JP2020165675A - Power storage element management device, power storage device, and power storage element management method - Google Patents

Power storage element management device, power storage device, and power storage element management method Download PDF

Info

Publication number
JP2020165675A
JP2020165675A JP2019063641A JP2019063641A JP2020165675A JP 2020165675 A JP2020165675 A JP 2020165675A JP 2019063641 A JP2019063641 A JP 2019063641A JP 2019063641 A JP2019063641 A JP 2019063641A JP 2020165675 A JP2020165675 A JP 2020165675A
Authority
JP
Japan
Prior art keywords
power storage
internal resistance
storage element
engine
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019063641A
Other languages
Japanese (ja)
Inventor
章正 杉浦
Akimasa Sugiura
章正 杉浦
将克 冨士松
Masakatsu Fujimatsu
将克 冨士松
祐樹 松田
Yuki Matsuda
祐樹 松田
和田 直也
Naoya Wada
直也 和田
智士 國田
Satoshi Kunita
智士 國田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2019063641A priority Critical patent/JP2020165675A/en
Publication of JP2020165675A publication Critical patent/JP2020165675A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

To more properly manage a power storage element used to start an engine of a motorcycle on the basis of an internal resistance value.SOLUTION: A BMU (battery management unit) 101 of a secondary battery 62 (power storage element) used to start an engine of a motorcycle 10 comprises a voltage sensor 110 measuring a voltage value of the secondary battery 62, and a management unit 130. When the engine of the motorcycle 10 is not started, the management unit 130 measures a voltage value in time series by the voltage sensor 110, and estimates an internal resistance value of the secondary battery 62 on the basis of a difference between measured voltage values.SELECTED DRAWING: Figure 6

Description

蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法に関する。 The present invention relates to a power storage element management device, a power storage device, and a method for managing the power storage element.

リチウムイオン電池などの蓄電素子は使用に伴って内部抵抗値が増大する。内部抵抗値が増大すると蓄電素子に求められる性能を発揮できなくなる。このため、従来、蓄電素子の内部抵抗値を推定することが行われている(例えば、特許文献1参照)。 The internal resistance value of a power storage element such as a lithium ion battery increases with use. If the internal resistance value increases, the performance required for the power storage element cannot be exhibited. For this reason, conventionally, the internal resistance value of the power storage element has been estimated (see, for example, Patent Document 1).

特許第6119402号公報Japanese Patent No. 6119402

内部抵抗値を推定する方法の一つとして、電圧センサによって蓄電素子の電圧値を時系列で計測し、計測した電圧値の差(以下、電圧差という)に基づいて内部抵抗値を推定する方法がある。この方法では電圧差が大きいほど電圧センサの計測誤差の影響が小さくなるので、電圧差が大きいほど内部抵抗値を精度よく推定できる。 As one of the methods for estimating the internal resistance value, the voltage value of the power storage element is measured in time series by a voltage sensor, and the internal resistance value is estimated based on the difference in the measured voltage values (hereinafter referred to as the voltage difference). There is. In this method, the larger the voltage difference, the smaller the influence of the measurement error of the voltage sensor. Therefore, the larger the voltage difference, the more accurately the internal resistance value can be estimated.

一般にエンジン始動に用いられる蓄電素子はエンジン始動時(エンジンを始動させるスタータに電力を供給するとき)に電流値が最も大きくなる。電流値が大きいと電圧が大きく低下するため、電圧差が大きくなる。
四輪車のエンジン始動に用いられる蓄電素子(以下、四輪車用の蓄電素子という)の場合、エンジン始動時以外の時に流れる電流では電圧差が十分に大きくならないため、内部抵抗値を精度よく推定できない。このため、四輪車用の蓄電素子の場合は電流値が最も大きくなるエンジン始動時に内部抵抗値が推定されている。
The power storage element generally used for starting an engine has the largest current value at the time of starting the engine (when supplying electric power to the starter for starting the engine). If the current value is large, the voltage drops significantly, so the voltage difference becomes large.
In the case of a power storage element used for starting a four-wheeled vehicle engine (hereinafter referred to as a power storage element for a four-wheeled vehicle), the voltage difference does not become sufficiently large with the current flowing at times other than when the engine is started, so the internal resistance value can be accurately adjusted. Cannot be estimated. Therefore, in the case of a power storage element for a four-wheeled vehicle, the internal resistance value is estimated when the engine is started, which has the largest current value.

しかしながら、前述したように蓄電素子の内部抵抗値は使用に伴って増大するので、エンジン始動時に推定した内部抵抗値は時間の経過に伴って信頼性が低下する。このため、内部抵抗値に基づいて蓄電素子を管理する上で改善の余地があった。
本明細書では、自動二輪車のエンジン始動に用いられる蓄電素子を内部抵抗値に基づいてより適切に管理できる技術を開示する。
However, as described above, since the internal resistance value of the power storage element increases with use, the reliability of the internal resistance value estimated at the time of starting the engine decreases with the passage of time. Therefore, there is room for improvement in managing the power storage element based on the internal resistance value.
This specification discloses a technique capable of more appropriately managing a power storage element used for starting an engine of a motorcycle based on an internal resistance value.

自動二輪車のエンジン始動に用いられる蓄電素子の管理装置であって、前記蓄電素子の電圧値を計測する電圧センサと、管理部と、を備え、前記管理部は、前記自動二輪車のエンジン始動時以外の時に前記電圧センサによって電圧値を時系列で計測し、計測した電圧値の差に基づいて前記蓄電素子の内部抵抗値を推定する、管理装置。 A management device for a power storage element used for starting an engine of a motorcycle, which includes a voltage sensor for measuring a voltage value of the power storage element and a management unit, and the management unit is other than when the engine of the motorcycle is started. A management device that measures voltage values in time series by the voltage sensor at the time of, and estimates the internal resistance value of the power storage element based on the difference between the measured voltage values.

自動二輪車のエンジン始動に用いられる蓄電素子を内部抵抗値に基づいてより適切に管理できる。 The power storage element used for starting the engine of a motorcycle can be managed more appropriately based on the internal resistance value.

自動二輪車の側面図Side view of motorcycle 車両システムのブロック図Block diagram of vehicle system バッテリの分解斜視図Disassembled perspective view of the battery 二次電池の平面図Top view of secondary battery 図4のA−A線の断面図Sectional view of line AA of FIG. バッテリのブロック図Battery block diagram

(本実施形態の概要)
自動二輪車のエンジン始動に用いられる蓄電素子の管理装置であって、前記蓄電素子の電圧値を計測する電圧センサと、管理部と、を備え、前記管理部は、前記自動二輪車のエンジン始動時以外の時に前記電圧センサによって電圧値を時系列で計測し、計測した電圧値の差に基づいて前記蓄電素子の内部抵抗値を推定する、管理装置。
(Outline of this embodiment)
A management device for a power storage element used for starting an engine of a motorcycle, which includes a voltage sensor for measuring a voltage value of the power storage element and a management unit, and the management unit is other than when the engine of the motorcycle is started. A management device that measures voltage values in time series by the voltage sensor at the time of, and estimates the internal resistance value of the power storage element based on the difference between the measured voltage values.

本願発明者は、鋭意検討の結果、自動二輪車のエンジン始動に用いられる蓄電素子(以下、二輪車用の蓄電素子という)は、エンジン始動時以外の時でも内部抵抗値を精度よく推定できることを見出した。以下、具体的に説明する。
一般に蓄電素子の充放電電流の大きさはCレートで表される。Cレートは充電状態(SOC:State Of Charge)が100%の蓄電素子を1時間で0%まで放電する場合に流れる電流の大きさ(あるいはSOCが0%の蓄電素子を1時間で100%まで充電する場合に流れる電流の大きさ)を1Cと定義したものである。例えば蓄電素子が30分でSOC100%から0%まで放電された場合、Cレートは2Cとなる。
蓄電素子の充電容量が異なる場合は、充放電電流の電流値が同じであってもCレートが異なる。例えば充電容量が100Ah[アンペアアワー]の蓄電素子B1と充電容量が200Ahの蓄電素子B2とがあり、それらの蓄電素子の放電電流の電流値が100A[アンペア]であるとする。この場合、蓄電素子B1は1時間でSOCが0%になるのでCレートは1Cとなる。これに対し、蓄電素子B2は2時間でSOCが0%になるのでCレートは0.5Cとなる。このように、充放電電流の電流値が同じである場合、充電容量が小さいほどCレートが大きくなる。以降の説明ではCレートが大きいことをハイレートといい、Cレートが小さいことをローレートという。
通常、二輪車用の蓄電素子は四輪車用の蓄電素子に比べて充電容量が小さく、且つ、充放電電流も小さい。しかしながら、充放電電流の大きさの差は充電容量の差ほど大きくない。例えば二輪車用の蓄電素子の充電容量が四輪車用の蓄電素子の充電容量の1/3程度であるとした場合、二輪車用の蓄電素子の放電電流の大きさは四輪車用の蓄電素子の放電電流の4/5程度である。このため、一般に二輪車用の蓄電素子は四輪車用の蓄電素子に比べてハイレートで充放電される。
ハイレートで充放電される場合はローレートで充放電される場合に比べて蓄電素子の電圧の上昇/低下が大きい。このため、二輪車用の蓄電素子の場合はエンジン始動時以外の時に流れる電流でも電圧差が十分大きくなり、内部抵抗値を精度よく推定できる。
例えばエンジン動作中(エンジン始動時以外の時の一例)に内部抵抗値を推定すると、エンジン始動時に推定した内部抵抗値より新しい内部抵抗値に基づいて蓄電素子を管理できる。このため、エンジン始動時にのみ内部抵抗値を推定する場合に比べ、自動二輪車のエンジン始動に用いられる蓄電素子を内部抵抗値に基づいてより適切に管理できる。
上記の蓄電装置はエンジン始動時に内部抵抗値を推定することを排除するものではない。二輪車用の蓄電素子の場合も内部抵抗値を最も精度よく推定できるのはエンジン始動時であるので、エンジン始動時にも内部抵抗値を推定してもよい。
As a result of diligent studies, the inventor of the present application has found that the power storage element used for starting an engine of a motorcycle (hereinafter referred to as a power storage element for a motorcycle) can accurately estimate the internal resistance value even when the engine is not started. .. Hereinafter, a specific description will be given.
Generally, the magnitude of the charge / discharge current of the power storage element is represented by the C rate. The C rate is the magnitude of the current that flows when a storage element with a 100% charge state (SOC: System of Charge) is discharged to 0% in 1 hour (or a storage element with 0% SOC up to 100% in 1 hour. The magnitude of the current that flows when charging) is defined as 1C. For example, when the power storage element is discharged from SOC 100% to 0% in 30 minutes, the C rate becomes 2C.
When the charge capacity of the power storage element is different, the C rate is different even if the current value of the charge / discharge current is the same. For example, it is assumed that there is a power storage element B1 having a charge capacity of 100 Ah [ampere hour] and a power storage element B2 having a charge capacity of 200 Ah, and the current value of the discharge current of these power storage elements is 100 A [ampere]. In this case, since the SOC of the power storage element B1 becomes 0% in 1 hour, the C rate becomes 1C. On the other hand, since the SOC of the power storage element B2 becomes 0% in 2 hours, the C rate becomes 0.5C. As described above, when the current values of the charge / discharge currents are the same, the smaller the charge capacity, the larger the C rate. In the following description, a large C rate is referred to as a high rate, and a small C rate is referred to as a low rate.
Generally, a power storage element for a two-wheeled vehicle has a smaller charging capacity and a smaller charging / discharging current than a power storage element for a four-wheeled vehicle. However, the difference in the magnitude of the charge / discharge current is not as large as the difference in the charge capacity. For example, assuming that the charging capacity of the power storage element for a two-wheeled vehicle is about 1/3 of the charging capacity of the power storage element for a four-wheeled vehicle, the magnitude of the discharge current of the power storage element for a two-wheeled vehicle is the power storage element for a four-wheeled vehicle. It is about 4/5 of the discharge current of. Therefore, in general, the power storage element for a two-wheeled vehicle is charged and discharged at a higher rate than the power storage element for a four-wheeled vehicle.
When charging / discharging at a high rate, the voltage rise / discharge of the power storage element is larger than when charging / discharging at a low rate. Therefore, in the case of a power storage element for a two-wheeled vehicle, the voltage difference becomes sufficiently large even with a current flowing at a time other than when the engine is started, and the internal resistance value can be estimated accurately.
For example, if the internal resistance value is estimated during engine operation (an example when the engine is not started), the power storage element can be managed based on an internal resistance value newer than the internal resistance value estimated when the engine is started. Therefore, as compared with the case where the internal resistance value is estimated only when the engine is started, the power storage element used for starting the engine of the motorcycle can be managed more appropriately based on the internal resistance value.
The above power storage device does not exclude estimating the internal resistance value when the engine is started. In the case of a power storage element for a two-wheeled vehicle, the internal resistance value can be estimated most accurately when the engine is started, so that the internal resistance value may be estimated even when the engine is started.

前記管理部は前記蓄電素子の充電中に電圧値を計測して前記蓄電素子の内部抵抗値を推定してもよい。 The management unit may measure the voltage value during charging of the power storage element to estimate the internal resistance value of the power storage element.

二輪車用の蓄電素子はハイレートで充放電されるので、充電中に流れる電流でも内部抵抗値を精度よく推定できる。充電中に内部抵抗値を推定すると、エンジン始動時に推定された内部抵抗値より新しい内部抵抗値に基づいて蓄電素子を管理できるので、内部抵抗値に基づく蓄電素子の管理をより適切に行うことができる。 Since the power storage element for motorcycles is charged and discharged at a high rate, the internal resistance value can be accurately estimated even with the current flowing during charging. If the internal resistance value is estimated during charging, the power storage element can be managed based on an internal resistance value newer than the internal resistance value estimated when the engine is started. Therefore, it is possible to manage the power storage element more appropriately based on the internal resistance value. it can.

前記管理部はエンジン停止中に電圧値を計測して前記蓄電素子の内部抵抗値を推定してもよい。 The management unit may measure the voltage value while the engine is stopped to estimate the internal resistance value of the power storage element.

自動二輪車のエンジン停止中に補機類(ヘッドライト、エアコン、オーディオなど)が用いられる場合は二輪車用の蓄電素子から補機類に電力が供給される。二輪車用の蓄電素子はハイレートで充放電されるので、補機類に電力を供給するときの電流でも内部抵抗値を精度よく推定できる。エンジン停止中に内部抵抗値を推定すると、エンジン始動時に推定された内部抵抗値より新しい内部抵抗値に基づいて蓄電素子を管理できるので、内部抵抗値に基づく蓄電素子の管理をより適切に行うことができる。 When auxiliary equipment (headlights, air conditioner, audio, etc.) is used while the engine of the motorcycle is stopped, electric power is supplied to the auxiliary equipment from the power storage element for the motorcycle. Since the power storage element for motorcycles is charged and discharged at a high rate, the internal resistance value can be accurately estimated even with the current when power is supplied to auxiliary equipment. If the internal resistance value is estimated while the engine is stopped, the power storage element can be managed based on an internal resistance value newer than the internal resistance value estimated when the engine is started. Therefore, the power storage element based on the internal resistance value should be managed more appropriately. Can be done.

前記管理部は、エンジン始動時以外の時に前記蓄電素子の内部抵抗値を複数回推定し、推定した複数の内部抵抗値の平均値を前記蓄電素子の内部抵抗値の推定値としてもよい。 The management unit may estimate the internal resistance value of the power storage element a plurality of times at a time other than when the engine is started, and may use the average value of the estimated internal resistance values as the estimated value of the internal resistance value of the power storage element.

内部抵抗値を複数回推定してその平均値を内部抵抗値の推定値とすると、内部抵抗値の推定精度が向上する。しかしながら、エンジン始動時にのみ内部抵抗値を推定する場合、1日にエンジンが始動される回数には限りがあるので内部抵抗値が推定される回数は多くない。これに対し、上記の蓄電装置によると、エンジン始動時以外の時にも内部抵抗値を推定するので、内部抵抗値の平均値を求めるための母数を増やすことができる。このため、エンジン始動時にのみ推定する場合に比べて内部抵抗値の推定精度が向上する。 If the internal resistance value is estimated a plurality of times and the average value is used as the estimated value of the internal resistance value, the estimation accuracy of the internal resistance value is improved. However, when the internal resistance value is estimated only when the engine is started, the number of times the engine is started per day is limited, so the number of times the internal resistance value is estimated is not large. On the other hand, according to the above-mentioned power storage device, since the internal resistance value is estimated even when the engine is not started, the population parameter for obtaining the average value of the internal resistance values can be increased. Therefore, the accuracy of estimating the internal resistance value is improved as compared with the case of estimating only when the engine is started.

前記蓄電素子はアイドリングストップ機能を有していない前記自動二輪車のエンジン始動に用いられるものであってもよい。 The power storage element may be used for starting an engine of the motorcycle that does not have an idling stop function.

近年、自動二輪車にもアイドリングストップ機能が搭載されている。アイドリングストップ機能を有している場合は1日のエンジン始動回数が多いので、エンジン始動時にのみ内部抵抗値を推定しても内部抵抗値の平均値を求めるための母数がある程度多くなる。これに対し、アイドリングストップ機能を有していない自動二輪車の場合は1日にエンジンが始動される回数に限りがある。
上記の管理装置によると、エンジン始動時以外の時に蓄電素子の内部抵抗値を推定するので、自動二輪車がアイドリングストップ機能を有していなくても、内部抵抗値の平均値を求めるための母数を増やすことができる。このため、アイドリングストップ機能を有していない自動二輪車のエンジン始動に用いられる蓄電素子の内部抵抗値を精度よく推定する場合に特に有用である。
In recent years, motorcycles have also been equipped with an idling stop function. When the engine has an idling stop function, the number of engine starts per day is large, so even if the internal resistance value is estimated only when the engine is started, the parameter for obtaining the average value of the internal resistance values becomes large to some extent. On the other hand, in the case of a motorcycle that does not have an idling stop function, the number of times the engine is started per day is limited.
According to the above management device, the internal resistance value of the power storage element is estimated at times other than when the engine is started, so even if the motorcycle does not have the idling stop function, the parameter for calculating the average value of the internal resistance values. Can be increased. Therefore, it is particularly useful for accurately estimating the internal resistance value of the power storage element used for starting the engine of a motorcycle that does not have an idling stop function.

前記蓄電素子はアイドリングストップ機能を有している前記自動二輪車のエンジン始動に用いられるものであり、前記管理部は、前記アイドリングストップ機能がオフの場合に、前記自動二輪車のエンジン始動時以外の時に前記蓄電素子の内部抵抗値を推定してもよい。 The power storage element is used for starting the engine of the motorcycle having an idling stop function, and the management unit is in a state other than when the engine of the motorcycle is started when the idling stop function is off. The internal resistance value of the power storage element may be estimated.

自動二輪車がアイドリングストップ機能を有していても、アイドリングストップ機能がオフにされる場合もある。上記の管理装置によると、アイドリングストップ機能がオフの場合に、自動二輪車のエンジン始動時以外の時に蓄電素子の内部抵抗値を推定するので、アイドリングストップ機能がオフにされても内部抵抗値の平均値を求めるための母数を増やすことができる。このためアイドリングストップ機能がオフにされても内部抵抗値の推定精度が向上する。 Even if the motorcycle has an idling stop function, the idling stop function may be turned off. According to the above management device, when the idling stop function is off, the internal resistance value of the power storage element is estimated at a time other than when the engine of the motorcycle is started, so even if the idling stop function is turned off, the average internal resistance value is averaged. You can increase the population parameter for finding the value. Therefore, even if the idling stop function is turned off, the estimation accuracy of the internal resistance value is improved.

前記管理部は、前記自動二輪車のエンジン始動時以外の時であっても、計測した電圧値の差が所定値以下である場合は前記蓄電素子の内部抵抗値を推定しなくてもよい。 The management unit does not have to estimate the internal resistance value of the power storage element when the difference between the measured voltage values is not more than a predetermined value even when the engine of the motorcycle is not started.

電圧値の差が小さいと内部抵抗値の推定精度が低下する。上記の管理装置によると、電圧値の差が所定値以下である場合は内部抵抗値を推定しないので、内部抵抗値の推定精度が低下することを抑制できる。 If the difference between the voltage values is small, the accuracy of estimating the internal resistance value will decrease. According to the above management device, when the difference between the voltage values is not more than a predetermined value, the internal resistance value is not estimated, so that it is possible to suppress a decrease in the estimation accuracy of the internal resistance value.

本明細書によって開示される発明は、装置、方法、これらの装置または方法の機能を実現するためのコンピュータプログラム、そのコンピュータプログラムを記録した記録媒体等の種々の態様で実現できる。 The invention disclosed herein can be realized in various aspects such as a device, a method, a computer program for realizing the function of these devices or methods, a recording medium on which the computer program is recorded, and the like.

<実施形態1>
実施形態1を図1ないし図6によって説明する。
図1に示すように、実施形態1に係るバッテリ50(蓄電装置の一例)は自動二輪車10に搭載される二輪車用のバッテリである。自動二輪車10はアイドリングストップ機能を有していないものである。
<Embodiment 1>
The first embodiment will be described with reference to FIGS. 1 to 6.
As shown in FIG. 1, the battery 50 (an example of a power storage device) according to the first embodiment is a battery for a motorcycle mounted on a motorcycle 10. The motorcycle 10 does not have an idling stop function.

図2に示すように、バッテリ50には自動二輪車10に搭載されているスタータ10A、オルタネータ10B及び補機類10C(ヘッドライド、エアコン、オーディオなど)が接続されている。バッテリ50はスタータ10Aに電力を供給してエンジンを始動させるエンジン始動用のバッテリである。バッテリ50はエンジン動作中にオルタネータ10Bによって充電される。 As shown in FIG. 2, the battery 50 is connected to the starter 10A, the alternator 10B, and the auxiliary equipment 10C (head ride, air conditioner, audio, etc.) mounted on the motorcycle 10. The battery 50 is an engine starting battery that supplies electric power to the starter 10A to start the engine. The battery 50 is charged by the alternator 10B during engine operation.

自動二輪車10のエンジン動作中はオルタネータ10Bから補機類10Cに電力が供給される。このため、バッテリ50は、エンジン動作中は補機類10Cに電力を供給しないが、エンジン停止中に補機類10Cが使用される場合は補機類10Cにも電力を供給する。
一般に二輪車用のバッテリ50は自動二輪車10のECUと通信する機能を有していない。実施形態1に係る二輪車用のバッテリ50もECUと通信する機能を有していない。
While the engine of the motorcycle 10 is operating, electric power is supplied from the alternator 10B to the auxiliary machinery 10C. Therefore, the battery 50 does not supply electric power to the auxiliary equipment 10C while the engine is operating, but also supplies electric power to the auxiliary equipment 10C when the auxiliary equipment 10C is used while the engine is stopped.
Generally, the battery 50 for a motorcycle does not have a function of communicating with the ECU of the motorcycle 10. The motorcycle battery 50 according to the first embodiment also does not have a function of communicating with the ECU.

(1)バッテリの構成
図3に示すように、バッテリ50は組電池60と、回路基板ユニット65と、収容体71とを備える。
収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
(1) Battery Configuration As shown in FIG. 3, the battery 50 includes an assembled battery 60, a circuit board unit 65, and an accommodating body 71.
The housing 71 includes a main body 73 made of a synthetic resin material and a lid 74. The main body 73 has a bottomed tubular shape. The main body 73 includes a bottom surface portion 75 and four side surface portions 76. An upper opening 77 is formed at the upper end portion by the four side surface portions 76.

収容体71は、組電池60と回路基板ユニット65を収容する。組電池60は12個の二次電池62(蓄電素子の一例)を有する。二次電池62は一例としてリチウムイオン電池である。12個の二次電池62は3並列で4直列に接続されている。回路基板ユニット65は、回路基板100と回路基板100上に搭載される電子部品とを含み、組電池60の上部に配置されている。 The accommodating body 71 accommodates the assembled battery 60 and the circuit board unit 65. The assembled battery 60 has 12 secondary batteries 62 (an example of a power storage element). The secondary battery 62 is, for example, a lithium ion battery. The 12 secondary batteries 62 are connected in 3 parallels and 4 in series. The circuit board unit 65 includes a circuit board 100 and electronic components mounted on the circuit board 100, and is arranged above the assembled battery 60.

蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極外部端子51が固定され、他方の隅部に負極外部端子52が固定されている。 The lid 74 closes the upper opening 77 of the main body 73. An outer peripheral wall 78 is provided around the lid body 74. The lid body 74 has a protrusion 79 having a substantially T-shape in a plan view. The positive electrode external terminal 51 is fixed to one corner of the front portion of the lid 74, and the negative electrode external terminal 52 is fixed to the other corner.

図4及び図5に示すように、二次電池62は直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
As shown in FIGS. 4 and 5, the secondary battery 62 has an electrode body 83 housed in a rectangular parallelepiped case 82 together with a non-aqueous electrolyte. The case 82 has a case body 84 and a lid 85 that closes an opening above the case body 84.
Although not shown in detail, the electrode body 83 is porous between the negative electrode element in which the active material is applied to the base material made of copper foil and the positive electrode element in which the active material is applied to the base material made of aluminum foil. A separator made of a resin film is arranged. All of these are strip-shaped, and are wound flat so that they can be accommodated in the case body 84 with the negative electrode element and the positive electrode element shifted to the opposite sides in the width direction with respect to the separator. ..

正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。 The positive electrode terminal 87 is connected to the positive electrode element via the positive electrode current collector 86, and the negative electrode terminal 89 is connected to the negative electrode element via the negative electrode current collector 88. The positive electrode current collector 86 and the negative electrode current collector 88 include a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90. A through hole is formed in the pedestal portion 90. The leg 91 is connected to a positive electrode element or a negative electrode element. The positive electrode terminal 87 and the negative electrode terminal 89 include a terminal body portion 92 and a shaft portion 93 protruding downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally molded with aluminum (single material). In the negative electrode terminal 89, the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled. The terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 is arranged at both ends of the lid 85 via a gasket 94 made of an insulating material, and is exposed to the outside from the gasket 94.

蓋85は、圧力開放弁95を有している。圧力開放弁95は、図2に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。 The lid 85 has a pressure release valve 95. As shown in FIG. 2, the pressure release valve 95 is located between the positive electrode terminal 87 and the negative electrode terminal 89. When the internal pressure of the case 82 exceeds the limit value, the pressure release valve 95 opens to reduce the internal pressure of the case 82.

(2)バッテリの電気的構成
図6に示すように、バッテリ50は組電池60と、組電池60を管理するBMU101(Battery Management Unit)とを備えている。BMU101は管理装置の一例である。
(2) Electrical Configuration of Battery As shown in FIG. 6, the battery 50 includes an assembled battery 60 and a BMU 101 (Battery Management Unit) that manages the assembled battery 60. BMU101 is an example of a management device.

組電池60は複数の二次電池62から構成されている。二次電池62は12個あり、3並列で4直列に接続されている。図6では並列に接続された3つの二次電池62を1つの電池記号で表している。バッテリ50は定格12Vである。
パワーライン70Pは、正極外部端子51と組電池60の正極とを接続するパワーラインである。パワーライン70Nは、負極外部端子52と組電池60の負極とを接続するパワーラインである。組電池60の負極はシグナルグランドG1に接続されている。組電池60はシグナルグランドG1を基準電位とする。負極外部端子52はボディグランドG2に接続されている。ボディグランドG2は自動二輪車10のボディである。ボディグランドG2は自動二輪車10の基準電位である。
The assembled battery 60 is composed of a plurality of secondary batteries 62. There are 12 secondary batteries 62, which are connected in 3 parallels and 4 in series. In FIG. 6, three secondary batteries 62 connected in parallel are represented by one battery symbol. The battery 50 is rated at 12V.
The power line 70P is a power line that connects the positive electrode external terminal 51 and the positive electrode of the assembled battery 60. The power line 70N is a power line that connects the negative electrode external terminal 52 and the negative electrode of the assembled battery 60. The negative electrode of the assembled battery 60 is connected to the signal ground G1. The assembled battery 60 uses the signal ground G1 as a reference potential. The negative electrode external terminal 52 is connected to the body ground G2. The body ground G2 is the body of the motorcycle 10. The body ground G2 is the reference potential of the motorcycle 10.

BMU101は電流センサ53、電圧センサ110、遮断器55及び管理部130を備える。組電池60、電流センサ53及び遮断器55は、パワーライン70P、パワーライン70Nを介して、直列に接続されている。遮断器55、電流センサ53及び管理部130は回路基板100上に実装されており、回路基板100のシグナルグランドG1を基準電位(動作基準)とする。 The BMU 101 includes a current sensor 53, a voltage sensor 110, a circuit breaker 55, and a management unit 130. The assembled battery 60, the current sensor 53, and the circuit breaker 55 are connected in series via the power line 70P and the power line 70N. The circuit breaker 55, the current sensor 53, and the management unit 130 are mounted on the circuit board 100, and the signal ground G1 of the circuit board 100 is used as a reference potential (operation reference).

電流センサ53は、組電池60の負極に位置し、負極側のパワーライン70Nに設けられている。電流センサ53は組電池60の電流Iを計測して管理部130に出力する。
電圧センサ110は各二次電池62の電圧Vと組電池60の総電圧とを検出して管理部130に出力する。組電池60の総電圧は4つの二次電池62の合計電圧である。
温度センサ111はいずれか一つあるいは二つの二次電池62に設けられており、二次電池62の温度を検出して管理部130に出力する。
The current sensor 53 is located on the negative electrode of the assembled battery 60 and is provided on the power line 70N on the negative electrode side. The current sensor 53 measures the current I of the assembled battery 60 and outputs it to the management unit 130.
The voltage sensor 110 detects the voltage V of each secondary battery 62 and the total voltage of the assembled battery 60 and outputs the voltage to the management unit 130. The total voltage of the assembled battery 60 is the total voltage of the four secondary batteries 62.
The temperature sensor 111 is provided in any one or two secondary batteries 62, detects the temperature of the secondary battery 62, and outputs the temperature to the management unit 130.

遮断器55は、組電池60の負極に位置し、負極のパワーライン70Nに設けられている。遮断器55は、充電用FET55Aと、放電用FET55Bとを有する。充電用FET55A及び放電用FET55Bは電力用の半導体スイッチであり、より具体的にはNチャンネルの電界効果トランジスタ(FET:Field Effect Transistor)である。充電用FET55A及び放電用FET55BのソースSは基準端子である。充電用FET55A及び放電用FET55BのゲートGは制御端子である。充電用FET55A及び放電用FET55BのドレンDは接続端子である。 The circuit breaker 55 is located at the negative electrode of the assembled battery 60 and is provided on the power line 70N of the negative electrode. The circuit breaker 55 has a charging FET 55A and a discharging FET 55B. The charging FET 55A and the discharging FET 55B are semiconductor switches for electric power, and more specifically, they are N-channel field effect transistors (FETs: Field Effect Transistors). The source S of the charging FET 55A and the discharging FET 55B is a reference terminal. The gate G of the charging FET 55A and the discharging FET 55B is a control terminal. The drain D of the charging FET 55A and the discharging FET 55B is a connection terminal.

充電用FET55AはソースSが組電池60の負極に接続されている。放電用FET55BはソースSが負極外部端子52に接続されている。充電用FET55Aと放電用FET55BとはドレンD同士が接続されることによってバックツーバック接続されている。 In the charging FET 55A, the source S is connected to the negative electrode of the assembled battery 60. In the discharge FET 55B, the source S is connected to the negative electrode external terminal 52. The charging FET 55A and the discharging FET 55B are back-to-back connected by connecting the drains D to each other.

充電用FET55Aは寄生ダイオード56Aを有している。寄生ダイオード56Aは順方向が放電方向と同一である。放電用FET55Bは寄生ダイオード56Bを有している。寄生ダイオード56Bは順方向が充電方向と同一である。 The charging FET 55A has a parasitic diode 56A. The parasitic diode 56A has the same forward direction as the discharge direction. The discharge FET 55B has a parasitic diode 56B. The parasitic diode 56B has the same forward direction as the charging direction.

放電用FET55BはソースSが負極外部端子52に接続されていることから、ボディグランドG2が基準電位である。充電用FET55AはソースSが組電池60の負極に接続されている。組電池60の負極は回路基板100のシグナルグランドG1に接続されているので、充電用FET55AはシグナルグランドG1が基準電位である。
充電用FET55AはゲートGにHレベルの電圧が印加されることでオンになり、ゲートGにLレベルの電圧が印加されることでオフになる。放電用FET55Bも同様である。
Since the source S of the discharge FET 55B is connected to the negative electrode external terminal 52, the body ground G2 is the reference potential. In the charging FET 55A, the source S is connected to the negative electrode of the assembled battery 60. Since the negative electrode of the assembled battery 60 is connected to the signal ground G1 of the circuit board 100, the signal ground G1 of the charging FET 55A is the reference potential.
The charging FET 55A is turned on when an H level voltage is applied to the gate G, and is turned off when an L level voltage is applied to the gate G. The same applies to the discharge FET 55B.

管理部130は、CPU131、ROM132及びメモリ133を備える。管理部130は電圧センサ110、電流センサ53、温度センサ111の出力に基づいてバッテリ50を管理する。管理部130は、正常時、充電用FET55AのゲートG及び放電用FET55BのゲートGにHレベルの電圧を印加し、充電用FET55A及び放電用FET55Bをオンにする。充電用FET55A及び放電用FET55Bの双方がオンの場合、組電池60は充電、放電の双方が可能である。 The management unit 130 includes a CPU 131, a ROM 132, and a memory 133. The management unit 130 manages the battery 50 based on the outputs of the voltage sensor 110, the current sensor 53, and the temperature sensor 111. When normal, the management unit 130 applies an H-level voltage to the gate G of the charging FET 55A and the gate G of the discharging FET 55B to turn on the charging FET 55A and the discharging FET 55B. When both the charging FET 55A and the discharging FET 55B are on, the assembled battery 60 can be both charged and discharged.

(3)管理部よって実行される処理
管理部130によって実行される処理のうち二次電池62の内部抵抗値の推定、及び、内部抵抗値に基づく二次電池62の管理について説明する。
(3) Processing executed by the management unit Of the processing executed by the management unit 130, the estimation of the internal resistance value of the secondary battery 62 and the management of the secondary battery 62 based on the internal resistance value will be described.

(3−1)二次電池の内部抵抗値の推定
管理部130は常に所定の時間間隔で電流値と電圧値とを同じタイミングで繰り返し計測する。電圧値を所定の時間間隔で計測することは電圧値を時系列で計測することの一例である。
(3-1) Estimating the internal resistance value of the secondary battery The management unit 130 always repeatedly measures the current value and the voltage value at the same timing at predetermined time intervals. Measuring the voltage value at predetermined time intervals is an example of measuring the voltage value in time series.

電流値及び電圧値はエンジン始動時だけでなくエンジン始動時以外の時も計測される。「エンジン始動時以外の時」にはエンジン動作中もエンジン停止中も含まれる。「エンジン始動時以外の時」には充電中、放電中及び充放電の休止中も含まれる。充放電の休止中とは、二次電池62に流れる電流の電流値が微小な基準値以下であるときのことをいう。 The current value and voltage value are measured not only when the engine is started but also when the engine is not started. "When the engine is not started" includes both when the engine is running and when the engine is stopped. The "time other than when the engine is started" includes charging, discharging, and charging / discharging pause. The state of suspension of charge / discharge means when the current value of the current flowing through the secondary battery 62 is equal to or less than a minute reference value.

管理部130は、電流値と電圧値とを計測する毎に以下の式1から内部抵抗値を推定する。式1においてRは内部抵抗値、V1は前回計測した電圧値、V2は今回計測した電圧値、I1は前回計測した電流値、I2は今回計測した電流値である。
R=|V1−V2|/|I1−I2| ・・・式1
The management unit 130 estimates the internal resistance value from the following equation 1 each time the current value and the voltage value are measured. In Equation 1, R is the internal resistance value, V1 is the voltage value measured last time, V2 is the voltage value measured this time, I1 is the current value measured last time, and I2 is the current value measured this time.
R = | V1-V2 | / | I1-I2 | ... Equation 1

電圧差|V1−V2|が大きいほど電圧差|V1−V2|に占める電圧センサの計測誤差の割合が小さくなるので、電圧センサの計測誤差の影響が小さくなる。このため、電圧差|V1−V2|が大きいほど内部抵抗値Rの推定精度が向上する。 The larger the voltage difference | V1-V2 |, the smaller the ratio of the measurement error of the voltage sensor to the voltage difference | V1-V2 |, so that the influence of the measurement error of the voltage sensor becomes smaller. Therefore, the larger the voltage difference | V1-V2 |, the better the estimation accuracy of the internal resistance value R.

二輪車用の二次電池62は四輪車用の二次電池に比べてハイレートで充放電されることから、同じ電流値が流れた場合は四輪車用の二次電池に比べて電圧が大きく上昇/低下する。このため、二輪車用の二次電池62の場合はエンジン始動時以外の時に流れる電流でも電圧差|V1−V2|が十分に大きくなり、内部抵抗値を精度よく推定できる。 Since the secondary battery 62 for a two-wheeled vehicle is charged and discharged at a higher rate than the secondary battery for a four-wheeled vehicle, the voltage is larger than that of the secondary battery for a four-wheeled vehicle when the same current value flows. Ascend / decrease. Therefore, in the case of the secondary battery 62 for a two-wheeled vehicle, the voltage difference | V1-V2 | becomes sufficiently large even with the current flowing at a time other than when the engine is started, and the internal resistance value can be estimated accurately.

一般に二輪車用の二次電池62の内部抵抗値と四輪車用の二次電池の内部抵抗値とに大差はないが、二輪車用の二次電池62の方が四輪車用の二次電池より内部の部品が小型であるので電気抵抗が大きい傾向がある。電気抵抗が大きいと電圧が大きく低下する。その意味でも、二輪車用の二次電池62は四輪車用の二次電池に比べてエンジン始動時以外の時でも内部抵抗値を精度よく推定できる。 Generally, there is no big difference between the internal resistance value of the secondary battery 62 for two-wheeled vehicles and the internal resistance value of the secondary battery for four-wheeled vehicles, but the secondary battery 62 for two-wheeled vehicles is the secondary battery for four-wheeled vehicles. Since the internal parts are smaller, the electrical resistance tends to be higher. If the electrical resistance is large, the voltage drops significantly. In that sense as well, the secondary battery 62 for motorcycles can estimate the internal resistance value more accurately than the secondary battery for four-wheeled vehicles even when the engine is not started.

(3−2)内部抵抗値に基づく二次電池の管理
二次電池62は内部抵抗値が増大すると本来の性能を発揮できなくなる。このため、管理部130は内部抵抗値を推定する毎に、推定した内部抵抗値が所定の基準値以上であるか否かを判断する。管理部130は、推定した内部抵抗値が所定の基準値以上である場合は寿命に達したと判断して二次電池62の使用を禁止する。具体的には例えば、管理部130は充電用FET55A及び放電用FET55Bをオフ(開、オープン)にすることによって二次電池62を使用できなくする。
(3-2) Management of the secondary battery based on the internal resistance value The secondary battery 62 cannot exhibit its original performance when the internal resistance value increases. Therefore, every time the management unit 130 estimates the internal resistance value, it determines whether or not the estimated internal resistance value is equal to or higher than a predetermined reference value. When the estimated internal resistance value is equal to or higher than a predetermined reference value, the management unit 130 determines that the life has been reached and prohibits the use of the secondary battery 62. Specifically, for example, the management unit 130 makes the secondary battery 62 unusable by turning off (opening, opening) the charging FET 55A and the discharging FET 55B.

(4)実施形態の効果
BMU101はエンジン始動時以外の時にも二次電池62の内部抵抗値を推定する。このため、エンジン始動時に推定した内部抵抗値より新しい内部抵抗値に基づいて二次電池62を管理できる。このため、エンジン始動時にのみ内部抵抗値を推定する場合に比べ、自動二輪車10のエンジン始動に用いられる二次電池62を内部抵抗値に基づいてより適切に管理できる。
(4) Effect of the Embodiment The BMU 101 estimates the internal resistance value of the secondary battery 62 even when the engine is not started. Therefore, the secondary battery 62 can be managed based on an internal resistance value newer than the internal resistance value estimated at the time of starting the engine. Therefore, the secondary battery 62 used for starting the engine of the motorcycle 10 can be managed more appropriately based on the internal resistance value, as compared with the case where the internal resistance value is estimated only when the engine is started.

BMU101によると、二次電池62の充電中に内部抵抗値を推定するので、エンジン始動時に推定された内部抵抗値より新しい内部抵抗値に基づいて二次電池62を管理できる。このため、内部抵抗値に基づく二次電池62の寿命の判断をより適切に行うことができる。 According to the BMU 101, since the internal resistance value is estimated during charging of the secondary battery 62, the secondary battery 62 can be managed based on an internal resistance value newer than the internal resistance value estimated at the time of starting the engine. Therefore, it is possible to more appropriately determine the life of the secondary battery 62 based on the internal resistance value.

BMU101によると、エンジン停止中に内部抵抗値を推定するので、エンジン始動時に推定された内部抵抗値より新しい内部抵抗値に基づいて二次電池62を管理できる。このため、内部抵抗値に基づく二次電池62の寿命の判断をより適切に行うことができる。 According to the BMU 101, since the internal resistance value is estimated while the engine is stopped, the secondary battery 62 can be managed based on an internal resistance value newer than the internal resistance value estimated when the engine is started. Therefore, it is possible to more appropriately determine the life of the secondary battery 62 based on the internal resistance value.

<実施形態2>
実施形態2に係る管理部130は、エンジン始動時以外の時に二輪車用の二次電池62の内部抵抗値を複数回推定し、推定した複数の内部抵抗値の平均値をその時点における内部抵抗値の推定値とする。
<Embodiment 2>
The management unit 130 according to the second embodiment estimates the internal resistance value of the secondary battery 62 for a motorcycle a plurality of times at a time other than when the engine is started, and calculates the average value of the estimated internal resistance values at that time. It is an estimated value of.

具体的には、実施形態2に係る管理部130は、実施形態1と同様に所定の時間間隔で電流値及び電圧値を計測して内部抵抗値を推定し、直近に推定した所定数(例えば10)の内部抵抗値を平均する。管理部130はその平均値を二次電池62の内部抵抗値の推定値とする。 Specifically, the management unit 130 according to the second embodiment measures the current value and the voltage value at predetermined time intervals to estimate the internal resistance value as in the first embodiment, and estimates the internal resistance value, and the most recently estimated predetermined number (for example). The internal resistance values of 10) are averaged. The management unit 130 uses the average value as an estimated value of the internal resistance value of the secondary battery 62.

実施形態2に係るBMU101によると、エンジン始動時以外の時にも内部抵抗値を推定するので、内部抵抗値の平均値を求めるための母数を増やすことができる。このため、エンジン始動時にのみ推定する場合に比べて内部抵抗値の推定精度が向上する。 According to the BMU 101 according to the second embodiment, since the internal resistance value is estimated even when the engine is not started, the population parameter for obtaining the average value of the internal resistance values can be increased. Therefore, the accuracy of estimating the internal resistance value is improved as compared with the case of estimating only when the engine is started.

BMU101によると、エンジン始動時以外の時に二次電池62の内部抵抗値を推定するので、自動二輪車10がアイドリングストップ機能を有していなくても、内部抵抗値の平均値を求めるための母数を増やすことができる。このため、アイドリングストップ機能を有していない自動二輪車10のエンジン始動に用いられる二次電池62の内部抵抗値を精度よく推定する場合に特に有用である。 According to BMU101, the internal resistance value of the secondary battery 62 is estimated at a time other than when the engine is started. Therefore, even if the motorcycle 10 does not have the idling stop function, it is a parameter for obtaining the average value of the internal resistance values. Can be increased. Therefore, it is particularly useful for accurately estimating the internal resistance value of the secondary battery 62 used for starting the engine of the motorcycle 10 that does not have the idling stop function.

<他の実施形態>
本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
<Other embodiments>
The technology disclosed herein is not limited to the embodiments described above and in the drawings, and for example, the following embodiments are also included in the technical scope disclosed herein.

(1)上記実施形態ではエンジン始動時以外の時に電圧値を計測して内部抵抗値を推定する。しかしながら、エンジン始動時以外の時であっても電圧差が小さいとき(例えば充放電の休止中)は内部抵抗値の推定精度が低下する。このため、電圧差が所定値以下である場合は内部抵抗値を推定しないようにしてもよい。 (1) In the above embodiment, the voltage value is measured and the internal resistance value is estimated at a time other than when the engine is started. However, when the voltage difference is small (for example, during charging / discharging suspension) even when the engine is not started, the accuracy of estimating the internal resistance value is lowered. Therefore, when the voltage difference is equal to or less than a predetermined value, the internal resistance value may not be estimated.

(2)上記実施形態では内部抵抗値に基づく二次電池62の管理として寿命の判断を例に説明したが、内部抵抗値に基づく二次電池62の管理はこれに限られない。内部抵抗値をどのような管理に用いるかは適宜に決定できる。 (2) In the above embodiment, the determination of the life is described as an example of the management of the secondary battery 62 based on the internal resistance value, but the management of the secondary battery 62 based on the internal resistance value is not limited to this. What kind of management the internal resistance value is used for can be appropriately determined.

(3)上記実施形態では前回計測した電圧値と今回計測した電圧値との差に基づいて内部抵抗値を推定する場合を例に説明した。しかしながら、内部抵抗値の推定に用いる電圧差はこれに限られない。例えば前々回計測した電圧値と今回計測した電圧値との差に基づいて内部抵抗値を推定してもよい。 (3) In the above embodiment, a case where the internal resistance value is estimated based on the difference between the voltage value measured last time and the voltage value measured this time has been described as an example. However, the voltage difference used for estimating the internal resistance value is not limited to this. For example, the internal resistance value may be estimated based on the difference between the voltage value measured two times before and the voltage value measured this time.

(4)上記実施形態では遮断器としてFETを例に説明したが、遮断器はリレーであってもよい。 (4) Although the FET has been described as an example of the circuit breaker in the above embodiment, the circuit breaker may be a relay.

(5)上記実施形態では自動二輪車10がアイドリングストップ機能を有していない場合を例に説明したが、自動二輪車10はアイドリングストップ機能を有していてもよい。自動二輪車10がアイドリングストップ機能を有していても、アイドリングストップ機能がオフにされる場合もある。このため、アイドリングストップ機能がオフの場合は、自動二輪車10のエンジン始動時以外の時に二次電池62の内部抵抗値を推定してもよい。このようにすると、アイドリングストップ機能がオフにされても内部抵抗値の平均値を求めるための母数を増やすことができる。このためアイドリングストップ機能がオフにされても内部抵抗値の推定精度が向上する。
アイドリングストップ機能を有している自動二輪車10であっても、アイドリングストップ機能がオンであるかオフであるかによらず、自動二輪車10のエンジン始動時以外の時に二次電池62の内部抵抗値を推定してもよい。
(5) In the above embodiment, the case where the motorcycle 10 does not have the idling stop function has been described as an example, but the motorcycle 10 may have the idling stop function. Even if the motorcycle 10 has an idling stop function, the idling stop function may be turned off. Therefore, when the idling stop function is off, the internal resistance value of the secondary battery 62 may be estimated at a time other than when the engine of the motorcycle 10 is started. In this way, even if the idling stop function is turned off, the population parameter for obtaining the average value of the internal resistance values can be increased. Therefore, even if the idling stop function is turned off, the estimation accuracy of the internal resistance value is improved.
Even if the motorcycle 10 has an idling stop function, the internal resistance value of the secondary battery 62 does not depend on whether the idling stop function is on or off, except when the engine of the motorcycle 10 is started. May be estimated.

(6)上記実施形態では蓄電素子として二次電池62を例に説明したが、蓄電素子はこれに限られない。例えば、蓄電素子は電気化学反応を伴うキャパシタであってもよい。 (6) In the above embodiment, the secondary battery 62 has been described as an example of the power storage element, but the power storage element is not limited to this. For example, the power storage element may be a capacitor that involves an electrochemical reaction.

10 自動二輪車
50 バッテリ(蓄電装置の一例)
62 二次電池(蓄電素子の一例)
101 BMU(管理装置の一例)
110 電圧センサ
130 管理部
10 Motorcycle 50 Battery (Example of power storage device)
62 Secondary battery (an example of power storage element)
101 BMU (an example of management device)
110 Voltage sensor 130 Management unit

Claims (9)

自動二輪車のエンジン始動に用いられる蓄電素子の管理装置であって、
前記蓄電素子の電圧値を計測する電圧センサと、
管理部と、
を備え、
前記管理部は、前記自動二輪車のエンジン始動時以外の時に前記電圧センサによって電圧値を時系列で計測し、計測した電圧値の差に基づいて前記蓄電素子の内部抵抗値を推定する、管理装置。
It is a management device for power storage elements used to start the engine of motorcycles.
A voltage sensor that measures the voltage value of the power storage element and
With the management department
With
The management unit measures the voltage value in time series by the voltage sensor at a time other than when the engine of the motorcycle is started, and estimates the internal resistance value of the power storage element based on the difference between the measured voltage values. ..
請求項1に記載の管理装置であって、
前記管理部は前記蓄電素子の充電中に電圧値を計測して前記蓄電素子の内部抵抗値を推定する、管理装置。
The management device according to claim 1.
The management unit is a management device that measures a voltage value during charging of the power storage element and estimates the internal resistance value of the power storage element.
請求項1又は請求項2に記載の管理装置であって、
前記管理部はエンジン停止中に電圧値を計測して前記蓄電素子の内部抵抗値を推定する、管理装置。
The management device according to claim 1 or 2.
The management unit is a management device that measures a voltage value while the engine is stopped and estimates the internal resistance value of the power storage element.
請求項1乃至請求項3のいずれか一項に記載の管理装置であって、
前記管理部は、エンジン始動時以外の時に前記蓄電素子の内部抵抗値を複数回推定し、推定した複数の内部抵抗値の平均値を前記蓄電素子の内部抵抗値の推定値とする、管理装置。
The management device according to any one of claims 1 to 3.
The management unit estimates the internal resistance value of the power storage element a plurality of times at a time other than when the engine is started, and sets the average value of the estimated internal resistance values as the estimated value of the internal resistance value of the power storage element. ..
請求項4に記載の管理装置であって、
前記蓄電素子はアイドリングストップ機能を有していない前記自動二輪車のエンジン始動に用いられるものである、管理装置。
The management device according to claim 4.
The power storage element is a management device used for starting an engine of the motorcycle that does not have an idling stop function.
請求項4に記載の管理装置であって、
前記蓄電素子はアイドリングストップ機能を有している前記自動二輪車のエンジン始動に用いられるものであり、
前記管理部は、前記アイドリングストップ機能がオフの場合に、前記自動二輪車のエンジン始動時以外の時に前記蓄電素子の内部抵抗値を推定する、管理装置。
The management device according to claim 4.
The power storage element is used for starting the engine of the motorcycle having an idling stop function.
The management unit is a management device that estimates the internal resistance value of the power storage element when the idling stop function is off, except when the engine of the motorcycle is started.
請求項1乃至請求項6のいずれか一項に記載の管理装置であって、
前記管理部は、前記自動二輪車のエンジン始動時以外の時であっても、計測した電圧値の差が所定値以下である場合は前記蓄電素子の内部抵抗値を推定しない、管理装置。
The management device according to any one of claims 1 to 6.
The management unit is a management device that does not estimate the internal resistance value of the power storage element when the difference between the measured voltage values is equal to or less than a predetermined value even when the engine of the motorcycle is not started.
自動二輪車のエンジン始動に用いられる蓄電装置であって、
蓄電素子と、
請求項1乃至請求項7のいずれか一項に記載の管理装置と、
を備える蓄電装置。
A power storage device used to start the engine of a motorcycle.
Power storage element and
The management device according to any one of claims 1 to 7.
A power storage device equipped with.
自動二輪車のエンジン始動に用いられる蓄電素子の管理方法であって、
前記自動二輪車のエンジン始動時以外の時に電圧センサによって電圧値を時系列で計測し、計測した電圧値の差に基づいて前記蓄電素子の内部抵抗値を推定するステップを含む、管理方法。
It is a management method of the power storage element used for starting the engine of a motorcycle.
A management method including a step of measuring a voltage value by a voltage sensor in time series by a voltage sensor at a time other than when the engine of the motorcycle is started, and estimating an internal resistance value of the power storage element based on the difference between the measured voltage values.
JP2019063641A 2019-03-28 2019-03-28 Power storage element management device, power storage device, and power storage element management method Pending JP2020165675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063641A JP2020165675A (en) 2019-03-28 2019-03-28 Power storage element management device, power storage device, and power storage element management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063641A JP2020165675A (en) 2019-03-28 2019-03-28 Power storage element management device, power storage device, and power storage element management method

Publications (1)

Publication Number Publication Date
JP2020165675A true JP2020165675A (en) 2020-10-08

Family

ID=72717468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063641A Pending JP2020165675A (en) 2019-03-28 2019-03-28 Power storage element management device, power storage device, and power storage element management method

Country Status (1)

Country Link
JP (1) JP2020165675A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245403A (en) * 1984-05-18 1985-12-05 Japan Storage Battery Co Ltd Discriminating method of lifetime of storage battery for vehicle
JP2002097974A (en) * 2000-09-21 2002-04-05 Furukawa Electric Co Ltd:The Vehicle with idling stopping function, and method and device for calculating remaining capacity of storage battery mounted on vehicle
JP2002543754A (en) * 1999-05-05 2002-12-17 ミッドトロニクス インコーポレイテッド Energy management system for automotive vehicles
JP2005086898A (en) * 2003-09-08 2005-03-31 Nissan Motor Co Ltd Device for activating storage battery for hybrid vehicle
JP2006138750A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Battery monitoring device
JP2010163879A (en) * 2009-01-13 2010-07-29 Honda Motor Co Ltd Idle stop control device
JP2011131853A (en) * 2009-12-25 2011-07-07 Kawasaki Heavy Ind Ltd Vehicle, and method for determining state of electric storage device provided on the vehicle
JP2011177011A (en) * 2010-01-29 2011-09-08 Sanyo Electric Co Ltd Device for adjusting state of charge, battery system with the same, electric vehicle, moving body, power storage device, power supply device, and program for processing state of charge adjustment
JP2011257219A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Internal resistance of secondary battery and calculation device for calculating open voltage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245403A (en) * 1984-05-18 1985-12-05 Japan Storage Battery Co Ltd Discriminating method of lifetime of storage battery for vehicle
JP2002543754A (en) * 1999-05-05 2002-12-17 ミッドトロニクス インコーポレイテッド Energy management system for automotive vehicles
JP2002097974A (en) * 2000-09-21 2002-04-05 Furukawa Electric Co Ltd:The Vehicle with idling stopping function, and method and device for calculating remaining capacity of storage battery mounted on vehicle
JP2005086898A (en) * 2003-09-08 2005-03-31 Nissan Motor Co Ltd Device for activating storage battery for hybrid vehicle
JP2006138750A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Battery monitoring device
JP2010163879A (en) * 2009-01-13 2010-07-29 Honda Motor Co Ltd Idle stop control device
JP2011131853A (en) * 2009-12-25 2011-07-07 Kawasaki Heavy Ind Ltd Vehicle, and method for determining state of electric storage device provided on the vehicle
JP2011177011A (en) * 2010-01-29 2011-09-08 Sanyo Electric Co Ltd Device for adjusting state of charge, battery system with the same, electric vehicle, moving body, power storage device, power supply device, and program for processing state of charge adjustment
JP2011257219A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Internal resistance of secondary battery and calculation device for calculating open voltage

Similar Documents

Publication Publication Date Title
WO2022249943A1 (en) Estimation device, power storage device, and estimation method
WO2020195715A1 (en) Management device for power storage element, and power storage device
WO2022196362A1 (en) Power storage device and control method for power storage device
JP2020165675A (en) Power storage element management device, power storage device, and power storage element management method
JP7276682B2 (en) Storage device management device, power storage device, and storage device management method
WO2020195425A1 (en) Power storage device and management method for power storage device
JP7421732B2 (en) Management device, management method
JP2022188418A (en) Power storage device, and abnormal discharge detection method of power storage device
JP7099224B2 (en) Power storage element management device and power storage device
JP7174333B2 (en) Electricity storage device, method for estimating capacity of electric storage element
WO2021039355A1 (en) Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage element
WO2020246285A1 (en) Monitoring unit, electricity storage device, and method for starting up monitoring unit
JP2020176899A (en) Device for estimating degradation of power storage element, and degradation estimation method
JP7320177B2 (en) power storage device
JPWO2020100982A1 (en) Management device for power storage element, power storage device, vehicle, and management method for power storage element
WO2020218032A1 (en) Power storage device and method for suppressing deterioration of state of charge
WO2022249784A1 (en) Correction device, power storage device, and correction method
JP6969307B2 (en) Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element
WO2022264698A1 (en) Power storage device and control method for power storage device
WO2024043044A1 (en) Detecting device, electricity storage device, and detecting method
JP7388008B2 (en) Automotive power storage device
WO2019208436A1 (en) Electricity storage device, and method for restarting engine of idling stop vehicle
JP2022018218A (en) Management device, power storage device, and management method of power storage element
JP2019187193A (en) Power storage device and power storage element management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711