維の配合を、繊度0.6dtex(繊維径7.4μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維30質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度3.7N/mの電磁波シールド材用不織布を作製した。
[Example 25]
The blend of stretched polyester-based short fibers includes 30 parts by mass of drawn PET-based short fibers having a fineness of 0.6 dtex (fiber diameter of 7.4 μm) and a fiber length of 3 mm, and a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 3.7 N / m was produced in the same manner as in Example 23 except that the stretched PET-based short fibers were 30 parts by mass.

[実施例26]
延伸ポリエステル系短繊維の配合を、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維30質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度3.4N/mの電磁波シールド材用不織布を作製した。
[Example 26]
The blend of stretched polyester-based short fibers includes 30 parts by mass of stretched PET-based short fibers having a fineness of 0.3 dtex (fiber diameter of 5.3 μm) and a fiber length of 3 mm, and a fineness of 0.1 dtex (fiber diameter of 3.0 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 3.4 N / m was produced in the same manner as in Example 23 except that the stretched PET-based short fibers were 30 parts by mass.

[実施例27]
延伸ポリエステル系短繊維の配合を、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維30質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度3.3N/mの電磁波シールド材用不織布を作製した。
[Example 27]
The blend of stretched polyester-based short fibers includes 30 parts by mass of stretched PET-based short fibers having a fineness of 0.3 dtex (fiber diameter of 5.3 μm) and a fiber length of 3 mm, and a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 3.3 N / m was produced in the same manner as in Example 23 except that the stretched PET-based short fibers were 30 parts by mass.

[実施例28]
延伸ポリエステル系短繊維の配合を、繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維30質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度3.5N/mの電磁波シールド材用不織布を作製した。
[Example 28]
The blend of stretched polyester-based short fibers includes 30 parts by mass of stretched PET-based short fibers having a fineness of 0.1 dtex (fiber diameter 3.0 μm) and a fiber length of 3 mm, and a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 3.5 N / m was produced in the same manner as in Example 23 except that the stretched PET-based short fibers were 30 parts by mass.

[比較例21]
熱ロール温度を198℃とした以外は実施例21と同じようにして、厚さ15μm、剥離強度1.8N/mの電磁波シールド材用不織布を作製した。
[Comparative Example 21]
A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 1.8 N / m was produced in the same manner as in Example 21 except that the thermal roll temperature was 198 ° C.

[比較例22]
熱ロール温度を195℃とした以外は実施例21と同じようにして、厚さ15μm、剥離強度1.0N/mの電磁波シールド材用不織布を作製した。
[Comparative Example 22]
A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 1.0 N / m was produced in the same manner as in Example 21 except that the thermal roll temperature was set to 195 ° C.

[比較例23]
熱ロール温度を198℃とした以外は実施例24と同じようにして、厚さ15μm、剥離強度1.5N/mの電磁波シールド材用不織布を作製した。
[Comparative Example 23]
A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 1.5 N / m was produced in the same manner as in Example 24 except that the thermal roll temperature was 198 ° C.

[比較例24]
熱ロール温度を198℃とした以外は実施例25と同じようにして、厚さ15μm、剥離強度1.0N/mの電磁波シールド材用不織布を作製した。
[Comparative Example 24]
A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peel strength of 1.0 N / m was produced in the same manner as in Example 25 except that the thermal roll temperature was 198 ° C.

[比較例25]
繊維の配合を、繊度0.6dtex(繊維径7.4μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mm、融点246℃の単一成分型バインダー用未延伸PET系短繊維10質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度0.2N/mの電磁波シールド材用不織布を作製した。
[Comparative Example 25]
The composition of the fibers is as follows: 30 parts by mass of stretched PET short fibers having a fineness of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 3 mm, and drawn PET type having a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm. 30 parts by mass of short fibers, 0.1 dtex (fiber diameter 3.0 μm), 30 parts by mass of drawn PET-based short fibers having a fiber length of 3 mm, fineness 0.2 dtex (fiber diameter 4.3 μm), fiber length 3 mm, melting point A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 0.2 N / m was produced in the same manner as in Example 23 except that 10 parts by mass of unstretched PET-based short fibers for a single component type binder at 246 ° C. were used. did.

[比較例26]
繊維の配合を、繊度0.6dtex(繊維径7.4μm)、繊維長3mmの延伸PET系短繊維10質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mm、融点246℃の単一成分型バインダー用未延伸PET系短繊維90質量部とした以外は実施例23と同じようにして、厚さ15μm、剥離強度1.8N/mの電磁波シールド材用不織布を作製した。
[Comparative Example 26]
The fibers are blended with 10 parts by mass of drawn PET short fibers having a fineness of 0.6 dtex (fiber diameter of 7.4 μm) and a fiber length of 3 mm, and a fineness of 0.2 dtex (fiber diameter of 4.3 μm), a fiber length of 3 mm, and a melting point of 246 ° C. A non-woven fabric for an electromagnetic wave shielding material having a thickness of 15 μm and a peeling strength of 1.8 N / m was produced in the same manner as in Example 23 except that 90 parts by mass of unstretched PET-based short fibers for a single component type binder was prepared.

実施例及び比較例で作製した電磁波シールド材用不織布に対して、めっき前処理であるアルカリ処理を施し、無電解めっき法により、銅及びニッケルの金属めっき処理を施し、電磁波シールド材を作製した。 The non-woven fabric for electromagnetic wave shielding material produced in Examples and Comparative Examples was subjected to an alkali treatment, which is a pre-plating treatment, and a metal plating treatment of copper and nickel was performed by an electroless plating method to prepare an electromagnetic wave shielding material.

<評価>
[剥離強度]
電磁波シールド材用不織布を25mm×200mmに断裁し、両面テープ(ニチバン製、商品名:NW−R25、ナイスタック(登録商標)低粘着タイプ)を台紙(三菱製紙製、商品名:Nパールカード(登録商標) FSC認証−MX(450.0g/m))の非光沢面に貼り付け、その上から電磁波シールド材用不織布を重ね、その上面に包装テープ(カモ井工業製、商品名:No.220W)を貼り付け、図1のような形で剥離試験を実施し、剥離強度を測定した。剥離試験には、SHIMPO(日本電産シンポ)製、装置名:デジタルフォースゲージFGC−2Bを用い、治具間距離1.8cmとし、該距離の中央部分に電磁波シールド材用不織布があるようにし、速度100mm/minの条件で測定した。
<Evaluation>
[Peeling strength]
Cut the non-woven fabric for electromagnetic wave shielding material into 25 mm x 200 mm, and attach double-sided tape (Nichiban, product name: NW-R25, Nystack (registered trademark) low adhesive type) to the mount (Mitsubishi Paper, product name: N Pearl Card). FSC certification-MX (450.0g / m 2 )) is attached to the non-glossy surface, a non-woven fabric for electromagnetic wave shielding material is layered on it, and a wrapping tape (manufactured by Kamoi Kogyo, product name: No. .220W) was pasted, and a peeling test was carried out in the form as shown in FIG. 1 to measure the peeling strength. For the peeling test, use SHIMPO (Nippon Densan Symposium), device name: Digital Force Gauge FGC-2B, set the distance between jigs to 1.8 cm, and make sure that there is a non-woven fabric for electromagnetic wave shielding material in the center of the distance. , Measured under the condition of a speed of 100 mm / min.

[耐繊維脱落性]
電磁波シールド材用不織布を採取し、25mm×200mmに断裁し、学振型摩擦堅牢度試験機を使い、500gfの錘を載せたビリケンモス(登録商標)布を使って、電磁波シールド材用不織布を5往復擦り、下記基準で評価した。
[Fiber drop resistance]
Collect the non-woven fabric for electromagnetic wave shielding material, cut it into 25 mm x 200 mm, use a Gakushin type friction fastness tester, and use a Billikenmos (registered trademark) cloth with a weight of 500 gf to cut the non-woven fabric for electromagnetic wave shield material 5 It was rubbed back and forth and evaluated according to the following criteria.

「◎」ビリケンモス布に繊維が付着しない。
「○」ビリケンモス布に繊維がほとんど付着しない。
「△」ビリケンモス布に繊維が若干付着するが実用上問題が無い。
「×」ビリケンモス布に繊維が付着し、場合によっては基材が破断する。
"◎" Fibers do not adhere to the Billikenmos cloth.
"○" Fibers hardly adhere to the Billikenmos cloth.
"△" Some fibers adhere to the Billikenmos cloth, but there is no problem in practical use.
"X" Fibers adhere to the Billikenmos cloth, and in some cases, the base material breaks.

[欠点頻度]
めっき前処理であるアルカリ処理を施した電磁波シールド材用不織布に金属めっき処理を施した際における1000m当たりの欠点頻度を確認した。
[Defect frequency]
We confirmed the frequency of defects per 1000 m when the non-woven fabric for electromagnetic wave shielding material, which had been subjected to alkali treatment, which is a pre-plating treatment, was subjected to metal plating treatment.

「◎」0個/1000m。
「○」1個/1000m。
「△」2個/1000m。
「×」3個以上/1000m。
"◎" 0 pieces / 1000m.
"○" 1 piece / 1000m.
"△" 2 pieces / 1000m.
"X" 3 or more / 1000m.

[電磁波シールド性(電界)]
同軸管法による電磁波シールド性(電界)に基づき測定した。周波数40MHz〜3GHzの範囲では同軸管法39Dによって測定し、周波数500MHz〜18GHzの範囲では、同軸管法GPC7によって測定した。周波数500MHz〜3GHzは、同軸管法39Dと同軸管法7の両方で測定するが、低い数値を採用した。
[Electromagnetic wave shielding property (electric field)]
The measurement was performed based on the electromagnetic wave shielding property (electric field) by the coaxial tube method. The frequency range of 40 MHz to 3 GHz was measured by the coaxial tube method 39D, and the frequency range of 500 MHz to 18 GHz was measured by the coaxial tube method GPC7. The frequencies of 500 MHz to 3 GHz are measured by both the coaxial tube method 39D and the coaxial tube method 7, but low values are adopted.

電磁波シールド性に記載の数値が高い程、電磁波シールド性が優れていることを示す。 The higher the value described in the electromagnetic wave shielding property, the better the electromagnetic wave shielding property.

実施例21〜28の電磁波シールド材用不織布は、比較例21〜26の電磁波シールド材用不織布と比べて、剥離強度が高いために、優れた耐繊維脱落性があり、欠点頻度も少ないために歩留まりも良好で優れた電磁波シールド性が発現した。 The non-woven fabrics for electromagnetic wave shielding materials of Examples 21 to 28 have higher peel strength than the non-woven fabrics for electromagnetic wave shielding materials of Comparative Examples 21 to 26, and therefore have excellent fiber drop resistance and less frequent defects. The yield was also good, and excellent electromagnetic wave shielding properties were exhibited.

実施例21〜23を比較すると、熱ロール温度が205℃である実施例23において、剥離強度が最も高く、耐繊維脱落性が向上した。一方、比較例21〜24では、熱ロール温度が200℃よりも低かったために、電磁波シールド材用不織布の剥離強度が低く、耐繊維脱落性が悪く、欠点頻度も非常に多かった。 Comparing Examples 21 to 23, in Example 23 in which the thermal roll temperature was 205 ° C., the peel strength was the highest and the fiber dropout resistance was improved. On the other hand, in Comparative Examples 21 to 24, since the thermal roll temperature was lower than 200 ° C., the peel strength of the non-woven fabric for the electromagnetic wave shielding material was low, the fiber drop resistance was poor, and the frequency of defects was very high.

比較例25及び26は、未延伸ポリエステル系短繊維の含有率が電磁波シールド材用不織布を構成する繊維全体の20質量%未満又は80質量%超えであり、好ましい範囲から外れていたため、熱ロール温度が205℃と、好ましい範囲であったにもかかわらず、剥離強度が低く、耐繊維脱落性の悪い電磁波シールド材用不織布となった。 In Comparative Examples 25 and 26, the content of the unstretched polyester-based short fibers was less than 20% by mass or more than 80% by mass of the total fibers constituting the non-woven fabric for the electromagnetic wave shielding material, which was out of the preferable range, and thus the thermal roll temperature. The temperature was 205 ° C., which was a preferable range, but the peeling strength was low, and the non-woven fabric for electromagnetic wave shielding material having poor fiber dropout resistance was obtained.

本発明の電磁波シールド材用不織布及び電磁波シールド材は、電子機器用、通信機器用、電化製品用などとして好適に使用される。これらの機器や製品には、携帯電話、スマートフォン、モバイルフォン、パーソナルコンピューター、モバイルなどの機器やこれらを収納するケース、テレビジョンや洗濯機などの電化製品が含まれる。特に、本発明の電磁波シールド材は、プラスチックハウジング、フレキシブルプリント基板、電線ケーブル、コネクターケーブル等に、接着、圧着、融着、巻きつけ等により固定することにより好適に使用される。 The non-woven fabric for electromagnetic wave shielding material and the electromagnetic wave shielding material of the present invention are suitably used for electronic devices, communication devices, electric appliances and the like. These devices and products include devices such as mobile phones, smartphones, mobile phones, personal computers and mobiles, cases for storing them, and electrical appliances such as televisions and washing machines. In particular, the electromagnetic wave shielding material of the present invention is preferably used by fixing it to a plastic housing, a flexible printed substrate, an electric wire cable, a connector cable, or the like by adhesion, crimping, fusion, winding, or the like.

Claims (6)

湿式不織布である電磁波シールド材用不織布において、繊維径3μm未満の延伸ポリエステル系短繊維及び繊維径が3μm以上5μm以下の未延伸ポリエステル系短繊維を必須成分として含有し、目付が7g/m以下であり、密度が0.5〜0.8g/cmであることを特徴とする電磁波シールド材用不織布。 A non-woven fabric for electromagnetic wave shielding material, which is a wet non-woven fabric, contains drawn polyester-based short fibers having a fiber diameter of less than 3 μm and unstretched polyester-based short fibers having a fiber diameter of 3 μm or more and 5 μm or less as essential components, and has a texture of 7 g / m 2 or less. A non-woven fabric for an electromagnetic wave shielding material, which has a density of 0.5 to 0.8 g / cm 3 . 湿式不織布である電磁波シールド材用不織布において、延伸ポリエステル系短繊維と融点が220℃以上250℃以下の未延伸ポリエステル系短繊維を含有し、該不織布の剥離強度(縦方向)が2.0N/m以上であることを特徴とする電磁波シールド材用不織布。 The non-woven fabric for electromagnetic wave shielding material, which is a wet non-woven fabric, contains stretched polyester-based short fibers and unstretched polyester-based short fibers having a melting point of 220 ° C. or higher and 250 ° C. or lower, and the peel strength (longitudinal direction) of the non-woven fabric is 2.0 N / Non-woven fabric for electromagnetic wave shielding material characterized by being m or more. 請求項1〜2のいずれかに記載の電磁波シールド材用不織布に、金属皮膜処理が施されていることを特徴とする電磁波シールド材。 The electromagnetic wave shielding material according to any one of claims 1 to 2, wherein the non-woven fabric for the electromagnetic wave shielding material is treated with a metal film. 金属皮膜処理が、無電解金属めっき処理、電気めっき処理、金属蒸着処理及びスパッタリング処理からなる群から選択される1種以上の処理であることを特徴とする請求項3記載の電磁波シールド材。 The electromagnetic wave shielding material according to claim 3, wherein the metal film treatment is one or more treatments selected from the group consisting of electroless metal plating treatment, electroplating treatment, metal vapor deposition treatment, and sputtering treatment. 金属皮膜処理が、スパッタリングによってニッケル被覆を形成させる処理、電気めっきによって銅被覆を形成させる処理及び電気めっきによってニッケル被覆を形成させる処理をこの順に含むことを特徴とする請求項3記載の電磁波シールド材。 The electromagnetic wave shielding material according to claim 3, wherein the metal film treatment includes a treatment of forming a nickel coating by sputtering, a treatment of forming a copper coating by electroplating, and a treatment of forming a nickel coating by electroplating in this order. .. 電磁波シールド材の厚さが15μm以下であり、電磁波シールド材の表面抵抗値が0.03Ω/□以下である請求項3〜5のいずれかに記載の電磁波シールド材。 The electromagnetic wave shielding material according to any one of claims 3 to 5, wherein the thickness of the electromagnetic wave shielding material is 15 μm or less, and the surface resistance value of the electromagnetic wave shielding material is 0.03Ω / □ or less.
JP2019231360A 2018-09-19 2019-12-23 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material Pending JP2020167375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021198967A JP7016989B1 (en) 2018-09-19 2021-12-08 Manufacturing method of electromagnetic wave shielding material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018174647 2018-09-19
JP2018174647 2018-09-19
JP2019061442 2019-03-27
JP2019061442 2019-03-27
JP2019063014 2019-03-28
JP2019063014 2019-03-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019569514A Division JP6669940B1 (en) 2018-09-19 2019-09-11 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2021198967A Division JP7016989B1 (en) 2018-09-19 2021-12-08 Manufacturing method of electromagnetic wave shielding material
JP2024064006A Division JP2024086875A (en) 2018-09-19 2024-04-11 Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material

Publications (1)

Publication Number Publication Date
JP2020167375A true JP2020167375A (en) 2020-10-08

Family

ID=69887010

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019569514A Active JP6669940B1 (en) 2018-09-19 2019-09-11 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
JP2019231360A Pending JP2020167375A (en) 2018-09-19 2019-12-23 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
JP2021198967A Active JP7016989B1 (en) 2018-09-19 2021-12-08 Manufacturing method of electromagnetic wave shielding material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019569514A Active JP6669940B1 (en) 2018-09-19 2019-09-11 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021198967A Active JP7016989B1 (en) 2018-09-19 2021-12-08 Manufacturing method of electromagnetic wave shielding material

Country Status (5)

Country Link
JP (3) JP6669940B1 (en)
KR (1) KR20210057047A (en)
CN (3) CN112703281B (en)
TW (1) TW202030392A (en)
WO (1) WO2020059582A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699797A (en) * 2021-09-02 2021-11-26 前沿新材料研究院(深圳)有限公司 Composite non-woven fabric and preparation method thereof, electromagnetic shielding film and integrated circuit board
CN113684608B (en) * 2021-09-02 2023-03-28 前沿新材料研究院(深圳)有限公司 Nonwoven fabric and electromagnetic shielding film
CN114059110A (en) * 2021-11-01 2022-02-18 江门职业技术学院 Radiation-proof polyester fiber surface treatment method and application
JP7219364B1 (en) 2022-08-01 2023-02-07 大王製紙株式会社 sheet nonwoven fabric
JP7323728B1 (en) * 2023-01-31 2023-08-08 大王製紙株式会社 Electromagnetic wave shielding substrate and electromagnetic wave shielding material containing wet-laid nonwoven fabric

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075485A (en) * 2012-10-04 2014-04-24 Teijin Ltd Electromagnetic wave shielding material

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840800B1 (en) 1969-11-08 1973-12-03
JP2001200376A (en) 2000-01-20 2001-07-24 Hakuto Kagi Kofun Yugenkoshi Method for depositing electro-magnetic wave shield film
JP3692931B2 (en) * 2000-12-11 2005-09-07 東レ株式会社 POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME
CN100412240C (en) * 2003-05-19 2008-08-20 东丽株式会社 Fiber excellent in magnetic field responsiveness and conductivity and product consisting of it
JP2005123479A (en) * 2003-10-17 2005-05-12 Nihon Glassfiber Industrial Co Ltd Electromagnetic wave shield structure
JP2007076288A (en) * 2005-09-16 2007-03-29 Dainippon Printing Co Ltd Metal foil sheet for forming conductive pattern
EP1942214B1 (en) * 2005-09-28 2010-04-21 Toray Industries, Inc. Polyester fiber and textile product comprising the same
JP2007149761A (en) * 2005-11-24 2007-06-14 Japan Vilene Co Ltd Electromagnetic shielding sheet, and method of manufacturing same
KR101254908B1 (en) * 2009-07-24 2013-04-19 아사히 가세이 셍이 가부시키가이샤 Electromagnetic shielding sheet
RU2013124031A (en) * 2010-10-27 2014-12-10 Тейдзин Лимитед STAPLE FIBERS FROM COMPLEX POLYESTER PRODUCED FROM BIOMASS AND NONWOVEN MATERIAL MADE FROM THEM BY THE HYDRAULIC HANDFORMING METHOD
JP5841778B2 (en) * 2011-09-02 2016-01-13 大王製紙株式会社 Adhesive tape substrate
JP2013171706A (en) 2012-02-21 2013-09-02 Mitsubishi Paper Mills Ltd Lithium ion secondary battery separator manufacturing method, lithium ion secondary battery separator, and lithium ion secondary battery
WO2013176176A1 (en) * 2012-05-22 2013-11-28 三井化学株式会社 Nonwoven fabric laminate for foam molding, complex of urethane foam-molded body using said nonwoven fabric laminate, and method for manufacturing nonwoven fabric laminate for foam molding
JP2014186857A (en) * 2013-03-22 2014-10-02 Mitsubishi Paper Mills Ltd Separator base material for lithium ion secondary batteries, and separator for lithium ion secondary batteries
JP6112931B2 (en) * 2013-03-26 2017-04-12 日本エステル株式会社 Polyester composite short fiber
JP6038714B2 (en) * 2013-04-09 2016-12-07 株式会社クラレ Conductive nonwoven fabric
CN104518188B (en) * 2013-09-26 2018-06-08 三菱制纸株式会社 Secondary lithium batteries partition board base material and secondary lithium batteries partition board
KR101548279B1 (en) * 2013-12-20 2015-08-28 주식회사 불스원신소재 Non-Woven Fabric for Shielding and Absorbing of Electromagnetic Waves or Non-Woven Fabric Composite Comprising the Same
KR101424030B1 (en) * 2014-01-13 2014-07-28 톱텍에이치앤에스 주식회사 A shield sheet for preventing electromagnetic wave
JP6278922B2 (en) * 2015-03-30 2018-02-14 Jx金属株式会社 Electromagnetic shielding material
JP6625922B2 (en) * 2016-03-30 2019-12-25 三菱製紙株式会社 Heat dissipation sheet substrate
JP6799514B2 (en) * 2017-09-11 2020-12-16 三菱製紙株式会社 Manufacturing method of non-woven fabric base material for electromagnetic wave shielding material
JP7125836B2 (en) * 2017-09-11 2022-08-25 三菱製紙株式会社 Non-woven base material for electromagnetic wave shielding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075485A (en) * 2012-10-04 2014-04-24 Teijin Ltd Electromagnetic wave shielding material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"「帝人グループの不織布技術概要と商品開発」", 日本不織布協会衛生・メディカル部会分科会, 講演要旨, JPN6019045859, 24 August 2017 (2017-08-24), ISSN: 0005108262 *
"「抄紙用PET繊維につて」", 帝人ファイバー株式会社, JPN6019045862, 27 May 2008 (2008-05-27), ISSN: 0005108263 *

Also Published As

Publication number Publication date
WO2020059582A1 (en) 2020-03-26
TW202030392A (en) 2020-08-16
CN112703281B (en) 2023-01-06
CN115538031B (en) 2024-06-14
JPWO2020059582A1 (en) 2021-01-07
CN112703281A (en) 2021-04-23
CN115559148A (en) 2023-01-03
JP7016989B1 (en) 2022-02-07
KR20210057047A (en) 2021-05-20
CN115538031A (en) 2022-12-30
JP2022043131A (en) 2022-03-15
JP6669940B1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP7016989B1 (en) Manufacturing method of electromagnetic wave shielding material
US9233517B2 (en) Electromagnetic shielding sheet
JPWO2007083822A1 (en) Conductive gasket material
JP6437439B2 (en) Conductive aramid paper and manufacturing method thereof
CN113089183B (en) Conductive nonwoven fabric and method for producing melt-blown nonwoven fabric used therein
JP7125836B2 (en) Non-woven base material for electromagnetic wave shielding
JP2024086875A (en) Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
JP2021140950A (en) Conductive pressure sensitive adhesive sheet
JP6799514B2 (en) Manufacturing method of non-woven fabric base material for electromagnetic wave shielding material
JP7323728B1 (en) Electromagnetic wave shielding substrate and electromagnetic wave shielding material containing wet-laid nonwoven fabric
JP2022083165A (en) Nonwoven fabric for electromagnetic shield material
JP7191135B2 (en) Method for producing nonwoven fabric base material for electromagnetic wave shielding material
JP5280088B2 (en) Conductive material
JP2020050985A (en) Unwoven fabric base material for electromagnetic wave shielding member
TW202407186A (en) Sheet-like non-woven fabric having a low basis weight and good secondary process-ability
TW201607742A (en) Conductive non-woven fabric and manufacturing method of melt-blown non-woven fabric used in the conductive non-woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230905

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130