JP2020165269A - Slope protection layer, and slope protection method - Google Patents

Slope protection layer, and slope protection method Download PDF

Info

Publication number
JP2020165269A
JP2020165269A JP2019069481A JP2019069481A JP2020165269A JP 2020165269 A JP2020165269 A JP 2020165269A JP 2019069481 A JP2019069481 A JP 2019069481A JP 2019069481 A JP2019069481 A JP 2019069481A JP 2020165269 A JP2020165269 A JP 2020165269A
Authority
JP
Japan
Prior art keywords
crushed
slope
shells
soil
scallop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019069481A
Other languages
Japanese (ja)
Other versions
JP7175827B2 (en
Inventor
正美 遠藤
Masami Endo
正美 遠藤
惠梨 谷口
Eri Taniguchi
惠梨 谷口
孝道 中村
Takamichi Nakamura
孝道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2019069481A priority Critical patent/JP7175827B2/en
Publication of JP2020165269A publication Critical patent/JP2020165269A/en
Application granted granted Critical
Publication of JP7175827B2 publication Critical patent/JP7175827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

To provide a slope protection layer for protecting a slope that can use waste shells to realize resource saving and cost reduction, and a slope protection method.SOLUTION: Disclosed a slope protection layer is formed by supplying unbaked crushed shells and microorganisms to a slope 2. A method of slope protection comprises supplying unbaked crushed shells and microorganisms to a slope 2. Scallop shells are crushed and used as the crushed shells.SELECTED DRAWING: Figure 1

Description

本発明は、貝殻と微生物の代謝作用(微生物反応)とを利用して形成される法面保護層及び、法面保護方法に関する。 The present invention relates to a slope protection layer formed by utilizing a shell and a microbial metabolism (microbial reaction), and a slope protection method.

従来、法面保護方法として、法面保護マットを法面に固定したり(特許文献1参照)、法面保護として石詰籠を積み上げたり(特許文献2参照)、法面保護として壁材を固定したり(特許文献3参照)することが知られている。 Conventionally, as a slope protection method, a slope protection mat is fixed to a slope (see Patent Document 1), stone baskets are piled up as a slope protection (see Patent Document 2), and a wall material is used as a slope protection. It is known to be fixed (see Patent Document 3).

特開2008−208604号公報Japanese Unexamined Patent Publication No. 2008-208604 特開2015−45133号公報JP-A-2015-45133 特開2012−184605号公報Japanese Unexamined Patent Publication No. 2012-184605

上述した従来の法面保護、及び、法面保護方法では、材料費及び施工費のコストが高くなってしまい、省資源化及び低コスト化を図ることができないという課題があった。
本発明は、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる法面保護をするための法面保護層、及び、法面保護方法を提供することを目的とする。
In the conventional slope protection and slope protection methods described above, the material cost and the construction cost are high, and there is a problem that resource saving and cost reduction cannot be achieved.
An object of the present invention is to provide a slope protection layer and a slope protection method for providing slope protection capable of realizing resource saving and cost reduction by utilizing shells as waste.

本発明に係る法面保護層によれば、法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたことを特徴とするので、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる。
また、本発明に係る法面保護方法によれば、法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給したことを特徴とするので、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる。
また、貝殻粉砕物として、ホタテ貝殻を粉砕したものを用いたことを特徴とするので、廃棄物となるホタテ貝殻を利用できて省資源化及び低コスト化を実現できる。
また、法面が盛土により形成された法面であり、当該盛土は、貝殻粉砕物と微生物とが供給されて形成された貝殻粉砕物固化層と、土砂層とが、交互に積層されて構築されたことを特徴とするので、法面に形成された法面保護層と複数の貝殻粉砕物固化層とが繋がった構成となるため、透水性及び耐水性に優れて水捌けの良い盛土となり、崩落防止効果に優れた盛土造成地を構築できるようになる。
According to the slope protection layer according to the present invention, since it is characterized in that it is formed by supplying crushed shells obtained by crushing unbaked shells and microorganisms onto the slope, shells that are wastes are used. It is possible to realize resource saving and cost reduction.
Further, according to the slope protection method according to the present invention, since the crushed shells obtained by crushing unburned shells and microorganisms are supplied to the slope, the shells as waste can be used. It is possible to realize resource saving and cost reduction.
Further, since the crushed scallop shell is used as the crushed shell, the scallop shell as a waste can be used, and resource saving and cost reduction can be realized.
Further, the slope is a slope formed by embankment, and the embankment is constructed by alternately laminating crushed shells solidified layers formed by supplying crushed shells and microorganisms and earth and sand layers. Because it is characterized by the fact that the slope protection layer formed on the slope and a plurality of crushed shell solidified layers are connected, the embankment has excellent water permeability and water resistance and is well drained. It will be possible to construct an embankment site with excellent collapse prevention effect.

法面保護方法の手順を示す断面図(実施形態1)。FIG. 6 is a cross-sectional view showing the procedure of the slope protection method (Embodiment 1). 盛土造成地を示す断面図(実施形態3)。FIG. 3 is a cross-sectional view showing an embankment site (Embodiment 3). 実験1に用いた各試験体の成分比を示す図。The figure which shows the component ratio of each test piece used in Experiment 1. 実験1の実験結果を示す数値表。Numerical table showing the experimental results of Experiment 1. 実験1の実験結果を示すグラフ。The graph which shows the experimental result of Experiment 1. 実験2に用いた各試験体の成分比を示す図。The figure which shows the component ratio of each test piece used in Experiment 2. 実験2の実験結果を示すグラフ。The graph which shows the experimental result of Experiment 2. 実験2の実験結果を示す数値表及びグラフ。Numerical table and graph showing the experimental results of Experiment 2.

実施形態1
図1に示すように、実施形態1に係る法面保護層1は、法面2に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたものである。
また、当該法面保護層1を形成する実施形態1に係る法面保護方法は、法面2に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して法面保護層1を形成するようにした。
Embodiment 1
As shown in FIG. 1, the slope protection layer 1 according to the first embodiment is formed by supplying a crushed shell product obtained by crushing an unfired shell and a microorganism to the slope 2.
Further, in the slope protection method according to the first embodiment for forming the slope protection layer 1, the slope protection layer 1 is provided by supplying crushed shells obtained by crushing unfired shells and microorganisms to the slope 2. I tried to form it.

尚、法面とは、切り土や盛り土によってできる人工的傾斜面、又は、自然傾斜面をいう。
また、貝殻粉砕物とは、貝殻をほぼ等しい大きさに砕いて(割って)形成された欠片、貝殻を粒径の大きい粗粒状に砕いて形成された粗粒体、貝殻を粉状に砕いて形成された粉体等を言う。
The slope means an artificial slope formed by cutting or embankment, or a natural slope.
In addition, crushed shells are fragments formed by crushing (splitting) shells to almost the same size, coarse particles formed by crushing shells into coarse particles with a large particle size, and crushing shells into powder. Refers to the powder and the like formed in the above.

未焼成の貝殻は、約95質量%の無機成分と5質量%程度の有機成分とからなる無機−有機複合体であり、無機成分は炭酸カルシウム、有機成分はコンキオリンとよばれるタンパク質とキチンから構成される。
そして、未焼成の貝殻の構造は、板状の炭酸カルシウム層間にバインダーとして有機質シートが存在し、炭酸カルシウム層と有機質シートとが結合した積層構造となっている。
The unbaked shell is an inorganic-organic complex composed of about 95% by mass of an inorganic component and about 5% by mass of an organic component. The inorganic component is calcium carbonate, and the organic component is composed of a protein called conchiolin and chitin. Will be done.
The structure of the unfired shell is such that an organic sheet exists as a binder between the plate-shaped calcium carbonate layers, and the calcium carbonate layer and the organic sheet are bonded to each other.

従って、法面の土壌に、未焼成の貝殻粉砕物と微生物とを供給することにより、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化層が形成されると考えられる。
さらに、微生物の代謝作用により生成される二酸化炭素と、土壌中に存在するか、あるいは、土壌に供給されたカルシウムイオンとが反応(鉱物化反応)して、土粒子間に析出される炭酸塩により、土壌が固化すると考えられる。
即ち、土壌に、未焼成の貝殻粉砕物と微生物とを供給した場合、貝殻粉砕物の固化と土壌の固化との相乗効果によって、法面崩落防止効果の高い法面保護層1が形成されると考えられる。
Therefore, by supplying the unburned crushed shells and microorganisms to the slope soil, carbon dioxide (carbon dioxide ions) generated by the metabolic action of the microorganisms and calcium carbonate in the unburned crushed shells other than Calcium carbonate is deposited between the particles of the crushed shell by the mineralization reaction that reacts with calcium ions, the bond between the particles of the crushed shell (calcium carbonate layer) becomes stronger, and the crushed shells are bonded to each other. It is considered that a solidified layer of crushed shells is formed.
Furthermore, carbon dioxide produced by the metabolic action of microorganisms reacts with calcium ions present in the soil or supplied to the soil (mineralization reaction), and carbonates precipitated between soil particles. It is thought that the soil will solidify.
That is, when unburned crushed shells and microorganisms are supplied to the soil, the slope protection layer 1 having a high slope collapse prevention effect is formed by the synergistic effect of the solidification of the crushed shells and the solidification of the soil. it is conceivable that.

具体的には、図1(a),(b)に示すステップを経て、法面保護層1を形成するようにすればよい。
(1)混合材敷均しステップ
図1(a)に示すように、未焼成のホタテ貝殻粉砕物と酵母液とを混合して作製された混合材3を法面2に敷き均す。
尚、混合材3は、プラント、現場等において、ホタテ貝殻粉砕物と酵母液とを混ぜ合わせて作製すればよい。
また、酵母液は、例えば、イースト菌(微生物)とグルコース(当該微生物によって代謝される栄養源)とを純水に溶かして作製すればよい。
また、ホタテ貝殻粉砕物は、後述する実験結果からもわかるように、法面の土壌の土粒子の大きさに対応した大きさのホタテ貝殻粉砕物、好ましくは、法面の土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物を用いることが好ましい。
具体的には、法面の土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することが好ましい。
例えば、法面の土壌が赤土等の粘土質の土壌である場合、当該粘土質の土壌に粉状のホタテ貝殻粉砕物と微生物とを供給することが好ましい。
(2)転圧ステップ
図1(b)に示すように、法面2に敷き均した混合材3を図外の転圧機械で転圧することにより、法面保護層1を形成する。
従って、ホタテ貝殻粉砕物の固化と法面2の土壌の固化との相乗効果によって、法面崩落防止効果の高い法面保護層1が形成される。
Specifically, the slope protection layer 1 may be formed through the steps shown in FIGS. 1 (a) and 1 (b).
(1) Mixing material leveling step As shown in FIG. 1A, a mixed material 3 prepared by mixing an unfired scallop shell crushed product and a yeast solution is spread on a slope 2.
The mixed material 3 may be produced by mixing a scallop shell crushed product and a yeast solution at a plant, a site, or the like.
Further, the yeast solution may be prepared, for example, by dissolving yeast (microorganism) and glucose (nutrient source metabolized by the microorganism) in pure water.
Further, as can be seen from the experimental results described later, the scallop shell crushed product is a scallop shell crushed product having a size corresponding to the size of the soil particles of the slope soil, preferably the soil particles of the slope soil. It is preferable to use a crushed scallop shell having a size equal to or less than the particle size.
Specifically, it is preferable to supply the soil with scallop shell crushed material having a size equal to or smaller than the particle size of the soil particles of the soil on the slope and microorganisms.
For example, when the slope soil is clay soil such as red soil, it is preferable to supply powdered scallop shell crushed products and microorganisms to the clay soil.
(2) Rolling Step As shown in FIG. 1 (b), the slope protection layer 1 is formed by rolling the mixed material 3 spread on the slope 2 with a rolling machine (not shown).
Therefore, the slope protection layer 1 having a high slope collapse prevention effect is formed by the synergistic effect of the solidification of the scallop shell crushed material and the solidification of the soil on the slope 2.

実施形態1により形成された法面保護層1は、廃棄物となるホタテ貝殻を利用して形成されるため、省資源化及び低コスト化を実現できる。即ち、廃棄物となっていた未焼成のホタテ貝殻の資源化が図られるため経済的である。また、未焼成のまま使用するので、焼成、洗浄等に係る費用が発生せず、経済的である。 Since the slope protection layer 1 formed according to the first embodiment is formed by using scallop shells which are wastes, resource saving and cost reduction can be realized. That is, it is economical because unfired scallop shells, which have been waste, can be recycled. Moreover, since it is used as it is unfired, there is no cost related to firing, cleaning, etc., which is economical.

実施形態1により形成された法面保護層1は、後述する実験結果からわかるように、ホタテ貝殻粉砕物同士が結合されて固化し、かつ、法面2の土壌とより強固に結合された支持強度の高いホタテ貝殻粉砕物固化層となるとともに、法面2の土壌の支持強度も高くなるため、法面崩落防止効果の高い法面保護層1となる。
また、法面保護層1を形成するホタテ貝殻粉砕物固化層は、ホタテ貝殻粉砕物同士間の隙間が多い多孔質体となり、透水性、及び、耐水性に優れたものとなるので、法面崩落防止効果の高い法面保護層1となる。
As can be seen from the experimental results described later, the slope protection layer 1 formed in the first embodiment is a support in which scallop shell crushed products are bonded and solidified, and are more firmly bonded to the soil on the slope 2. It becomes a scallop shell crushed solidified layer with high strength, and also has a high supporting strength of the soil on the slope 2, so that it becomes a slope protection layer 1 having a high effect of preventing slope collapse.
Further, the solidified layer of scallop shell crushed material forming the slope protection layer 1 is a porous body having many gaps between the scallop shell crushed materials, and has excellent water permeability and water resistance. It becomes a slope protection layer 1 having a high collapse prevention effect.

実施形態1に係る法面保護方法によれば、ホタテ貝殻粉砕物同士が結合されて固化し、かつ、法面2の土壌とより強固に結合された支持強度の高いホタテ貝殻粉砕物固化層となるとともに、法面2の土壌の支持強度も高くなるため、法面崩落防止効果の高い法面保護層1を形成できるようになる。 According to the slope protection method according to the first embodiment, the scallop shell crushed material is bonded to each other and solidified, and the scallop shell crushed material solidified layer having a high supporting strength is more firmly bonded to the soil on the slope 2. At the same time, the supporting strength of the soil on the slope 2 is also increased, so that the slope protective layer 1 having a high effect of preventing slope collapse can be formed.

実施形態2
実施形態1では、ホタテ貝殻粉砕物と酵母液とを混合して作製された混合材3を法面2に敷き均すようにしたが、ホタテ貝殻粉砕物と酵母液と土砂とを混合して作製された混合材を法面2に敷き均すようにしてもよい。
土砂としては、例えば、後述する実験で用いたような、山砂や赤土等を用いればよい。
Embodiment 2
In the first embodiment, the mixing material 3 prepared by mixing the scallop shell crushed product and the yeast liquid was spread on the slope 2, but the scallop shell crushed product, the yeast liquid and the earth and sand were mixed. The prepared mixed material may be spread evenly on the slope 2.
As the earth and sand, for example, mountain sand, red earth, or the like used in the experiment described later may be used.

実施形態2によれば、土砂を混合させたことにより、後述する実験結果からわかるように、ホタテ貝殻粉砕物と土砂とがより強固に結合された支持強度の高いホタテ貝殻粉砕物固化層を有し、透水性、及び、耐水性に優れた法面崩落防止効果の高い法面保護層1となる。 According to the second embodiment, by mixing the earth and sand, as can be seen from the experimental results described later, there is a solidified layer of the scallop shell crushed material having a high supporting strength in which the scallop shell crushed material and the earth and sand are more firmly bonded. As a result, the slope protection layer 1 has excellent water permeability and water resistance and is highly effective in preventing slope collapse.

実施形態3
図2に示すように、法面2が盛土10により形成される法面2である場合には、当該盛土10を、ホタテ貝殻粉砕物と微生物とが供給されて形成された貝殻粉砕物固化層4、又は、ホタテ貝殻粉砕物と微生物と土砂とが供給されて形成された貝殻粉砕物固化層4と、土砂層5とを、交互に積層して構築すればよい。
そして、このように構築された盛土10の法面2に、実施形態1又は実施形態2で説明した法面保護層1を形成する。
実施形態3に係る方法によれば、盛土10を、貝殻粉砕物固化層4と、土砂層5と、を交互に積層して構築したので、当該盛土10の法面2に形成された法面保護層1と当該盛土10の複数の貝殻粉砕物固化層4,4…とが繋がった構成となるため、透水性及び耐水性に優れて水捌けの良い盛土10となり、崩落防止効果に優れた盛土造成地を構築できる。
Embodiment 3
As shown in FIG. 2, when the slope 2 is a slope 2 formed by the embankment 10, the crushed shell solidified layer formed by supplying the crushed scallop shell and microorganisms to the embankment 10. 4. Alternatively, the crushed scallop solidified layer 4 formed by supplying the crushed scallop shell, the microorganism and the earth and sand, and the earth and sand layer 5 may be alternately laminated and constructed.
Then, the slope protection layer 1 described in the first embodiment or the second embodiment is formed on the slope 2 of the embankment 10 constructed in this way.
According to the method according to the third embodiment, since the embankment 10 was constructed by alternately laminating the crushed shell solidification layer 4 and the earth and sand layer 5, the slope formed on the slope 2 of the embankment 10 was formed. Since the protective layer 1 and the plurality of crushed shell solidified layers 4, 4 ... Of the embankment 10 are connected to each other, the embankment 10 has excellent water permeability and water resistance and good drainage, and the embankment has an excellent collapse prevention effect. You can build an embankment.

尚、微生物としてイースト菌を例示したが、その他の微生物を用いてもよい。
また、微生物によって代謝される栄養源としてグルコースを例示したが、その他の栄養源を用いてもよい。
Although yeast has been exemplified as a microorganism, other microorganisms may be used.
Moreover, although glucose was exemplified as a nutrient source metabolized by microorganisms, other nutrient sources may be used.

また、ホタテ貝殻粉砕物が、水分を含んだ状態のものであれば、水分を供給しなくてもよい。
また、法面2の土壌が、水分、栄養分等を含む場合、未焼成のホタテ貝殻粉砕物と微生物とだけを土壌に供給するようにしてもよい。
Further, as long as the scallop shell crushed product contains water, it is not necessary to supply water.
Further, when the soil on the slope 2 contains water, nutrients and the like, only unbaked scallop shell crushed products and microorganisms may be supplied to the soil.

また、上述したように、法面2に、未焼成のホタテ貝殻粉砕物と微生物と当該微生物によって代謝されるグルコース等の栄養源とを供給することが好ましいが、必ずしも栄養源を供給しなくても構わない。例えば、培養して活性化させた微生物と未焼成の貝殻粉砕物とを供給するだけでもよい。 Further, as described above, it is preferable to supply the slope 2 with an unbaked scallop shell crushed product, a microorganism, and a nutrient source such as glucose metabolized by the microorganism, but the nutrient source is not always supplied. It doesn't matter. For example, it may be sufficient to simply supply the cultured and activated microorganisms and the unbaked crushed shells.

また、法面2に、カルシウムイオンを含む硝酸カルシウムや塩化カルシウム等を供給すれば、鉱物化反応が促進されるので、好ましい。 Further, it is preferable to supply calcium nitrate containing calcium ions, calcium chloride, or the like to the slope 2 because the mineralization reaction is promoted.

また、法面2に、pH調整剤を供給すれば、微生物反応により発生する炭酸イオンとカルシウムイオンとが反応する鉱物化反応を促進できて好ましい土壌改良効果を得ることができる。
即ち、微生物反応により発生する炭酸イオンとカルシウムイオンとが反応する鉱物化反応を促進させるための土壌のpH環境は、pH8〜9であることが好ましいとされており、上述したミネカル、又は、ケイカル、又は、ミネカルとケイカルとを混合した混合肥料を用いて、土壌のpH環境をpH8〜9に維持することにより、鉱物化反応を促進できて好ましい土壌改良効果を得ることができる。
Further, if a pH adjuster is supplied to the slope 2, a mineralization reaction in which carbonate ions and calcium ions generated by a microbial reaction react with each other can be promoted, and a preferable soil improvement effect can be obtained.
That is, it is said that the pH environment of the soil for promoting the mineralization reaction in which carbonate ions and calcium ions generated by the microbial reaction react with each other is preferably pH 8 to 9, and the above-mentioned mineral or caucal Alternatively, by maintaining the pH environment of the soil at pH 8 to 9 by using a mixed fertilizer in which minekal and caucal are mixed, the mineralization reaction can be promoted and a preferable soil improvement effect can be obtained.

また、上記では、未焼成の貝殻粉砕物として、ホタテ貝殻粉砕物を使用した例を示したが、例えば、ホタテ貝殻以外の貝殻、たとえば、アワビ、サザエ、カキ、タイラギガイ等の未焼成の貝殻を用いてもよい。 Further, in the above, an example in which a scallop shell crushed product is used as the uncooked shell crushed product has been shown. You may use it.

尚、本発明において、「法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給」とは、法面2に、貝殻粉砕物と微生物とを混合したものを供給すること、あるいは、土壌に、貝殻粉砕物と微生物とを別々に供給することを言う。
また、「供給」とは、貝殻粉砕物と微生物とを、法面2の表面に供給すること、あるいは、法面2の土壌中に供給すること、あるいは、法面2の土壌中に混ぜることを言う。
In the present invention, "supplying crushed unbaked shells and microorganisms to the slope" means supplying a mixture of crushed shells and microorganisms to the slope 2. Alternatively, it refers to supplying the soil with crushed shells and microorganisms separately.
Further, "supply" means supplying crushed shells and microorganisms to the surface of slope 2, supplying them into the soil of slope 2, or mixing them in the soil of slope 2. Say.

実験1
貝殻粉砕物の大きさの違いによって形成される貝殻粉砕物固化体の支持強度の違いを確認するための実験を行った。
尚、貝殻粉砕物として、未焼成のホタテ(帆立)の貝殻粉砕物を用いた。
Experiment 1
An experiment was conducted to confirm the difference in the supporting strength of the solidified shell crushed material formed by the difference in the size of the crushed shell material.
As the crushed shell, an unfired crushed scallop (scallop) shell was used.

図3に示すように、試験体は、以下のものを用いた。
・試験体1は、粗い粒子のホタテ貝殻粉砕物350gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該粗い粒子のホタテ貝殻粉砕物350gは、粒径10mm〜2mmのホタテ貝殻粉砕物80〜90%+粒径0.85mm〜0.1mmのホタテ貝殻粉砕物10〜20%であり、当該粗い粒子のホタテ貝殻粉砕物としては、商品名「ホタテチップ」、青森エコサイクル産業共同組合会社製を使用した。
・試験体2は、中粒子のホタテ貝殻粉砕物350gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該中粒子のホタテ貝殻粉砕物350gは、粒径2mm〜0.85mmのホタテ貝殻粉砕物が55〜60%+粒径0.85mm〜0.005mmのホタテ貝殻粉砕物が40〜45%であり、当該中粒子のホタテ貝殻粉砕物としては、商品名「ホタテで元気」、青森エコサイクル産業共同組合会社製を使用した。
・試験体3は、粉状のホタテ貝殻粉砕物400gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該粉状のホタテ貝殻粉砕物400gは、粒径0.106mm〜0.005mmのホタテ貝殻粉砕物が100%であり、当該粉状のホタテ貝殻粉砕物としては、商品名「スキャロップマーカー」、青森エコサイクル産業共同組合会社製を使用した。
尚、酵母液150mlは、イースト菌8gとグルコース8gとを純水に溶かして作製した。
また、各試験体1,2,3は、所定の容器の底に、ホタテ貝殻粉砕物を、深さ20mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
そして、各試験体1,2,3を数日間、室温環境下(温度30℃、湿度60%)で放置して、1日経過する毎に、各試験体1,2,3の支持強度の状況を測定した。
支持強度の測定方法は、山中式硬度計により測定した。
As shown in FIG. 3, the following test specimens were used.
-The test body 1 was a test body in which 8 g of calcium nitrate + 150 ml of yeast solution was supplied to 350 g of crushed scallop shells having coarse particles. 350 g of the coarse-grained scallop crushed product is 80 to 90% of the scallop shell crushed product having a particle size of 10 mm to 2 mm + 10 to 20% of the scallop shell crushed product having a particle size of 0.85 mm to 0.1 mm. As the crushed scallop shell, the trade name "scallop chip" and the product of Aomori Eco Cycle Industry Cooperative Company were used.
-The test body 2 was a test body in which 8 g of calcium nitrate + 150 ml of yeast solution was supplied to 350 g of crushed scallop shells having medium particles. 350 g of the medium-particle crushed scallop shell is 55 to 60% of the crushed scallop shell having a particle size of 2 mm to 0.85 mm + 40 to 45% of the crushed scallop shell having a particle size of 0.85 mm to 0.005 mm. As the crushed scallop shells of the medium particles, the trade name "Scallops and Genki" and the product of Aomori Eco Cycle Industry Cooperative Company were used.
-The test body 3 was a test body in which 8 g of calcium nitrate + 150 ml of yeast solution was supplied to 400 g of powdered scallop shell crushed product. The powdered scallop crushed product (400 g) is 100% scallop shell crushed product having a particle size of 0.106 mm to 0.005 mm. Made by Eco Cycle Industry Cooperative Company.
The yeast solution 150 ml was prepared by dissolving 8 g of yeast and 8 g of glucose in pure water.
Further, each of the test bodies 1, 2 and 3 was prepared by spreading scallop shell crushed material on the bottom of a predetermined container to a depth of 20 mm and then pouring 150 ml of yeast solution.
Then, each test body 1, 2, 3 is left in a room temperature environment (temperature 30 ° C., humidity 60%) for several days, and every day, the support strength of each test body 1, 2, 3 is increased. The situation was measured.
The support strength was measured by a Yamanaka hardness tester.

・実験結果
図4;図5からわかるように、各試験体1、2、3は、固化し、特に、中粒子のホタテ貝殻粉砕物にイースト菌を供給した試験体2では、3日後に、支持強度117.1N/mmとなる支持強度の大きい貝殻粉砕物固化体を得ることができた。
-Experimental results As can be seen from Fig. 4; Fig. 5, each of the test bodies 1, 2 and 3 was solidified, and in particular, the test body 2 in which the yeast was supplied to the medium-sized scallop shell crushed product was supported after 3 days. A solidified shell crushed product having a strength of 117.1 N / mm 2 and a high supporting strength could be obtained.

実験から、未焼成のホタテ貝殻粉砕物に、イースト菌8gとグルコース8gとを純水に溶かして作製した酵母液150mlを供給することによって、ホタテ貝殻粉砕物を固化させることができるという事実を立証できた。 From the experiment, it can be proved that the crushed scallop shell can be solidified by supplying 150 ml of the yeast solution prepared by dissolving 8 g of yeast and 8 g of glucose in pure water to the crushed scallop shell. It was.

実験のように、ホタテ貝殻粉砕物を固化させることができた原因としては、第1に、未焼成の貝殻を粉砕した貝殻粉砕物に、微生物を供給したことにより、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
第2に、実験では、未焼成の貝殻を粉砕した貝殻粉砕物に、微生物を供給するととともに、硝酸カルシウムを供給したので、当該硝酸カルシウム中のカルシウムイオンと微生物の代謝作用により生成される二酸化炭素とが反応する鉱物化反応が促進されて貝殻粉砕物の粒子間に炭酸カルシウムが析出されることにより、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
As in the experiment, the reason why the crushed scallop shells could be solidified was firstly that they were produced by the metabolic action of the microorganisms by supplying the crushed shells of unbaked shells with microorganisms. Calcium carbonate is precipitated between the particles of the crushed shell by the mineralization reaction in which the carbon dioxide (carbonate ion) reacts with calcium ions other than calcium carbonate in the crushed shell, and the particles of the crushed shell It is considered that the bond between (calcium carbonate layers) became stronger, and the crushed shells were bonded to each other to form a solidified crushed shell.
Second, in the experiment, the crushed shells of unbaked shells were supplied with microorganisms and calcium nitrate, so that calcium ions in the calcium nitrate and carbon dioxide produced by the metabolic action of the microorganisms were supplied. By promoting the mineralization reaction that reacts with and depositing calcium carbonate between the particles of the crushed shell, the bond between the particles of the crushed shell (calcium carbonate layer) becomes stronger, and the crushed shells become stronger. It is considered that a solidified body of crushed shell was formed by combining and solidifying.

特に、試験体2のように、ホタテ貝殻粉砕物が中粒子(例えば粒径2mm〜0.85mmのホタテ貝殻粉砕物が55〜60%+粒径0.85mm〜0.005mmのホタテ貝殻粉砕物が40〜45%)である場合、ホタテ貝殻粉砕物の中粒子間の隙間が密になり、炭酸カルシウム層間の結合がより強固になって、支持強度の大きい貝殻粉砕物固化体が形成されたと考えられる。
また、試験体1のように、ホタテ貝殻粉砕物が粗い粒子(例えば粒径10mm〜2mmのホタテ貝殻粉砕物80〜90%+粒径0.85mm〜0.1mmのホタテ貝殻粉砕物10〜20%)である場合、ホタテ貝殻粉砕物の粗い粒子間の隙間が大きくなるため、炭酸カルシウム層間の結合が弱くなって、形成された貝殻粉砕物固化体の支持強度が大きくならなかったと考えられる。
さらに、試験体3のように、ホタテ貝殻粉砕物が粉状粒子(例えば粒径0.106mm〜0.005mmのホタテ貝殻粉砕物が100%)である場合、ホタテ貝殻粉砕物の粉状粒子自体の支持強度が弱いため、形成された貝殻粉砕物固化体の支持強度が大きくならなかったと考えられる。
In particular, like Test Body 2, the scallop crushed product has medium particles (for example, the scallop shell crushed product having a particle size of 2 mm to 0.85 mm is 55 to 60% + the scallop shell crushed product having a particle size of 0.85 mm to 0.005 mm). When it is 40 to 45%), the gaps between the medium particles of the scallop shell crushed product become dense, the bond between the calcium carbonate layers becomes stronger, and a solidified body of the scallop shell crushed product having high supporting strength is formed. Conceivable.
Further, like the test body 1, the scallop crushed product has coarse particles (for example, scallop shell crushed product having a particle size of 10 mm to 2 mm 80 to 90% + scallop shell crushed product having a particle size of 0.85 mm to 0.1 mm 10 to 20). %), It is considered that the gap between the coarse particles of the scallop crushed scallop was large, so that the bond between the calcium carbonate layers was weakened and the supporting strength of the formed scallop crushed solidified body was not increased.
Further, when the scallop shell crushed product is powder particles (for example, the scallop shell crushed product having a particle size of 0.106 mm to 0.005 mm is 100%) as in the test body 3, the scallop shell crushed product itself is powdery particles. It is probable that the supporting strength of the formed crushed shell material did not increase because the supporting strength of the scallop was weak.

実験2
土壌の違い、供給する貝殻粉砕物の大きさの違いに基づく、土壌改良効果の違いを確認するための実験を行った。
Experiment 2
An experiment was conducted to confirm the difference in soil improvement effect based on the difference in soil and the difference in the size of crushed shells to be supplied.

図6に示すように、試験体は、以下のものを用いた。
1.試験体名「山砂」は、山砂400gに、硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル19.5g)を供給した試験体とした。
2.試験体名「赤土」は、赤土350gに、硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
As shown in FIG. 6, the following test specimens were used.
1. 1. The test piece name "Yamasago" was a test piece obtained by supplying 8 g of calcium nitrate + 150 ml of yeast solution + a pH adjuster (0.5 g of Keikal + 19.5 g of Minekal) to 400 g of mountain sand.
2. The test piece name "red clay" was a test piece obtained by supplying 350 g of red clay with 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of caical + 12.0 g of minecal).

3.試験体名「山砂+帆中」は、山砂400gに、中粒のホタテ貝殻粉砕物40g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル19.5g)を供給した試験体とした。
4.試験体名「山砂+帆粉」は、山砂400gに、粉状のホタテ貝殻粉砕物40g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル1.5g)を供給した試験体とした。
5.試験体名「山砂+帆荒」は、山砂380gに、荒粒(欠片状)のホタテ貝殻粉砕物80g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル5.5g)を供給した試験体とした。
3. 3. The test piece name "Yamasago + Hochu" was a test piece in which 400 g of mountain sand was supplied with 40 g of crushed medium-grain scallop shells + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of Keikal + 19.5 g of Minekal). ..
4. The test piece name "mountain sand + sail powder" was a test body in which powdered scallop shell crushed product 40 g + calcium nitrate 8 g + yeast solution 150 ml + pH adjuster (Keikaru 0.5 g + Minekal 1.5 g) was supplied to 400 g of mountain sand. ..
5. The test piece name "mountain sand + sail rough" supplied 380 g of mountain sand with 80 g of crushed scallop shells in the form of coarse grains (fragment) + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of Keikal + 5.5 g of Minekal). It was used as a test body.

6.試験体名「赤土+帆粉」は、赤土200gに、粉状のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
7.試験体名「赤土+帆中」は、赤土200gに、中粒のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
8.試験体名「赤土+帆荒」は、赤土200gに、荒粒(欠片状)のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
6. The test piece name "red clay + sail powder" was prepared by supplying 200 g of red clay with 100 g of powdered scallop shell crushed product + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of caical + 12.0 g of minecal).
7. The test piece name "red clay + sailing" was a test piece in which 200 g of red clay was supplied with 100 g of crushed medium-grain scallop shells + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of caical + 12.0 g of minecal).
8. The test piece name "red clay + sail rough" is a test body in which coarse grain (fragment) scallop shell crushed product 100 g + calcium nitrate 8 g + yeast solution 150 ml + pH adjuster (Keikaru 0.5 g + Minekal 12.0 g) is supplied to 200 g of red clay. And said.

山砂は、粒径5mm〜0.125mm程度のものであり、商品名「山砂」、中島砂利の会社製を使用した。
赤土(粘土質の土)は、粒径0.074mm〜0.005mm程度のものであり、商品名「山砂」、中島砂利の会社製を使用した。
ホタテ貝殻粉砕物は、未焼成のホタテ貝殻を粉砕したホタテ貝殻粉砕物を用いた。
中粒のホタテ貝殻粉砕物は、粒径2mm〜0.85mmのホタテ貝殻粉砕物が55〜60%+粒径0.85mm〜0.005mmのホタテ貝殻粉砕物が40〜45%であり、商品名「ホタテで元気」、青森エコサイクル産業共同組合会社製を使用した。
粉状のホタテ貝殻粉砕物は、粒径0.106mm〜0.005mmのホタテ貝殻粉砕物が100%であり、商品名「スキャロップマーカー」、青森エコサイクル産業共同組合会社製を使用した。
荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm〜2mmのホタテ貝殻粉砕物が80〜90%+粒径0.85mm〜0.1mmのホタテ貝殻粉砕物が10〜20%であり、商品名「ホタテチップ」、青森エコサイクル産業共同組合会社製を使用した。
pH調整剤としての転炉石灰肥料である上述したミネカルは、商品名「くみあいミネカル」、産業振興株式会社製を用いた。
pH調整剤としての鉱さい珪酸質肥料である上述したケイカルは、商品名「くみあいケイカル」、村樫石灰工業株式会社製を使用した。
また、酵母液150mlは、イースト菌8gとグルコース8gとを純水に溶かして作製した。
また、山砂を用いた試験体は、所定の容器の底に、山砂又は山砂とホタテ貝殻粉砕物とを、深さ40mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
また、赤土(粘土)を用いた試験体は、所定の容器の底に、赤土又は赤土とホタテ貝殻粉砕物とを、深さ10mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
そして、各試験体を7日間、室温環境下(温度30℃、湿度60%)で放置して、1日経過する毎に、各試験体の支持強度を測定した。
支持強度の測定方法は、山中式硬度計により測定した。
The mountain sand had a particle size of about 5 mm to 0.125 mm, and the trade name "mountain sand", manufactured by Nakajima Gravel, was used.
The red soil (clay soil) had a particle size of about 0.074 mm to 0.005 mm, and was used under the trade name "Yamasago" and manufactured by Nakajima Gravel.
As the crushed scallop shell, a crushed scallop shell obtained by crushing an unbaked scallop shell was used.
The medium-grain crushed scallop shells are 55-60% crushed scallops with a particle size of 2 mm to 0.85 mm + 40-45% crushed scallop shells with a particle size of 0.85 mm to 0.005 mm. The name "Scallops are fine", made by Aomori Eco Cycle Industry Cooperative Company.
The powdered scallop crushed product was 100% scallop shell crushed product having a particle size of 0.106 mm to 0.005 mm, and the trade name "scallop marker", manufactured by Aomori Eco Cycle Industry Cooperative Company was used.
The coarse-grained (fragment-like) scallop crushed product is 80 to 90% of the scallop shell crushed product having a particle size of 10 mm to 2 mm + 10 to 20% of the scallop shell crushed product having a particle size of 0.85 mm to 0.1 mm. , The product name "scallop chip", made by Aomori Eco Cycle Industry Cooperative Company was used.
As the above-mentioned Minekal, which is a converter lime fertilizer as a pH adjuster, the trade name "Kumiai Minekal", manufactured by Sangyo Shinko Co., Ltd. was used.
The above-mentioned silicic acid fertilizer as a pH adjuster used the trade name "Kumiai Silicic" and manufactured by Murakashi Lime Industry Co., Ltd.
Further, 150 ml of yeast solution was prepared by dissolving 8 g of yeast and 8 g of glucose in pure water.
A test piece using mountain sand is prepared by spreading mountain sand or mountain sand and crushed scallop shells on the bottom of a predetermined container to a depth of 40 mm, and then pouring 150 ml of yeast solution. did.
A test piece using red clay (clay) is prepared by spreading red clay or red clay and crushed scallop shells on the bottom of a predetermined container to a depth of 10 mm, and then pouring 150 ml of yeast solution. did.
Then, each test piece was left in a room temperature environment (temperature 30 ° C., humidity 60%) for 7 days, and the supporting strength of each test piece was measured every day.
The support strength was measured by a Yamanaka hardness tester.

・実験結果
貝殻粉砕物を供給しなかった試験体、即ち、図6の試験体名「山砂」、及び、「赤土」の経時に伴って得られた支持強度の推移の結果を図7に示す。
図7に示すグラフからわかるように、貝殻粉砕物を供給せずに酵母液を供給しただけの試験体である「山砂」及び「赤土」では、十分な支持強度は得らず、期待した土壌改良効果は得られなかった。
-Experimental results Fig. 7 shows the results of changes in the supporting strength of the test specimens that did not supply the crushed shells, that is, the specimen names "mountain sand" and "red clay" in Fig. 6 over time. Shown.
As can be seen from the graph shown in FIG. 7, sufficient support strength was not obtained with the test specimens "mountain sand" and "red soil", which were only supplied with yeast solution without supplying crushed shells, and were expected. No soil improvement effect was obtained.

山砂に、それぞれ大きさの異なる貝殻粉砕物を供給した試験体「山砂+帆(中)」、試験体「山砂+帆(粉)」、試験体「山砂+帆(荒)」、及び、赤土に、それぞれ大きさの異なる貝殻粉砕物を供給した試験体「赤土+帆(粉)」、試験体「赤土+帆(中)」、試験体「赤土+帆(荒)」の経時に伴って得られた支持強度の推移の結果を示す数値を図8(a)に示し、支持強度の推移の結果を示すグラフを図8(b),(c)に示す。 Specimen "mountain sand + sail (medium)", test body "mountain sand + sail (powder)", test body "mountain sand + sail (rough)" in which crushed shells of different sizes were supplied to mountain sand. , And the test body "red soil + sail (powder)", the test body "red soil + sail (medium)", and the test body "red soil + sail (rough)", in which crushed shells of different sizes were supplied to the red soil. Figures 8 (a) show the numerical values showing the results of the transition of the support strength obtained with time, and FIGS. 8 (b) and 8 (c) show the graphs showing the results of the transition of the support strength.

図8(a),(b)からわかるように、試験体「山砂+帆(中)」、試験体「山砂+帆(粉)」、試験体「山砂+帆(荒)」は、いずれも、5日目には、支持強度が117.1N/mmまでになるという優れた土壌改良効果が得られた。 As can be seen from FIGS. 8 (a) and 8 (b), the test body "mountain sand + sail (middle)", the test body "mountain sand + sail (powder)", and the test body "mountain sand + sail (rough)" On the 5th day, an excellent soil improvement effect was obtained in which the supporting strength reached 117.1 N / mm 2 .

また、図8(a),(c)からわかるように、試験体「赤土+帆(粉)」では、3日目には、支持強度が480.6N/mmまでになるという顕著に優れた土壌改良効果が得られることが分かった。 Further, as can be seen from FIGS. 8 (a) and 8 (c), the test body "red soil + sail (powder)" is remarkably excellent in that the supporting strength reaches 480.6 N / mm 2 on the third day. It was found that the soil improvement effect was obtained.

上述した土壌改良効果が得られた原因としては、第1に、土壌に、未焼成の貝殻粉砕物と微生物とを供給したことによって、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
第2に、実験では、硝酸カルシウムを供給したため、硝酸カルシウム中のカルシウムイオンと微生物の代謝作用により生成される二酸化炭素とが反応する鉱物化反応が促進されて貝殻粉砕物の粒子間に炭酸カルシウムが析出されることにより、貝殻粉砕物の粒子間の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる推測される。
第3に、微生物の代謝作用により生成される二酸化炭素と、土壌中に存在するカルシウムイオン、あるいは、土壌に供給された硝酸カルシウム中のカルシウムイオンとが反応(鉱物化反応)して、土粒子間に析出される炭酸塩により、土壌が固化したと考えられる。
即ち、土壌に、未焼成の貝殻粉砕物と微生物とを供給した場合、貝殻粉砕物の固化と土壌の固化との相乗効果によって、土壌改良効果が向上したと考えられる。
The first reason why the above-mentioned soil improvement effect was obtained is that carbon dioxide (calcium ion) produced by the metabolic action of microorganisms by supplying unburned crushed shells and microorganisms to the soil. Calcium carbonate is precipitated between the particles of the crushed shell by the mineralization reaction that reacts with calcium ions other than calcium carbonate in the crushed shell, and the bonds between the particles of the crushed shell (calcium carbonate layers) are formed. It is considered that the crushed shells became stronger and the crushed shells were bonded to each other to form a solidified crushed shell.
Secondly, in the experiment, since calcium nitrate was supplied, the mineralization reaction in which calcium ions in calcium nitrate react with carbon dioxide produced by the metabolic action of microorganisms was promoted, and calcium carbonate was promoted between the particles of the crushed shell. It is presumed that the precipitation of calcium nitrate strengthened the bonds between the particles of the crushed shells, and the crushed shells were bonded to each other to form a solidified crushed shell.
Thirdly, carbon dioxide produced by the metabolic action of microorganisms reacts with calcium ions existing in the soil or calcium ions in calcium nitrate supplied to the soil (mineralization reaction) to produce soil particles. It is considered that the soil was solidified by the carbonates precipitated between them.
That is, when unburned crushed shells and microorganisms are supplied to the soil, it is considered that the soil improvement effect is improved by the synergistic effect of the solidification of the crushed shells and the solidification of the soil.

また、山砂は、粒径5mm〜0.125mmであるのに対して、粉状のホタテ貝殻粉砕物は、粒径0.106mm〜0.005mm、中粒のホタテ貝殻粉砕物は、粒径2mm〜0.005mm、荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm〜0.1mmである。
即ち、実験では、山砂の粒径よりも小さい粒径のホタテ貝殻粉砕物を供給しているため、山砂の粒子間にホタテ貝殻粉砕物が入り込んで、山砂の粒子間の結合がより強固になり、支持強度の大きい土壌となったものと推測される。
Further, the mountain sand has a particle size of 5 mm to 0.125 mm, whereas the powdered scallop shell crushed product has a particle size of 0.106 mm to 0.005 mm, and the medium grain scallop shell crushed product has a particle size. The crushed scallop shells having a size of 2 mm to 0.005 mm and coarse grains (fragments) have a particle size of 10 mm to 0.1 mm.
That is, in the experiment, since the scallop shell crushed product having a particle size smaller than that of the mountain sand is supplied, the scallop shell crushed product enters between the mountain sand particles, and the bond between the mountain sand particles becomes stronger. It is presumed that the soil became stronger and had a high supporting strength.

また、赤土は、粒径0.074mm〜0.005mmであるのに対して、粉状のホタテ貝殻粉砕物は、粒径0.106mm〜0.005mm、中粒のホタテ貝殻粉砕物は、粒径2mm〜0.005mm、荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm〜0.1mmである。 The red clay has a particle size of 0.074 mm to 0.005 mm, whereas the powdered scallop shell crushed product has a particle size of 0.106 mm to 0.005 mm, and the medium grain scallop shell crushed product has a grain size. The crushed scallop shells having a diameter of 2 mm to 0.005 mm and coarse grains (fragments) have a particle size of 10 mm to 0.1 mm.

即ち、試験体「赤土+帆(粉)」は、赤土の土粒子の粒径と粉状のホタテ貝殻粉砕物の粉粒子の粒径とが対応した大きさである。言い換えれば、赤土の土粒子の粒径と粉状のホタテ貝殻粉砕物の粉粒子の粒径とがほぼ同じである割合が大きい(高い)ので、粒子間の微小間隔の均等化が図られ、この均等化した粒子間の微小間隔に鉱物化反応による炭酸塩が析出されて硬化することによって、赤土全体が一体となって固化し、支持強度の著しく大きい土壌となったものと考えられる。
即ち、実験から、土壌の土粒子の大きさに対応した大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することにより、土壌の支持強度を向上できることがわかった。
That is, the test body "red clay + sail (powder)" has a size corresponding to the particle size of the soil particles of red clay and the particle size of the powder particles of the powdered scallop shell crushed product. In other words, since the particle size of the soil particles of red soil and the particle size of the powder particles of the powdered scallop shell crushed product are almost the same (high), the fine spacing between the particles can be equalized. It is considered that the carbonates formed by the mineralization reaction were precipitated and hardened at the minute intervals between the equalized particles, so that the entire red soil was solidified as one and the soil had a remarkably high supporting strength.
That is, from the experiment, it was found that the supporting strength of the soil can be improved by supplying the soil with crushed scallop shells and microorganisms having a size corresponding to the size of the soil particles in the soil.

また、実験で用いた粉状のホタテ貝殻粉砕物は、粒径が0.106mm〜0.005mmであり、中粒のホタテ貝殻粉砕物や荒粒(欠片状)のホタテ貝殻粉砕物と比べて、赤土の粒径の上限0.074mmよりも小さい粒径の粉を多く含んでいると推測されるため、赤土の粒子間に粉状のホタテ貝殻粉砕物が入り込みやすくなり、赤土の粒子間の結合がより強固になることで、赤土全体が一体となって固化し、支持強度の著しく大きい土壌となったものと推測される。 The powdery scallop shell crushed product used in the experiment has a particle size of 0.106 mm to 0.005 mm, which is compared with the medium-grain scallop shell crushed product and the coarse-grained (fragment-like) scallop shell crushed product. Since it is presumed that a large amount of powder having a particle size smaller than the upper limit of 0.074 mm of the particle size of red soil is contained, powdery scallop shell crushed matter easily enters between the particles of red soil, and between the particles of red soil. It is presumed that as the bond became stronger, the entire red soil became one and solidified, resulting in a soil with extremely high supporting strength.

特に、土壌に、土壌の土粒子の大きさに対応した大きさの未焼成貝殻粉砕物と微生物とを供給する方法を採用することにより、支持強度を著しく向上できる顕著に優れた土壌改良効果が得られることがわかった。
例えば、粒径0.074mm〜0.005mm程度の粘土である赤土に、粒径が0.106mm〜0.005mmの粉状のホタテ貝殻粉砕物を供給すること、即ち、土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを赤土(土壌)に供給することによって、赤土の粒子間に粉状のホタテ貝殻粉砕物が入り込みやすくなり、赤土の粒子間の結合がより強固になることから、支持強度を著しく向上できる顕著に優れた土壌改良効果が得られることがわかった。
In particular, by adopting a method of supplying unfired crushed shells and microorganisms having a size corresponding to the size of soil particles of the soil to the soil, a remarkably excellent soil improvement effect capable of significantly improving the supporting strength can be obtained. It turned out to be obtained.
For example, supplying powdered scallop shell crushed material having a particle size of 0.106 mm to 0.005 mm to red soil which is clay having a particle size of about 0.074 mm to 0.005 mm, that is, grains of soil particles in the soil. By supplying crushed scallop shells with a size smaller than the diameter and microorganisms to red soil (soil), powdered scallop crushed products can easily enter between the particles of red soil, and the bond between the particles of red soil becomes stronger. Therefore, it was found that a remarkably excellent soil improvement effect capable of significantly improving the supporting strength can be obtained.

一方で、試験体「赤土+帆(中)」や試験体「赤土+帆(荒)」では、赤土の土粒子の粒径とホタテ貝殻粉砕物の径とが大きく異なる。
即ち、赤土とホタテ貝殻粉砕物との間の間隔が大きくてばらばらな配置となってしまう。このため、赤土とホタテ貝殻粉砕物との結合が弱くなり、支持強度が得られなかったものと考えられる。
On the other hand, in the test body "red clay + sail (medium)" and the test body "red clay + sail (rough)", the particle size of the soil particles of red clay and the diameter of the scallop shell crushed material are significantly different.
That is, the distance between the red clay and the crushed scallop shell is large and the arrangement is disjointed. For this reason, it is probable that the bond between the red clay and the crushed scallop shell was weakened, and the supporting strength could not be obtained.

従って、実験から、土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することにより、土壌の支持強度を向上できることがわかった。 Therefore, from the experiment, it was found that the supporting strength of the soil can be improved by supplying the soil with crushed scallop shells having a size smaller than the particle size of the soil particles of the soil and microorganisms.

換言すれば、土壌が粘土質の土壌である場合、当該粘土質の土壌に粉状のホタテ貝殻粉砕物と微生物とを供給することによって、粘土質の土壌の支持強度を向上でき、土壌改良効果が得られることがわかった。 In other words, when the soil is clayey soil, the supporting strength of the clayey soil can be improved by supplying powdered scallop shell crushed material and microorganisms to the clayey soil, and the soil improvement effect can be achieved. Was found to be obtained.

1 法面保護層、2 法面、4 貝殻粉砕物固化層、5 土砂層。
1 Slope protection layer, 2 Slope, 4 Shell crushed solidified layer, 5 Sediment layer.

Claims (4)

法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたことを特徴とする法面保護層。 A slope protective layer formed by supplying crushed shells obtained by crushing unfired shells and microorganisms to the slope. 法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給したことを特徴とする法面保護方法。 A slope protection method characterized in that crushed shells obtained by crushing unbaked shells and microorganisms are supplied to the slope. 貝殻粉砕物として、ホタテ貝殻を粉砕したものを用いたことを特徴とする請求項2に記載の法面保護方法。 The slope protection method according to claim 2, wherein a crushed scallop shell is used as the crushed shell. 法面が盛土により形成された法面であり、当該盛土は、貝殻粉砕物と微生物とが供給されて形成された貝殻粉砕物固化層と、土砂層とが、交互に積層されて構築されたことを特徴とする請求項2又は請求項3に記載の法面保護方法。
The slope is a slope formed by embankment, and the embankment is constructed by alternately laminating a solidified layer of crushed shells formed by supplying crushed shells and microorganisms and a layer of earth and sand. The slope protection method according to claim 2 or 3, characterized in that.
JP2019069481A 2019-03-30 2019-03-30 Slope protection layer and slope protection method Active JP7175827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069481A JP7175827B2 (en) 2019-03-30 2019-03-30 Slope protection layer and slope protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069481A JP7175827B2 (en) 2019-03-30 2019-03-30 Slope protection layer and slope protection method

Publications (2)

Publication Number Publication Date
JP2020165269A true JP2020165269A (en) 2020-10-08
JP7175827B2 JP7175827B2 (en) 2022-11-21

Family

ID=72714873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069481A Active JP7175827B2 (en) 2019-03-30 2019-03-30 Slope protection layer and slope protection method

Country Status (1)

Country Link
JP (1) JP7175827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163359A (en) * 2019-03-30 2020-10-08 株式会社熊谷組 Crushed shell material solidified article, production method of crushed shell material solidified article and crushed shell material solidified article preparation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426004A (en) * 1977-07-28 1979-02-27 Kawasaki Steel Co Method of stabilization construction of ground normal plane that use blast furnace granulated slag
JPS61229023A (en) * 1985-04-04 1986-10-13 Nippon Doro Kodan Method of building banking employing soft ground
JP2005042343A (en) * 2003-07-24 2005-02-17 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Compound banking
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method
JP2007074906A (en) * 2005-09-09 2007-03-29 Toppan Printing Co Ltd Shellfishes having ic tag, system for administrating shellfish and method for attaching ic tag to shellfish
JP3199107U (en) * 2015-05-26 2015-08-06 日本富升環保開発 有限会社 Solution preparation equipment
JP2017055693A (en) * 2015-09-16 2017-03-23 株式会社サン・シャレーヌ Pearl ball and its manufacturing method
JP6489569B1 (en) * 2018-06-29 2019-03-27 強化土エンジニヤリング株式会社 Ground improvement method
JP2019119637A (en) * 2017-12-28 2019-07-22 バイオシェル株式会社 Calcium-based burned product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426004A (en) * 1977-07-28 1979-02-27 Kawasaki Steel Co Method of stabilization construction of ground normal plane that use blast furnace granulated slag
JPS61229023A (en) * 1985-04-04 1986-10-13 Nippon Doro Kodan Method of building banking employing soft ground
JP2005042343A (en) * 2003-07-24 2005-02-17 Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport Compound banking
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method
JP2007074906A (en) * 2005-09-09 2007-03-29 Toppan Printing Co Ltd Shellfishes having ic tag, system for administrating shellfish and method for attaching ic tag to shellfish
JP3199107U (en) * 2015-05-26 2015-08-06 日本富升環保開発 有限会社 Solution preparation equipment
JP2017055693A (en) * 2015-09-16 2017-03-23 株式会社サン・シャレーヌ Pearl ball and its manufacturing method
JP2019119637A (en) * 2017-12-28 2019-07-22 バイオシェル株式会社 Calcium-based burned product
JP6489569B1 (en) * 2018-06-29 2019-03-27 強化土エンジニヤリング株式会社 Ground improvement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163359A (en) * 2019-03-30 2020-10-08 株式会社熊谷組 Crushed shell material solidified article, production method of crushed shell material solidified article and crushed shell material solidified article preparation
JP7121683B2 (en) 2019-03-30 2022-08-18 株式会社熊谷組 Solidified pulverized shells, method for producing solidified pulverized shells, and solidified pulverized shells formulation

Also Published As

Publication number Publication date
JP7175827B2 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
Luhar et al. A review on the performance evaluation of autonomous self-healing bacterial concrete: mechanisms, strength, durability, and microstructural properties
Campbell et al. Geochemical negative emissions technologies: Part I. Review
KR100787059B1 (en) Manufacturing methods of high performance concrete for kelp forest regeneration utilizing industrial by-products and kelp forest regeneration concrete block by using it
JP2009297622A (en) Water cleaning material
CN103936522A (en) Method for improving nutrient preserving capability of planting concrete
JP2010104362A (en) Hardened material for creating seaweed bed
JP5070667B2 (en) Underwater environment improvement method
JP2020165269A (en) Slope protection layer, and slope protection method
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP4150283B2 (en) Bottom coating material
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP7273593B2 (en) Soil improvement method
JP7175828B2 (en) Shell pile and ground improvement method
JP6079986B2 (en) How to disassemble sludge and turn it into sand
JP6991726B2 (en) Materials for promoting algae growth
Wiltshire Innovations in marine ferromanganese oxide tailings disposal
JP2001252694A (en) Underwater structure and bottom material/water quality cleaning method
CN103951035B (en) A kind of waters improvement particulate material and preparation and application thereof
Christie et al. Mineral commodity report 21–limestone, marble and dolomite
JP5627283B2 (en) Treatment method of seabed sediment
SU1712628A1 (en) Method for protection of spoil heaps from spontaneous ignition
KR100650268B1 (en) Slag based reefs for marine ranching
Prakongwittaya et al. Reuse of calcium carbide and water treatment residues in the bottom clay liner of a municipal solid waste landfill
JP7121683B2 (en) Solidified pulverized shells, method for producing solidified pulverized shells, and solidified pulverized shells formulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150