JP2020165908A - Battery characteristic detector - Google Patents

Battery characteristic detector Download PDF

Info

Publication number
JP2020165908A
JP2020165908A JP2019068788A JP2019068788A JP2020165908A JP 2020165908 A JP2020165908 A JP 2020165908A JP 2019068788 A JP2019068788 A JP 2019068788A JP 2019068788 A JP2019068788 A JP 2019068788A JP 2020165908 A JP2020165908 A JP 2020165908A
Authority
JP
Japan
Prior art keywords
battery
value
temperature
time point
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019068788A
Other languages
Japanese (ja)
Other versions
JP7207100B2 (en
Inventor
良樹 竹内
Yoshiki Takeuchi
良樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019068788A priority Critical patent/JP7207100B2/en
Priority to DE102020108488.9A priority patent/DE102020108488A1/en
Priority to CN202010229733.8A priority patent/CN111751754A/en
Publication of JP2020165908A publication Critical patent/JP2020165908A/en
Application granted granted Critical
Publication of JP7207100B2 publication Critical patent/JP7207100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

To enable the current characteristic value of a battery to be estimated with good accuracy, even when there is a large deviation between the battery temperature at previous degradation determination time and the current battery temperature.SOLUTION: Hereunder, a characteristic value D corresponding to a temperature T which a battery the degradation level of which is equivalent to a prescribed first reference point of time tb has, is defined as a first reference value Db, and a characteristic value D corresponding to a temperature T which a battery the degradation level of which is equivalent to a second reference point of time te following the first reference point of time tb has, is defined as a second reference value De. A detection unit detects degradation information α that indicates the degradation state of the battery, on the basis of a characteristic value D1 at a prescribed first point of time t1 and both reference values Db, De at a battery temperature T1 at the first point of time t1. An estimation unit estimates a characteristic value D2 at a second point of time t2 on the basis of the detected degradation information α and the temperature T2 of a battery 10 at a prescribed second point of time t2 following the first point of time t1.SELECTED DRAWING: Figure 3

Description

本発明は、電池の特性値を検知する電池特性検知装置に関する。 The present invention relates to a battery characteristic detection device that detects a characteristic value of a battery.

車両に搭載される電池の制御装置の中には、電池の内部抵抗値を検出し、その抵抗値に基づいて、電池の使用を制御するものがある。そして、そのような技術を示す文献としては、次の特許文献1がある。 Some battery control devices mounted on a vehicle detect the internal resistance value of the battery and control the use of the battery based on the resistance value. Then, as a document showing such a technique, there is the following Patent Document 1.

特開2018−148720号公報JP-A-2018-148720

精度良く電池の抵抗値を実測するには、ある程度まとまった量の大電流を、電池の充放電により内部抵抗に流す必要がある。そのため、電池によっては、車両の起動後ただちに抵抗値を把握することはできない場合がある。そして、抵抗値を把握できないと、その抵抗値に基づいて、電池の使用を制御することができない。そのため、電池を使用できる期間が減り、燃費の低下に繋がる。 In order to measure the resistance value of a battery with high accuracy, it is necessary to pass a large amount of current to the internal resistance by charging and discharging the battery. Therefore, depending on the battery, it may not be possible to grasp the resistance value immediately after the vehicle is started. If the resistance value cannot be grasped, the use of the battery cannot be controlled based on the resistance value. Therefore, the period during which the battery can be used is reduced, leading to a decrease in fuel consumption.

他方、前回の起動期間中における電池の抵抗値を保存して、今回の起動後もその前回の抵抗値を引き継ぐことはできない。電池の抵抗値は、温度依存性があるため、前回の起動期間中の電池の温度と、今回の起動時の電池の温度とが異なると、電池の抵抗値も異なってくるからである。 On the other hand, the resistance value of the battery during the previous startup period cannot be saved and the previous resistance value cannot be inherited even after the current startup. This is because the resistance value of the battery is temperature-dependent, so if the temperature of the battery during the previous startup period and the temperature of the battery at the time of the current startup are different, the resistance value of the battery will also be different.

この解決方法として、次の方法が考えられる。前回の起動期間中において、その時の電池の抵抗値と、その電池の新品時点における抵抗値との比を、電池の劣化状態を示す係数(以下「劣化係数」という。)として算出して保存する。そして、今回の起動後は、その保存されている劣化係数と現在の温度とに基づいて現在の抵抗値を推定する。それによれば、今回の起動後における抵抗値の実測を待たなくても、起動後ただちに抵抗値を取得して電池を使用できる。 The following method can be considered as a solution to this problem. During the previous startup period, the ratio of the resistance value of the battery at that time to the resistance value of the battery when it is new is calculated and stored as a coefficient indicating the deterioration state of the battery (hereinafter referred to as "deterioration coefficient"). .. Then, after this start-up, the current resistance value is estimated based on the stored deterioration coefficient and the current temperature. According to this, the resistance value can be acquired immediately after the start-up and the battery can be used without waiting for the actual measurement of the resistance value after the start-up.

しかしながら、劣化係数は、同じ劣化状態なら温度が変化しても完全に一定という訳ではなく、電池の態様や温度範囲等によっては、同じ劣化状態でも温度により劣化係数が変化してしまう場合がある。そのため、前回の起動期間中における温度と、現在の温度との乖離が大きいと、前回の劣化係数に基づく現在の抵抗値の推定精度が、悪化することにもなり得る。 However, the deterioration coefficient is not completely constant even if the temperature changes in the same deterioration state, and the deterioration coefficient may change depending on the temperature even in the same deterioration state depending on the mode and temperature range of the battery. .. Therefore, if the difference between the temperature during the previous start-up period and the current temperature is large, the accuracy of estimating the current resistance value based on the previous deterioration coefficient may deteriorate.

なお、以上と同様の課題は、電池の抵抗値を推定する場合に限らず、例えば電池の充電容量等の各種特性値を推定する場合についても生じ得る。 The same problem as described above may occur not only in the case of estimating the resistance value of the battery but also in the case of estimating various characteristic values such as the charge capacity of the battery.

本発明は、上記事情に鑑みてなされたものであり、前回の劣化判定時の電池の温度と、現在の電池の温度との乖離が大きくても、現在の電池の特性値を精度よく推定できるようにすることを目的とする。 The present invention has been made in view of the above circumstances, and even if the difference between the battery temperature at the time of the previous deterioration determination and the current battery temperature is large, the characteristic value of the current battery can be estimated accurately. The purpose is to do so.

本発明の電池特性検知装置は、検出部と推定部とを有する。以下では、所定の第1基準時点相当の劣化の電池が有する、前記電池の温度に応じた特性値を第1基準値とし、前記第1基準時点よりも後の第2基準時点相当の劣化の前記電池が有する、前記電池の温度に応じた前記特性値を第2基準値とする。 The battery characteristic detection device of the present invention has a detection unit and an estimation unit. In the following, the characteristic value corresponding to the temperature of the battery possessed by the deteriorated battery corresponding to the predetermined first reference time is set as the first reference value, and the deterioration corresponding to the second reference time after the first reference time is defined as the first reference value. The characteristic value of the battery according to the temperature of the battery is used as the second reference value.

前記検出部は、所定の第1時点における前記特性値と、前記第1時点での前記電池の温度における、前記第1基準値及び前記第2基準値とに基づいて、前記電池の劣化状態を示す情報である劣化情報を検出する。前記推定部は、検出された前記劣化情報と、前記第1時点よりも後の所定の第2時点での前記電池の温度とに基づいて、前記第2時点における前記特性値を推定する。 The detection unit determines the deteriorated state of the battery based on the characteristic value at a predetermined first time point and the first reference value and the second reference value at the temperature of the battery at the first time point. Detects deterioration information, which is the information shown. The estimation unit estimates the characteristic value at the second time point based on the detected deterioration information and the temperature of the battery at a predetermined second time point after the first time point.

本発明によれば、検出部は、第1時点における劣化情報を検出し、推定部は、その劣化情報と第2時点における電池の温度とに基づいて、第2時点における特性値を推定する。そのため、温度変化に対応して第2時点での特性値を推定できる。 According to the present invention, the detection unit detects the deterioration information at the first time point, and the estimation unit estimates the characteristic value at the second time point based on the deterioration information and the temperature of the battery at the second time point. Therefore, the characteristic value at the second time point can be estimated in response to the temperature change.

しかも、その劣化情報は、上記の第1基準値と第2基準値との2つの基準値に基づいて定められる。そのため、劣化情報は、1つの基準値(例えば、新品時点での特性値や、終末時点での特性値)のみに基づいて定められる上記の劣化係数に比べて、より精度良く電池の劣化状態を示すことができる。そのため、第1時点における電池の温度と第2時点における電池の温度との乖離が大きくても、劣化情報は、さほど温度に影響されず、その時々の劣化状態をより精度良く示すことができる。その劣化情報に基づいて、第2時点における電池の特性値を推定することにより、特性値の推定精度を向上させることができる。 Moreover, the deterioration information is determined based on the above-mentioned two reference values, the first reference value and the second reference value. Therefore, the deterioration information shows the deterioration state of the battery more accurately than the above-mentioned deterioration coefficient determined based on only one reference value (for example, the characteristic value at the time of new product or the characteristic value at the time of termination). Can be shown. Therefore, even if the difference between the battery temperature at the first time point and the battery temperature at the second time point is large, the deterioration information is not so affected by the temperature, and the deterioration state at each time can be shown more accurately. By estimating the characteristic value of the battery at the second time point based on the deterioration information, the estimation accuracy of the characteristic value can be improved.

第1実施形態の電池特性検知装置を示す回路図Circuit diagram showing the battery characteristic detection device of the first embodiment 電池特性検知装置による検出及び推定等を示すブロック図Block diagram showing detection and estimation by the battery characteristic detection device 電池特性検知装置による検出及び推定を示すグラフGraph showing detection and estimation by the battery characteristic detection device 各劣化値等における温度と劣化係数との関係を示すグラフGraph showing the relationship between temperature and deterioration coefficient at each deterioration value, etc. 各値の推移値を示すグラフGraph showing the transition value of each value 第2実施形態において、電池特性検知装置による検出及び推定を示すグラフIn the second embodiment, a graph showing detection and estimation by the battery characteristic detection device. 第3実施形態において、電池特性検知装置による検出及び推定を示すグラフIn the third embodiment, a graph showing detection and estimation by the battery characteristic detection device. 第4実施形態において、電池特性検知装置による検出及び推定を示すグラフIn the fourth embodiment, a graph showing detection and estimation by the battery characteristic detection device.

次に、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は、実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更して実施できる。 Next, an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments, and can be appropriately modified and implemented without departing from the spirit of the invention.

[第1実施形態]
図1は、第1実施形態の電池特性検知装置及びその周辺を示す回路図である。車両には、エンジンの他、電池10、回転電機60、負荷70等が搭載されている。その電池10に対して、電池特性検知装置20が設けられている。エンジンに対しては、起動スイッチ80が設けられている。電池10は、内部抵抗13を有する。以下では、この内部抵抗13の抵抗値を「電池10の抵抗値R」という。電池特性検知装置20は、基準値取得部25と、検出部31と、推定部32とを有する。
[First Embodiment]
FIG. 1 is a circuit diagram showing the battery characteristic detection device of the first embodiment and its surroundings. In addition to the engine, the vehicle is equipped with a battery 10, a rotary electric machine 60, a load 70, and the like. A battery characteristic detection device 20 is provided for the battery 10. A start switch 80 is provided for the engine. The battery 10 has an internal resistance 13. Hereinafter, the resistance value of the internal resistance 13 is referred to as “resistance value R of the battery 10”. The battery characteristic detection device 20 includes a reference value acquisition unit 25, a detection unit 31, and an estimation unit 32.

電池10は、本実施形態ではリチウム電池であるが、その他の電池であってもよい。負荷70は、各種電気機器等を含む。電池10は、回転電機60及び負荷70に給電する。また、電池10は、回転電機60により給電されて充電される。 The battery 10 is a lithium battery in this embodiment, but may be another battery. The load 70 includes various electric devices and the like. The battery 10 supplies power to the rotary electric machine 60 and the load 70. Further, the battery 10 is supplied with power by the rotary electric machine 60 to be charged.

次に、以下に示す各用語について説明する。電池10の劣化状態を示す値を「劣化値α」とする。本実施形態では、この「劣化値α」が、本発明でいう「劣化情報」に該当する。電池10が新品の時点を「新品時点tb」とする。本実施形態では、この「新品時点tb」が、本発明でいう「第1基準時点」に該当する。新品時点tbから、例えば10年等の所定期間が経過した時点を「終末時点te」とする。本実施形態では、この「終末時点te」が、本発明でいう「第2基準時点」に該当する。 Next, each term shown below will be described. A value indicating a deteriorated state of the battery 10 is defined as a “deteriorated value α”. In the present embodiment, this "deterioration value α" corresponds to the "deterioration information" in the present invention. The time when the battery 10 is new is referred to as "new time point tb". In the present embodiment, this "new time point tb" corresponds to the "first reference time point" in the present invention. The time point at which a predetermined period such as 10 years has passed from the new point point tb is referred to as "end point point te". In the present embodiment, this "terminal time point te" corresponds to the "second reference time point" in the present invention.

新品時点tbよりも後の所定時点を「第1時点t1」とする。詳しくは、本実施形態では、第1時点t1は、起動スイッチ80をOFFにする前に、最後に検出部31により劣化値αを検出したタイミングである。第1時点t1よりも後の所定時点を「第2時点t2」とする。詳しくは、本実施形態では、第2時点t2は、第1時点t1の後に起動スイッチ80をOFFにした後、最初に起動スイッチ80をONにしたタイミングである。 A predetermined time point after the new time point tb is referred to as "first time point t1". Specifically, in the present embodiment, the first time point t1 is the timing at which the deterioration value α is finally detected by the detection unit 31 before the start switch 80 is turned off. A predetermined time point after the first time point t1 is referred to as "second time point t2". Specifically, in the present embodiment, the second time point t2 is the timing at which the start switch 80 is first turned on after the start switch 80 is turned off after the first time point t1.

第1時点t1における電池10の温度Tを「第1温度T1」とする。第2時点t2における電池10の温度Tを「第2温度T2」とする。第1時点t1における電池10の抵抗値Rを「第1抵抗値R1」とする。第2時点t2における電池10の抵抗値Rを「第2抵抗値R2」とする。 The temperature T of the battery 10 at the first time point t1 is defined as the “first temperature T1”. The temperature T of the battery 10 at the second time point t2 is defined as the “second temperature T2”. The resistance value R of the battery 10 at the first time point t1 is defined as the “first resistance value R1”. The resistance value R of the battery 10 at the second time point t2 is defined as the “second resistance value R2”.

新品時点tb相当の劣化の電池10が温度Tに応じて有する抵抗値Rを「新品抵抗値Rb」とする。第1温度T1における新品抵抗値Rbを「第1新品抵抗値Rb1」とする。第2温度T2における新品抵抗値Rbを「第2新品抵抗値Rb2」とする。 The resistance value R of the deteriorated battery 10 corresponding to tb at the time of new product according to the temperature T is defined as "new resistance value Rb". The new resistance value Rb at the first temperature T1 is defined as the “first new resistance value Rb1”. The new resistance value Rb at the second temperature T2 is defined as the “second new resistance value Rb2”.

終末時点te相当の劣化の電池10が温度Tに応じて有する抵抗値Rを「終末抵抗値Re」とする。第1温度T1における終末抵抗値Reを「第1終末抵抗値Re1」とする。第2温度T2における終末抵抗値Reを「第2終末抵抗値Re2」とする。 The resistance value R of the deteriorated battery 10 corresponding to the terminal point te according to the temperature T is defined as the “terminal resistance value Re”. The terminal resistance value Re at the first temperature T1 is defined as the “first terminal resistance value Re1”. The terminal resistance value Re at the second temperature T2 is defined as the “second terminal resistance value Re2”.

所定の対象時点における電池10の抵抗値Rと、当該対象時点の電池10の温度Tにおける終末抵抗値Reとの比(R/Re)を「劣化係数D」とする。本実施形態では、この「劣化係数D」が、本発明でいう「特性値」に該当する。第1時点t1における劣化係数Dを「第1劣化係数D1」とする。第2時点t2における劣化係数Dを「第2劣化係数D2」とする。 The ratio (R / Re) of the resistance value R of the battery 10 at a predetermined target time point to the terminal resistance value Re at the temperature T of the battery 10 at the target time point is defined as the “deterioration coefficient D”. In the present embodiment, this "deterioration coefficient D" corresponds to the "characteristic value" referred to in the present invention. The deterioration coefficient D at the first time point t1 is defined as the “first deterioration coefficient D1”. The deterioration coefficient D at the second time point t2 is defined as the “second deterioration coefficient D2”.

新品時点tb相当の劣化の電池10が温度Tに応じて有する劣化係数D=R/Reを、「新品劣化係数Db」とする。本実施形態では、この「新品劣化係数Db」が、本発明でいう「第1基準値」に該当する。第1温度T1における新品劣化係数Dbを「第1新品劣化係数Db1」とする。第2温度T2における新品劣化係数Dbを「第2新品劣化係数Db2」とする。 The deterioration coefficient D = R / Re possessed by the deteriorated battery 10 corresponding to tb at the time of new product according to the temperature T is defined as "new deterioration coefficient Db". In the present embodiment, this "new deterioration coefficient Db" corresponds to the "first reference value" in the present invention. The new deterioration coefficient Db at the first temperature T1 is defined as the "first new deterioration coefficient Db1". The new deterioration coefficient Db at the second temperature T2 is defined as the "second new deterioration coefficient Db2".

終末時点te相当の劣化の電池10が有する劣化係数Dを、「終末劣化係数De」とする。本実施形態では、この「終末劣化係数De」が、本発明でいう「第2基準値」に該当する。終末劣化係数Deは、「Re/Re」となることから、必然的に「1」になる。第1温度T1における終末劣化係数Deを「第1終末劣化係数De1」とする。第2温度T2における終末劣化係数Deを「第2終末劣化係数De2」とする。第1終末劣化係数De1及び第2終末劣化係数De2についても、いずれも必然的に「1」になる。 The deterioration coefficient D possessed by the deteriorated battery 10 corresponding to the terminal point te is referred to as the “terminal deterioration coefficient De”. In the present embodiment, this "terminal deterioration coefficient De" corresponds to the "second reference value" in the present invention. Since the terminal deterioration coefficient De is "Re / Re", it is inevitably "1". The terminal deterioration coefficient De at the first temperature T1 is defined as the “first terminal deterioration coefficient De1”. The terminal deterioration coefficient De at the second temperature T2 is defined as the “second terminal deterioration coefficient De2”. Both the first terminal deterioration coefficient De1 and the second terminal deterioration coefficient De2 inevitably become "1".

次に、電池特性検知装置20について説明する。基準値取得部25は、電池10の温度Tと新品抵抗値Rbとの関係を示すマップと、電池10の温度Tと終末抵抗値Reとの関係を示すマップとを有している。これらのマップは、予め実験等に基づいて取得されたり、電池10の仕様等に基づいて予め取得されたりしている。それらのマップから、基準値取得部25は、必要に応じて、対象時点の温度Tにおける新品抵抗値Rbや終末抵抗値Reを取得することができる。さらに、それら新品抵抗値Rb及び終末抵抗値Reから、新品劣化係数Db=Rb/Reを取得することができる。基準値取得部25は、取得した数値を検出部31に提供する。 Next, the battery characteristic detection device 20 will be described. The reference value acquisition unit 25 has a map showing the relationship between the temperature T of the battery 10 and the new resistance value Rb, and a map showing the relationship between the temperature T of the battery 10 and the terminal resistance value Re. These maps are acquired in advance based on experiments or the like, or are acquired in advance based on the specifications of the battery 10 or the like. From those maps, the reference value acquisition unit 25 can acquire a new resistance value Rb and a terminal resistance value Re at the temperature T at the target time point, if necessary. Further, the new deterioration coefficient Db = Rb / Re can be obtained from the new resistance value Rb and the terminal resistance value Re. The reference value acquisition unit 25 provides the acquired numerical value to the detection unit 31.

検出部31は、第1劣化係数D1と第1新品劣化係数Db1と第1終末劣化係数De1とに基づいて、劣化値αを検出する。推定部32は、劣化値αと第2新品劣化係数Db2と第2終末劣化係数De2とに基づいて、第2劣化係数D2を推定する。 The detection unit 31 detects the deterioration value α based on the first deterioration coefficient D1, the first new deterioration coefficient Db1, and the first terminal deterioration coefficient De1. The estimation unit 32 estimates the second deterioration coefficient D2 based on the deterioration value α, the second new deterioration coefficient Db2, and the second terminal deterioration coefficient De2.

図2は、電池特性検知装置20による検出、推定等を示すブロック図である。まず、検出部31が、第1時点t1の電池10における電圧値と電流値とから、第1抵抗値R1を算出する(S101)。また、基準値取得部25が、第1温度T1から、第1新品抵抗値Rb1と第1終末抵抗値Re1と第1新品劣化係数Db1=Rb1/Re1とを算出する(S102)。 FIG. 2 is a block diagram showing detection, estimation, and the like by the battery characteristic detection device 20. First, the detection unit 31 calculates the first resistance value R1 from the voltage value and the current value in the battery 10 at the first time point t1 (S101). Further, the reference value acquisition unit 25 calculates the first new resistance value Rb1, the first terminal resistance value Re1, and the first new deterioration coefficient Db1 = Rb1 / Re1 from the first temperature T1 (S102).

次に、検出部31が、第1抵抗値R1と第1終末抵抗値Re1とから、第1劣化係数D1=R1/Re1を算出する(S103)。次に、検出部31は、第1劣化係数D1と第1新品劣化係数Db1と第1終末劣化係数De1=1とに基づいて、劣化値αを算出する(S104)。この算出の詳細については後述する。 Next, the detection unit 31 calculates the first deterioration coefficient D1 = R1 / Re1 from the first resistance value R1 and the first terminal resistance value Re1 (S103). Next, the detection unit 31 calculates the deterioration value α based on the first deterioration coefficient D1, the first new deterioration coefficient Db1, and the first terminal deterioration coefficient De1 = 1 (S104). The details of this calculation will be described later.

次に、基準値取得部25が、第2温度T2から、第2新品抵抗値Rb2と第2終末抵抗値Re2と第2新品劣化係数Db2=Rb2/Re2とを算出する(S105)。次に、推定部32は、劣化値αと第2新品劣化係数Db2と第2終末劣化係数De2=1とに基づいて、第2劣化係数D2を推定する(S106)。この算出の詳細については後述する。次に、推定部32は、第2劣化係数D2=R2/Re2と第2終末抵抗値Re2とに基づいて、第2抵抗値R2を算出する(S107)。 Next, the reference value acquisition unit 25 calculates the second new resistance value Rb2, the second terminal resistance value Re2, and the second new deterioration coefficient Db2 = Rb2 / Re2 from the second temperature T2 (S105). Next, the estimation unit 32 estimates the second deterioration coefficient D2 based on the deterioration value α, the second new deterioration coefficient Db2, and the second terminal deterioration coefficient De2 = 1 (S106). The details of this calculation will be described later. Next, the estimation unit 32 calculates the second resistance value R2 based on the second deterioration coefficient D2 = R2 / Re2 and the second terminal resistance value Re2 (S107).

次に、その算出された第2抵抗値R2や、その算出過程で算出された劣化値αが使用される(S108)。具体的には、例えば、第2抵抗値R2に基づいて、電池10から回転電機60への出力に関する情報が求められる。また例えば、第2抵抗値R2に基づいて、その他の各負荷70への出力に関する情報も求められる。また例えば、劣化値αに基づいて、電池10の寿命等に関する情報が求められる。 Next, the calculated second resistance value R2 and the deterioration value α calculated in the calculation process are used (S108). Specifically, for example, information on the output from the battery 10 to the rotary electric machine 60 is required based on the second resistance value R2. Further, for example, based on the second resistance value R2, information regarding the output to each of the other loads 70 is also required. Further, for example, information on the life of the battery 10 and the like is required based on the deterioration value α.

図3は、電池10の温度Tと、劣化係数Dとの関係を示すグラフである。新品抵抗値Rbと終末抵抗値Reとの温度Tに対する変化率が異なると、新品劣化係数Db=Rb/Reが一定にならず、温度Tにより変化することになる。その点、本実施形態では、図3(a)に示す所定温度Tx未満では、新品劣化係数Dbが一定にならず、温度Tにより変化する。他方、終末劣化係数De=Re/Reは常に「1」なので、温度Tにより変化しない。 FIG. 3 is a graph showing the relationship between the temperature T of the battery 10 and the deterioration coefficient D. If the rate of change of the new resistance value Rb and the terminal resistance value Re with respect to the temperature T is different, the new deterioration coefficient Db = Rb / Re will not be constant and will change depending on the temperature T. In that respect, in the present embodiment, when the temperature is less than the predetermined temperature Tx shown in FIG. 3A, the new deterioration coefficient Db is not constant and changes depending on the temperature T. On the other hand, since the terminal deterioration coefficient De = Re / Re is always "1", it does not change with the temperature T.

そのため、所定温度Tx未満では、新品劣化係数Dbと終末劣化係数Deとが平行にならない。この場合、新品劣化係数Dbのみに基づいて劣化値αを求めても、終末劣化係数Deのみに基づいて劣化値αを求めても、正しい劣化状態を推定することはできない。そのため、新品劣化係数Db及び終末劣化係数Deの双方に基づいて劣化値αを求める。その劣化値αに基づいて第2抵抗値R2を推定する。 Therefore, when the temperature is less than the predetermined temperature Tx, the new deterioration coefficient Db and the terminal deterioration coefficient De are not parallel. In this case, the correct deterioration state cannot be estimated even if the deterioration value α is obtained only based on the new deterioration coefficient Db or the deterioration value α is obtained based only on the terminal deterioration coefficient De. Therefore, the deterioration value α is obtained based on both the new deterioration coefficient Db and the terminal deterioration coefficient De. The second resistance value R2 is estimated based on the deterioration value α.

まず、図3(a)〜(c)を参照しつつ、上記のS104での劣化値αの算出について説明する。まず、図3(a)に示すように、劣化係数Dと温度Tとの関係を示すグラフに、第1時点t1における電池10の状態を示す点、すなわち第1温度T1及び第1劣化係数D1を示す点である第1点P1=(T1,D1)をプロットする。 First, the calculation of the deterioration value α in S104 will be described with reference to FIGS. 3A to 3C. First, as shown in FIG. 3A, the graph showing the relationship between the deterioration coefficient D and the temperature T shows the state of the battery 10 at the first time point t1, that is, the first temperature T1 and the first deterioration coefficient D1. The first point P1 = (T1, D1), which is a point indicating, is plotted.

次に、図3(b)に示すように、第1温度T1での新品劣化係数Dbを示す点、すなわち第1温度T1と第1新品劣化係数Db1とを示す点である第1新品点Pb1=(T1,Db1)をプロットする。さらに、第1温度T1での終末劣化係数Deを示す点、すなわち第1温度T1と第1終末劣化係数De1=1とを示す点である第1終末点Pe1=(T1,1)をプロットする。 Next, as shown in FIG. 3B, the first new point Pb1 is a point showing the new deterioration coefficient Db at the first temperature T1, that is, the point showing the first temperature T1 and the first new deterioration coefficient Db1. = (T1, Db1) is plotted. Further, the first terminal point Pe1 = (T1,1), which is a point indicating the terminal deterioration coefficient De at the first temperature T1, that is, a point indicating the first temperature T1 and the first terminal deterioration coefficient De1 = 1, is plotted. ..

次に、図3(c)に示すように、第1終末点Pe1と第1新品点Pb1との差(1−Db1)を1(基準差)とした場合における、第1点P1と第1新品点Pb1との差(D1−Db1)の大きさ(D1−Db1)/(1−Db1)を、劣化値αとして算出する。 Next, as shown in FIG. 3C, when the difference (1-Db1) between the first end point Pe1 and the first new point Pb1 is set to 1 (reference difference), the first point P1 and the first point The magnitude (D1-Db1) / (1-Db1) of the difference (D1-Db1) from the new point Pb1 is calculated as the deterioration value α.

次に、図3(d)(e)を参照しつつ、上記のS106での第2劣化係数D2の推定について説明する。図3(d)に示すように、第2温度T2での新品劣化係数Dbを示す点、すなわち第2温度T2と第2新品劣化係数Db2とを示す点である第2新品点Pb2=(T2,Db2)をプロットする。さらに、第2温度T2での終末劣化係数Deを示す点、すなわち第2温度T2と第2終末劣化係数De2=1とを示す点である第2終末点Pe2=(T2,1)をプロットする。 Next, with reference to FIGS. 3 (d) and 3 (e), the estimation of the second deterioration coefficient D2 in S106 will be described. As shown in FIG. 3D, the second new point Pb2 = (T2), which is a point showing the new deterioration coefficient Db at the second temperature T2, that is, a point showing the second temperature T2 and the second new deterioration coefficient Db2. , Db2) is plotted. Further, a second terminal point Pe2 = (T2, 1), which is a point indicating the terminal deterioration coefficient De at the second temperature T2, that is, a point indicating the second temperature T2 and the second terminal deterioration coefficient De2 = 1, is plotted. ..

次に、図3(e)に示すように、第2終末点Pe2と第2新品点Pb2との差(1−Db2)に劣化値αを乗じた数値α×(1−Db2)を算出し、当該数値α×(1−Db2)を、第2新品点Pb2=(T2,Db2)の劣化係数Dの座標(Db2)に加えた点を算出する。その点を、第2点P2=(T2,D2)と推定する。これにより、第2劣化係数D2を推定する。 Next, as shown in FIG. 3 (e), the numerical value α × (1-Db2) obtained by multiplying the difference (1-Db2) between the second terminal point Pe2 and the second new point Pb2 by the deterioration value α is calculated. , The numerical value α × (1-Db2) is added to the coordinates (Db2) of the deterioration coefficient D of the second new point Pb2 = (T2, Db2) to calculate the point. That point is estimated as the second point P2 = (T2, D2). As a result, the second deterioration coefficient D2 is estimated.

図4(a)は、各劣化値αにおける劣化係数Dと温度Tとの関係を示すグラフである。図4(b)は、各相当劣化年数Yにおける劣化係数Dと温度Tとの関係を示すイメージ図である。相当劣化年数Yは、電池10が何年相当の劣化であるかを示す値である。このように、劣化値αが一定の場合における劣化係数Dと温度Tとの関係と、相当劣化年数Yが一定の場合における劣化係数Dと温度Tとの関係は、類似するため、劣化値αから相当劣化年数Yを算出することができる。 FIG. 4A is a graph showing the relationship between the deterioration coefficient D and the temperature T at each deterioration value α. FIG. 4B is an image diagram showing the relationship between the deterioration coefficient D and the temperature T at each equivalent deterioration age Y. The equivalent number of years of deterioration Y is a value indicating how many years the battery 10 has deteriorated. As described above, since the relationship between the deterioration coefficient D and the temperature T when the deterioration value α is constant and the relationship between the deterioration coefficient D and the temperature T when the equivalent deterioration years Y are constant are similar, the deterioration value α The considerable deterioration years Y can be calculated from.

図5は、上記のとおり、第1時点t1で劣化値αを検出し、第2時点t2で第2抵抗値R2を推定する場合における、各値の推移を示すグラフである。詳しくは、図5(a)は、起動スイッチ80のON,OFFの推移を示すグラフである。以下では、起動スイッチ80をONにすることを、単に「起動ON」といい、起動スイッチ80をOFFにすることを、単に「起動OFF」という。図5(b)は、電池10の温度Tの推移を示すグラフである。図5(c)は、抵抗値Rの実測タイミングを示すグラフである。図5(d)は、電池10の抵抗値Rの推移を示すグラフである。図5(e)は、劣化係数Dの推移を示すグラフである。図5(f)は、劣化値αの推移を示すグラフである。 FIG. 5 is a graph showing the transition of each value when the deterioration value α is detected at the first time point t1 and the second resistance value R2 is estimated at the second time point t2 as described above. Specifically, FIG. 5A is a graph showing the transition of ON / OFF of the start switch 80. In the following, turning on the start switch 80 is simply referred to as "start on", and turning off the start switch 80 is simply referred to as "start off". FIG. 5B is a graph showing the transition of the temperature T of the battery 10. FIG. 5C is a graph showing the actual measurement timing of the resistance value R. FIG. 5D is a graph showing the transition of the resistance value R of the battery 10. FIG. 5 (e) is a graph showing the transition of the deterioration coefficient D. FIG. 5 (f) is a graph showing the transition of the deterioration value α.

図5(a)に示すように、起動ON期間中の第1時点t1で、図5(c)に示すように、第1抵抗値R1が実測される。それにより、図5(d)〜(f)に示すように、第1抵抗値R1と第1劣化係数D1と劣化値αとが検出される。次に、図5(a)に示すように、第1時点t1よりも後の所定の起動OFF時点tiで起動OFFになる。 As shown in FIG. 5A, the first resistance value R1 is actually measured at the first time point t1 during the activation ON period, as shown in FIG. 5C. As a result, as shown in FIGS. 5 (d) to 5 (f), the first resistance value R1, the first deterioration coefficient D1, and the deterioration value α are detected. Next, as shown in FIG. 5A, the start-off is turned off at a predetermined start-off time point ti after the first time point t1.

図5(b)に示すように、起動OFF時点ti以後、電池10の温度Tが変化したものとする。これに伴い、図5(d)に破線で示すように、実際の抵抗値Rが変化し、さらに図5(e)に破線で示すように、実際の劣化係数Dも若干変化する。しかし、図5(f)に破線で示すように、劣化値αは殆ど変化しない。 As shown in FIG. 5B, it is assumed that the temperature T of the battery 10 has changed since the start-off time ti. Along with this, the actual resistance value R changes as shown by the broken line in FIG. 5 (d), and the actual deterioration coefficient D also changes slightly as shown by the broken line in FIG. 5 (e). However, as shown by the broken line in FIG. 5 (f), the deterioration value α hardly changes.

次に、図5(a)に示すように、起動OFF時点ti以後の第2時点t2で起動ONになると、図5(d)〜(f)に示すように、保存されている劣化値αに基づいて第2劣化係数D2が推定されると共に、その第2劣化係数D2に基づいて第2抵抗値R2が算出される。 Next, as shown in FIG. 5 (a), when the start is turned on at the second time point t2 after the start-off time ti, as shown in FIGS. 5 (d) to 5 (f), the stored deterioration value α The second deterioration coefficient D2 is estimated based on the above, and the second resistance value R2 is calculated based on the second deterioration coefficient D2.

他方、比較例の場合は、劣化値αではなく第1劣化係数D1が保存され、その第1劣化係数D1に基づいて、第2時点t2での抵抗値Rが推定されるものとする。その場合、第1劣化係数D1は実際の第2時点t2の劣化係数Dとは異なるものになるため、そこから算出される抵抗値Rも、実際の抵抗値Rとは異なるものになる。 On the other hand, in the case of the comparative example, it is assumed that the first deterioration coefficient D1 is stored instead of the deterioration value α, and the resistance value R at the second time point t2 is estimated based on the first deterioration coefficient D1. In that case, since the first deterioration coefficient D1 is different from the actual deterioration coefficient D at the second time point t2, the resistance value R calculated from the first deterioration coefficient D1 is also different from the actual resistance value R.

次に、図5(c)に示すように、第2時点t2よりも後の実測時点tjで、実際の抵抗値Rが実測される。よって、本実施形態では、図5(d)(e)に示すように、第2時点t2から実測時点tjまでの間で、比較例に比べて実際に近い劣化係数D及び抵抗値Rを推定することができる。 Next, as shown in FIG. 5C, the actual resistance value R is actually measured at the actual measurement time point tj after the second time point t2. Therefore, in the present embodiment, as shown in FIGS. 5 (d) and 5 (e), the deterioration coefficient D and the resistance value R, which are closer to the actual ones than in the comparative example, are estimated between the second time point t2 and the actual measurement time point tj. can do.

本実施形態によれば、第2抵抗値R2を推定することにより、実測時点tjでの抵抗値Rの実測を待たなくても、第2時点t2でただちに抵抗値Rを把握することができる。そのため、第2時点t2以後、すぐに電池10を使えるようになり、電池10を使える期間が増加する。そのため、回転電機60を駆動できる期間や、回転電機60により回生発電を行うことができる期間が増加して、燃費が向上する。 According to the present embodiment, by estimating the second resistance value R2, the resistance value R can be immediately grasped at the second time point t2 without waiting for the actual measurement of the resistance value R at the actual measurement time point tj. Therefore, the battery 10 can be used immediately after the second time point t2, and the period during which the battery 10 can be used increases. Therefore, the period during which the rotary electric machine 60 can be driven and the period during which the rotary electric machine 60 can generate regenerative power generation increase, and fuel efficiency is improved.

また、本実施形態では、劣化係数Dに基づいて劣化値α及び第2抵抗値R2を算出するので、他の用途で劣化係数Dを求める必要がある場合には、当該劣化係数Dを利用して劣化値α及び第2抵抗値R2を算出することができる。また、劣化係数D=R/Reを用いることで終末劣化係数De=Re/Reが常に「1」になるので、基準値取得部25は第1終末劣化係数De1や第2終末劣化係数De2を取得する必要がなく、計算がシンプルになる。また、劣化情報を、数値である劣化値αにすることにより、劣化情報をシンプルにできる。また、起動スイッチ80をOFFにする前に最後に検出部31により劣化値αを検出した時点を、第1時点t1とすることにより、なるべく最新の劣化値αを用いて、第2時点t2での抵抗値Rを推定できる。 Further, in the present embodiment, the deterioration value α and the second resistance value R2 are calculated based on the deterioration coefficient D. Therefore, when it is necessary to obtain the deterioration coefficient D for other purposes, the deterioration coefficient D is used. The deterioration value α and the second resistance value R2 can be calculated. Further, since the terminal deterioration coefficient De = Re / Re is always set to "1" by using the deterioration coefficient D = R / Re, the reference value acquisition unit 25 sets the first terminal deterioration coefficient De1 and the second terminal deterioration coefficient De2. You don't have to get it, which simplifies the calculation. Further, the deterioration information can be simplified by setting the deterioration information to the numerical deterioration value α. Further, the time when the deterioration value α is finally detected by the detection unit 31 before the start switch 80 is turned off is set to the first time point t1, so that the latest deterioration value α is used as much as possible at the second time point t2. The resistance value R can be estimated.

[第2実施形態]
次に、第2実施形態について説明する。なお、以下の実施形態では、それ以前の実施形態のものと同一の又は対応する部材等については同一の符号を付する。本実施形態については、第1実施形態をベースに、ことと異なる点を中心に説明する。本実施形態では、劣化値αの代わりに等劣化線βを求める。本実施形態では、この「等劣化線β」が、本発明でいう「劣化情報」に該当する。
[Second Embodiment]
Next, the second embodiment will be described. In the following embodiments, the same or corresponding members as those of the previous embodiments are designated by the same reference numerals. The present embodiment will be described based on the first embodiment, focusing on the differences. In the present embodiment, the iso-deterioration line β is obtained instead of the deterioration value α. In the present embodiment, this "iso-deterioration line β" corresponds to the "deterioration information" in the present invention.

図6は、電池10の温度Tと劣化係数Dとの関係を示すグラフである。以下に、等劣化線βの検出と第2劣化係数D2の推定とについて説明する。まず、図6(a)に示すように、第1点P1=(T1,D1)をプロットする。 FIG. 6 is a graph showing the relationship between the temperature T of the battery 10 and the deterioration coefficient D. The detection of the isodegradation line β and the estimation of the second deterioration coefficient D2 will be described below. First, as shown in FIG. 6A, the first point P1 = (T1, D1) is plotted.

次に、図6(b)に示すように、第1点P1を通る等劣化線βを算出する。等劣化線βは、電池10の同一の劣化状態において、劣化係数Dと電池10の温度Tとの関係を示す線である。等劣化線βは、新品劣化係数Dbと終末劣化係数Deとに基づいて定められる。そのため、等劣化線βは、新品劣化係数Dbを示す線と終末劣化係数De=1を示す線との双方に、平均的に沿って引かれる。具体的には、この等劣化線βは、例えば、第1実施形態でいう劣化値αが同一の値になる点の集合とすることができる。 Next, as shown in FIG. 6B, the isodegradation line β passing through the first point P1 is calculated. The isodegradation line β is a line showing the relationship between the deterioration coefficient D and the temperature T of the battery 10 in the same deterioration state of the battery 10. The isodegradation line β is determined based on the new deterioration coefficient Db and the terminal deterioration coefficient De. Therefore, the isodegradation line β is drawn along both the line showing the new deterioration coefficient Db and the line showing the terminal deterioration coefficient De = 1 on average. Specifically, the isodegradation line β can be, for example, a set of points at which the deterioration values α in the first embodiment have the same value.

なお、図に破線で示す比較例は、劣化係数D=R/Reが一定になる線を等劣化線βにした場合、すなわち新品劣化係数Db=Rb/Reには基づかずに、終末劣化係数De=Re/Re=1に基づいて、等劣化線βを引いた場合を示している。この比較例の場合、等劣化線βは、終末劣化係数De=1を示す線には沿うが、本実施形態の場合のように、新品劣化係数Dbを示す線と終末劣化係数De=1を示す線との双方に、平均的に沿うことはない。 In the comparative example shown by the broken line in the figure, when the line where the deterioration coefficient D = R / Re is constant is set to the equal deterioration line β, that is, the terminal deterioration coefficient is not based on the new deterioration coefficient Db = Rb / Re. The case where the isodegradation line β is drawn based on De = Re / Re = 1 is shown. In the case of this comparative example, the iso-deterioration line β follows the line showing the terminal deterioration coefficient De = 1, but as in the case of the present embodiment, the line showing the new deterioration coefficient Db and the terminal deterioration coefficient De = 1 are set. It does not follow both the lines shown on average.

次に、図6(c)に示すように、第2温度T2と等劣化線βとの交点を、第2点P2=(T2,D2)として算出する。 Next, as shown in FIG. 6C, the intersection of the second temperature T2 and the isodegradation line β is calculated as the second point P2 = (T2, D2).

本実施形態によれば,等劣化線βを求めることにより、第1新品点Pb1、第1終末点Pe1、第2新品点Pb2、第2終末点Pe2を求めなくても、等劣化線βと第2温度T2とから直接的に第2劣化係数D2を推定できる。 According to the present embodiment, by obtaining the isodegradation line β, the isodegradation line β can be obtained without obtaining the first new point Pb1, the first terminal point Pe1, the second new point Pb2, and the second terminal point Pe2. The second deterioration coefficient D2 can be estimated directly from the second temperature T2.

[第3実施形態]
次に、第3実施形態について説明する。本実施形態については、第2実施形態をベースに、これと異なる点を中心に説明する。本実施形態では、第1劣化係数D1及び第2劣化係数D2を求めずに、第1抵抗値R1から直接的に第2抵抗値R2を推定する。具体的には、第1抵抗値R1から、等劣化線βとは異なる等劣化線γを用いて、第2抵抗値R2を推定する。
[Third Embodiment]
Next, the third embodiment will be described. The present embodiment will be described with reference to the second embodiment, focusing on differences from the second embodiment. In the present embodiment, the second resistance value R2 is estimated directly from the first resistance value R1 without obtaining the first deterioration coefficient D1 and the second deterioration coefficient D2. Specifically, the second resistance value R2 is estimated from the first resistance value R1 by using the isodegrade line γ different from the isodegrade line β.

よって、本実施形態では、「劣化係数D=R/Re」ではなく、「抵抗値R」自体が、本発明でいう「特性値」に該当する。そして、「等劣化線γ」が、本発明でいう「劣化情報」に該当する。 Therefore, in the present embodiment, the “resistance value R” itself, not the “deterioration coefficient D = R / Re”, corresponds to the “characteristic value” in the present invention. Then, the "iso-deterioration line γ" corresponds to the "deterioration information" in the present invention.

図7は、電池10の温度Tと抵抗値Rとの関係を示すグラフである。以下に、等劣化線γの検出及び第2抵抗値R2の推定について説明する。まず、図7(a)に示すように、第1点P1=(T1,R1)をプロットする。 FIG. 7 is a graph showing the relationship between the temperature T of the battery 10 and the resistance value R. The detection of the isodegradation line γ and the estimation of the second resistance value R2 will be described below. First, as shown in FIG. 7A, the first point P1 = (T1, R1) is plotted.

次に、図7(b)に示すように、第1点P1を通る等劣化線γを算出する。等劣化線γは、電池10の同一の劣化状態において、抵抗値Rと電池10の温度Tとの関係を示す線である。等劣化線γは、新品抵抗値Rbと終末抵抗値Reとに基づいて定められる。そのため、等劣化線γは、新品抵抗値Rbを示す線と終末抵抗値Reを示す線との双方に、平均的に沿って引かれる。 Next, as shown in FIG. 7B, the equi-degradation line γ passing through the first point P1 is calculated. The isodegradation line γ is a line showing the relationship between the resistance value R and the temperature T of the battery 10 in the same deterioration state of the battery 10. The isodegradation line γ is determined based on the new resistance value Rb and the terminal resistance value Re. Therefore, the isodegradation line γ is drawn along both the line showing the new resistance value Rb and the line showing the terminal resistance value Re on average.

なお、図に破線で示す比較例は、劣化係数D=R/Reが同じになる点の集合を等劣化線γにした場合、すなわち新品抵抗値Rbには基づかずに、終末抵抗値Reに基づいて等劣化線γを引いた場合を示している。この比較例の場合、等劣化線γは、終末抵抗値Reを示す線には沿うが、本実施形態の場合のように、新品抵抗値Rbを示す線と終末抵抗値Reを示す線との双方に、平均的に沿うことはない。 In the comparative example shown by the broken line in the figure, when the set of points having the same deterioration coefficient D = R / Re is set to the equi-deterioration line γ, that is, the terminal resistance value Re is not based on the new resistance value Rb. It shows the case where the isodegradation line γ is drawn based on the above. In the case of this comparative example, the isodegradation line γ follows the line indicating the terminal resistance value Re, but as in the case of the present embodiment, the line indicating the new resistance value Rb and the line indicating the terminal resistance value Re Both are not on average.

次に、図7(c)に示すように、第2温度T2と等劣化線γとの交点を、第2点P2=(T2,R2)として算出する。 Next, as shown in FIG. 7C, the intersection of the second temperature T2 and the isodegradation line γ is calculated as the second point P2 = (T2, R2).

本実施形態によれば、第1劣化係数D1=R1/Re1及び第2劣化係数D2=R2/Re2を求めなくても、第1抵抗値R1から直接的に第2抵抗値R2を推定することができる。 According to this embodiment, the second resistance value R2 is estimated directly from the first resistance value R1 without obtaining the first deterioration coefficient D1 = R1 / Re1 and the second deterioration coefficient D2 = R2 / Re2. Can be done.

[第4実施形態]
次に、第4実施形態について説明する。本実施形態については、第2実施形態をベースに、これと異なる点を中心に説明する。
[Fourth Embodiment]
Next, the fourth embodiment will be described. The present embodiment will be described with reference to the second embodiment, focusing on differences from the second embodiment.

図8は、電池10の温度Tと抵抗値Rとの関係を示すグラフである。本実施形態では、等劣化線βが段階的に変化する。本実施形態によれば、等劣化線βの情報量を減らすことができ、それにより処理をシンプルにすることができる。 FIG. 8 is a graph showing the relationship between the temperature T of the battery 10 and the resistance value R. In this embodiment, the isodegradation line β changes stepwise. According to the present embodiment, the amount of information on the isodegradation line β can be reduced, thereby simplifying the process.

[他の実施形態]
本実施形態は、例えば次のように変更して実施することもできる。エンジンを、モータや、エンジンとモータとのハイブリッド等の、各種走行用の動力装置に変更してもよい。新品時点tbの代わりに、1年相当劣化時点を用いてもよい。終末時点teの代わりに、5年相当劣化時点を用いてもよい。
[Other Embodiments]
The present embodiment may be modified and implemented as follows, for example. The engine may be changed to a motor or a power unit for various traveling such as a hybrid of the engine and the motor. Instead of the new time point tb, a one year equivalent deterioration time point may be used. Instead of the terminal point te, a point of deterioration equivalent to 5 years may be used.

第1、第2、第4実施形態において、劣化係数Dを、終末抵抗値Reと対象時点の抵抗値Rとの比(R/Re)にするのに代えて、新品抵抗値Rbと対象時点の抵抗値Rとの比(R/Rb)にしてもよい。この場合、終末劣化係数Deの代わりに、新品劣化係数Dbが常に「1」になる。 In the first, second, and fourth embodiments, instead of setting the deterioration coefficient D to the ratio (R / Re) of the terminal resistance value Re and the resistance value R at the target time point, the new resistance value Rb and the target time point are used. The ratio (R / Rb) to the resistance value R of In this case, the new deterioration coefficient Db is always "1" instead of the terminal deterioration coefficient De.

第2実施形態をベースに、本発明でいう「特性値」を劣化係数Dから抵抗値Rに代えて第3実施形態にした場合と同様に、第1、第4実施形態をベースに、本発明でいう「特性値」を劣化係数Dから抵抗値Rに代えてもよい。この場合、第1、第4実施形態をベースにした態様において、第3実施形態の場合と同様に、第1劣化係数D1=R1/Re1及び第2劣化係数D2=R2/Re2を求めなくても、第1抵抗値R1から直接的に第2抵抗値R2を推定することができる。 Based on the second embodiment, the present invention is based on the first and fourth embodiments, as in the case where the "characteristic value" referred to in the present invention is changed from the deterioration coefficient D to the resistance value R to the third embodiment. The "characteristic value" referred to in the invention may be changed from the deterioration coefficient D to the resistance value R. In this case, in the embodiment based on the first and fourth embodiments, the first deterioration coefficient D1 = R1 / Re1 and the second deterioration coefficient D2 = R2 / Re2 are not obtained as in the case of the third embodiment. Also, the second resistance value R2 can be estimated directly from the first resistance value R1.

劣化値αや等劣化線β,γの算出を、毎回の起動OFFの前のタイミングにするのに代えて、例えば1ヵ月に1回等、所定期間に1回にしてもよい。劣化状態の時間変化は通常緩やかであるからである。 Instead of calculating the deterioration value α and the iso-deterioration lines β and γ at the timing before each start-off, the deterioration value α and the iso-deterioration lines β and γ may be calculated once in a predetermined period such as once a month. This is because the time change of the deteriorated state is usually gradual.

劣化値αや等劣化線β,γによる第2抵抗値R2の推定は、第1温度T1と第2温度T2との差が所定以上の場合にのみ行い、その他の場合には、第1抵抗値R1を第2抵抗値R2として引き継ぐか、第1劣化係数D1を第2劣化係数D2として引き継ぐようにしてもよい。 The second resistance value R2 is estimated by the deterioration value α and the isodegradation lines β and γ only when the difference between the first temperature T1 and the second temperature T2 is equal to or more than a predetermined value, and in other cases, the first resistance is estimated. The value R1 may be inherited as the second resistance value R2, or the first deterioration coefficient D1 may be inherited as the second deterioration coefficient D2.

新品劣化係数Dbの温度Tに対する変化比率と終末劣化係数Deの温度Tに対する変化比率との両変化比率は、同じであってもよい。この場合であっても、電池特性検知装置20は、当該両変化比率が同じであっても異なっていても対応できるという効果を奏する。 Both the change ratio of the new deterioration coefficient Db with respect to the temperature T and the change ratio of the terminal deterioration coefficient De with respect to the temperature T may be the same. Even in this case, the battery characteristic detection device 20 has an effect that the two change ratios can be dealt with even if they are the same or different.

電池10の充電量(SOC)の違いにより、抵抗値Rが少なからず変化する場合等には、さらに、充電量に基づいて第2抵抗値R2を補正するようにしてもよい。 When the resistance value R changes not a little due to the difference in the charge amount (SOC) of the battery 10, the second resistance value R2 may be further corrected based on the charge amount.

抵抗値Rの代わりに電池容量を用いてもよい。すなわち、第1、第2、第4実施形態において、劣化係数Dを、終末抵抗値Reと対象時点の抵抗値Rとの比(R/Re)にするのに代えて、終末電池容量と対象時点の電池容量の比にしてもよい。また、第3実施形態において、抵抗値Rを電池容量に代えてもよい。 The battery capacity may be used instead of the resistance value R. That is, in the first, second, and fourth embodiments, instead of setting the deterioration coefficient D to the ratio (R / Re) of the terminal resistance value Re and the resistance value R at the target time point, the terminal battery capacity and the target It may be the ratio of the battery capacity at the time. Further, in the third embodiment, the resistance value R may be replaced with the battery capacity.

α…劣化値、β…等劣化線、γ…等劣化線、10…電池、20…電池特性検知装置、31…検出部、32…推定部、D…劣化係数、D1…第1劣化係数、D2…第2劣化係数、Db…新品劣化係数、De1…第1終末劣化係数、R…抵抗値、R1…第1抵抗値、R2…第2抵抗値、Rb…新品抵抗値、Re…終末抵抗値、T…温度、T1…第1温度、T2…第2温度、t1…第1時点、t2…第2時点、tb…新品時点、te…終末時点。 α ... deterioration value, β ... iso-deterioration line, γ ... iso-deterioration line, 10 ... battery, 20 ... battery characteristic detection device, 31 ... detection unit, 32 ... estimation unit, D ... deterioration coefficient, D1 ... first deterioration coefficient, D2 ... 2nd deterioration coefficient, Db ... New deterioration coefficient, De1 ... 1st terminal deterioration coefficient, R ... Resistance value, R1 ... 1st resistance value, R2 ... 2nd resistance value, Rb ... New resistance value, Re ... Terminal resistance Value, T ... temperature, T1 ... first temperature, T2 ... second temperature, t1 ... first time point, t2 ... second time point, tb ... new time point, te ... terminal time point.

Claims (7)

所定の第1基準時点(tb)相当の劣化の電池が有する、前記電池の温度(T)に応じた特性値(D,R)を、第1基準値(Db,Rb)とし、前記第1基準時点よりも後の第2基準時点(te)相当の劣化の前記電池が有する、前記電池の温度に応じた前記特性値を、第2基準値(De,Re)として、
所定の第1時点(t1)における前記特性値(D1,R1)と、前記第1時点での前記電池の温度(T1)における、前記第1基準値及び前記第2基準値とに基づいて、前記電池の劣化状態を示す情報である劣化情報(α,β,γ)を検出する検出部(31)と、
検出された前記劣化情報と、前記第1時点よりも後の所定の第2時点(t2)での前記電池の温度(T2)とに基づいて、前記第2時点における前記特性値(D2,R2)を推定する推定部(32)と、
を有する電池特性検知装置。
The characteristic values (D, R) corresponding to the temperature (T) of the battery possessed by the deteriorated battery corresponding to the predetermined first reference time point (tb) are set as the first reference value (Db, Rb), and the first reference value (Db, Rb) is defined. The characteristic value according to the temperature of the battery possessed by the battery having deteriorated equivalent to the second reference time point (te) after the reference time point is set as the second reference point value (De, Re).
Based on the characteristic values (D1, R1) at a predetermined first time point (t1) and the first reference value and the second reference value at the battery temperature (T1) at the first time point. A detection unit (31) that detects deterioration information (α, β, γ), which is information indicating the deterioration state of the battery, and
Based on the detected deterioration information and the temperature (T2) of the battery at a predetermined second time point (t2) after the first time point, the characteristic value (D2, R2) at the second time point is used. ), And the estimation unit (32)
Battery characteristic detection device with.
前記特性値は、前記電池の内部抵抗値(R)に基づく値である請求項1記載の電池特性検知装置。 The battery characteristic detection device according to claim 1, wherein the characteristic value is a value based on the internal resistance value (R) of the battery. 前記特性値は、所定の対象時点における前記電池の所定の物性値(R)と、所定の基準時点(te)相当の劣化の前記電池が前記対象時点の温度であれば有する前記物性値(Re)と、の比(D)である、請求項1又は2に記載の電池特性検知装置。 The characteristic value is the physical property value (R) of the battery at a predetermined target time point and the physical property value (Re) of the battery having deteriorated at a predetermined reference time point (te) if the temperature is the temperature of the target time point. ) And the ratio (D) of the battery characteristic detection device according to claim 1 or 2. 前記劣化情報は、前記第1時点での前記電池の温度における前記第1基準値と前記第2基準値との差を基準差とし、前記第1時点での前記電池の温度における前記第1基準値又は前記第2基準値と前記第1時点における前記特性値との差を対象差とした場合における、前記基準差と前記対象差との比(α)である、請求項1〜3のいずれか1項に記載の電池特性検知装置。 The deterioration information is based on the difference between the first reference value and the second reference value at the battery temperature at the first time point as the reference difference, and the first reference value at the battery temperature at the first time point. Any of claims 1 to 3, which is the ratio (α) between the reference difference and the target difference when the difference between the value or the second reference value and the characteristic value at the first time point is taken as the target difference. The battery characteristic detection device according to item 1. 前記劣化情報は、前記第1時点での前記電池の劣化状態において、前記特性値と前記電池の温度との関係を示す情報(β,γ)である、請求項1〜3のいずれか1項に記載の電池特性検知装置。 The deterioration information is any one of claims 1 to 3, which is information (β, γ) indicating the relationship between the characteristic value and the temperature of the battery in the deteriorated state of the battery at the first time point. The battery characteristic detection device described in. 前記電池は、車両に搭載される電池であり、
前記第1時点は、前記車両の走行用の動力装置の起動スイッチ(80)をOFFにする前に、最後に前記検出部により前記劣化情報を検出したタイミングである、請求項1〜5のいずれか1項に記載の電池特性検知装置。
The battery is a battery mounted on a vehicle.
The first time point is any of claims 1 to 5, which is a timing at which the deterioration information is finally detected by the detection unit before the start switch (80) of the power unit for traveling the vehicle is turned off. The battery characteristic detection device according to item 1.
少なくとも一部の温度範囲において、前記第1基準値の温度に対する変化比率と前記第2基準値の温度に対する変化比率とは、互いに異なる、請求項1〜6のいずれか1項に記載の電池特性検知装置。 The battery characteristic according to any one of claims 1 to 6, wherein the change ratio of the first reference value to the temperature and the change ratio of the second reference value to the temperature are different from each other in at least a part of the temperature range. Detection device.
JP2019068788A 2019-03-29 2019-03-29 Battery characteristic detector Active JP7207100B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019068788A JP7207100B2 (en) 2019-03-29 2019-03-29 Battery characteristic detector
DE102020108488.9A DE102020108488A1 (en) 2019-03-29 2020-03-27 Battery characteristics acquisition method and apparatus
CN202010229733.8A CN111751754A (en) 2019-03-29 2020-03-27 Rechargeable battery characteristic detection apparatus, detection method, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068788A JP7207100B2 (en) 2019-03-29 2019-03-29 Battery characteristic detector

Publications (2)

Publication Number Publication Date
JP2020165908A true JP2020165908A (en) 2020-10-08
JP7207100B2 JP7207100B2 (en) 2023-01-18

Family

ID=72612820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068788A Active JP7207100B2 (en) 2019-03-29 2019-03-29 Battery characteristic detector

Country Status (3)

Country Link
JP (1) JP7207100B2 (en)
CN (1) CN111751754A (en)
DE (1) DE102020108488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468424B2 (en) 2021-03-25 2024-04-16 トヨタ自動車株式会社 Method for estimating battery deterioration state

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129927A (en) * 2001-10-26 2003-05-08 Furukawa Electric Co Ltd:The Method and device for judging condition of secondary battery mounted in vehicle
JP2015171275A (en) * 2014-03-10 2015-09-28 株式会社豊田自動織機 Charger and charging method of secondary battery
WO2016135853A1 (en) * 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program
JP2018120785A (en) * 2017-01-26 2018-08-02 トヨタ自動車株式会社 Cell system and estimation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP4646194B2 (en) * 2003-06-27 2011-03-09 古河電気工業株式会社 Storage battery deterioration determination method and deterioration determination apparatus
US7639018B2 (en) * 2006-06-07 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for predicting change in an operating state of an electric energy storage device
FR3009093B1 (en) * 2013-07-29 2017-01-13 Renault Sa ESTIMATING THE AGING CONDITION OF AN ELECTRIC BATTERY
CN106068461A (en) * 2014-03-18 2016-11-02 株式会社东芝 Deterioration estimation method, deterioration hypothetical system and deterioration estimating program
DE102015212176A1 (en) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Method for determining a potential of an anode and / or a potential of a cathode in a battery cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129927A (en) * 2001-10-26 2003-05-08 Furukawa Electric Co Ltd:The Method and device for judging condition of secondary battery mounted in vehicle
JP2015171275A (en) * 2014-03-10 2015-09-28 株式会社豊田自動織機 Charger and charging method of secondary battery
WO2016135853A1 (en) * 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program
JP2018120785A (en) * 2017-01-26 2018-08-02 トヨタ自動車株式会社 Cell system and estimation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468424B2 (en) 2021-03-25 2024-04-16 トヨタ自動車株式会社 Method for estimating battery deterioration state

Also Published As

Publication number Publication date
CN111751754A (en) 2020-10-09
JP7207100B2 (en) 2023-01-18
DE102020108488A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6844683B2 (en) Power storage element management device, SOC reset method, power storage element module, power storage element management program and mobile
JP5287844B2 (en) Secondary battery remaining capacity calculation device
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
JP5393837B2 (en) Battery charge rate estimation device
JP6615011B2 (en) Battery management system, battery system and hybrid vehicle control system
JP5710217B2 (en) Deterioration degree estimating apparatus and method for vehicle battery
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2016186487A (en) Secondary battery state-of-charge measurement apparatus and secondary battery state-of-charge measurement method
JP2015166710A (en) Electric storage member state estimation apparatus, battery pack, electric vehicle, electric storage device, and electric storage member state estimation method
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
WO2014126029A1 (en) State-of-charge estimation device and state-of-charge estimation method
US20190033392A1 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
JPH0659003A (en) Remaining capacity meter for battery
JP2013108919A (en) Soc estimator
JP2012026771A (en) Secondary battery apparatus and vehicle
JP2007322171A (en) Battery state estimation device
JP2000312404A (en) Method of controlling a battery of power generating electric vehicle
JP2004271342A (en) Charging and discharging control system
JP2014052186A (en) Method for estimating capacity maintenance rate of secondary battery
KR20130017740A (en) Method for estimating state of charge in battery
JP2020165908A (en) Battery characteristic detector
JP6377644B2 (en) Method for determining the average value of a periodic or quasi-periodic voltage signal
JP2021157926A (en) Secondary battery device and secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7207100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151