JP7207100B2 - Battery characteristic detector - Google Patents

Battery characteristic detector Download PDF

Info

Publication number
JP7207100B2
JP7207100B2 JP2019068788A JP2019068788A JP7207100B2 JP 7207100 B2 JP7207100 B2 JP 7207100B2 JP 2019068788 A JP2019068788 A JP 2019068788A JP 2019068788 A JP2019068788 A JP 2019068788A JP 7207100 B2 JP7207100 B2 JP 7207100B2
Authority
JP
Japan
Prior art keywords
battery
deterioration
value
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019068788A
Other languages
Japanese (ja)
Other versions
JP2020165908A (en
Inventor
良樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019068788A priority Critical patent/JP7207100B2/en
Priority to CN202010229733.8A priority patent/CN111751754A/en
Priority to DE102020108488.9A priority patent/DE102020108488A1/en
Publication of JP2020165908A publication Critical patent/JP2020165908A/en
Application granted granted Critical
Publication of JP7207100B2 publication Critical patent/JP7207100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電池の特性値を検知する電池特性検知装置に関する。 The present invention relates to a battery characteristic detection device for detecting characteristic values of a battery.

車両に搭載される電池の制御装置の中には、電池の内部抵抗値を検出し、その抵抗値に基づいて、電池の使用を制御するものがある。そして、そのような技術を示す文献としては、次の特許文献1がある。 2. Description of the Related Art Some control devices for batteries mounted on vehicles detect the internal resistance value of the battery and control the use of the battery based on the detected resistance value. As a document showing such a technique, there is the following Patent Document 1.

特開2018-148720号公報JP 2018-148720 A

精度良く電池の抵抗値を実測するには、ある程度まとまった量の大電流を、電池の充放電により内部抵抗に流す必要がある。そのため、電池によっては、車両の起動後ただちに抵抗値を把握することはできない場合がある。そして、抵抗値を把握できないと、その抵抗値に基づいて、電池の使用を制御することができない。そのため、電池を使用できる期間が減り、燃費の低下に繋がる。 In order to measure the resistance value of the battery with high accuracy, it is necessary to flow a large amount of current to the internal resistance of the battery by charging and discharging the battery. Therefore, depending on the battery, it may not be possible to grasp the resistance value immediately after starting the vehicle. If the resistance value cannot be grasped, the use of the battery cannot be controlled based on the resistance value. As a result, the period during which the battery can be used is reduced, leading to a decrease in fuel consumption.

他方、前回の起動期間中における電池の抵抗値を保存して、今回の起動後もその前回の抵抗値を引き継ぐことはできない。電池の抵抗値は、温度依存性があるため、前回の起動期間中の電池の温度と、今回の起動時の電池の温度とが異なると、電池の抵抗値も異なってくるからである。 On the other hand, it is not possible to save the resistance value of the battery during the previous start-up period and take over the previous resistance value after the current start-up. This is because the resistance value of the battery depends on the temperature, so if the temperature of the battery during the previous start-up period differs from the temperature of the battery at the time of the current start-up, the resistance value of the battery will also differ.

この解決方法として、次の方法が考えられる。前回の起動期間中において、その時の電池の抵抗値と、その電池の新品時点における抵抗値との比を、電池の劣化状態を示す係数(以下「劣化係数」という。)として算出して保存する。そして、今回の起動後は、その保存されている劣化係数と現在の温度とに基づいて現在の抵抗値を推定する。それによれば、今回の起動後における抵抗値の実測を待たなくても、起動後ただちに抵抗値を取得して電池を使用できる。 As a solution to this problem, the following method is conceivable. During the previous startup period, the ratio between the resistance value of the battery at that time and the resistance value of the battery when the battery was new is calculated and stored as a coefficient indicating the state of deterioration of the battery (hereinafter referred to as "deterioration coefficient"). . After the current startup, the current resistance value is estimated based on the stored deterioration coefficient and the current temperature. According to this, the resistance value can be obtained immediately after the start-up without waiting for the actual measurement of the resistance value after the current start-up, and the battery can be used.

しかしながら、劣化係数は、同じ劣化状態なら温度が変化しても完全に一定という訳ではなく、電池の態様や温度範囲等によっては、同じ劣化状態でも温度により劣化係数が変化してしまう場合がある。そのため、前回の起動期間中における温度と、現在の温度との乖離が大きいと、前回の劣化係数に基づく現在の抵抗値の推定精度が、悪化することにもなり得る。 However, the deterioration coefficient is not completely constant even if the temperature changes if the deterioration state is the same, and depending on the state of the battery and the temperature range, the deterioration coefficient may change depending on the temperature even if the deterioration state is the same. . Therefore, if the difference between the temperature during the previous startup period and the current temperature is large, the accuracy of estimating the current resistance value based on the previous deterioration coefficient may deteriorate.

なお、以上と同様の課題は、電池の抵抗値を推定する場合に限らず、例えば電池の充電容量等の各種特性値を推定する場合についても生じ得る。 It should be noted that problems similar to those described above may occur not only when estimating the resistance value of a battery, but also when estimating various characteristic values such as the charge capacity of the battery.

本発明は、上記事情に鑑みてなされたものであり、前回の劣化判定時の電池の温度と、現在の電池の温度との乖離が大きくても、現在の電池の特性値を精度よく推定できるようにすることを目的とする。 The present invention has been made in view of the above circumstances, and can accurately estimate the current characteristic value of the battery even if the difference between the battery temperature at the time of the previous deterioration determination and the current battery temperature is large. The purpose is to

本発明の電池特性検知装置は、検出部と推定部とを有する。以下では、所定の第1基準時点相当の劣化の電池が有する、前記電池の温度に応じた特性値を第1基準値とし、前記第1基準時点よりも後の第2基準時点相当の劣化の前記電池が有する、前記電池の温度に応じた前記特性値を第2基準値とする。 A battery characteristic detecting device of the present invention has a detecting section and an estimating section. Hereinafter, a characteristic value corresponding to the temperature of the battery possessed by a battery having deteriorated at a predetermined first reference point is defined as a first reference value, and the deterioration corresponding to a second reference point after the first reference point is defined as a first reference value. The characteristic value of the battery, which corresponds to the temperature of the battery, is defined as a second reference value.

前記検出部は、所定の第1時点における前記特性値と、前記第1時点での前記電池の温度における、前記第1基準値及び前記第2基準値とに基づいて、前記電池の劣化状態を示す情報である劣化情報を検出する。前記推定部は、検出された前記劣化情報と、前記第1時点よりも後の所定の第2時点での前記電池の温度とに基づいて、前記第2時点における前記特性値を推定する。 The detection unit detects the deterioration state of the battery based on the characteristic value at a predetermined first time point and the first reference value and the second reference value for the temperature of the battery at the first time point. Deterioration information, which is the information indicating, is detected. The estimator estimates the characteristic value at the second point in time based on the detected deterioration information and the temperature of the battery at a predetermined second point in time after the first point in time.

本発明によれば、検出部は、第1時点における劣化情報を検出し、推定部は、その劣化情報と第2時点における電池の温度とに基づいて、第2時点における特性値を推定する。そのため、温度変化に対応して第2時点での特性値を推定できる。 According to the present invention, the detection section detects the deterioration information at the first time point, and the estimation section estimates the characteristic value at the second time point based on the deterioration information and the temperature of the battery at the second time point. Therefore, the characteristic value at the second point in time can be estimated in response to the temperature change.

しかも、その劣化情報は、上記の第1基準値と第2基準値との2つの基準値に基づいて定められる。そのため、劣化情報は、1つの基準値(例えば、新品時点での特性値や、終末時点での特性値)のみに基づいて定められる上記の劣化係数に比べて、より精度良く電池の劣化状態を示すことができる。そのため、第1時点における電池の温度と第2時点における電池の温度との乖離が大きくても、劣化情報は、さほど温度に影響されず、その時々の劣化状態をより精度良く示すことができる。その劣化情報に基づいて、第2時点における電池の特性値を推定することにより、特性値の推定精度を向上させることができる。 Moreover, the deterioration information is determined based on the two reference values, the first reference value and the second reference value. Therefore, the deterioration information can more accurately indicate the deterioration state of the battery than the above deterioration coefficient determined based on only one reference value (for example, the characteristic value at the time of new product and the characteristic value at the end of life). can be shown. Therefore, even if there is a large difference between the battery temperature at the first time point and the battery temperature at the second time point, the deterioration information is not so affected by the temperature, and the deterioration state at each time can be indicated more accurately. By estimating the characteristic value of the battery at the second point in time based on the deterioration information, the estimation accuracy of the characteristic value can be improved.

第1実施形態の電池特性検知装置を示す回路図1 is a circuit diagram showing a battery characteristic detection device according to a first embodiment; FIG. 電池特性検知装置による検出及び推定等を示すブロック図Block diagram showing detection and estimation by the battery characteristic detector 電池特性検知装置による検出及び推定を示すグラフGraph showing detection and estimation by battery characteristic detector 各劣化値等における温度と劣化係数との関係を示すグラフGraph showing the relationship between temperature and deterioration coefficient for each deterioration value 各値の推移値を示すグラフA graph showing transition values for each value 第2実施形態において、電池特性検知装置による検出及び推定を示すグラフGraph showing detection and estimation by the battery characteristic detection device in the second embodiment 第3実施形態において、電池特性検知装置による検出及び推定を示すグラフGraph showing detection and estimation by the battery characteristic detection device in the third embodiment 第4実施形態において、電池特性検知装置による検出及び推定を示すグラフGraph showing detection and estimation by the battery characteristic detection device in the fourth embodiment

次に、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は、実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更して実施できる。 Next, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments, and can be modified as appropriate without departing from the gist of the invention.

[第1実施形態]
図1は、第1実施形態の電池特性検知装置及びその周辺を示す回路図である。車両には、エンジンの他、電池10、回転電機60、負荷70等が搭載されている。その電池10に対して、電池特性検知装置20が設けられている。エンジンに対しては、起動スイッチ80が設けられている。電池10は、内部抵抗13を有する。以下では、この内部抵抗13の抵抗値を「電池10の抵抗値R」という。電池特性検知装置20は、基準値取得部25と、検出部31と、推定部32とを有する。
[First embodiment]
FIG. 1 is a circuit diagram showing the battery characteristics detection device of the first embodiment and its periphery. The vehicle is equipped with a battery 10, a rotating electric machine 60, a load 70, etc., in addition to an engine. A battery characteristic detection device 20 is provided for the battery 10 . A start switch 80 is provided for the engine. Battery 10 has internal resistance 13 . The resistance value of the internal resistance 13 is hereinafter referred to as "the resistance value R of the battery 10". The battery characteristic detection device 20 has a reference value acquisition section 25 , a detection section 31 and an estimation section 32 .

電池10は、本実施形態ではリチウム電池であるが、その他の電池であってもよい。負荷70は、各種電気機器等を含む。電池10は、回転電機60及び負荷70に給電する。また、電池10は、回転電機60により給電されて充電される。 The battery 10 is a lithium battery in this embodiment, but may be another battery. The load 70 includes various electric devices and the like. The battery 10 supplies power to the rotating electric machine 60 and the load 70 . Also, the battery 10 is charged by power supplied by the rotating electric machine 60 .

次に、以下に示す各用語について説明する。電池10の劣化状態を示す値を「劣化値α」とする。本実施形態では、この「劣化値α」が、本発明でいう「劣化情報」に該当する。電池10が新品の時点を「新品時点tb」とする。本実施形態では、この「新品時点tb」が、本発明でいう「第1基準時点」に該当する。新品時点tbから、例えば10年等の所定期間が経過した時点を「終末時点te」とする。本実施形態では、この「終末時点te」が、本発明でいう「第2基準時点」に該当する。 Next, each term shown below will be explained. A value indicating the deterioration state of the battery 10 is referred to as "deterioration value α". In this embodiment, this "deterioration value α" corresponds to "deterioration information" according to the present invention. The point in time when the battery 10 is new is defined as "new point tb". In this embodiment, this "new product time tb" corresponds to the "first reference time" according to the present invention. The point in time when a predetermined period of time, such as 10 years, has passed from the point of time tb when the product is new is defined as the "end point te". In this embodiment, the "terminal time te" corresponds to the "second reference time" according to the present invention.

新品時点tbよりも後の所定時点を「第1時点t1」とする。詳しくは、本実施形態では、第1時点t1は、起動スイッチ80をOFFにする前に、最後に検出部31により劣化値αを検出したタイミングである。第1時点t1よりも後の所定時点を「第2時点t2」とする。詳しくは、本実施形態では、第2時点t2は、第1時点t1の後に起動スイッチ80をOFFにした後、最初に起動スイッチ80をONにしたタイミングである。 A predetermined time point after the new product time point tb is defined as "first time point t1". Specifically, in this embodiment, the first time point t1 is the timing at which the detection unit 31 finally detects the deterioration value α before the start switch 80 is turned off. A predetermined time point after the first time point t1 is defined as a "second time point t2". Specifically, in this embodiment, the second time point t2 is the timing at which the start switch 80 is turned on for the first time after the start switch 80 is turned off after the first time point t1.

第1時点t1における電池10の温度Tを「第1温度T1」とする。第2時点t2における電池10の温度Tを「第2温度T2」とする。第1時点t1における電池10の抵抗値Rを「第1抵抗値R1」とする。第2時点t2における電池10の抵抗値Rを「第2抵抗値R2」とする。 The temperature T of the battery 10 at the first time t1 is defined as "first temperature T1". The temperature T of the battery 10 at the second time t2 is defined as "second temperature T2". Let the resistance value R of the battery 10 at the first time point t1 be “first resistance value R1”. Let the resistance value R of the battery 10 at the second time t2 be a “second resistance value R2”.

新品時点tb相当の劣化の電池10が温度Tに応じて有する抵抗値Rを「新品抵抗値Rb」とする。第1温度T1における新品抵抗値Rbを「第1新品抵抗値Rb1」とする。第2温度T2における新品抵抗値Rbを「第2新品抵抗値Rb2」とする。 The resistance value R of the battery 10 that has deteriorated corresponding to the time point tb when it is new, according to the temperature T, is defined as "new resistance value Rb". The new product resistance value Rb at the first temperature T1 is defined as "first new product resistance value Rb1". The new product resistance value Rb at the second temperature T2 is defined as "second new product resistance value Rb2".

終末時点te相当の劣化の電池10が温度Tに応じて有する抵抗値Rを「終末抵抗値Re」とする。第1温度T1における終末抵抗値Reを「第1終末抵抗値Re1」とする。第2温度T2における終末抵抗値Reを「第2終末抵抗値Re2」とする。 The resistance value R of the deteriorated battery 10 corresponding to the terminal time point te according to the temperature T is defined as "terminal resistance value Re". The terminal resistance value Re at the first temperature T1 is defined as "first terminal resistance value Re1". The terminal resistance value Re at the second temperature T2 is defined as "second terminal resistance value Re2".

所定の対象時点における電池10の抵抗値Rと、当該対象時点の電池10の温度Tにおける終末抵抗値Reとの比(R/Re)を「劣化係数D」とする。本実施形態では、この「劣化係数D」が、本発明でいう「特性値」に該当する。第1時点t1における劣化係数Dを「第1劣化係数D1」とする。第2時点t2における劣化係数Dを「第2劣化係数D2」とする。 The ratio (R/Re) of the resistance value R of the battery 10 at a predetermined target time and the terminal resistance value Re at the temperature T of the battery 10 at the target time is defined as "deterioration coefficient D". In this embodiment, this "deterioration coefficient D" corresponds to the "characteristic value" of the present invention. The deterioration coefficient D at the first time point t1 is defined as "first deterioration coefficient D1". The deterioration coefficient D at the second time t2 is defined as "second deterioration coefficient D2".

新品時点tb相当の劣化の電池10が温度Tに応じて有する劣化係数D=R/Reを、「新品劣化係数Db」とする。本実施形態では、この「新品劣化係数Db」が、本発明でいう「第1基準値」に該当する。第1温度T1における新品劣化係数Dbを「第1新品劣化係数Db1」とする。第2温度T2における新品劣化係数Dbを「第2新品劣化係数Db2」とする。 A deterioration coefficient D=R/Re that the battery 10 having deteriorated corresponding to the time tb when new has according to the temperature T is defined as a “new deterioration coefficient Db”. In this embodiment, this "new product deterioration coefficient Db" corresponds to the "first reference value" of the present invention. The new article deterioration coefficient Db at the first temperature T1 is defined as "first new article deterioration coefficient Db1". The new article deterioration coefficient Db at the second temperature T2 is defined as "second new article deterioration coefficient Db2".

終末時点te相当の劣化の電池10が有する劣化係数Dを、「終末劣化係数De」とする。本実施形態では、この「終末劣化係数De」が、本発明でいう「第2基準値」に該当する。終末劣化係数Deは、「Re/Re」となることから、必然的に「1」になる。第1温度T1における終末劣化係数Deを「第1終末劣化係数De1」とする。第2温度T2における終末劣化係数Deを「第2終末劣化係数De2」とする。第1終末劣化係数De1及び第2終末劣化係数De2についても、いずれも必然的に「1」になる。 A deterioration coefficient D of the battery 10 having deterioration corresponding to the terminal time te is defined as a “terminal deterioration coefficient De”. In this embodiment, the "terminal deterioration coefficient De" corresponds to the "second reference value" of the present invention. Since the terminal deterioration coefficient De is "Re/Re", it is inevitably "1". The terminal deterioration coefficient De at the first temperature T1 is defined as "first terminal deterioration coefficient De1". The terminal deterioration coefficient De at the second temperature T2 is defined as “second terminal deterioration coefficient De2”. Both the first terminal deterioration factor De1 and the second terminal deterioration factor De2 are necessarily "1".

次に、電池特性検知装置20について説明する。基準値取得部25は、電池10の温度Tと新品抵抗値Rbとの関係を示すマップと、電池10の温度Tと終末抵抗値Reとの関係を示すマップとを有している。これらのマップは、予め実験等に基づいて取得されたり、電池10の仕様等に基づいて予め取得されたりしている。それらのマップから、基準値取得部25は、必要に応じて、対象時点の温度Tにおける新品抵抗値Rbや終末抵抗値Reを取得することができる。さらに、それら新品抵抗値Rb及び終末抵抗値Reから、新品劣化係数Db=Rb/Reを取得することができる。基準値取得部25は、取得した数値を検出部31に提供する。 Next, the battery characteristics detection device 20 will be described. The reference value acquiring unit 25 has a map showing the relationship between the temperature T of the battery 10 and the new resistance value Rb, and a map showing the relationship between the temperature T of the battery 10 and the terminal resistance value Re. These maps are acquired in advance based on experiments or the like, or are acquired in advance based on the specifications of the battery 10 or the like. From these maps, the reference value acquisition unit 25 can acquire the new resistance value Rb and the terminal resistance value Re at the temperature T at the target time, if necessary. Furthermore, a new product deterioration coefficient Db=Rb/Re can be obtained from the new product resistance value Rb and the terminal resistance value Re. The reference value acquisition unit 25 provides the acquired numerical value to the detection unit 31 .

検出部31は、第1劣化係数D1と第1新品劣化係数Db1と第1終末劣化係数De1とに基づいて、劣化値αを検出する。推定部32は、劣化値αと第2新品劣化係数Db2と第2終末劣化係数De2とに基づいて、第2劣化係数D2を推定する。 The detection unit 31 detects the deterioration value α based on the first deterioration coefficient D1, the first new product deterioration coefficient Db1, and the first terminal deterioration coefficient De1. The estimation unit 32 estimates the second deterioration coefficient D2 based on the deterioration value α, the second new product deterioration coefficient Db2, and the second terminal deterioration coefficient De2.

図2は、電池特性検知装置20による検出、推定等を示すブロック図である。まず、検出部31が、第1時点t1の電池10における電圧値と電流値とから、第1抵抗値R1を算出する(S101)。また、基準値取得部25が、第1温度T1から、第1新品抵抗値Rb1と第1終末抵抗値Re1と第1新品劣化係数Db1=Rb1/Re1とを算出する(S102)。 FIG. 2 is a block diagram showing detection, estimation, etc. by the battery characteristic detection device 20. As shown in FIG. First, the detection unit 31 calculates the first resistance value R1 from the voltage value and current value of the battery 10 at the first time point t1 (S101). Further, the reference value acquisition unit 25 calculates a first new article resistance value Rb1, a first terminal resistance value Re1, and a first new article deterioration coefficient Db1=Rb1/Re1 from the first temperature T1 (S102).

次に、検出部31が、第1抵抗値R1と第1終末抵抗値Re1とから、第1劣化係数D1=R1/Re1を算出する(S103)。次に、検出部31は、第1劣化係数D1と第1新品劣化係数Db1と第1終末劣化係数De1=1とに基づいて、劣化値αを算出する(S104)。この算出の詳細については後述する。 Next, the detection unit 31 calculates a first deterioration coefficient D1=R1/Re1 from the first resistance value R1 and the first terminal resistance value Re1 (S103). Next, the detection unit 31 calculates the deterioration value α based on the first deterioration coefficient D1, the first new product deterioration coefficient Db1, and the first terminal deterioration coefficient De1=1 (S104). The details of this calculation will be described later.

次に、基準値取得部25が、第2温度T2から、第2新品抵抗値Rb2と第2終末抵抗値Re2と第2新品劣化係数Db2=Rb2/Re2とを算出する(S105)。次に、推定部32は、劣化値αと第2新品劣化係数Db2と第2終末劣化係数De2=1とに基づいて、第2劣化係数D2を推定する(S106)。この算出の詳細については後述する。次に、推定部32は、第2劣化係数D2=R2/Re2と第2終末抵抗値Re2とに基づいて、第2抵抗値R2を算出する(S107)。 Next, the reference value acquiring unit 25 calculates a second new product resistance value Rb2, a second terminal resistance value Re2, and a second new product deterioration coefficient Db2=Rb2/Re2 from the second temperature T2 (S105). Next, the estimation unit 32 estimates the second deterioration coefficient D2 based on the deterioration value α, the second new product deterioration coefficient Db2, and the second terminal deterioration coefficient De2=1 (S106). The details of this calculation will be described later. Next, the estimation unit 32 calculates the second resistance value R2 based on the second deterioration coefficient D2=R2/Re2 and the second terminal resistance value Re2 (S107).

次に、その算出された第2抵抗値R2や、その算出過程で算出された劣化値αが使用される(S108)。具体的には、例えば、第2抵抗値R2に基づいて、電池10から回転電機60への出力に関する情報が求められる。また例えば、第2抵抗値R2に基づいて、その他の各負荷70への出力に関する情報も求められる。また例えば、劣化値αに基づいて、電池10の寿命等に関する情報が求められる。 Next, the calculated second resistance value R2 and the deterioration value α calculated in the calculation process are used (S108). Specifically, for example, information regarding the output from the battery 10 to the rotating electric machine 60 is obtained based on the second resistance value R2. Further, for example, based on the second resistance value R2, information regarding output to other loads 70 is also obtained. Further, for example, information regarding the life of the battery 10 is obtained based on the deterioration value α.

図3は、電池10の温度Tと、劣化係数Dとの関係を示すグラフである。新品抵抗値Rbと終末抵抗値Reとの温度Tに対する変化率が異なると、新品劣化係数Db=Rb/Reが一定にならず、温度Tにより変化することになる。その点、本実施形態では、図3(a)に示す所定温度Tx未満では、新品劣化係数Dbが一定にならず、温度Tにより変化する。他方、終末劣化係数De=Re/Reは常に「1」なので、温度Tにより変化しない。 FIG. 3 is a graph showing the relationship between the temperature T of the battery 10 and the deterioration coefficient D. As shown in FIG. If the rate of change with respect to the temperature T is different between the new product resistance value Rb and the terminal resistance value Re, the new product deterioration coefficient Db=Rb/Re will not be constant and will change with the temperature T. In this regard, in the present embodiment, the new product deterioration coefficient Db is not constant below the predetermined temperature Tx shown in FIG. On the other hand, since the terminal deterioration coefficient De=Re/Re is always "1", it does not change with the temperature T.

そのため、所定温度Tx未満では、新品劣化係数Dbと終末劣化係数Deとが平行にならない。この場合、新品劣化係数Dbのみに基づいて劣化値αを求めても、終末劣化係数Deのみに基づいて劣化値αを求めても、正しい劣化状態を推定することはできない。そのため、新品劣化係数Db及び終末劣化係数Deの双方に基づいて劣化値αを求める。その劣化値αに基づいて第2抵抗値R2を推定する。 Therefore, below the predetermined temperature Tx, the new article deterioration coefficient Db and the terminal deterioration coefficient De are not parallel. In this case, even if the deterioration value α is obtained based only on the new product deterioration coefficient Db, or if the deterioration value α is obtained based only on the terminal deterioration coefficient De, the correct deterioration state cannot be estimated. Therefore, the deterioration value α is obtained based on both the new product deterioration coefficient Db and the terminal deterioration coefficient De. A second resistance value R2 is estimated based on the deterioration value α.

まず、図3(a)~(c)を参照しつつ、上記のS104での劣化値αの算出について説明する。まず、図3(a)に示すように、劣化係数Dと温度Tとの関係を示すグラフに、第1時点t1における電池10の状態を示す点、すなわち第1温度T1及び第1劣化係数D1を示す点である第1点P1=(T1,D1)をプロットする。 First, the calculation of the deterioration value α in S104 will be described with reference to FIGS. First, as shown in FIG. 3A, points indicating the state of the battery 10 at the first time point t1, that is, the first temperature T1 and the first deterioration coefficient D1, are shown in the graph showing the relationship between the deterioration coefficient D and the temperature T. Plot the first point P1=(T1, D1), which is a point indicating .

次に、図3(b)に示すように、第1温度T1での新品劣化係数Dbを示す点、すなわち第1温度T1と第1新品劣化係数Db1とを示す点である第1新品点Pb1=(T1,Db1)をプロットする。さらに、第1温度T1での終末劣化係数Deを示す点、すなわち第1温度T1と第1終末劣化係数De1=1とを示す点である第1終末点Pe1=(T1,1)をプロットする。 Next, as shown in FIG. 3B, a first new product point Pb1 is a point indicating the new product deterioration coefficient Db at the first temperature T1, that is, a point indicating the first temperature T1 and the first new product deterioration coefficient Db1. Plot =(T1,Db1). Furthermore, the point indicating the terminal deterioration coefficient De at the first temperature T1, that is, the first terminal point Pe1=(T1, 1), which is the point indicating the first temperature T1 and the first terminal deterioration coefficient De1=1, is plotted. .

次に、図3(c)に示すように、第1終末点Pe1と第1新品点Pb1との差(1-Db1)を1(基準差)とした場合における、第1点P1と第1新品点Pb1との差(D1-Db1)の大きさ(D1-Db1)/(1-Db1)を、劣化値αとして算出する。 Next, as shown in FIG. 3C, the first point P1 and the first The magnitude (D1-Db1)/(1-Db1) of the difference (D1-Db1) from the new point Pb1 is calculated as the deterioration value α.

次に、図3(d)(e)を参照しつつ、上記のS106での第2劣化係数D2の推定について説明する。図3(d)に示すように、第2温度T2での新品劣化係数Dbを示す点、すなわち第2温度T2と第2新品劣化係数Db2とを示す点である第2新品点Pb2=(T2,Db2)をプロットする。さらに、第2温度T2での終末劣化係数Deを示す点、すなわち第2温度T2と第2終末劣化係数De2=1とを示す点である第2終末点Pe2=(T2,1)をプロットする。 Next, the estimation of the second deterioration coefficient D2 in S106 will be described with reference to FIGS. 3(d) and 3(e). As shown in FIG. 3(d), the point indicating the new product deterioration coefficient Db at the second temperature T2, that is, the second new product point Pb2=(T2 , Db2). Furthermore, the point indicating the terminal deterioration coefficient De at the second temperature T2, that is, the second terminal point Pe2=(T2, 1), which is the point indicating the second temperature T2 and the second terminal deterioration coefficient De2=1, is plotted. .

次に、図3(e)に示すように、第2終末点Pe2と第2新品点Pb2との差(1-Db2)に劣化値αを乗じた数値α×(1-Db2)を算出し、当該数値α×(1-Db2)を、第2新品点Pb2=(T2,Db2)の劣化係数Dの座標(Db2)に加えた点を算出する。その点を、第2点P2=(T2,D2)と推定する。これにより、第2劣化係数D2を推定する。 Next, as shown in FIG. 3(e), a numerical value α×(1−Db2) is calculated by multiplying the difference (1−Db2) between the second end point Pe2 and the second new point Pb2 by the deterioration value α. , the numerical value α×(1−Db2) is added to the coordinates (Db2) of the deterioration coefficient D of the second new point Pb2=(T2, Db2). The point is estimated as the second point P2=(T2, D2). Thereby, the second deterioration coefficient D2 is estimated.

図4(a)は、各劣化値αにおける劣化係数Dと温度Tとの関係を示すグラフである。図4(b)は、各相当劣化年数Yにおける劣化係数Dと温度Tとの関係を示すイメージ図である。相当劣化年数Yは、電池10が何年相当の劣化であるかを示す値である。このように、劣化値αが一定の場合における劣化係数Dと温度Tとの関係と、相当劣化年数Yが一定の場合における劣化係数Dと温度Tとの関係は、類似するため、劣化値αから相当劣化年数Yを算出することができる。 FIG. 4A is a graph showing the relationship between the deterioration coefficient D and the temperature T for each deterioration value α. FIG. 4(b) is an image diagram showing the relationship between the deterioration coefficient D and the temperature T for each equivalent deterioration years Y. As shown in FIG. The equivalent deterioration years Y is a value indicating how many years the battery 10 has deteriorated. Thus, the relationship between the deterioration coefficient D and the temperature T when the deterioration value α is constant is similar to the relationship between the deterioration coefficient D and the temperature T when the equivalent deterioration years Y are constant. Equivalent deterioration years Y can be calculated from the above.

図5は、上記のとおり、第1時点t1で劣化値αを検出し、第2時点t2で第2抵抗値R2を推定する場合における、各値の推移を示すグラフである。詳しくは、図5(a)は、起動スイッチ80のON,OFFの推移を示すグラフである。以下では、起動スイッチ80をONにすることを、単に「起動ON」といい、起動スイッチ80をOFFにすることを、単に「起動OFF」という。図5(b)は、電池10の温度Tの推移を示すグラフである。図5(c)は、抵抗値Rの実測タイミングを示すグラフである。図5(d)は、電池10の抵抗値Rの推移を示すグラフである。図5(e)は、劣化係数Dの推移を示すグラフである。図5(f)は、劣化値αの推移を示すグラフである。 FIG. 5 is a graph showing changes in values when the deterioration value α is detected at the first time point t1 and the second resistance value R2 is estimated at the second time point t2, as described above. Specifically, FIG. 5(a) is a graph showing the ON/OFF transition of the start switch 80. As shown in FIG. Hereinafter, turning on the start switch 80 is simply referred to as "starting on", and turning off the start switch 80 is simply referred to as "starting off". FIG. 5(b) is a graph showing transition of the temperature T of the battery 10. As shown in FIG. FIG. 5(c) is a graph showing the actual measurement timing of the resistance value R. As shown in FIG. FIG. 5(d) is a graph showing transition of the resistance value R of the battery 10. As shown in FIG. FIG. 5(e) is a graph showing transition of the deterioration coefficient D. FIG. FIG. 5(f) is a graph showing transition of the deterioration value α.

図5(a)に示すように、起動ON期間中の第1時点t1で、図5(c)に示すように、第1抵抗値R1が実測される。それにより、図5(d)~(f)に示すように、第1抵抗値R1と第1劣化係数D1と劣化値αとが検出される。次に、図5(a)に示すように、第1時点t1よりも後の所定の起動OFF時点tiで起動OFFになる。 As shown in FIG. 5(a), the first resistance value R1 is actually measured at a first time point t1 during the startup ON period, as shown in FIG. 5(c). Thereby, as shown in FIGS. 5(d) to 5(f), the first resistance value R1, the first deterioration coefficient D1, and the deterioration value α are detected. Next, as shown in FIG. 5A, the start-up is turned off at a predetermined start-off time ti after the first time t1.

図5(b)に示すように、起動OFF時点ti以後、電池10の温度Tが変化したものとする。これに伴い、図5(d)に破線で示すように、実際の抵抗値Rが変化し、さらに図5(e)に破線で示すように、実際の劣化係数Dも若干変化する。しかし、図5(f)に破線で示すように、劣化値αは殆ど変化しない。 As shown in FIG. 5(b), it is assumed that the temperature T of the battery 10 has changed after the startup OFF time ti. Accordingly, the actual resistance value R changes as indicated by the broken line in FIG. 5(d), and the actual deterioration coefficient D also slightly changes as indicated by the broken line in FIG. 5(e). However, as indicated by the dashed line in FIG. 5(f), the deterioration value α hardly changes.

次に、図5(a)に示すように、起動OFF時点ti以後の第2時点t2で起動ONになると、図5(d)~(f)に示すように、保存されている劣化値αに基づいて第2劣化係数D2が推定されると共に、その第2劣化係数D2に基づいて第2抵抗値R2が算出される。 Next, as shown in FIG. 5A, when the activation is turned ON at the second time t2 after the activation OFF time ti, the stored deterioration value α and a second resistance value R2 is calculated based on the second deterioration coefficient D2.

他方、比較例の場合は、劣化値αではなく第1劣化係数D1が保存され、その第1劣化係数D1に基づいて、第2時点t2での抵抗値Rが推定されるものとする。その場合、第1劣化係数D1は実際の第2時点t2の劣化係数Dとは異なるものになるため、そこから算出される抵抗値Rも、実際の抵抗値Rとは異なるものになる。 On the other hand, in the case of the comparative example, the first deterioration coefficient D1 is stored instead of the deterioration value α, and the resistance value R at the second time point t2 is estimated based on the first deterioration coefficient D1. In this case, since the first deterioration coefficient D1 differs from the actual deterioration coefficient D at the second time point t2, the resistance value R calculated therefrom also differs from the actual resistance value R.

次に、図5(c)に示すように、第2時点t2よりも後の実測時点tjで、実際の抵抗値Rが実測される。よって、本実施形態では、図5(d)(e)に示すように、第2時点t2から実測時点tjまでの間で、比較例に比べて実際に近い劣化係数D及び抵抗値Rを推定することができる。 Next, as shown in FIG. 5(c), the actual resistance value R is actually measured at the actual measurement time tj after the second time t2. Therefore, in the present embodiment, as shown in FIGS. 5(d) and (e), between the second time point t2 and the actual measurement time point tj, the deterioration coefficient D and the resistance value R that are closer to the actual values than in the comparative example are estimated. can do.

本実施形態によれば、第2抵抗値R2を推定することにより、実測時点tjでの抵抗値Rの実測を待たなくても、第2時点t2でただちに抵抗値Rを把握することができる。そのため、第2時点t2以後、すぐに電池10を使えるようになり、電池10を使える期間が増加する。そのため、回転電機60を駆動できる期間や、回転電機60により回生発電を行うことができる期間が増加して、燃費が向上する。 According to this embodiment, by estimating the second resistance value R2, the resistance value R can be immediately grasped at the second time point t2 without waiting for the actual measurement of the resistance value R at the actual measurement time point tj. Therefore, the battery 10 can be used immediately after the second time t2, and the period during which the battery 10 can be used increases. Therefore, the period during which the rotating electrical machine 60 can be driven and the period during which the rotating electrical machine 60 can perform regenerative power generation are increased, thereby improving fuel efficiency.

また、本実施形態では、劣化係数Dに基づいて劣化値α及び第2抵抗値R2を算出するので、他の用途で劣化係数Dを求める必要がある場合には、当該劣化係数Dを利用して劣化値α及び第2抵抗値R2を算出することができる。また、劣化係数D=R/Reを用いることで終末劣化係数De=Re/Reが常に「1」になるので、基準値取得部25は第1終末劣化係数De1や第2終末劣化係数De2を取得する必要がなく、計算がシンプルになる。また、劣化情報を、数値である劣化値αにすることにより、劣化情報をシンプルにできる。また、起動スイッチ80をOFFにする前に最後に検出部31により劣化値αを検出した時点を、第1時点t1とすることにより、なるべく最新の劣化値αを用いて、第2時点t2での抵抗値Rを推定できる。 Further, in the present embodiment, since the deterioration value α and the second resistance value R2 are calculated based on the deterioration coefficient D, the deterioration coefficient D can be used when the deterioration coefficient D needs to be obtained for other purposes. can be used to calculate the deterioration value α and the second resistance value R2. Further, by using the deterioration coefficient D=R/Re, the terminal deterioration coefficient De=Re/Re is always “1”, so the reference value acquisition unit 25 obtains the first terminal deterioration coefficient De1 and the second terminal deterioration coefficient De2. There is no need to obtain it, which simplifies the calculation. Further, the deterioration information can be simplified by using the deterioration value α, which is a numerical value, as the deterioration information. Further, by setting the time point at which the detection unit 31 last detects the deterioration value α before the start switch 80 is turned off as the first time point t1, the latest deterioration value α can be used at the second time point t2 as much as possible. can be estimated.

[第2実施形態]
次に、第2実施形態について説明する。なお、以下の実施形態では、それ以前の実施形態のものと同一の又は対応する部材等については同一の符号を付する。本実施形態については、第1実施形態をベースに、ことと異なる点を中心に説明する。本実施形態では、劣化値αの代わりに等劣化線βを求める。本実施形態では、この「等劣化線β」が、本発明でいう「劣化情報」に該当する。
[Second embodiment]
Next, a second embodiment will be described. In the following embodiments, members that are the same as or correspond to those in the previous embodiments are denoted by the same reference numerals. This embodiment will be described based on the first embodiment, focusing on points that differ from it. In the present embodiment, iso-deterioration lines β are obtained instead of the deterioration value α. In this embodiment, the "equivalent deterioration line β" corresponds to "deterioration information" in the present invention.

図6は、電池10の温度Tと劣化係数Dとの関係を示すグラフである。以下に、等劣化線βの検出と第2劣化係数D2の推定とについて説明する。まず、図6(a)に示すように、第1点P1=(T1,D1)をプロットする。 FIG. 6 is a graph showing the relationship between the temperature T and the deterioration coefficient D of the battery 10. As shown in FIG. Detection of the iso-deterioration line β and estimation of the second deterioration coefficient D2 will be described below. First, as shown in FIG. 6A, the first point P1=(T1, D1) is plotted.

次に、図6(b)に示すように、第1点P1を通る等劣化線βを算出する。等劣化線βは、電池10の同一の劣化状態において、劣化係数Dと電池10の温度Tとの関係を示す線である。等劣化線βは、新品劣化係数Dbと終末劣化係数Deとに基づいて定められる。そのため、等劣化線βは、新品劣化係数Dbを示す線と終末劣化係数De=1を示す線との双方に、平均的に沿って引かれる。具体的には、この等劣化線βは、例えば、第1実施形態でいう劣化値αが同一の値になる点の集合とすることができる。 Next, as shown in FIG. 6B, iso-degradation lines β passing through the first point P1 are calculated. The constant deterioration line β is a line showing the relationship between the deterioration coefficient D and the temperature T of the battery 10 in the same deterioration state of the battery 10 . The iso-deterioration line β is determined based on the new product deterioration coefficient Db and the terminal deterioration coefficient De. Therefore, the iso-deterioration line β is drawn along the average along both the line indicating the new product deterioration coefficient Db and the line indicating the terminal deterioration coefficient De=1. Specifically, the iso-degradation line β can be, for example, a set of points at which the degradation value α in the first embodiment has the same value.

なお、図に破線で示す比較例は、劣化係数D=R/Reが一定になる線を等劣化線βにした場合、すなわち新品劣化係数Db=Rb/Reには基づかずに、終末劣化係数De=Re/Re=1に基づいて、等劣化線βを引いた場合を示している。この比較例の場合、等劣化線βは、終末劣化係数De=1を示す線には沿うが、本実施形態の場合のように、新品劣化係数Dbを示す線と終末劣化係数De=1を示す線との双方に、平均的に沿うことはない。 In the comparative example indicated by the dashed line in the figure, when the line where the deterioration coefficient D=R/Re is constant is set to the constant deterioration line β, that is, the terminal deterioration coefficient is not based on the new product deterioration coefficient Db=Rb/Re. It shows the case where the iso-deterioration line β is drawn based on De=Re/Re=1. In the case of this comparative example, the iso-deterioration line β follows the line indicating the terminal deterioration coefficient De=1. It does not follow both the indicated line and the line on average.

次に、図6(c)に示すように、第2温度T2と等劣化線βとの交点を、第2点P2=(T2,D2)として算出する。 Next, as shown in FIG. 6C, the intersection point between the second temperature T2 and the iso-degradation line β is calculated as a second point P2=(T2, D2).

本実施形態によれば,等劣化線βを求めることにより、第1新品点Pb1、第1終末点Pe1、第2新品点Pb2、第2終末点Pe2を求めなくても、等劣化線βと第2温度T2とから直接的に第2劣化係数D2を推定できる。 According to the present embodiment, even if the first new point Pb1, the first terminal point Pe1, the second new point Pb2, and the second terminal point Pe2 are not obtained by obtaining the iso-degradation line β, the iso-degradation line β The second deterioration coefficient D2 can be estimated directly from the second temperature T2.

[第3実施形態]
次に、第3実施形態について説明する。本実施形態については、第2実施形態をベースに、これと異なる点を中心に説明する。本実施形態では、第1劣化係数D1及び第2劣化係数D2を求めずに、第1抵抗値R1から直接的に第2抵抗値R2を推定する。具体的には、第1抵抗値R1から、等劣化線βとは異なる等劣化線γを用いて、第2抵抗値R2を推定する。
[Third embodiment]
Next, a third embodiment will be described. This embodiment will be described based on the second embodiment, focusing on the differences therefrom. In this embodiment, the second resistance value R2 is estimated directly from the first resistance value R1 without obtaining the first deterioration coefficient D1 and the second deterioration coefficient D2. Specifically, the second resistance value R2 is estimated from the first resistance value R1 using an iso-degradation line γ different from the iso-degradation line β.

よって、本実施形態では、「劣化係数D=R/Re」ではなく、「抵抗値R」自体が、本発明でいう「特性値」に該当する。そして、「等劣化線γ」が、本発明でいう「劣化情報」に該当する。 Therefore, in the present embodiment, the "resistance value R" itself, not the "degradation coefficient D=R/Re", corresponds to the "characteristic value" of the present invention. The "equal deterioration line γ" corresponds to "deterioration information" in the present invention.

図7は、電池10の温度Tと抵抗値Rとの関係を示すグラフである。以下に、等劣化線γの検出及び第2抵抗値R2の推定について説明する。まず、図7(a)に示すように、第1点P1=(T1,R1)をプロットする。 FIG. 7 is a graph showing the relationship between temperature T and resistance value R of battery 10 . Detection of the iso-degradation line γ and estimation of the second resistance value R2 will be described below. First, as shown in FIG. 7A, the first point P1=(T1, R1) is plotted.

次に、図7(b)に示すように、第1点P1を通る等劣化線γを算出する。等劣化線γは、電池10の同一の劣化状態において、抵抗値Rと電池10の温度Tとの関係を示す線である。等劣化線γは、新品抵抗値Rbと終末抵抗値Reとに基づいて定められる。そのため、等劣化線γは、新品抵抗値Rbを示す線と終末抵抗値Reを示す線との双方に、平均的に沿って引かれる。 Next, as shown in FIG. 7(b), an iso-degradation line γ passing through the first point P1 is calculated. The constant deterioration line γ is a line showing the relationship between the resistance value R and the temperature T of the battery 10 in the same deterioration state of the battery 10 . The iso-degradation line γ is determined based on the new resistance value Rb and the terminal resistance value Re. Therefore, the iso-degradation line γ is drawn along both the line indicating the new resistance value Rb and the line indicating the terminal resistance value Re on average.

なお、図に破線で示す比較例は、劣化係数D=R/Reが同じになる点の集合を等劣化線γにした場合、すなわち新品抵抗値Rbには基づかずに、終末抵抗値Reに基づいて等劣化線γを引いた場合を示している。この比較例の場合、等劣化線γは、終末抵抗値Reを示す線には沿うが、本実施形態の場合のように、新品抵抗値Rbを示す線と終末抵抗値Reを示す線との双方に、平均的に沿うことはない。 In the comparative example indicated by the dashed line in the figure, when the set of points where the deterioration coefficient D=R/Re is the same is set as the iso-degradation line γ, that is, it is not based on the new resistance value Rb, but on the terminal resistance value Re. It shows the case where the iso-degradation line γ is drawn based on the above. In the case of this comparative example, the iso-degradation line γ follows the line indicating the terminal resistance value Re. There is no average for both.

次に、図7(c)に示すように、第2温度T2と等劣化線γとの交点を、第2点P2=(T2,R2)として算出する。 Next, as shown in FIG. 7C, the intersection point between the second temperature T2 and the iso-degradation line γ is calculated as a second point P2=(T2, R2).

本実施形態によれば、第1劣化係数D1=R1/Re1及び第2劣化係数D2=R2/Re2を求めなくても、第1抵抗値R1から直接的に第2抵抗値R2を推定することができる。 According to the present embodiment, the second resistance value R2 can be estimated directly from the first resistance value R1 without obtaining the first deterioration coefficient D1=R1/Re1 and the second deterioration coefficient D2=R2/Re2. can be done.

[第4実施形態]
次に、第4実施形態について説明する。本実施形態については、第2実施形態をベースに、これと異なる点を中心に説明する。
[Fourth embodiment]
Next, a fourth embodiment will be described. This embodiment will be described based on the second embodiment, focusing on the differences therefrom.

図8は、電池10の温度Tと抵抗値Rとの関係を示すグラフである。本実施形態では、等劣化線βが段階的に変化する。本実施形態によれば、等劣化線βの情報量を減らすことができ、それにより処理をシンプルにすることができる。 FIG. 8 is a graph showing the relationship between temperature T and resistance value R of battery 10 . In this embodiment, the iso-degradation line β changes stepwise. According to this embodiment, the amount of information of the iso-degradation line β can be reduced, thereby simplifying the processing.

[他の実施形態]
本実施形態は、例えば次のように変更して実施することもできる。エンジンを、モータや、エンジンとモータとのハイブリッド等の、各種走行用の動力装置に変更してもよい。新品時点tbの代わりに、1年相当劣化時点を用いてもよい。終末時点teの代わりに、5年相当劣化時点を用いてもよい。
[Other embodiments]
For example, the present embodiment can be modified as follows. The engine may be changed to various driving power devices such as a motor, a hybrid of an engine and a motor, or the like. Instead of the new product time tb, the deterioration time corresponding to one year may be used. Instead of the terminal time te, a 5-year equivalent deterioration time may be used.

第1、第2、第4実施形態において、劣化係数Dを、終末抵抗値Reと対象時点の抵抗値Rとの比(R/Re)にするのに代えて、新品抵抗値Rbと対象時点の抵抗値Rとの比(R/Rb)にしてもよい。この場合、終末劣化係数Deの代わりに、新品劣化係数Dbが常に「1」になる。 In the first, second, and fourth embodiments, instead of setting the deterioration coefficient D to the ratio (R/Re) between the terminal resistance value Re and the resistance value R at the target time, the new resistance value Rb and the target time and the resistance value R (R/Rb). In this case, instead of the terminal deterioration coefficient De, the new product deterioration coefficient Db is always "1".

第2実施形態をベースに、本発明でいう「特性値」を劣化係数Dから抵抗値Rに代えて第3実施形態にした場合と同様に、第1、第4実施形態をベースに、本発明でいう「特性値」を劣化係数Dから抵抗値Rに代えてもよい。この場合、第1、第4実施形態をベースにした態様において、第3実施形態の場合と同様に、第1劣化係数D1=R1/Re1及び第2劣化係数D2=R2/Re2を求めなくても、第1抵抗値R1から直接的に第2抵抗値R2を推定することができる。 Based on the second embodiment, the present invention is based on the first and fourth embodiments, similarly to the case where the "characteristic value" referred to in the present invention is replaced with the resistance value R instead of the deterioration coefficient D in the third embodiment. The "characteristic value" referred to in the invention may be replaced with the resistance value R instead of the deterioration coefficient D. In this case, in a mode based on the first and fourth embodiments, similarly to the case of the third embodiment, the first deterioration factor D1=R1/Re1 and the second deterioration factor D2=R2/Re2 need not be obtained. Also, the second resistance value R2 can be estimated directly from the first resistance value R1.

劣化値αや等劣化線β,γの算出を、毎回の起動OFFの前のタイミングにするのに代えて、例えば1ヵ月に1回等、所定期間に1回にしてもよい。劣化状態の時間変化は通常緩やかであるからである。 Instead of calculating the deterioration value α and the iso-degradation lines β and γ before each start-off, the calculation may be performed once in a predetermined period such as once a month. This is because the time change of the deterioration state is usually moderate.

劣化値αや等劣化線β,γによる第2抵抗値R2の推定は、第1温度T1と第2温度T2との差が所定以上の場合にのみ行い、その他の場合には、第1抵抗値R1を第2抵抗値R2として引き継ぐか、第1劣化係数D1を第2劣化係数D2として引き継ぐようにしてもよい。 Estimation of the second resistance value R2 based on the deterioration value α and the iso-degradation lines β and γ is performed only when the difference between the first temperature T1 and the second temperature T2 is equal to or greater than a predetermined value. The value R1 may be taken over as the second resistance value R2, or the first deterioration coefficient D1 may be taken over as the second deterioration coefficient D2.

新品劣化係数Dbの温度Tに対する変化比率と終末劣化係数Deの温度Tに対する変化比率との両変化比率は、同じであってもよい。この場合であっても、電池特性検知装置20は、当該両変化比率が同じであっても異なっていても対応できるという効果を奏する。 Both the change ratio of the new product deterioration coefficient Db with respect to the temperature T and the change ratio of the terminal deterioration coefficient De with respect to the temperature T may be the same. Even in this case, the battery characteristic detection device 20 has the effect of being able to cope with both the same change ratios and different ratios.

電池10の充電量(SOC)の違いにより、抵抗値Rが少なからず変化する場合等には、さらに、充電量に基づいて第2抵抗値R2を補正するようにしてもよい。 If the resistance value R changes considerably due to the difference in the charge level (SOC) of the battery 10, the second resistance value R2 may be further corrected based on the charge level.

抵抗値Rの代わりに電池容量を用いてもよい。すなわち、第1、第2、第4実施形態において、劣化係数Dを、終末抵抗値Reと対象時点の抵抗値Rとの比(R/Re)にするのに代えて、終末電池容量と対象時点の電池容量の比にしてもよい。また、第3実施形態において、抵抗値Rを電池容量に代えてもよい。 A battery capacity may be used instead of the resistance value R. That is, in the first, second, and fourth embodiments, instead of setting the deterioration coefficient D to the ratio (R/Re) between the terminal resistance value Re and the resistance value R at the target time, the terminal battery capacity and the target It may be the ratio of the battery capacities at that time. Also, in the third embodiment, the resistance value R may be replaced with the battery capacity.

α…劣化値、β…等劣化線、γ…等劣化線、10…電池、20…電池特性検知装置、31…検出部、32…推定部、D…劣化係数、D1…第1劣化係数、D2…第2劣化係数、Db…新品劣化係数、De1…第1終末劣化係数、R…抵抗値、R1…第1抵抗値、R2…第2抵抗値、Rb…新品抵抗値、Re…終末抵抗値、T…温度、T1…第1温度、T2…第2温度、t1…第1時点、t2…第2時点、tb…新品時点、te…終末時点。 α... Deterioration value, β... Equal deterioration line, γ... Equal deterioration line, 10... Battery, 20... Battery characteristic detection device, 31... Detecting unit, 32... Estimating unit, D... Deterioration coefficient, D1... First deterioration coefficient, D2: second deterioration coefficient, Db: new product deterioration coefficient, De1: first terminal deterioration coefficient, R: resistance value, R1: first resistance value, R2: second resistance value, Rb: new product resistance value, Re: terminal resistance Value, T...Temperature, T1...First temperature, T2...Second temperature, t1...First point in time, t2...Second point in time, tb...New article point in time, te...Terminal point in time.

Claims (5)

所定の第1基準時点(tb)相当の劣化の電池が有する、前記電池の温度(T)に応じた特性値(D)を、第1基準値(Db)とし、前記第1基準時点よりも後の第2基準時点(te)相当の劣化の前記電池が有する、前記電池の温度に応じた前記特性値を、第2基準値(De)として、
所定の第1時点(t1)における前記特性値(D1)と、前記第1時点での前記電池の温度(T1)における、前記第1基準値及び前記第2基準値とに基づいて、前記電池の劣化状態を示す情報である劣化情報(α,β,γ)を検出する検出部(31)と、
検出された前記劣化情報と、前記第1時点よりも後の所定の第2時点(t2)での前記電池の温度(T2)とに基づいて、前記第2時点における前記特性値(D2)を推定する推定部(32)と、
を有し、
前記特性値は、前記特性値を求める対象温度における前記電池の所定の物性値と、前記第1基準時点又は前記第2基準時点に相当する劣化の前記電池が前記対象温度であれば有する前記物性値と、の比(D)である、電池特性検知装置。
A characteristic value ( D) corresponding to the temperature (T) of the battery possessed by the battery having deteriorated corresponding to the predetermined first reference time (tb) is defined as a first reference value ( Db) , and from the first reference time As a second reference value ( De) , the characteristic value corresponding to the temperature of the battery possessed by the battery that has deteriorated corresponding to the second reference time (te) afterward,
Based on the characteristic value (D1) at a predetermined first time point (t1 ) and the first reference value and the second reference value at the battery temperature (T1) at the first time point, a detection unit (31) that detects deterioration information (α, β, γ) that is information indicating the deterioration state of the battery;
the characteristic value (D2 ) at the second time based on the detected deterioration information and the temperature (T2) of the battery at a predetermined second time (t2) after the first time; an estimating unit (32) for estimating
has
The characteristic value is a predetermined physical property value of the battery at the target temperature for which the characteristic value is to be obtained, and the physical property of the battery that has deteriorated corresponding to the first reference time or the second reference time at the target temperature. A battery characteristic detection device , which is the ratio (D) of the value and
前記劣化情報は、前記第1時点での前記電池の温度における前記第1基準値と前記第2基準値との差を基準差とし、前記第1時点での前記電池の温度における前記第1基準値又は前記第2基準値と前記第1時点における前記特性値との差を対象差とした場合における、前記基準差と前記対象差との比(α)である、請求項1に記載の電池特性検知装置。 The deterioration information is the reference difference between the first reference value and the second reference value of the temperature of the battery at the first time, and the first reference of the temperature of the battery at the first time. 2. The battery according to claim 1 , which is a ratio (α) between the reference difference and the target difference when the target difference is the difference between the value or the second reference value and the characteristic value at the first time point. Characteristic detector. 前記劣化情報は、前記第1時点での前記電池の劣化状態において、前記特性値と前記電池の温度との関係を示す情報(β,γ)である、請求項1に記載の電池特性検知装置。 2. The battery characteristic detection device according to claim 1 , wherein said deterioration information is information (β, γ) indicating a relationship between said characteristic value and temperature of said battery in said deterioration state of said battery at said first point in time. . 所定の第1基準時点(tb)相当の劣化の電池が有する、前記電池の温度(T)に応じた特性値(D,R)を、第1基準値(Db,Rb)とし、前記第1基準時点よりも後の第2基準時点(te)相当の劣化の前記電池が有する、前記電池の温度に応じた前記特性値を、第2基準値(De,Re)として、A characteristic value (D, R) corresponding to the temperature (T) of the battery possessed by the battery having deteriorated corresponding to the predetermined first reference time (tb) is defined as a first reference value (Db, Rb), and the first The characteristic value corresponding to the temperature of the battery possessed by the battery having deteriorated corresponding to the second reference time (te) after the reference time is defined as a second reference value (De, Re),
所定の第1時点(t1)における前記特性値(D1,R1)と、前記第1時点での前記電池の温度(T1)における、前記第1基準値及び前記第2基準値とに基づいて、前記電池の劣化状態を示す情報である劣化情報(β,γ)を検出する検出部(31)と、Based on the characteristic values (D1, R1) at a predetermined first time point (t1) and the first reference value and the second reference value at the battery temperature (T1) at the first time point, a detection unit (31) that detects deterioration information (β, γ) that is information indicating the deterioration state of the battery;
検出された前記劣化情報と、前記第1時点よりも後の所定の第2時点(t2)での前記電池の温度(T2)とに基づいて、前記第2時点における前記特性値(D2,R2)を推定する推定部(32)と、The characteristic values (D2, R2 ), an estimating unit (32) for estimating
を有し、has
前記劣化情報は、前記第1時点での前記電池の劣化状態において、前記特性値と前記電池の温度との関係を示す情報(β,γ)である、電池特性検知装置。The deterioration information is information (β, γ) indicating a relationship between the characteristic value and the temperature of the battery in the deterioration state of the battery at the first point in time.
少なくとも一部の温度範囲において、前記第1基準値の温度に対する変化比率と前記第2基準値の温度に対する変化比率とは、互いに異なる、請求項1~のいずれか1項に記載の電池特性検知装置。 The battery characteristics according to any one of claims 1 to 4 , wherein the rate of change of the first reference value with respect to temperature and the rate of change of the second reference value with respect to temperature are different from each other in at least a part of the temperature range. detection device.
JP2019068788A 2019-03-29 2019-03-29 Battery characteristic detector Active JP7207100B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019068788A JP7207100B2 (en) 2019-03-29 2019-03-29 Battery characteristic detector
CN202010229733.8A CN111751754A (en) 2019-03-29 2020-03-27 Rechargeable battery characteristic detection apparatus, detection method, and vehicle
DE102020108488.9A DE102020108488A1 (en) 2019-03-29 2020-03-27 Battery characteristics acquisition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068788A JP7207100B2 (en) 2019-03-29 2019-03-29 Battery characteristic detector

Publications (2)

Publication Number Publication Date
JP2020165908A JP2020165908A (en) 2020-10-08
JP7207100B2 true JP7207100B2 (en) 2023-01-18

Family

ID=72612820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068788A Active JP7207100B2 (en) 2019-03-29 2019-03-29 Battery characteristic detector

Country Status (3)

Country Link
JP (1) JP7207100B2 (en)
CN (1) CN111751754A (en)
DE (1) DE102020108488A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129927A (en) 2001-10-26 2003-05-08 Furukawa Electric Co Ltd:The Method and device for judging condition of secondary battery mounted in vehicle
JP2015171275A (en) 2014-03-10 2015-09-28 株式会社豊田自動織機 Charger and charging method of secondary battery
WO2016135853A1 (en) 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program
JP2018120785A (en) 2017-01-26 2018-08-02 トヨタ自動車株式会社 Cell system and estimation system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP4646194B2 (en) * 2003-06-27 2011-03-09 古河電気工業株式会社 Storage battery deterioration determination method and deterioration determination apparatus
US7639018B2 (en) * 2006-06-07 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for predicting change in an operating state of an electric energy storage device
FR3009093B1 (en) * 2013-07-29 2017-01-13 Renault Sa ESTIMATING THE AGING CONDITION OF AN ELECTRIC BATTERY
JP6226406B2 (en) * 2014-03-18 2017-11-15 株式会社東芝 Deterioration estimation method, deterioration estimation system, and deterioration estimation program
DE102015212176A1 (en) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Method for determining a potential of an anode and / or a potential of a cathode in a battery cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129927A (en) 2001-10-26 2003-05-08 Furukawa Electric Co Ltd:The Method and device for judging condition of secondary battery mounted in vehicle
JP2015171275A (en) 2014-03-10 2015-09-28 株式会社豊田自動織機 Charger and charging method of secondary battery
WO2016135853A1 (en) 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program
JP2018120785A (en) 2017-01-26 2018-08-02 トヨタ自動車株式会社 Cell system and estimation system

Also Published As

Publication number Publication date
DE102020108488A1 (en) 2020-10-01
CN111751754A (en) 2020-10-09
JP2020165908A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5710217B2 (en) Deterioration degree estimating apparatus and method for vehicle battery
JP6844683B2 (en) Power storage element management device, SOC reset method, power storage element module, power storage element management program and mobile
JP4228760B2 (en) Battery charge state estimation device
US8645088B2 (en) Systems and methods for determining the state of charge of a battery utilizing confidence values
JP6182588B2 (en) Secondary battery deterioration determination method and secondary battery deterioration determination device
JP4690223B2 (en) Battery state quantity calculation device
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
JP5242997B2 (en) Battery state management method and battery state management apparatus
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US20100066377A1 (en) Method for determining the battery capacity with the aid of capacity-dependent parameters
JPWO2011090020A1 (en) Secondary battery charge state measuring device and secondary battery charge state measuring method
JP3006298B2 (en) Battery remaining capacity meter
JP5684172B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2007323999A (en) Battery control device of automobile
JPH11346444A (en) Estimating method of battery charged condition
JP2008089417A (en) Battery state detection system and automobile having it
US20160259008A1 (en) Method and device for determining an open-circuit voltage profile of a vehicle battery, dependent on a state of charge
JP2009241633A (en) Battery state detection system, and automobile having the same
WO2020163548A1 (en) Battery state of health estimation using open circuit voltage slope
JP4619709B2 (en) Battery state management device
JP3551767B2 (en) Battery discharge meter
JP6119554B2 (en) Charge state calculation device
CN112858924A (en) Method and device for estimating residual energy of power battery, vehicle and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7207100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151