JP6969307B2 - Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element - Google Patents

Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element Download PDF

Info

Publication number
JP6969307B2
JP6969307B2 JP2017218968A JP2017218968A JP6969307B2 JP 6969307 B2 JP6969307 B2 JP 6969307B2 JP 2017218968 A JP2017218968 A JP 2017218968A JP 2017218968 A JP2017218968 A JP 2017218968A JP 6969307 B2 JP6969307 B2 JP 6969307B2
Authority
JP
Japan
Prior art keywords
power storage
voltage
management device
arrival time
storage elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017218968A
Other languages
Japanese (ja)
Other versions
JP2019092276A (en
Inventor
剛之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2017218968A priority Critical patent/JP6969307B2/en
Publication of JP2019092276A publication Critical patent/JP2019092276A/en
Application granted granted Critical
Publication of JP6969307B2 publication Critical patent/JP6969307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、蓄電素子の容量を均等化する技術及び内部状態を推定する技術に関する。 The present invention relates to a technique for equalizing the capacity of a power storage element and a technique for estimating an internal state.

蓄電素子が直列に複数個接続されて使用される場合、蓄電素子間に容量ばらつきが生じることがある。 When a plurality of power storage elements are connected in series and used, capacity variation may occur between the power storage elements.

一般的には、蓄電素子間に容量差が生じると、充電時の電池電圧より算出したSOCの高い蓄電素子を抵抗放電させるなどして、容量均等化を図っている。容量均等化に関する技術を開示した文献として、下記の特許文献1がある。 Generally, when a capacity difference occurs between the storage elements, the storage elements having a high SOC calculated from the battery voltage at the time of charging are subjected to resistance discharge to equalize the capacities. The following Patent Document 1 is a document that discloses a technique relating to capacity equalization.

特開2007−110841号公報Japanese Unexamined Patent Publication No. 2007-110841

残存容量のばらつきが生じる理由の一つに自己放電があり、自己放電による残存容量のばらつきを解消することが求められていた。また、蓄電システムの安全性を高めるため、蓄電素子の内部状態を推定して、蓄電素子の管理に活用することが求められていた。
本発明は上記のような事情に基づいて完成されたものであって、蓄電素子の残存容量を均等化すること、内部状態を推定することを目的とする。
Self-discharge is one of the reasons for the variation in the remaining capacity, and it has been required to eliminate the variation in the remaining capacity due to the self-discharge. Further, in order to enhance the safety of the power storage system, it has been required to estimate the internal state of the power storage element and utilize it for the management of the power storage element.
The present invention has been completed based on the above circumstances, and an object of the present invention is to equalize the remaining capacity of the power storage element and to estimate the internal state.

直列に接続された複数の蓄電素子の管理装置であって、複数の前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、複数の前記蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、計測した前記到達時間に基づいて、複数の前記蓄電素子の残存容量を均等化する均等化処理を行う。均等化とは、蓄電素子の残存容量の差を、均等化処理前の状態よりも小さくすることである。 A management device for a plurality of energy storage elements connected in series, wherein the plurality of energy storage elements have an invariant region in which the correlation characteristic does not change before and after deterioration in the residual capacity-voltage correlation characteristic, and the plurality of the energy storage elements. For the element, the arrival time from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured, and the plurality of the storage elements are based on the measured arrival time. Performs equalization processing to equalize the remaining capacity of. Equalization is to make the difference in the remaining capacity of the power storage element smaller than the state before the equalization process.

直列に接続された複数の蓄電素子の管理装置であって、複数の前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、複数の前記蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、計測した前記到達時間に基づいて、複数の前記蓄電素子の内部状態を推定する。 A management device for a plurality of energy storage elements connected in series, wherein the plurality of energy storage elements have an invariant region in which the correlation characteristic does not change before and after deterioration in the residual capacity-voltage correlation characteristic, and the plurality of the energy storage elements. For the element, the arrival time from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured, and the plurality of the storage elements are based on the measured arrival time. Estimate the internal state of.

これらの技術は、蓄電素子の残存容量を均等化する方法、蓄電素子の内部状態を推定する方法に適用することが出来る。また、蓄電素子と均等回路と管理装置とを含む蓄電システムに適用することが出来る。また、蓄電素子の残存容量を均等化する均等化プログラム、蓄電素子の内部状態の推定プログラム、及びそれらプログラムを記録した記録媒体等の種々の態様で実現することができる。 These techniques can be applied to a method of equalizing the remaining capacity of the power storage element and a method of estimating the internal state of the power storage element. Further, it can be applied to a power storage system including a power storage element, a uniform circuit, and a management device. Further, it can be realized by various embodiments such as an equalization program for equalizing the remaining capacity of the power storage element, an estimation program for the internal state of the power storage element, and a recording medium on which these programs are recorded.

本構成では、蓄電素子間の容量を均等化することが出来る。また、蓄電素子の内部状態を推定することが出来る。 In this configuration, the capacity between the power storage elements can be equalized. In addition, the internal state of the power storage element can be estimated.

実施形態1における自動車の側面図Side view of the automobile in the first embodiment バッテリの斜視図Battery perspective バッテリの分解斜視図An exploded perspective view of the battery バッテリの電気的構成を示すブロック図Block diagram showing the electrical configuration of the battery 均等化回路の回路図Circuit diagram of equalization circuit リチウムイオン二次電池の残存容量−OCV相関特性を示すグラフGraph showing the residual capacity-OCV correlation characteristic of the lithium ion secondary battery リチウムイオン二次電池の残存容量−OCV相関特性を示すグラフGraph showing the residual capacity-OCV correlation characteristic of the lithium ion secondary battery 正極の電位の変化を示すグラフGraph showing changes in positive electrode potential 負極の電位の変化を示すグラフGraph showing changes in the potential of the negative electrode リチウムイオン二次電池の残存容量−OCV相関特性を示すグラフGraph showing the residual capacity-OCV correlation characteristic of the lithium ion secondary battery 正極の電位の変化を示すグラフGraph showing changes in positive electrode potential 負極の電位の変化を示すグラフGraph showing changes in the potential of the negative electrode リチウムイオン二次電池の残存容量−OCV相関特性を示すグラフGraph showing the residual capacity-OCV correlation characteristic of the lithium ion secondary battery 電池監視処理のフローチャート図Flow chart of battery monitoring process 各リチウムイオン二次電池の到達時間を示す図The figure which shows the arrival time of each lithium ion secondary battery 各リチウムイオン二次電池の自己放電量を示す図The figure which shows the self-discharge amount of each lithium ion secondary battery リチウムイオン二次電池の残存容量−電圧相関特性を示すグラフGraph showing residual capacity-voltage correlation characteristics of lithium-ion secondary battery

直列に接続された複数の蓄電素子の管理装置であって、前記複数の蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、前記複数の蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、計測した到達時間に基づいて、複数の蓄電素子の残存容量を均等化する均等化処理を行う。 A management device for a plurality of energy storage elements connected in series, wherein the plurality of energy storage elements have an invariant region in which the correlation characteristic does not change before and after deterioration in the residual capacity-voltage correlation characteristic, and the plurality of energy storage elements. With respect to the element, the arrival time from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured, and a plurality of storage elements remain based on the measured arrival time. Performs equalization processing to equalize the capacity.

蓄電素子が第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間は、蓄電素子の自己放電と相関性がある。本構成では、到達時間に基づいて均等化処理を行うので、自己放電のばらつきに起因する、蓄電素子の残存容量差の発生を解消することが出来る。しかも、第1計測点と第2計測点を、劣化前後で相関特性が変化しない不変領域内の点としているため、劣化の有無によらず、到達時間と自己放電量の関係性は一定に保たれる。すなわち、自己放電量が同じ(電流一定)であれば、劣化の有無によらず、到達時間は同じ時間である。従って、劣化の有無によらず、到達時間から自己放電量を精度よく検出することが可能であり、蓄電素子の残存容量を精度よく均等化できる。 The arrival time until the power storage element changes from the first voltage at the first measurement point to the second voltage at the second measurement point has a correlation with the self-discharge of the power storage element. In this configuration, since the equalization process is performed based on the arrival time, it is possible to eliminate the generation of the remaining capacity difference of the power storage element due to the variation in self-discharge. Moreover, since the first measurement point and the second measurement point are points in the invariant region where the correlation characteristics do not change before and after deterioration, the relationship between the arrival time and the self-discharge amount is kept constant regardless of the presence or absence of deterioration. Dripping. That is, if the amount of self-discharge is the same (constant current), the arrival time is the same regardless of the presence or absence of deterioration. Therefore, the self-discharge amount can be accurately detected from the arrival time regardless of the presence or absence of deterioration, and the remaining capacity of the power storage element can be accurately equalized.

前記均等化処理を、充電開始前又は充電開始時に行うとよい。本構成では、充電開始前又は充電開始時に均等化処理を行うから、容量バラツキの小さな状態で充電を行うことが出来る。そのため、一部の蓄電素子が過充電領域に充電されることをより抑制できる。 The equalization process may be performed before the start of charging or at the start of charging. In this configuration, since the equalization process is performed before the start of charging or at the start of charging, charging can be performed in a state where the capacity variation is small. Therefore, it is possible to further suppress that some of the power storage elements are charged in the overcharged region.

直列に接続された複数の蓄電素子の管理装置であって、前記複数の蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、前記複数の蓄電素子について、前記不変領域F内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、計測した到達時間に基づいて、前記複数の蓄電素子の内部状態を推定する。 A management device for a plurality of energy storage elements connected in series, wherein the plurality of energy storage elements have an invariant region in which the correlation characteristic does not change before and after deterioration in the residual capacity-voltage correlation characteristic, and the plurality of energy storage elements. With respect to the element, the arrival time until the change from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region F is measured, and the plurality of storage elements are based on the measured arrival time. Estimate the internal state of.

本構成では、蓄電素子の内部状態を推定することが出来る。そのため、推定した内部状態に応じて、蓄電素子を管理、制御することが出来る。 In this configuration, the internal state of the power storage element can be estimated. Therefore, the power storage element can be managed and controlled according to the estimated internal state.

前記到達時間が閾値より短い場合、前記蓄電素子は内部短絡による異常と判断するとよい。本構成では、蓄電素子の内部短絡の有無を判断することが出来る。そのため、内部短絡を起こしている蓄電素子の使用が継続されることを抑制できるので、安全性が高まる。 When the arrival time is shorter than the threshold value, the power storage element may be determined to be abnormal due to an internal short circuit. In this configuration, it is possible to determine whether or not there is an internal short circuit in the power storage element. Therefore, it is possible to suppress the continuation of the use of the power storage element causing an internal short circuit, and thus the safety is enhanced.

前記複数の蓄電素子が、無電流又は無電流とみなせる場合に、前記蓄電素子が前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧まで放電する時の到達時間を計測するとよい。 When the plurality of power storage elements can be regarded as no current or no current, the arrival time when the power storage element discharges from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region. Should be measured.

本構成では、蓄電素子の自己放電による到達時間を得ることが出来る。そのため、自己放電量を正確に検出することが出来るので、蓄電素子の残存容量を精度よく均等化できる。また、蓄電素子の内部状態を精度よく判定できる。 In this configuration, the arrival time due to the self-discharge of the power storage element can be obtained. Therefore, since the self-discharge amount can be accurately detected, the remaining capacity of the power storage element can be accurately equalized. In addition, the internal state of the power storage element can be accurately determined.

前記蓄電素子は、正極材料をリン酸鉄リチウム、負極材料をグラファイトとしたリチウムイオン二次電池とすることが出来る。リン酸鉄系のリチウムイオン二次電池は、残存容量−OCV特性において、平坦なプラトー領域を有している。プラトー領域内では、リチウムイオン二次電池の電圧差を検出することが難しく、電圧差から残存容量の差を検出して均等化する方法が適用できない、という課題がある。本構成では、プラトー領域の端点など電圧変化がある2つのポイントを計測点として、到達時間を計測することで、到達時間から自己放電による残存容量差を検出することが可能であり、リチウムイオン二次電池の残存容量差の発生を解消することが出来る。 The power storage element can be a lithium ion secondary battery in which the positive electrode material is lithium iron phosphate and the negative electrode material is graphite. The iron phosphate-based lithium ion secondary battery has a flat plateau region in the residual capacity-OCV characteristic. In the plateau region, it is difficult to detect the voltage difference of the lithium ion secondary battery, and there is a problem that the method of detecting and equalizing the difference in the remaining capacity from the voltage difference cannot be applied. In this configuration, it is possible to detect the difference in remaining capacity due to self-discharge from the arrival time by measuring the arrival time with two points where there is a voltage change such as the end point of the plateau region as measurement points. It is possible to eliminate the occurrence of a difference in the remaining capacity of the next battery.

<実施形態1>
1.バッテリの説明
図1は自動車の側面図、図2はバッテリの斜視図、図3はバッテリの分解斜視図、図4はバッテリの電気的構成を示すブロック図である。
<Embodiment 1>
1. 1. Explanation of Battery FIG. 1 is a side view of an automobile, FIG. 2 is a perspective view of the battery, FIG. 3 is an exploded perspective view of the battery, and FIG. 4 is a block diagram showing an electrical configuration of the battery.

自動車1は、図1に示すように、蓄電装置であるバッテリ20を備えている。バッテリ20は、図2に示すように、ブロック状の電池ケース21を有しており、電池ケース21内には、複数の二次電池B1〜B4からなる組電池30や制御基板28が収容されている。 As shown in FIG. 1, the automobile 1 includes a battery 20 which is a power storage device. As shown in FIG. 2, the battery 20 has a block-shaped battery case 21, and the battery case 21 houses an assembled battery 30 composed of a plurality of secondary batteries B1 to B4 and a control board 28. ing.

電池ケース21は、図3に示すように、上方に開口する箱型のケース本体23と、複数の二次電池B1〜B4を位置決めする位置決め部材24と、ケース本体23の上部に装着される中蓋25と、上蓋26とを備えて構成されている。ケース本体23内には、図3に示すように、各二次電池B1〜B4が個別に収容される複数のセル室23AがX方向に並んで設けられている。 As shown in FIG. 3, the battery case 21 has a box-shaped case body 23 that opens upward, a positioning member 24 that positions a plurality of secondary batteries B1 to B4, and a middle of being mounted on the upper part of the case body 23. It is configured to include a lid 25 and an upper lid 26. As shown in FIG. 3, a plurality of cell chambers 23A in which the secondary batteries B1 to B4 are individually housed are provided in the case main body 23 side by side in the X direction.

位置決め部材24は、図3に示すように、複数のバスバー27が上面に配置されており、位置決め部材24がケース本体23内に配置された複数の二次電池B1〜B4の上部に配置されることで、複数の二次電池B1〜B4が、位置決めされると共に複数のバスバー27によって直列に接続されるようになっている。 As shown in FIG. 3, the positioning member 24 has a plurality of bus bars 27 arranged on the upper surface thereof, and the positioning member 24 is arranged on the upper portions of the plurality of secondary batteries B1 to B4 arranged in the case main body 23. As a result, the plurality of secondary batteries B1 to B4 are positioned and connected in series by the plurality of bus bars 27.

中蓋25は、図2に示すように、平面視略矩形状をなしている。中蓋25のX方向両端部には、図示しないハーネス端子が接続される一対の端子部22P、22Nが設けられている。一対の端子部22P、22Nは、例えば鉛合金等の金属からなり、22Pが正極側端子部、22Nが負極側端子部である。 As shown in FIG. 2, the inner lid 25 has a substantially rectangular shape in a plan view. A pair of terminal portions 22P and 22N to which harness terminals (not shown) are connected are provided at both ends of the inner lid 25 in the X direction. The pair of terminal portions 22P and 22N are made of a metal such as a lead alloy, 22P is a positive electrode side terminal portion and 22N is a negative electrode side terminal portion.

中蓋25の上面には、収容部25Aが設けられている。制御基板28は、中蓋25の収容部25Aの内部に収容されており、中蓋25がケース本体23に装着されることで、二次電池Bと制御基板28とが接続されるようになっている。また、上蓋26は、中蓋25の上部に装着され、制御基板28を収容した収容部25Aの上面を閉じるようになっている。 An accommodating portion 25A is provided on the upper surface of the inner lid 25. The control board 28 is housed inside the housing portion 25A of the inner lid 25, and by mounting the inner lid 25 on the case main body 23, the secondary battery B and the control board 28 are connected to each other. ing. Further, the upper lid 26 is attached to the upper part of the inner lid 25 so as to close the upper surface of the accommodating portion 25A accommodating the control board 28.

図4を参照して、バッテリ20の電気的構成を説明する。バッテリ20は、組電池30と、電流遮断装置37と、電流センサ41と、電圧検出部45と、均等化回路70と、警告ランプ80と、組電池30を管理する管理装置50とを有する。 The electrical configuration of the battery 20 will be described with reference to FIG. The battery 20 includes an assembled battery 30, a current cutoff device 37, a current sensor 41, a voltage detection unit 45, an equalization circuit 70, a warning lamp 80, and a management device 50 for managing the assembled battery 30.

組電池30は、直列接続された4つのリチウムイオン二次電池B1〜B4から構成されている。リチウムイオン二次電池Bは、本発明の「蓄電素子」の一例である。 The assembled battery 30 is composed of four lithium ion secondary batteries B1 to B4 connected in series. The lithium ion secondary battery B is an example of the "storage element" of the present invention.

組電池30、電流センサ41、電流遮断装置37は、通電路35P、35Nを介して、直列に接続されている。電流センサ41を負極の通電路35N、電流遮断装置37を正極の通電路35Pに配置しており、電流センサ41は負極側端子部22N、電流遮断装置37は、正極側端子部22Pにそれぞれ接続されている。 The assembled battery 30, the current sensor 41, and the current cutoff device 37 are connected in series via the energization paths 35P and 35N. The current sensor 41 is arranged in the negative electrode energization path 35N and the current cutoff device 37 is arranged in the positive electrode energization path 35P. The current sensor 41 is connected to the negative electrode side terminal portion 22N, and the current cutoff device 37 is connected to the positive electrode side terminal portion 22P. Has been done.

リチウムイオン二次電池B1〜B4の電池電圧は約3.5[V]、組電池30の総電圧Evは約14Vである。バッテリ20は、エンジン始動用である。 The battery voltage of the lithium ion secondary batteries B1 to B4 is about 3.5 [V], and the total voltage Ev of the assembled battery 30 is about 14V. The battery 20 is for starting the engine.

電流センサ41は、電池ケース21の内部に設けられており、組電池30に流れる電流Iを検出する。電流センサ41は、信号線によって管理装置50に電気的に接続されており、電流センサ41の出力は、管理装置50に取り込まれる。 The current sensor 41 is provided inside the battery case 21 and detects the current I flowing through the assembled battery 30. The current sensor 41 is electrically connected to the management device 50 by a signal line, and the output of the current sensor 41 is taken into the management device 50.

電圧検出部45は、電池ケース21の内部に設けられており、各リチウムイオン二次電池B1〜B4の電池電圧V1〜V4及び組電池30の総電圧Evを検出する。電圧検出部45は、信号線によって管理装置50に電気的に接続されており、電圧検出部45の出力は、管理装置50に取り込まれる。 The voltage detection unit 45 is provided inside the battery case 21 and detects the battery voltages V1 to V4 of the lithium ion secondary batteries B1 to B4 and the total voltage Ev of the assembled battery 30. The voltage detection unit 45 is electrically connected to the management device 50 by a signal line, and the output of the voltage detection unit 45 is taken into the management device 50.

電流遮断装置37は、リレーなどの有接点スイッチ(機械式)やFETやトランジスタなどの半導体スイッチにより構成することが出来る。電流遮断装置37は、正極の通電路35Pを開閉する。 The current cutoff device 37 can be configured by a contact switch (mechanical type) such as a relay or a semiconductor switch such as an FET or a transistor. The current cutoff device 37 opens and closes the current-carrying path 35P of the positive electrode.

均等化回路70は、リチウムイオン二次電池B1〜B4に対して、個別に設けられている。均等化回路70は、図5に示すように、放電抵抗Rと放電スイッチSWとから構成されている。放電スイッチSWをオンすると、リチウムイオン二次電池Bは、放電抵抗Rを介して放電する。容量の多いリチウムイオン二次電池Bを放電することで、リチウムイオン二次電池B1〜B4間の残存容量Cを均等化することが出来る。 The equalization circuit 70 is individually provided for the lithium ion secondary batteries B1 to B4. As shown in FIG. 5, the equalization circuit 70 includes a discharge resistor R and a discharge switch SW. When the discharge switch SW is turned on, the lithium ion secondary battery B is discharged via the discharge resistance R. By discharging the lithium ion secondary battery B having a large capacity, the remaining capacity C between the lithium ion secondary batteries B1 to B4 can be equalized.

管理装置50は、演算機能を有するCPU(central processing unit)51、各種情報を記憶したメモリ53、ROM54、時間を計時する計時部55、通信部57など備えており、制御基板28上に設けられている。ROM54には、図14に示す電池監視処理(S10〜S100)を実行するためのプログラムが記憶されている。プログラムはCD−ROM等の記録媒体に記憶して譲渡等することが出来る。 The management device 50 includes a CPU (central processing unit) 51 having a calculation function, a memory 53 for storing various information, a ROM 54, a time measuring unit 55 for measuring time, a communication unit 57, and the like, and is provided on the control board 28. ing. The ROM 54 stores a program for executing the battery monitoring process (S10 to S100) shown in FIG. The program can be stored in a recording medium such as a CD-ROM and transferred.

通信部57は、自動車1に搭載された車両ECU(Electronic Control Unit:電子制御ユニット)100との通信用として設けられている。車両への搭載後、通信部57は、信号線により、車両ECU100と接続され、管理装置50は、エンジンの動作状態など車両に関する情報を、車両ECU100から受信できるようになっている。 The communication unit 57 is provided for communication with the vehicle ECU (Electronic Control Unit) 100 mounted on the automobile 1. After mounting on the vehicle, the communication unit 57 is connected to the vehicle ECU 100 by a signal line, and the management device 50 can receive information about the vehicle such as the operating state of the engine from the vehicle ECU 100.

管理装置50は、電流センサ41の出力に基づいて、組電池(リチウムイオン二次電池B)30の電流を監視する。また、電圧検出部45の出力に基づいて、各リチウムイオン二次電池B1〜B4の電圧V1〜V4及び組電池30の総電圧Evを監視する。また、管理装置50は、後述する均等化処理(S90)や異常判定(S100)を行う。尚、バッテリ20は、直列に接続された複数のリチウムイオン二次電池B1〜B4と、管理装置50と、を備えていることから、本発明の「蓄電システム」に相当する。 The management device 50 monitors the current of the assembled battery (lithium ion secondary battery B) 30 based on the output of the current sensor 41. Further, based on the output of the voltage detection unit 45, the voltages V1 to V4 of the lithium ion secondary batteries B1 to B4 and the total voltage Ev of the assembled battery 30 are monitored. In addition, the management device 50 performs equalization processing (S90) and abnormality determination (S100), which will be described later. Since the battery 20 includes a plurality of lithium ion secondary batteries B1 to B4 connected in series and a management device 50, it corresponds to the "storage system" of the present invention.

2.リチウムイオン二次電池の特性
リチウムイオン二次電池Bは、例えば、正極活物質にリン酸鉄リチウム(LiFePO4)、負極活物質にグラファイトを用いたリン酸鉄系のリチウムイオン二次電池である。
2. 2. Characteristics of Lithium Ion Secondary Battery The lithium ion secondary battery B is, for example, an iron phosphate-based lithium ion secondary battery in which lithium iron phosphate (LiFePO4) is used as a positive electrode active material and graphite is used as a negative electrode active material.

図6は、リン酸鉄系のリチウムイオン二次電池Bの残存容量−OCVの相関特性を示す図である。OCV(Open Circuit Voltage)は開路電圧を意味する。また、SOC(state of cAHrge)は充電状態であり、満充電容量Coに対する残存容量Cの比率である。 FIG. 6 is a diagram showing the correlation characteristics of the residual capacity-OCV of the iron phosphate-based lithium ion secondary battery B. OCV (Open Circuit Voltage) means an open circuit voltage. Further, SOC (state of cAHrge) is a charged state, and is a ratio of the remaining capacity C to the fully charged capacity Co.

SOC=C/Co・・・・(1)
Cは残存容量、Coは満充電容量である。
SOC = C / Co ... (1)
C is the remaining capacity and Co is the fully charged capacity.

リン酸鉄系のリチウムイオン二次電池Bは、残存容量Cの変化量に対するOCVの変化量が相対的に低い低変化領域ALと、相対的に高い高変化領域AHとを有している。具体的には、SOCが95%以上である充電末期(放電初期)は、残存容量Cの変化量に対してOCVが急激に変化する高変化領域AHである。また、SOCが35%〜95%未満である充電中期(放電中期)は、残存容量Cに対するOCVが小さい低変化領域ALである。 The iron phosphate-based lithium ion secondary battery B has a low change region AL in which the change amount of OCV with respect to the change amount of the remaining capacity C is relatively low, and a high change region AH in which the change amount is relatively high. Specifically, the end of charging (initial stage of discharging) in which the SOC is 95% or more is a high-change region AH in which the OCV changes abruptly with respect to the amount of change in the remaining capacity C. Further, the middle charge (middle discharge) in which the SOC is 35% to less than 95% is a low change region AL in which the OCV with respect to the remaining capacity C is small.

低変化領域ALは、第1のプラトー領域AL1と、中間領域AL2と、第2のプラトー領域AL3を有している。第1のプラトー領域AL1と、第2のプラトー領域AL3は、中間領域AL2の両側に位置している。プラトー領域(平坦領域)AL1、AL3は、残存容量Cに対してOCVが略一定の領域である。具体的には、残存容量Cの変化量に対するOCVの変化量が0.5[mV/Ah]以下の領域である。 The low change region AL has a first plateau region AL1, an intermediate region AL2, and a second plateau region AL3. The first plateau region AL1 and the second plateau region AL3 are located on both sides of the intermediate region AL2. The plateau regions (flat regions) AL1 and AL3 are regions in which the OCV is substantially constant with respect to the remaining capacity C. Specifically, it is a region in which the amount of change in OCV with respect to the amount of change in the remaining capacity C is 0.5 [mV / Ah] or less.

図7は、リン酸鉄系のリチウムイオン二次電池Bの残存容量−OCVの相関特性を示す図であり、実線で示すLoは新品、破線で示すL1〜L3は劣化品である。L1〜L3のリチウムイオン二次電池Bの容量維持率は、Y1〜Y3であり、Y3<Y2<Y1である。 FIG. 7 is a diagram showing the correlation characteristics of the residual capacity-OCV of the iron phosphate-based lithium ion secondary battery B. Lo shown by the solid line is a new product, and L1 to L3 shown by the broken line are deteriorated products. The capacity retention rates of the lithium ion secondary batteries B of L1 to L3 are Y1 to Y3, and Y3 <Y2 <Y1.

Y=Cot/Co1・・・・(2)
Co1は満充電容量の初期値(新品)、Cotは満充電容量の現在値(劣化)
Y = Cot / Co1 ... (2)
Co1 is the initial value of the full charge capacity (new), and Cot is the current value of the full charge capacity (deterioration).

劣化品の残存容量−OCVの相関特性L1〜L3を、新品の残存容量−OCVの相関特性L0と比較すると、充電末期における高変化領域AHの立ち上がり部Kが、低残存容量側(図7の左側)に水平に移動している。K0〜K3は、各相関特性L0〜L3の立ち上がり部を示す。 Comparing the correlation characteristics L1 to L3 of the residual capacity-OCV of the deteriorated product with the correlation characteristics L0 of the residual capacity-OCV of the new product, the rising portion K of the high change region AH at the end of charging is on the low residual capacity side (FIG. 7). It is moving horizontally to the left side). K0 to K3 indicate rising portions of the respective correlation characteristics L0 to L3.

劣化品の残存容量−OCVの相関特性L1〜L3において、高変化領域AHの立ち上がり部K1〜K3よりも低残存容量の領域は、新品時の残存容量−OCVの相関特性L0と一致しており、劣化前後で、残存容量−OCVの相関特性が変化しない不変領域F1〜F3である。「相関特性が変化しない」とは、劣化前後でグラフが完全に一致、又は、ほぼ一致(計測誤差程度のずれは許容)している、という意味である。 In the correlation characteristic L1 to L3 of the residual capacity of the deteriorated product-OCV, the region having a lower residual capacity than the rising portions K1 to K3 of the high change region AH coincides with the correlation characteristic L0 of the residual capacity-OCV at the time of new product. , The invariant regions F1 to F3 in which the correlation characteristic of the residual capacity −OCV does not change before and after deterioration. "The correlation characteristic does not change" means that the graphs are completely matched or almost matched (a deviation of about a measurement error is allowed) before and after deterioration.

不変領域Fが生じる理由として、以下が考えられる。
図8は、新品のリチウム二次電池Bの正極電位(リン酸鉄リチウムの電位)を示すグラフ、図9は、新品のリチウム二次電池Bの負極電位(グラファイトの電位)を示すグラフ、図10は、新品のリチウムイオン二次電池BのOCV−残存容量の相関特性を示すグラフである。図8〜図10において、P1は満充電時の電位、OCVを示す。P2は放電時の電位、OCVを示す。
The following can be considered as the reason why the invariant region F is generated.
FIG. 8 is a graph showing the positive electrode potential (potential of lithium iron phosphate) of the new lithium secondary battery B, and FIG. 9 is a graph showing the negative electrode potential (potential of graphite) of the new lithium secondary battery B. 10 is a graph showing the correlation characteristics of OCV-residual capacity of a new lithium ion secondary battery B. In FIGS. 8 to 10, P1 indicates the potential and OCV at the time of full charge. P2 indicates the potential at the time of discharge and OCV.

リチウムイオン二次電池BのOCVは、正極電位と負極電位の差である。OCVの充電末期の変化(グラフのカーブ)は、正極電位の充電末期の変化にほぼ依存している(図8、10のG1)。また、OCVの充電中期の変化は、負極電位の充電中期の変化にほぼ依存している(図9、図10のG2)。 The OCV of the lithium ion secondary battery B is the difference between the positive electrode potential and the negative electrode potential. The change in the end of charging of OCV (curve in the graph) is almost dependent on the change in the end of charging of the positive electrode potential (G1 in FIGS. 8 and 10). Further, the change in the mid-charge of OCV is almost dependent on the change in the mid-charge of the negative electrode potential (G2 in FIGS. 9 and 10).

正極材料であるリン酸鉄リチウムは、不可逆容量がほぼ無いが、負極材料であるグラファイトは、不可逆容量U1を有している。 Lithium iron phosphate, which is a positive electrode material, has almost no irreversible capacity, but graphite, which is a negative electrode material, has an irreversible capacity U1.

負極のグラファイトは、リチウムがほぼ空になるまで、放電することが出来る。一方、正極のリン酸鉄リチウムは、グラファイトの不可逆容量U1に相当する部分を放電できず、使用できない。 The graphite on the negative electrode can be discharged until the lithium is almost empty. On the other hand, the positive electrode lithium iron phosphate cannot be used because the portion corresponding to the irreversible capacity U1 of graphite cannot be discharged.

図11は、負極被膜による容量劣化後の充電時のリチウムイオン二次電池Bの正極電位(リン酸鉄リチウムの電位)を示すグラフ、図12は、負極被膜による容量劣化後の充電時のリチウムイオン二次電池Bの負極電位(グラファイトの電位)を示すグラフ、図13は、負極被膜による容量劣化後のリチウムイオン二次電池BのOCV−残存容量の相関特性を示すグラフである。図11〜図13において、P3は満充電時の電位、OCVを示す。 FIG. 11 is a graph showing the positive electrode potential (potential of lithium iron phosphate) of the lithium ion secondary battery B during charging after capacity deterioration due to the negative electrode coating, and FIG. 12 is lithium during charging after capacity deterioration due to the negative electrode coating. The graph showing the negative electrode potential (potential of graphite) of the ion secondary battery B, FIG. 13 is a graph showing the correlation characteristic of the OCV-residual capacity of the lithium ion secondary battery B after the capacity deterioration due to the negative electrode coating. In FIGS. 11 to 13, P3 indicates the potential and OCV at the time of full charge.

負極被膜による容量劣化後、正極のリン酸鉄リチウムは、ほとんど、容量劣化がない。一方、負極のグラファイトは、初期の不可逆容量U1に対して、被膜劣化消費分U2の容量が加わる。そのため、リチウムイオン二次電池Bは、被膜劣化消費分U2の容量だけ充電が浅くなる。 After the capacity deterioration due to the negative electrode coating, the lithium iron phosphate of the positive electrode has almost no capacity deterioration. On the other hand, in the graphite of the negative electrode, the capacity of the film deterioration consumption U2 is added to the initial irreversible capacity U1. Therefore, the lithium ion secondary battery B is charged shallowly by the capacity of the film deterioration consumption U2.

以上のことから、容量劣化に伴って、充電末期における高変化領域AHの立ち上がり部部Kが、図13に示すように、低残存容量側(図13の左側)にカーブに沿って移動し、不変領域Fが生じると、推定される。 From the above, as the capacity deteriorates, the rising portion K of the high change region AH at the end of charging moves along the curve to the low remaining capacity side (left side in FIG. 13) as shown in FIG. It is estimated that an invariant region F occurs.

ところで、劣化が大きくなると、電池性能は低下する。そのため、通常、リチウムイオン二次電池Bは、使用範囲が決められている。すなわち、容量維持率Yの使用範囲が定められており、容量維持率Yが使用範囲(一例として100%〜70%)を逸脱した場合は、使用しないようにしている。 By the way, when the deterioration becomes large, the battery performance deteriorates. Therefore, the range of use of the lithium ion secondary battery B is usually determined. That is, the usage range of the capacity retention rate Y is defined, and when the capacity retention rate Y deviates from the usage range (100% to 70% as an example), it is not used.

従って、使用範囲内において、最も劣化した状態のリチウムイオン二次電池Bに対応する不変領域Fを選択すれば、使用範囲内での使用である限り、残存容量−OCVの相関特性が常に変化しないことになる。例えば、容量維持率Y2が使用範囲の限界値(上記例では70%)である場合、不変領域F2内では、使用範囲内での使用である限り、残存容量−OCVの相関特性が、常に変化しない。 Therefore, if the invariant region F corresponding to the most deteriorated lithium ion secondary battery B is selected within the usage range, the correlation characteristic of the remaining capacity-OCV does not always change as long as the usage is within the usage range. It will be. For example, when the capacity retention rate Y2 is the limit value of the usage range (70% in the above example), the correlation characteristic of the remaining capacity-OCV always changes in the invariant region F2 as long as it is used within the usage range. do not.

バッテリ20は、図7に示すように、不変領域F2内の2点Pa、Pbを計測点として定めている。具体的には、高容量側の計測点を第1の計測点Paとし、低容量側の計測点を第2の計測点Pbとしている。図6に示すように、第1の計測点Paは、第1のプラトー領域AL1の端点である。また、第2の計測点Pbは、第2のプラトー領域AL3の端点である。 As shown in FIG. 7, the battery 20 defines two points Pa and Pb in the invariant region F2 as measurement points. Specifically, the measurement point on the high capacity side is set as the first measurement point Pa, and the measurement point on the low capacity side is set as the second measurement point Pb. As shown in FIG. 6, the first measurement point Pa is the end point of the first plateau region AL1. Further, the second measurement point Pb is an end point of the second plateau region AL3.

計測点Pa、Pbは、検出がし易いように、容量変化に対してOCV変化が所定値よりも大きいポイント(傾きがある又は傾きが大きいポイント)を選ぶことが望ましい。 For the measurement points Pa and Pb, it is desirable to select a point (point having a slope or a large slope) in which the OCV change is larger than a predetermined value with respect to the capacitance change so that the measurement point Pa and Pb can be easily detected.

バッテリ20は、以下に説明するように、各リチウムイオン二次電池B1〜B4が、放電(主に自己放電)により、第1計測点Paから第2計測点Pbまで到達するのに要する到達時間T1〜T4を計測する。そして、取得した到達時間T1〜T4に基づいて、リチウムイオン二次電池B1〜B4の異常判定と均等化処理を実行する。 As described below, the battery 20 requires the arrival time required for each lithium ion secondary battery B1 to B4 to reach from the first measurement point Pa to the second measurement point Pb by discharge (mainly self-discharge). Measure T1 to T4. Then, based on the acquired arrival times T1 to T4, the abnormality determination and equalization processing of the lithium ion secondary batteries B1 to B4 are executed.

3.リチウムイオン二次電池の異常判定と均等化処理
図14は、電池監視処理のフローチャート図である。電池監視処理は、図14に示すように、S10〜S100から構成されている。管理装置50のCPU51は、S10にて、車両1の駐車を検出したか、判定する。
3. 3. Abnormality determination and equalization processing of the lithium ion secondary battery FIG. 14 is a flowchart of the battery monitoring processing. As shown in FIG. 14, the battery monitoring process is composed of S10 to S100. The CPU 51 of the management device 50 determines whether the parking of the vehicle 1 is detected in S10.

駐車の検出は、管理装置50と車両ECU100との通信により、行うことが出来る。すなわち、車両が走行中や停車中の場合、車両ECU100と管理装置50との間において、所定周期で通信が頻繁に行われる。 Parking can be detected by communication between the management device 50 and the vehicle ECU 100. That is, when the vehicle is running or stopped, communication is frequently performed between the vehicle ECU 100 and the management device 50 at a predetermined cycle.

一方、車両が駐車中の場合、車両ECU100は停止し、通信も停止する。そのため、所定期間、車両ECU100との間で通信が途絶えている場合には、車両1は駐車中であると判断することが出来る。駐車でない場合、処理は終了する(S10:NO)。 On the other hand, when the vehicle is parked, the vehicle ECU 100 is stopped and communication is also stopped. Therefore, when the communication with the vehicle ECU 100 is interrupted for a predetermined period, it can be determined that the vehicle 1 is parked. If it is not parked, the process ends (S10: NO).

車両1の駐車を検出した場合(S10:YES)、管理装置50のCPU51は、電流センサ41の出力よりバッテリ20の電流Iを取得し、電圧検出部45の出力より各リチウムイオン二次電池B1〜B4の電池電圧V1〜V4を取得する。 When the parking of the vehicle 1 is detected (S10: YES), the CPU 51 of the management device 50 acquires the current I of the battery 20 from the output of the current sensor 41, and each lithium ion secondary battery B1 is obtained from the output of the voltage detection unit 45. ~ B4 battery voltages V1 to V4 are acquired.

次に管理装置50のCPU51は、バッテリ20が無電流又は無電流とみなせる状態であるか、判定をする(S30)。 Next, the CPU 51 of the management device 50 determines whether the battery 20 is in a state where it can be regarded as no current or no current (S30).

具体的には、バッテリ20の電流Iを第1所定値と比較し、電流Iが第1所定値より小さければ、バッテリ20は無電流又は無電流とみなせる状態であると、判定される。第1所定値は、一例として数十mA程度である。 Specifically, the current I of the battery 20 is compared with the first predetermined value, and if the current I is smaller than the first predetermined value, it is determined that the battery 20 is in a state where it can be regarded as no current or no current. The first predetermined value is, for example, about several tens of mA.

バッテリ20が無電流又は無電流とみなせると判断した場合(S30:YES)、管理装置50のCPU51は、各リチウムイオン二次電池B1〜B4の電圧V1〜V4を、第1の計測点Paの第1電圧Vaと比較する。第1電圧Vaよりも電圧の低いものがある場合、処理は終了する(S40:NO)。 When it is determined that the battery 20 can be regarded as no current or no current (S30: YES), the CPU 51 of the management device 50 sets the voltages V1 to V4 of the lithium ion secondary batteries B1 to B4 at the first measurement point Pa. Compare with the first voltage Va. If there is a voltage lower than the first voltage Va, the process ends (S40: NO).

管理装置50は、電圧V1〜V4が第1電圧Vaよりも全て高い場合、各リチウムイオン二次電池B1〜B4について、到達時間T1〜T4を計測する(S50)。 When the voltages V1 to V4 are all higher than the first voltage Va, the management device 50 measures the arrival times T1 to T4 for each of the lithium ion secondary batteries B1 to B4 (S50).

具体的には、リチウムイオン二次電池B1〜B4の電圧V1〜V4は、電池の自己放電により、時間経過に伴って低下する。 Specifically, the voltages V1 to V4 of the lithium ion secondary batteries B1 to B4 decrease with the passage of time due to the self-discharge of the batteries.

そのため、管理装置50のCPU51は、電圧検出部45の出力に基づいて、各リチウムイオン二次電池B1〜B4の電圧V1〜V4の電圧を監視し、計時部55を用いて、各リチウムイオン二次電池B1〜B4が、第1の計測点Paの第1電圧Vaから、第2の計測点Pbの第2電圧Vbに、到達するまでの到達時間T1〜T4を計測する。 Therefore, the CPU 51 of the management device 50 monitors the voltages of the voltages V1 to V4 of the lithium ion secondary batteries B1 to B4 based on the output of the voltage detection unit 45, and uses the measuring unit 55 to monitor each lithium ion secondary battery. The secondary batteries B1 to B4 measure the arrival times T1 to T4 from the first voltage Va at the first measurement point Pa to the second voltage Vb at the second measurement point Pb.

到達時間T1〜T4の計測は、リチウムイオン二次電池B1〜B4が無電流又は無電流とみなせる状態である場合に限り、行われる。 The measurement of the arrival times T1 to T4 is performed only when the lithium ion secondary batteries B1 to B4 are in a state where they can be regarded as no current or no current.

管理装置50のCPU51は、到達時間T1〜T4の計測が完了すると、図15に示すように、到達時間T1〜T4が、閾値Tsより長いか判定する(S60)。 When the measurement of the arrival times T1 to T4 is completed, the CPU 51 of the management device 50 determines whether the arrival times T1 to T4 are longer than the threshold value Ts (S60), as shown in FIG.

到達時間Tは、二次電池Bの自己放電量Q[A]に反比例するから、自己放電量Qが大きいほど短い。閾値Tsは、到達時間Tの正常値と異常値の境界値であり、到達時間Tが閾値Tsより長い場合、リチウムイオン二次電池B1〜B4は、正常と判断することが出来る。 Since the arrival time T is inversely proportional to the self-discharge amount Q [A] of the secondary battery B, the larger the self-discharge amount Q is, the shorter it is. The threshold value Ts is a boundary value between a normal value and an abnormal value of the arrival time T, and when the arrival time T is longer than the threshold value Ts, the lithium ion secondary batteries B1 to B4 can be determined to be normal.

管理装置50のCPU51は、到達時間T1〜T4が全て、閾値Tsより長い場合、以下の(3)式より、リチウムイオン二次電池B1〜B4の自己放電量Q1〜Q4を算出する(S70)。 When the arrival times T1 to T4 are all longer than the threshold value Ts, the CPU 51 of the management device 50 calculates the self-discharge amounts Q1 to Q4 of the lithium ion secondary batteries B1 to B4 from the following equation (3) (S70). ..

Q=ΔCab/T・・・・・・・(3)
ΔCabは、第1の計測点Paの残存容量Caと第2の計測点Pbの残存容量Cbの差であり、一定値である。
Q = ΔCab / T ... (3)
ΔCab is the difference between the remaining capacity Ca of the first measurement point Pa and the remaining capacity Cb of the second measurement point Pb, and is a constant value.

自己放電量Qは、上記の通り到達時間Tと反比例するため、図16に示すように、到達時間Tが短い程、多くなる。 Since the self-discharge amount Q is inversely proportional to the arrival time T as described above, as shown in FIG. 16, the shorter the arrival time T, the larger the self-discharge amount Q.

次に管理装置50のCPU51は、バッテリ20の電流Iより、バッテリ20への充電が開始されたか、判定を行う。具体的には、バッテリ20の電流値が、充電時に流れる電流値(数十A程度の第2所定値)以上であるか否かにより、判定する。 Next, the CPU 51 of the management device 50 determines from the current I of the battery 20 whether charging to the battery 20 has started. Specifically, it is determined based on whether or not the current value of the battery 20 is equal to or higher than the current value (second predetermined value of about several tens of A) flowing during charging.

駐車中の車両1に搭載されたバッテリ20に対して、外部充電器200が接続されて充電が開始された場合、バッテリ20に第2所定値以上の電流が流れるため、管理装置50のCPU51は、充電の開始を検出する(S80:YES)。 When the external charger 200 is connected to the battery 20 mounted on the parked vehicle 1 and charging is started, a current of a second predetermined value or more flows through the battery 20, so that the CPU 51 of the management device 50 is used. , Detects the start of charging (S80: YES).

管理装置50のCPU51は、充電開始を検出すると、各リチウムイオン二次電池B1〜B4の残存容量Cを均等化する均等化処理を実行する(S90)。 When the CPU 51 of the management device 50 detects the start of charging, it executes an equalization process for equalizing the remaining capacities C of the lithium ion secondary batteries B1 to B4 (S90).

具体的には、図16に示すように、自己放電量Q[A]が最も多いリチウムイオン二次電池B3を基準として、それ以外のリチウムイオン二次電池B1、B2、B4について、自己放電量Qの差分ΔQから、下記の(4)式より残存容量差ΔCqを求め、リチウムイオン二次電池B1〜B4の各均等化回路70により放電する。 Specifically, as shown in FIG. 16, the self-discharge amount of the other lithium ion secondary batteries B1, B2, and B4 is based on the lithium ion secondary battery B3 having the largest self-discharge amount Q [A]. The remaining capacity difference ΔCq is obtained from the difference ΔQ of Q from the following equation (4), and discharged by each equalization circuit 70 of the lithium ion secondary batteries B1 to B4.

ΔCq=ΔQ×W・・・・(4)
Wは、S10にて駐車を検出した時点から、S90で均等化処理を開始するまで経過時間(駐車時間)である。Wは、全リチウムイオン二次電池B1〜B4で等しい時間である。
ΔCq = ΔQ × W ... (4)
W is an elapsed time (parking time) from the time when parking is detected in S10 to the start of the equalization process in S90. W is the same time for all lithium ion secondary batteries B1 to B4.

本構成では、自己放電量Qの相違により、駐車期間中に拡大するリチウムイオン二次電池B1〜B4の残存容量差ΔCqを、充電開始時点で小さくすることが出来る。 In this configuration, due to the difference in the self-discharge amount Q, the residual capacity difference ΔCq of the lithium ion secondary batteries B1 to B4, which expands during the parking period, can be reduced at the start of charging.

そのため、充電中に、各リチウムイオン二次電池B1〜B4の電圧が均等に上昇することから、リチウムイオン二次電池B1〜B4が過充電領域まで充電されることを抑制できる。尚、均等化とは、リチウムイオン二次電池B1〜B4の残存容量Cの差を、S90の処理を行う前の状態と比べて、小さくすることである。 Therefore, since the voltage of each lithium ion secondary battery B1 to B4 rises evenly during charging, it is possible to prevent the lithium ion secondary batteries B1 to B4 from being charged to the overcharge region. The equalization means that the difference in the remaining capacities C of the lithium ion secondary batteries B1 to B4 is made smaller than that in the state before the treatment of S90.

上記では、外部充電器200が接続されて充電が開始された場合を例にとって説明したが、エンジンが駆動し、車両のオルタネータ150で充電が開始された場合も、同様の均等化処理(S90)が実行される。 In the above, the case where the external charger 200 is connected and the charging is started has been described as an example, but when the engine is driven and the charging is started by the alternator 150 of the vehicle, the same equalization process (S90) is performed. Is executed.

そのため、車両のオルタネータ150で充電が開始された場合も、充電中に、各リチウムイオン二次電池B1〜B4の電圧が均等に上昇することから、リチウムイオン二次電池B1〜B4が過充電領域まで充電されることを抑制できる。 Therefore, even when charging is started by the alternator 150 of the vehicle, the voltage of each lithium ion secondary battery B1 to B4 rises evenly during charging, so that the lithium ion secondary batteries B1 to B4 are in the overcharge region. It is possible to suppress charging up to.

また、管理装置50のCPU51は、リチウムイオン二次電池B1〜B4のうち、閾値Tsよりも、到達時間T1〜T4の短いものが1つでもあった場合(S60:NO)、外部に異常を報知する処理を行う(S100)。 Further, when the CPU 51 of the management device 50 has one of the lithium ion secondary batteries B1 to B4 whose arrival time T1 to T4 is shorter than the threshold value Ts (S60: NO), the CPU 51 causes an abnormality to the outside. Perform the notification process (S100).

これは、自己放電量Qが、通常より多く内部短絡の可能性が高い、と考えられるからである。尚、異常報知態様としては、警告ランプ80の点灯などを例示することが出来る。また、通信復帰後の車両ECU100への異常報知を例示することが出来る。 This is because it is considered that the self-discharge amount Q is larger than usual and the possibility of internal short circuit is high. As the abnormality notification mode, lighting of the warning lamp 80 and the like can be exemplified. Further, it is possible to exemplify the abnormality notification to the vehicle ECU 100 after the communication is restored.

図14に示す電池監視処理は、車両の駐車を検出する度に、実行することが好ましい。また、各リチウムイオン二次電池B1〜B4の自己放電量Q1〜Q4は、初回に算出すれば、以降は、そのデータをメモリ53に記憶して使用するとよい。 It is preferable that the battery monitoring process shown in FIG. 14 is executed every time the parking of the vehicle is detected. Further, if the self-discharge amounts Q1 to Q4 of the lithium ion secondary batteries B1 to B4 are calculated for the first time, the data may be stored in the memory 53 for use thereafter.

4.効果説明
各リチウムイオン二次電池B1〜B4が第1計測点Paの第1電圧Vaから第2計測点Pbの第2電圧Vbに変化するまでの到達時間T1〜T4は、各リチウムイオン二次電池B1〜B4の自己放電量Qと相関性がある。そのため、到達時間T1〜T4に基づいて、均等化処理を行うことで、自己放電のばらつきに起因する、リチウムイオン二次電池B1〜B4の残存容量差の発生を解消することが出来る。
4. Explanation of effect The arrival time T1 to T4 until each lithium ion secondary battery B1 to B4 changes from the first voltage Va at the first measurement point Pa to the second voltage Vb at the second measurement point Pb is each lithium ion secondary. There is a correlation with the self-discharge amount Q of the batteries B1 to B4. Therefore, by performing the equalization treatment based on the arrival times T1 to T4, it is possible to eliminate the generation of the residual capacity difference between the lithium ion secondary batteries B1 to B4 due to the variation in self-discharge.

しかも、第1計測点Paと第2計測点Pbを、劣化前後で相関特性が変化しない不変領域F2内の点としているため、劣化の有無によらず、到達時間Tと自己放電量Qの関係性は一定に保たれる。すなわち、自己放電量Qが同じであれば、劣化の有無によらず、到達時間Tは同じ時間になる。従って、劣化の有無によらず、到達時間Tから自己放電量Qを、精度よく検出することが可能であり、各リチウムイオン二次電池B1〜B4の残存容量Cを精度よく均等化できる。 Moreover, since the first measurement point Pa and the second measurement point Pb are points in the invariant region F2 in which the correlation characteristics do not change before and after deterioration, the relationship between the arrival time T and the self-discharge amount Q regardless of the presence or absence of deterioration. Gender is kept constant. That is, if the self-discharge amount Q is the same, the arrival time T is the same regardless of the presence or absence of deterioration. Therefore, the self-discharge amount Q can be accurately detected from the arrival time T regardless of the presence or absence of deterioration, and the remaining capacity C of each lithium ion secondary batteries B1 to B4 can be accurately equalized.

リン酸鉄系のリチウムイオン二次電池B1〜B4は、残存容量−OCVの相関特性において、残存容量Cに対してOCVが略一定のプラトー領域AL1、AL3を有している。プラトー領域AL1、AL3では、リチウムイオン二次電池のOCV差を検出することが難しく、OCV差から残存容量の差を検出して均等化する方法が適用できない、という課題がある。本構成では、プラトー領域AL1、AL3の端点など、電圧変化がある2つのポイントを計測点Pa、Pbとして、到達時間Tを計測することで、到達時間Tから自己放電Qによる残存容量差を検出することが可能であり、リチウムイオン二次電池B1〜B4の残存容量差の発生を解消することが出来る。 The iron phosphate-based lithium ion secondary batteries B1 to B4 have plateau regions AL1 and AL3 in which the OCV is substantially constant with respect to the residual capacity C in the correlation characteristic of the residual capacity −OCV. In the plateau regions AL1 and AL3, it is difficult to detect the OCV difference of the lithium ion secondary battery, and there is a problem that the method of detecting and equalizing the difference in the remaining capacity from the OCV difference cannot be applied. In this configuration, the arrival time T is measured by using two points with voltage changes such as the end points of the plateau regions AL1 and AL3 as measurement points Pa and Pb, and the difference in residual capacity due to the self-discharge Q is detected from the arrival time T. It is possible to eliminate the occurrence of the remaining capacity difference between the lithium ion secondary batteries B1 to B4.

本構成では、残存容量差の小さな状態で充電が出来るので、充電中に、一部のリチウムイオン二次電池B1〜B4の電圧が急上昇することを抑えることが出来る。従って、リチウムイオン二次電池B1〜B4が過充電領域に充電されることを抑制できる。 In this configuration, since charging can be performed with a small difference in remaining capacity, it is possible to suppress a sudden rise in the voltage of some of the lithium ion secondary batteries B1 to B4 during charging. Therefore, it is possible to prevent the lithium ion secondary batteries B1 to B4 from being charged in the overcharged region.

特に、外部充電器200は、リチウムイオン二次電池B1〜B4の電圧V1〜V4を監視する機能を持たない場合があり、そうした安価な外部充電器200が使用された場合でも、リチウムイオン二次電池B1〜B4が過充電領域に充電されることを抑制できる。 In particular, the external charger 200 may not have a function of monitoring the voltages V1 to V4 of the lithium ion secondary batteries B1 to B4, and even when such an inexpensive external charger 200 is used, the lithium ion secondary battery 200 is used. It is possible to prevent the batteries B1 to B4 from being charged in the overcharged area.

本構成では、リチウムイオン二次電池B1〜B4の内部短絡の有無を判断することが出来る。そのため、内部短絡を起こしているリチウムイオン二次電池Bの使用が継続されることを抑制できるので、安全性が高まる。 In this configuration, it is possible to determine the presence or absence of an internal short circuit of the lithium ion secondary batteries B1 to B4. Therefore, it is possible to suppress the continuation of the use of the lithium ion secondary battery B causing an internal short circuit, and thus the safety is enhanced.

本構成では、バッテリ20が、無電流又は無電流とみなせる状態である時に、到達時間T1〜T4を計測する。そのため、リチウムイオン二次電池B1〜B4の自己放電による到達時間T1〜T4を得ることが出来る。 In this configuration, the arrival times T1 to T4 are measured when the battery 20 is in a state where it can be regarded as no current or no current. Therefore, it is possible to obtain the arrival times T1 to T4 due to the self-discharge of the lithium ion secondary batteries B1 to B4.

従って、自己放電量Q1〜Q4を正確に検出することが出来るので、リチウムイオン二次電池B1〜B4の残存容量Cを精度よく均等化できる。また、リチウムイオン二次電池B1〜B4の内部短絡の有無を精度よく判定できる。 Therefore, since the self-discharge amounts Q1 to Q4 can be accurately detected, the remaining capacity C of the lithium ion secondary batteries B1 to B4 can be accurately equalized. Further, the presence or absence of an internal short circuit of the lithium ion secondary batteries B1 to B4 can be accurately determined.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described above and the drawings, and for example, the following embodiments are also included in the technical scope of the present invention.

(1)実施形態1では、蓄電素子の一例に、リン酸鉄系のリチウムイオン二次電池Bを例示した。蓄電素子は、残存容量−OCVの相関特性において、劣化前後で、相関特性が変化しない不変領域Fを有する特性の電池であればよく、リン酸鉄系以外のリチウムイオン二次電池でもよい。蓄電素子は、他の二次電池やキャパシタ等でもよい。 (1) In the first embodiment, an iron phosphate-based lithium ion secondary battery B is exemplified as an example of the power storage element. The power storage element may be a battery having an invariant region F in which the correlation characteristic does not change before and after deterioration in the correlation characteristic of the remaining capacity −OCV, and may be a lithium ion secondary battery other than the iron phosphate type. The power storage element may be another secondary battery, a capacitor, or the like.

また、バッテリ20の用途は、車両に限定されるものではなく、UPSや、太陽光発電システムの蓄電部などの他の用途でもよい。また、実施形態1では、車両ECU100との通信の状態から駐車を検出するようにしたが、エンジンの停止時間や、バッテリ20に流れる電流値から判断することも出来る。 Further, the use of the battery 20 is not limited to the vehicle, and may be other uses such as UPS and a power storage unit of a photovoltaic power generation system. Further, in the first embodiment, parking is detected from the state of communication with the vehicle ECU 100, but it can also be determined from the engine stop time and the current value flowing through the battery 20.

(2)実施形態1は、管理装置50と均等化回路70を、バッテリ20の内部に設けた構成を例示した。管理装置50と均等化回路70は、必ずしもバッテリ20の内部に設置されている必要はなく、例えば、車載されていれば、バッテリ20の外部に設けられていてもよい。すなわち、バッテリ20は、二次電池B1〜B4と二次電池B1〜B4の電圧や電流を計測するセンサ類だけの構成とし、バッテリ外に設けた管理装置50が、センサからの出力をモニタにて、二次電池B1〜B4を均等化する処理や異常の有無を判断する処理を実行するようにしてもよい。 (2) The first embodiment illustrates a configuration in which the management device 50 and the equalization circuit 70 are provided inside the battery 20. The management device 50 and the equalization circuit 70 do not necessarily have to be installed inside the battery 20, and may be installed outside the battery 20 as long as they are mounted on the vehicle. That is, the battery 20 is composed of only the sensors that measure the voltage and current of the secondary batteries B1 to B4 and the secondary batteries B1 to B4, and the management device 50 provided outside the battery monitors the output from the sensors. Then, a process of equalizing the secondary batteries B1 to B4 and a process of determining the presence or absence of an abnormality may be executed.

(3)実施形態1では、リチウムイオン二次電池B1〜B4の残存容量Cを均等化する均等化処理(S90)を充電開始時に行った。均等化処理の実行タイミングは、充電開始時に限定されるものではなく、到達時間Tの計測直後など、充電開始前に行ってもよい。また、充電中に行ってもよい。 (3) In the first embodiment, the equalization treatment (S90) for equalizing the remaining capacity C of the lithium ion secondary batteries B1 to B4 was performed at the start of charging. The execution timing of the equalization process is not limited to the start of charging, and may be performed before the start of charging, such as immediately after the measurement of the arrival time T. It may also be performed during charging.

(4)実施形態1では、到達時間Tに基づいて、蓄電素子の内部状態を推定する処理の一例として、蓄電素子の内部短絡の有無を判定した。これ以外にも、到達時間Tに基づいて、蓄電素子の自己放電量Qのバラツキ(内部状態の一例)を、推定してもよい。 (4) In the first embodiment, the presence or absence of an internal short circuit of the power storage element is determined as an example of the process of estimating the internal state of the power storage element based on the arrival time T. In addition to this, the variation in the self-discharge amount Q of the power storage element (an example of the internal state) may be estimated based on the arrival time T.

(5)実施形態1では、各リチウムイオン二次電池B1〜B4について、自己放電量Qの差分ΔQから求めた残存容量差ΔCqを、均等化回路70により放電することで、残存容量Cを均等化した。残存容量Cを均等化するにあたり、各リチウムイオン二次電池B1〜B4の放電量を、如何様に決定するかは、実施形態1の例に限定されない。 (5) In the first embodiment, for each of the lithium ion secondary batteries B1 to B4, the remaining capacity difference ΔCq obtained from the difference ΔQ of the self-discharge amount Q is discharged by the equalization circuit 70 to equalize the remaining capacity C. It became. How to determine the discharge amount of each lithium ion secondary battery B1 to B4 in equalizing the remaining capacity C is not limited to the example of the first embodiment.

例えば、図15の場合、到達時間Tが最短のリチウムイオン二次電池B3の放電量を基準とし、他のリチウムイオン二次電池B1、B2、B4の放電量は、最短の到達時間T3に対する到達時間T1、T2、T4の比率で定めるなど、到達時間Tに基づくものであれば、どのような決め方でもよい。 For example, in the case of FIG. 15, the discharge amount of the lithium ion secondary battery B3 having the shortest arrival time T is used as a reference, and the discharge amounts of the other lithium ion secondary batteries B1, B2, and B4 reach the shortest arrival time T3. Any method may be used as long as it is based on the arrival time T, such as being determined by the ratio of the times T1, T2, and T4.

(6)実施形態1では、バッテリ20が、無電流又は無電流とみなせる状態である時に、到達時間Tを計測した。これ以外にも、充電中や放電中に、到達時間Tを計測してもよい。充電中や放電中に計測する場合、低レートで、電流が一定であることが好ましい。 (6) In the first embodiment, the arrival time T is measured when the battery 20 is in a state where it can be regarded as no current or no current. In addition to this, the arrival time T may be measured during charging or discharging. When measuring during charging or discharging, it is preferable that the current is constant at a low rate.

また、実施形態1では、バッテリ20が無電流又は無電流とみさせる状態で、到達時間Tを計測した。リチウムイオン二次電池Bに、所定の電流が流れている場合、残存容量−電圧の相関特性La、Lbは、図17に示すように、残存容量−OCVの相関特性L0に対して、内部抵抗による電圧変化分の違いがあるものの、グラフの形状自体は、同じである。 Further, in the first embodiment, the arrival time T is measured in a state where the battery 20 is regarded as having no current or no current. When a predetermined current is flowing through the lithium ion secondary battery B, the residual capacity-voltage correlation characteristics La and Lb have internal resistance with respect to the residual capacity-OCV correlation characteristic L0, as shown in FIG. The shape of the graph itself is the same, although there is a difference in the amount of voltage change due to.

従って、所定の電流が流れている時の、残存容量−電圧の相関特性La、Lbも、残存容量−OCVの相関特性L0と同様に、劣化前後で相関特性が変化しない不変領域Fが存在する。そのため、所定の電流(無電流とみなすことの出来ない電流)が流れている状態で、到達時間Tを計測する場合には、残存容量−OCVの相関特性L0に代えて、その電流値に対する、残存容量−電圧の相関特性La、Lbを用いることが好ましい。また、数十mA程度など、微小な電流が流れている場合も、同様である。 Therefore, the residual capacity-voltage correlation characteristics La and Lb also have an invariant region F in which the correlation characteristics do not change before and after deterioration, similar to the residual capacity-OCV correlation characteristic L0, when a predetermined current is flowing. .. Therefore, when the arrival time T is measured in a state where a predetermined current (current that cannot be regarded as no current) is flowing, instead of the correlation characteristic L0 of the residual capacity −OCV, the current value is changed. It is preferable to use the residual capacity-voltage correlation characteristics La and Lb. The same applies when a minute current such as several tens of mA is flowing.

また、電流が流れている状態で到達時間Tを計測した場合、自己放電のみの場合に比べて、到達時間Tは短くなる。しかし、電流が流れている状態でも、自己放電の相違により、到達時間Tに差が出来ることは同じである。そのため、到達時間Tの差より、自己放電量の差を検出することが可能である。尚、図17に示す「La」は、充電中の残存容量−電圧の相関特性を示し、「Lb」は、放電中の残存容量−電圧の相関特性を示している。 Further, when the arrival time T is measured while the current is flowing, the arrival time T is shorter than that in the case of only self-discharge. However, even in a state where a current is flowing, it is the same that the arrival time T can be different due to the difference in self-discharge. Therefore, it is possible to detect the difference in the amount of self-discharge from the difference in the arrival time T. In addition, "La" shown in FIG. 17 shows the correlation characteristic of the residual capacity-voltage during charging, and "Lb" shows the correlation characteristic of the residual capacity-voltage during discharging.

(7)実施形態1、2で開示した技術は、蓄電素子の残存容量を均等化する均等化プログラム、蓄電素子の内部状態を推定する推定プログラム、及びそれらプログラムを記録した記録媒体等の種々の態様で実現することができる。 (7) The techniques disclosed in the first and second embodiments include an equalization program for equalizing the remaining capacity of the power storage element, an estimation program for estimating the internal state of the power storage element, and a recording medium on which these programs are recorded. It can be realized by the embodiment.

直列に接続された複数の蓄電素子の残存容量を均等化する均等化プログラムであって、複数の前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、コンピュータに、複数の前記蓄電素子について前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測する処理(S50)と、計測した前記到達時間に基づいて複数の前記蓄電素子の残存容量を均等化する均等化処理(S90)とを実行させる、均等化プログラム。 It is an equalization program that equalizes the remaining capacity of a plurality of storage elements connected in series, and the plurality of storage elements have an invariant region in which the correlation characteristic does not change before and after deterioration in the residual capacity-voltage correlation characteristic. A process (S50) of measuring the arrival time of a plurality of the power storage elements from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region. An equalization program for executing an equalization process (S90) for equalizing the remaining capacities of a plurality of the power storage elements based on the measured arrival time.

蓄電素子の内部状態を推定する推定プログラムであって、前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、コンピュータに、前記蓄電素子について前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測する処理(S50)と、計測した前記到達時間に基づいて、前記蓄電素子の内部状態を推定する推定処理(S60)とを実行させる、推定プログラム。 An estimation program for estimating the internal state of a power storage element, wherein the power storage element has an invariant region in which the correlation characteristic does not change before and after deterioration in the residual capacity-voltage correlation characteristic. Based on the process (S50) of measuring the arrival time from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region and the measured arrival time, the power storage element An estimation program that executes an estimation process (S60) that estimates the internal state.

20...バッテリ(本発明の「蓄電システム」に相当する)
22P、22N...正極側端子部、負極側端子部
30...組電池
41...電流センサ
45...電圧検出部
50...管理装置
70...均等化回路
100...車両ECU
AL1、AL3...プラトー領域
B1〜B4...リチウムイオン二次電池
F1〜F3...不変領域
Pa...第1の計測点
Pb...第2の計測点
T...到達時間
20 ... Battery (corresponding to the "storage system" of the present invention)
22P, 22N ... Positive electrode side terminal part, Negative electrode side terminal part 30 ... Assembly battery 41 ... Current sensor 45 ... Voltage detection unit 50 ... Management device 70 ... Equalization circuit 100 .. .Vehicle ECU
AL1, AL3 ... Plateau area B1 to B4 ... Lithium ion secondary battery F1 to F3 ... Invariant area Pa ... First measurement point Pb ... Second measurement point T ... Reached time

Claims (9)

直列に接続された複数の蓄電素子の管理装置であって、
複数の前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、
複数の前記蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、
計測した前記到達時間に基づいて、複数の前記蓄電素子の残存容量を均等化する均等化処理を行う、管理装置。
It is a management device for multiple power storage elements connected in series.
The plurality of storage elements have an invariant region in which the correlation characteristic of the residual capacity-voltage does not change before and after deterioration.
For the plurality of the storage elements, the arrival time until the change from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured.
A management device that performs equalization processing for equalizing the remaining capacities of a plurality of the power storage elements based on the measured arrival time.
請求項1に記載の管理装置であって、
前記均等化処理を、充電開始前又は充電開始時に行う、管理装置。
The management device according to claim 1.
A management device that performs the equalization process before or at the start of charging.
直列に接続された複数の蓄電素子の管理装置であって、
複数の前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、
複数の前記蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、
計測した前記到達時間に基づいて、複数の前記蓄電素子の内部状態を推定する、管理装置。
It is a management device for multiple power storage elements connected in series.
The plurality of storage elements have an invariant region in which the correlation characteristic of the residual capacity-voltage does not change before and after deterioration.
For the plurality of the storage elements, the arrival time until the change from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured.
A management device that estimates the internal state of a plurality of the power storage elements based on the measured arrival time.
請求項3に記載の管理装置であって、
前記到達時間が閾値より短い場合、前記蓄電素子は内部短絡による異常と判断する、管理装置。
The management device according to claim 3.
A management device that determines that the power storage element is abnormal due to an internal short circuit when the arrival time is shorter than the threshold value.
請求項1〜請求項4のいずれか一項に記載の管理装置であって、
複数の前記蓄電素子が、無電流又は無電流とみなせる場合に、前記蓄電素子が前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧まで放電する時の到達時間を計測する、管理装置。
The management device according to any one of claims 1 to 4.
Reaching time when the storage element discharges from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region when the plurality of storage elements can be regarded as no current or no current. A management device that measures.
請求項1〜請求項5のいずれか一項に記載の管理装置であって、
前記蓄電素子は、正極材料をリン酸鉄リチウム、負極材料をグラファイトとしたリチウムイオン二次電池である、管理装置。
The management device according to any one of claims 1 to 5.
The power storage element is a management device, which is a lithium ion secondary battery in which the positive electrode material is lithium iron phosphate and the negative electrode material is graphite.
蓄電システムであって、
直列に接続された複数の蓄電素子と、
請求項1〜請求項6のいずれか一項に記載の管理装置と、を含む、蓄電システム。
It ’s a power storage system.
With multiple power storage elements connected in series,
A power storage system including the management device according to any one of claims 1 to 6.
直列に接続された複数の蓄電素子の残存容量を均等化する方法であって、
複数の前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、
前記複数の蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、
計測した前記到達時間に基づいて、複数の前記蓄電素子の残存容量を均等化する方法。
It is a method of equalizing the remaining capacity of a plurality of power storage elements connected in series.
The plurality of storage elements have an invariant region in which the correlation characteristic of the residual capacity-voltage does not change before and after deterioration.
For the plurality of power storage elements, the arrival time until the change from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured.
A method of equalizing the remaining capacities of a plurality of the power storage elements based on the measured arrival time.
蓄電素子の内部状態を推定する方法であって、
前記蓄電素子は、残存容量−電圧の相関特性において、劣化前後で相関特性が変化しない不変領域を有し、
前記蓄電素子について、前記不変領域内の第1計測点の第1電圧から第2計測点の第2電圧に変化するまでの到達時間を計測し、
計測した前記到達時間に基づいて、前記蓄電素子の内部状態を推定する方法。
It is a method of estimating the internal state of the power storage element.
The power storage element has an invariant region in which the correlation characteristic of residual capacity-voltage does not change before and after deterioration.
With respect to the power storage element, the arrival time from the first voltage of the first measurement point to the second voltage of the second measurement point in the invariant region is measured.
A method of estimating the internal state of the power storage element based on the measured arrival time.
JP2017218968A 2017-11-14 2017-11-14 Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element Active JP6969307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017218968A JP6969307B2 (en) 2017-11-14 2017-11-14 Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017218968A JP6969307B2 (en) 2017-11-14 2017-11-14 Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element

Publications (2)

Publication Number Publication Date
JP2019092276A JP2019092276A (en) 2019-06-13
JP6969307B2 true JP6969307B2 (en) 2021-11-24

Family

ID=66836848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017218968A Active JP6969307B2 (en) 2017-11-14 2017-11-14 Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element

Country Status (1)

Country Link
JP (1) JP6969307B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224901A (en) * 2001-10-30 2003-08-08 Yamaha Motor Co Ltd Method and apparatus for managing battery capacity, capacity managing apparatus of battery for vehicle power
JP2010057249A (en) * 2008-08-27 2010-03-11 Canon Inc Charging device and charging control method
JP5482056B2 (en) * 2009-09-28 2014-04-23 日産自動車株式会社 Battery pack capacity adjustment device
EP2527855B1 (en) * 2010-01-19 2019-03-06 GS Yuasa International Ltd. Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
KR101256079B1 (en) * 2010-12-28 2013-04-19 삼성에스디아이 주식회사 Balancing Method and Balancing System of Battery Pack
CN103001277B (en) * 2011-09-09 2016-09-21 株式会社杰士汤浅国际 Condition managing device, the equalization method of charge storage element
JP6714838B2 (en) * 2015-06-17 2020-07-01 株式会社Gsユアサ State estimation device and state estimation method
JP6573120B2 (en) * 2016-01-26 2019-09-11 株式会社Gsユアサ State estimation device, power storage element module, vehicle, and state estimation method
WO2017130258A1 (en) * 2016-01-28 2017-08-03 パナソニックIpマネジメント株式会社 Management device and power storage system

Also Published As

Publication number Publication date
JP2019092276A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2017122758A1 (en) Device for managing storage element, storage element module, vehicle, and method for managing storage element
JP5439126B2 (en) Status detector for power supply
US10800261B2 (en) Battery state estimation apparatus, assembled battery, energy storage system, and methods of using the same
JP6891421B2 (en) Power storage device for starting the engine, control method of the power storage device for starting the engine, vehicle
JPWO2018181489A1 (en) Estimation device, power storage device, estimation method
US10838013B2 (en) Management apparatus and power storage system
JP6759668B2 (en) Power storage element management device, power storage device, and power storage system
US10739409B2 (en) Managing apparatus for electrochemical element
JP6988386B2 (en) Power storage element management device and management method
JP6171128B2 (en) Battery control system, vehicle control system
JP6930572B2 (en) Power storage element management device, power storage element module, vehicle and power storage element management method
JP2019134628A (en) Management device, power storage device, and method of managing power storage element
JP2018197708A (en) Failure determination device of current measuring circuit
JP7099224B2 (en) Power storage element management device and power storage device
JP6969307B2 (en) Management device, power storage system, method of equalizing the remaining capacity of the power storage element, method of estimating the internal state of the power storage element
WO2022196362A1 (en) Power storage device and control method for power storage device
US11581589B2 (en) Management device, energy storage apparatus, cause analysis method, engine-driven vehicle, and electric vehicle
WO2020085097A1 (en) Battery control device
WO2022259766A1 (en) Power storage device and abnormal discharge detection method for power storage device
KR102633760B1 (en) Method and apparatus for calculating the relative state of charge of battery
WO2021039355A1 (en) Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage element
JP7008265B2 (en) Management method of power storage device and power storage element
JP2022138443A (en) Power storage device, and current-measuring method
JP2023025388A (en) Power storage device and method for managing power storage device
JP2021072672A (en) Battery control device and battery control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150