JP7175827B2 - Slope protection layer and slope protection method - Google Patents
Slope protection layer and slope protection method Download PDFInfo
- Publication number
- JP7175827B2 JP7175827B2 JP2019069481A JP2019069481A JP7175827B2 JP 7175827 B2 JP7175827 B2 JP 7175827B2 JP 2019069481 A JP2019069481 A JP 2019069481A JP 2019069481 A JP2019069481 A JP 2019069481A JP 7175827 B2 JP7175827 B2 JP 7175827B2
- Authority
- JP
- Japan
- Prior art keywords
- shells
- crushed
- scallop
- slope
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
Description
本発明は、貝殻と微生物の代謝作用(微生物反応)とを利用して形成される法面保護層及び、法面保護方法に関する。 TECHNICAL FIELD The present invention relates to a slope protection layer formed by using shells and the metabolic action (microbial reaction) of microorganisms, and a slope protection method.
従来、法面保護方法として、法面保護マットを法面に固定したり(特許文献1参照)、法面保護として石詰籠を積み上げたり(特許文献2参照)、法面保護として壁材を固定したり(特許文献3参照)することが知られている。 Conventional methods for protecting the slope include fixing a slope protection mat to the slope (see Patent Document 1), stacking stone baskets to protect the slope (see Patent Document 2), and using wall materials to protect the slope. It is known to fix (see Patent Document 3).
上述した従来の法面保護、及び、法面保護方法では、材料費及び施工費のコストが高くなってしまい、省資源化及び低コスト化を図ることができないという課題があった。
本発明は、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる法面保護をするための法面保護層、及び、法面保護方法を提供することを目的とする。
In the conventional slope protection and slope protection method described above, there is a problem that material costs and construction costs are high, and resource saving and cost reduction cannot be achieved.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a slope protection layer and a slope protection method that can utilize seashells, which are waste, to achieve resource saving and cost reduction.
本発明に係る法面保護層によれば、法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたことを特徴とするので、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる。
また、本発明に係る法面保護方法によれば、法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給したことを特徴とするので、廃棄物となる貝殻を利用できて省資源化及び低コスト化を実現できる。
また、貝殻粉砕物として、ホタテ貝殻を粉砕したものを用いたことを特徴とするので、廃棄物となるホタテ貝殻を利用できて省資源化及び低コスト化を実現できる。
また、法面が盛土により形成された法面であり、当該盛土は、貝殻粉砕物と微生物とが供給されて形成された貝殻粉砕物固化層と、土砂層とが、交互に積層されて構築されたことを特徴とするので、法面に形成された法面保護層と複数の貝殻粉砕物固化層とが繋がった構成となるため、透水性及び耐水性に優れて水捌けの良い盛土となり、崩落防止効果に優れた盛土造成地を構築できるようになる。
According to the slope protection layer according to the present invention, it is characterized in that it is formed by supplying crushed shells obtained by pulverizing unfired shells and microorganisms to the slope, so that waste shells can be used. Therefore, resource saving and cost reduction can be realized.
In addition, according to the method for protecting a slope according to the present invention, it is characterized in that pulverized shells obtained by pulverizing unfired shells and microorganisms are supplied to the slope. Resource saving and cost reduction can be realized.
In addition, since crushed scallop shells are used as the crushed shells, scallop shells, which are a waste product, can be used, and resource saving and cost reduction can be realized.
In addition, the slope is a slope formed by an embankment, and the embankment is constructed by alternately stacking a solidified layer of pulverized shells formed by supplying pulverized shells and microorganisms and a layer of earth and sand. Since the slope protection layer formed on the slope and the solidified layer of crushed shells are connected to each other, the embankment has excellent water permeability and water resistance and has good drainage, It becomes possible to build embankment land with excellent collapse prevention effect.
実施形態1
図1に示すように、実施形態1に係る法面保護層1は、法面2に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して形成されたものである。
また、当該法面保護層1を形成する実施形態1に係る法面保護方法は、法面2に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給して法面保護層1を形成するようにした。
As shown in FIG. 1, the
In addition, the slope protection method according to the first embodiment for forming the
尚、法面とは、切り土や盛り土によってできる人工的傾斜面、又は、自然傾斜面をいう。
また、貝殻粉砕物とは、貝殻をほぼ等しい大きさに砕いて(割って)形成された欠片、貝殻を粒径の大きい粗粒状に砕いて形成された粗粒体、貝殻を粉状に砕いて形成された粉体等を言う。
The slope refers to an artificially sloped surface created by cutting or filling soil, or a naturally sloped surface.
In addition, crushed shells include fragments formed by crushing (breaking) shells into approximately equal sizes, coarse particles formed by crushing shells into coarse particles with a large particle size, and crushing shells into powder. It refers to powders etc. formed by
未焼成の貝殻は、約95質量%の無機成分と5質量%程度の有機成分とからなる無機-有機複合体であり、無機成分は炭酸カルシウム、有機成分はコンキオリンとよばれるタンパク質とキチンから構成される。
そして、未焼成の貝殻の構造は、板状の炭酸カルシウム層間にバインダーとして有機質シートが存在し、炭酸カルシウム層と有機質シートとが結合した積層構造となっている。
An unfired shell is an inorganic-organic composite consisting of about 95% by mass of inorganic components and about 5% by mass of organic components. The inorganic component is calcium carbonate, and the organic component is composed of a protein called conchiolin and chitin. be done.
The structure of the unfired shell is a laminated structure in which an organic sheet exists as a binder between the plate-like calcium carbonate layers, and the calcium carbonate layer and the organic sheet are bonded.
従って、法面の土壌に、未焼成の貝殻粉砕物と微生物とを供給することにより、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化層が形成されると考えられる。
さらに、微生物の代謝作用により生成される二酸化炭素と、土壌中に存在するか、あるいは、土壌に供給されたカルシウムイオンとが反応(鉱物化反応)して、土粒子間に析出される炭酸塩により、土壌が固化すると考えられる。
即ち、土壌に、未焼成の貝殻粉砕物と微生物とを供給した場合、貝殻粉砕物の固化と土壌の固化との相乗効果によって、法面崩落防止効果の高い法面保護層1が形成されると考えられる。
Therefore, by supplying unburned crushed shells and microorganisms to the slope soil, carbon dioxide (carbonate ions) generated by the metabolic action of microorganisms and calcium carbonate in the unburned crushed shells Calcium carbonate is precipitated between the particles of the crushed shells due to the mineralization reaction that reacts with calcium ions, and the bonds between the particles of the crushed shells (calcium carbonate layers) become stronger, and the crushed shells are bonded to each other. It is considered that a solidified layer of crushed shells is formed.
Furthermore, carbon dioxide produced by the metabolic action of microorganisms reacts (mineralization reaction) with calcium ions present in the soil or supplied to the soil, and carbonates precipitate between soil particles. It is thought that the soil is solidified by
That is, when the unburned pulverized shells and microorganisms are supplied to the soil, the synergistic effect of the solidification of the pulverized shells and the solidification of the soil forms a
具体的には、図1(a),(b)に示すステップを経て、法面保護層1を形成するようにすればよい。
(1)混合材敷均しステップ
図1(a)に示すように、未焼成のホタテ貝殻粉砕物と酵母液とを混合して作製された混合材3を法面2に敷き均す。
尚、混合材3は、プラント、現場等において、ホタテ貝殻粉砕物と酵母液とを混ぜ合わせて作製すればよい。
また、酵母液は、例えば、イースト菌(微生物)とグルコース(当該微生物によって代謝される栄養源)とを純水に溶かして作製すればよい。
また、ホタテ貝殻粉砕物は、後述する実験結果からもわかるように、法面の土壌の土粒子の大きさに対応した大きさのホタテ貝殻粉砕物、好ましくは、法面の土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物を用いることが好ましい。
具体的には、法面の土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することが好ましい。
例えば、法面の土壌が赤土等の粘土質の土壌である場合、当該粘土質の土壌に粉状のホタテ貝殻粉砕物と微生物とを供給することが好ましい。
(2)転圧ステップ
図1(b)に示すように、法面2に敷き均した混合材3を図外の転圧機械で転圧することにより、法面保護層1を形成する。
従って、ホタテ貝殻粉砕物の固化と法面2の土壌の固化との相乗効果によって、法面崩落防止効果の高い法面保護層1が形成される。
Specifically, the
(1) Spreading Mixed Material Step As shown in FIG. 1( a ), a mixed
The mixed
Also, the yeast liquid may be prepared by dissolving yeast (microorganisms) and glucose (a nutrient source metabolized by the microorganisms) in pure water, for example.
In addition, as can be seen from the experimental results described later, the crushed scallop shells are crushed scallop shells having a size corresponding to the size of the soil particles of the slope soil, preferably the soil particles of the slope soil. It is preferable to use crushed scallop shells having a size equal to or smaller than the particle size.
Specifically, it is preferable to supply the soil with pulverized scallop shells having a size equal to or smaller than the particle size of the soil particles of the soil on the slope and the microorganisms.
For example, when the soil on the slope is clayey soil such as red clay, it is preferable to supply the clayey soil with powdery pulverized scallop shells and microorganisms.
(2) Rolling Compaction Step As shown in FIG. 1(b), the
Therefore, the synergistic effect of the solidification of the pulverized scallop shells and the solidification of the soil of the
実施形態1により形成された法面保護層1は、廃棄物となるホタテ貝殻を利用して形成されるため、省資源化及び低コスト化を実現できる。即ち、廃棄物となっていた未焼成のホタテ貝殻の資源化が図られるため経済的である。また、未焼成のまま使用するので、焼成、洗浄等に係る費用が発生せず、経済的である。
Since the
実施形態1により形成された法面保護層1は、後述する実験結果からわかるように、ホタテ貝殻粉砕物同士が結合されて固化し、かつ、法面2の土壌とより強固に結合された支持強度の高いホタテ貝殻粉砕物固化層となるとともに、法面2の土壌の支持強度も高くなるため、法面崩落防止効果の高い法面保護層1となる。
また、法面保護層1を形成するホタテ貝殻粉砕物固化層は、ホタテ貝殻粉砕物同士間の隙間が多い多孔質体となり、透水性、及び、耐水性に優れたものとなるので、法面崩落防止効果の高い法面保護層1となる。
As can be seen from the experimental results to be described later, the
In addition, the crushed scallop shell solidified layer that forms the
実施形態1に係る法面保護方法によれば、ホタテ貝殻粉砕物同士が結合されて固化し、かつ、法面2の土壌とより強固に結合された支持強度の高いホタテ貝殻粉砕物固化層となるとともに、法面2の土壌の支持強度も高くなるため、法面崩落防止効果の高い法面保護層1を形成できるようになる。
According to the slope protection method according to the first embodiment, the pulverized scallop shells are bonded together and solidified, and the pulverized scallop shell solidified layer with high supporting strength that is more firmly bonded to the soil of the
実施形態2
実施形態1では、ホタテ貝殻粉砕物と酵母液とを混合して作製された混合材3を法面2に敷き均すようにしたが、ホタテ貝殻粉砕物と酵母液と土砂とを混合して作製された混合材を法面2に敷き均すようにしてもよい。
土砂としては、例えば、後述する実験で用いたような、山砂や赤土等を用いればよい。
In
As the earth and sand, for example, mountain sand, red soil, or the like used in the experiments to be described later may be used.
実施形態2によれば、土砂を混合させたことにより、後述する実験結果からわかるように、ホタテ貝殻粉砕物と土砂とがより強固に結合された支持強度の高いホタテ貝殻粉砕物固化層を有し、透水性、及び、耐水性に優れた法面崩落防止効果の高い法面保護層1となる。
According to the second embodiment, by mixing the earth and sand, as can be seen from the experimental results described later, the crushed scallop shells and the earth and sand are more firmly bonded to form a solidified layer of crushed scallop shells with high supporting strength. As a result, the
実施形態3
図2に示すように、法面2が盛土10により形成される法面2である場合には、当該盛土10を、ホタテ貝殻粉砕物と微生物とが供給されて形成された貝殻粉砕物固化層4、又は、ホタテ貝殻粉砕物と微生物と土砂とが供給されて形成された貝殻粉砕物固化層4と、土砂層5とを、交互に積層して構築すればよい。
そして、このように構築された盛土10の法面2に、実施形態1又は実施形態2で説明した法面保護層1を形成する。
実施形態3に係る方法によれば、盛土10を、貝殻粉砕物固化層4と、土砂層5と、を交互に積層して構築したので、当該盛土10の法面2に形成された法面保護層1と当該盛土10の複数の貝殻粉砕物固化層4,4…とが繋がった構成となるため、透水性及び耐水性に優れて水捌けの良い盛土10となり、崩落防止効果に優れた盛土造成地を構築できる。
As shown in FIG. 2, when the
Then, the
According to the method according to the third embodiment, the
尚、微生物としてイースト菌を例示したが、その他の微生物を用いてもよい。
また、微生物によって代謝される栄養源としてグルコースを例示したが、その他の栄養源を用いてもよい。
Although yeast is exemplified as a microorganism, other microorganisms may be used.
Moreover, although glucose was exemplified as a nutrient source metabolized by microorganisms, other nutrient sources may be used.
また、ホタテ貝殻粉砕物が、水分を含んだ状態のものであれば、水分を供給しなくてもよい。
また、法面2の土壌が、水分、栄養分等を含む場合、未焼成のホタテ貝殻粉砕物と微生物とだけを土壌に供給するようにしてもよい。
Moreover, if the crushed scallop shell contains water, it is not necessary to supply water.
Further, when the soil of the
また、上述したように、法面2に、未焼成のホタテ貝殻粉砕物と微生物と当該微生物によって代謝されるグルコース等の栄養源とを供給することが好ましいが、必ずしも栄養源を供給しなくても構わない。例えば、培養して活性化させた微生物と未焼成の貝殻粉砕物とを供給するだけでもよい。
Further, as described above, it is preferable to supply the unbaked scallop shell pulverized product, microorganisms, and a nutrient source such as glucose metabolized by the microorganism to the
また、法面2に、カルシウムイオンを含む硝酸カルシウムや塩化カルシウム等を供給すれば、鉱物化反応が促進されるので、好ましい。
Moreover, it is preferable to supply the
また、法面2に、pH調整剤を供給すれば、微生物反応により発生する炭酸イオンとカルシウムイオンとが反応する鉱物化反応を促進できて好ましい土壌改良効果を得ることができる。
即ち、微生物反応により発生する炭酸イオンとカルシウムイオンとが反応する鉱物化反応を促進させるための土壌のpH環境は、pH8~9であることが好ましいとされており、上述したミネカル、又は、ケイカル、又は、ミネカルとケイカルとを混合した混合肥料を用いて、土壌のpH環境をpH8~9に維持することにより、鉱物化反応を促進できて好ましい土壌改良効果を得ることができる。
Moreover, if a pH adjuster is supplied to the
That is, the pH environment of the soil for promoting the mineralization reaction in which carbonate ions and calcium ions generated by the microbial reaction react is preferably
また、上記では、未焼成の貝殻粉砕物として、ホタテ貝殻粉砕物を使用した例を示したが、例えば、ホタテ貝殻以外の貝殻、たとえば、アワビ、サザエ、カキ、タイラギガイ等の未焼成の貝殻を用いてもよい。 In the above, an example of using a scallop shell pulverized product as the unbaked shell pulverized product is shown. may be used.
尚、本発明において、「法面に、未焼成の貝殻を粉砕した貝殻粉砕物と微生物とを供給」とは、法面2に、貝殻粉砕物と微生物とを混合したものを供給すること、あるいは、土壌に、貝殻粉砕物と微生物とを別々に供給することを言う。
また、「供給」とは、貝殻粉砕物と微生物とを、法面2の表面に供給すること、あるいは、法面2の土壌中に供給すること、あるいは、法面2の土壌中に混ぜることを言う。
In the present invention, "supplying crushed shells obtained by crushing unfired shells and microorganisms onto the slope" means supplying a mixture of crushed shells and microorganisms to the
In addition, "supply" means supplying crushed shells and microorganisms to the surface of the
実験1
貝殻粉砕物の大きさの違いによって形成される貝殻粉砕物固化体の支持強度の違いを確認するための実験を行った。
尚、貝殻粉砕物として、未焼成のホタテ(帆立)の貝殻粉砕物を用いた。
An experiment was conducted to confirm the difference in supporting strength of the crushed shell solidified body formed by the difference in the size of the crushed shell.
As the crushed shells, the crushed shells of unbaked scallops were used.
図3に示すように、試験体は、以下のものを用いた。
・試験体1は、粗い粒子のホタテ貝殻粉砕物350gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該粗い粒子のホタテ貝殻粉砕物350gは、粒径10mm~2mmのホタテ貝殻粉砕物80~90%+粒径0.85mm~0.1mmのホタテ貝殻粉砕物10~20%であり、当該粗い粒子のホタテ貝殻粉砕物としては、商品名「ホタテチップ」、青森エコサイクル産業共同組合会社製を使用した。
・試験体2は、中粒子のホタテ貝殻粉砕物350gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該中粒子のホタテ貝殻粉砕物350gは、粒径2mm~0.85mmのホタテ貝殻粉砕物が55~60%+粒径0.85mm~0.005mmのホタテ貝殻粉砕物が40~45%であり、当該中粒子のホタテ貝殻粉砕物としては、商品名「ホタテで元気」、青森エコサイクル産業共同組合会社製を使用した。
・試験体3は、粉状のホタテ貝殻粉砕物400gに、硝酸カルシウム8g+酵母液150mlを供給した試験体とした。当該粉状のホタテ貝殻粉砕物400gは、粒径0.106mm~0.005mmのホタテ貝殻粉砕物が100%であり、当該粉状のホタテ貝殻粉砕物としては、商品名「スキャロップマーカー」、青森エコサイクル産業共同組合会社製を使用した。
尚、酵母液150mlは、イースト菌8gとグルコース8gとを純水に溶かして作製した。
また、各試験体1,2,3は、所定の容器の底に、ホタテ貝殻粉砕物を、深さ20mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
そして、各試験体1,2,3を数日間、室温環境下(温度30℃、湿度60%)で放置して、1日経過する毎に、各試験体1,2,3の支持強度の状況を測定した。
支持強度の測定方法は、山中式硬度計により測定した。
As shown in FIG. 3, the following specimens were used.
-
-
-
150 ml of the yeast liquid was prepared by dissolving 8 g of yeast and 8 g of glucose in pure water.
Further, each of
Then, each
The supporting strength was measured using a Yamanaka hardness tester.
・実験結果
図4;図5からわかるように、各試験体1、2、3は、固化し、特に、中粒子のホタテ貝殻粉砕物にイースト菌を供給した試験体2では、3日後に、支持強度117.1N/mm2となる支持強度の大きい貝殻粉砕物固化体を得ることができた。
Experimental Results As can be seen from FIG. 4 and FIG. 5, each of the
実験から、未焼成のホタテ貝殻粉砕物に、イースト菌8gとグルコース8gとを純水に溶かして作製した酵母液150mlを供給することによって、ホタテ貝殻粉砕物を固化させることができるという事実を立証できた。 Experiments have demonstrated the fact that 150 ml of a yeast solution prepared by dissolving 8 g of yeast and 8 g of glucose in pure water can be supplied to crushed unbaked scallop shells to solidify the crushed scallop shells. rice field.
実験のように、ホタテ貝殻粉砕物を固化させることができた原因としては、第1に、未焼成の貝殻を粉砕した貝殻粉砕物に、微生物を供給したことにより、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
第2に、実験では、未焼成の貝殻を粉砕した貝殻粉砕物に、微生物を供給するととともに、硝酸カルシウムを供給したので、当該硝酸カルシウム中のカルシウムイオンと微生物の代謝作用により生成される二酸化炭素とが反応する鉱物化反応が促進されて貝殻粉砕物の粒子間に炭酸カルシウムが析出されることにより、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
The reason why the pulverized scallop shells could be solidified as in the experiment is that, firstly, by supplying microorganisms to the pulverized shells obtained by pulverizing unbaked shells, the scallops are produced by the metabolic action of the microorganisms. Calcium carbonate is precipitated between the particles of the crushed shells due to the mineralization reaction in which carbon dioxide (carbonate ions) in the unburned crushed shells reacts with calcium ions other than calcium carbonate in the crushed shells. It is thought that the bond between the calcium carbonate layers became stronger, and the crushed shells were bonded together to form a solidified crushed shell material.
Secondly, in the experiment, microorganisms were supplied to the shell pulverized product obtained by pulverizing unburned shells, and calcium nitrate was supplied. The mineralization reaction that reacts with is accelerated and calcium carbonate is precipitated between the particles of the crushed shells, so that the bonds between the particles of the crushed shells (calcium carbonate layers) become stronger, and the crushed shells are combined to form a solidified shell pulverized material.
特に、試験体2のように、ホタテ貝殻粉砕物が中粒子(例えば粒径2mm~0.85mmのホタテ貝殻粉砕物が55~60%+粒径0.85mm~0.005mmのホタテ貝殻粉砕物が40~45%)である場合、ホタテ貝殻粉砕物の中粒子間の隙間が密になり、炭酸カルシウム層間の結合がより強固になって、支持強度の大きい貝殻粉砕物固化体が形成されたと考えられる。
また、試験体1のように、ホタテ貝殻粉砕物が粗い粒子(例えば粒径10mm~2mmのホタテ貝殻粉砕物80~90%+粒径0.85mm~0.1mmのホタテ貝殻粉砕物10~20%)である場合、ホタテ貝殻粉砕物の粗い粒子間の隙間が大きくなるため、炭酸カルシウム層間の結合が弱くなって、形成された貝殻粉砕物固化体の支持強度が大きくならなかったと考えられる。
さらに、試験体3のように、ホタテ貝殻粉砕物が粉状粒子(例えば粒径0.106mm~0.005mmのホタテ貝殻粉砕物が100%)である場合、ホタテ貝殻粉砕物の粉状粒子自体の支持強度が弱いため、形成された貝殻粉砕物固化体の支持強度が大きくならなかったと考えられる。
In particular, as in
In addition, like the
Furthermore, as in
実験2
土壌の違い、供給する貝殻粉砕物の大きさの違いに基づく、土壌改良効果の違いを確認するための実験を行った。
An experiment was conducted to confirm the difference in soil improvement effect based on the difference in soil and the difference in the size of crushed shells to be supplied.
図6に示すように、試験体は、以下のものを用いた。
1.試験体名「山砂」は、山砂400gに、硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル19.5g)を供給した試験体とした。
2.試験体名「赤土」は、赤土350gに、硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
As shown in FIG. 6, the following specimens were used.
1. The specimen name "mountain sand" was prepared by supplying 400 g of mountain sand with 8 g of calcium nitrate + 150 ml of yeast solution + a pH adjuster (0.5 g of calcium carbonate + 19.5 g of mineral).
2. The specimen name "red soil" was a specimen obtained by supplying 350 g of red soil with 8 g of calcium nitrate + 150 ml of yeast solution + a pH adjuster (0.5 g of calcium carbonate + 12.0 g of mineral).
3.試験体名「山砂+帆中」は、山砂400gに、中粒のホタテ貝殻粉砕物40g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル19.5g)を供給した試験体とした。
4.試験体名「山砂+帆粉」は、山砂400gに、粉状のホタテ貝殻粉砕物40g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル1.5g)を供給した試験体とした。
5.試験体名「山砂+帆荒」は、山砂380gに、荒粒(欠片状)のホタテ貝殻粉砕物80g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル5.5g)を供給した試験体とした。
3. The test specimen name "mountain sand + sail" was a test specimen in which 400 g of mountain sand was supplied with 40 g of medium-grain crushed scallop shell + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of calcium carbonate + 19.5 g of mineral). .
4. The test specimen name "mountain sand + sail powder" was a test specimen in which 400 g of mountain sand was supplied with 40 g of ground scallop shell powder + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of calcium carbonate + 1.5 g of mineral). .
5. The specimen name "mountain sand + sail rough" was obtained by supplying 380 g of mountain sand with 80 g of coarse-grained (fragmented) crushed scallop shells + 8 g of calcium nitrate + 150 ml of yeast liquid + pH adjuster (0.5 g of calcium carbonate + 5.5 g of mineral). It was used as a test body.
6.試験体名「赤土+帆粉」は、赤土200gに、粉状のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
7.試験体名「赤土+帆中」は、赤土200gに、中粒のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
8.試験体名「赤土+帆荒」は、赤土200gに、荒粒(欠片状)のホタテ貝殻粉砕物100g+硝酸カルシウム8g+酵母液150ml+pH調整剤(ケイカル0.5g+ミネカル12.0g)を供給した試験体とした。
6. The specimen name "red clay + sail powder" was prepared by supplying 200 g of red clay with 100 g of pulverized scallop shell powder + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of calcium carbonate + 12.0 g of mineral).
7. The specimen name "red clay + sail" was prepared by supplying 200 g of red clay with 100 g of ground scallop shells of medium size + 8 g of calcium nitrate + 150 ml of yeast solution + pH adjuster (0.5 g of calcium carbonate + 12.0 g of mineral).
8. The test specimen name "Red clay + Hoara" is a test specimen in which 200 g of red clay is supplied with 100 g of coarse-grained (fragment-like) ground scallop shells + 8 g of calcium nitrate + 150 ml of yeast liquid + pH adjuster (0.5 g of calcium carbonate + 12.0 g of mineral). and
山砂は、粒径5mm~0.125mm程度のものであり、商品名「山砂」、中島砂利の会社製を使用した。
赤土(粘土質の土)は、粒径0.074mm~0.005mm程度のものであり、商品名「山砂」、中島砂利の会社製を使用した。
ホタテ貝殻粉砕物は、未焼成のホタテ貝殻を粉砕したホタテ貝殻粉砕物を用いた。
中粒のホタテ貝殻粉砕物は、粒径2mm~0.85mmのホタテ貝殻粉砕物が55~60%+粒径0.85mm~0.005mmのホタテ貝殻粉砕物が40~45%であり、商品名「ホタテで元気」、青森エコサイクル産業共同組合会社製を使用した。
粉状のホタテ貝殻粉砕物は、粒径0.106mm~0.005mmのホタテ貝殻粉砕物が100%であり、商品名「スキャロップマーカー」、青森エコサイクル産業共同組合会社製を使用した。
荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm~2mmのホタテ貝殻粉砕物が80~90%+粒径0.85mm~0.1mmのホタテ貝殻粉砕物が10~20%であり、商品名「ホタテチップ」、青森エコサイクル産業共同組合会社製を使用した。
pH調整剤としての転炉石灰肥料である上述したミネカルは、商品名「くみあいミネカル」、産業振興株式会社製を用いた。
pH調整剤としての鉱さい珪酸質肥料である上述したケイカルは、商品名「くみあいケイカル」、村樫石灰工業株式会社製を使用した。
また、酵母液150mlは、イースト菌8gとグルコース8gとを純水に溶かして作製した。
また、山砂を用いた試験体は、所定の容器の底に、山砂又は山砂とホタテ貝殻粉砕物とを、深さ40mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
また、赤土(粘土)を用いた試験体は、所定の容器の底に、赤土又は赤土とホタテ貝殻粉砕物とを、深さ10mmとなるように敷き詰めた後に、酵母液150mlを注ぐことで作製した。
そして、各試験体を7日間、室温環境下(温度30℃、湿度60%)で放置して、1日経過する毎に、各試験体の支持強度を測定した。
支持強度の測定方法は、山中式硬度計により測定した。
The mountain sand had a particle size of about 5 mm to 0.125 mm, and was manufactured by Nakajima Gravel under the trade name of "Yamasuna".
The red soil (clay soil) has a particle size of about 0.074 mm to 0.005 mm, and is manufactured by Nakajima Gravel under the trade name of "Yamasuna".
The crushed scallop shells used were crushed scallop shells obtained by crushing unbaked scallop shells.
The medium-grain scallop shell pulverized product contains 55 to 60% pulverized scallop shells with a particle size of 2 mm to 0.85 mm and 40 to 45% pulverized scallop shells with a particle size of 0.85 mm to 0.005 mm. Named "Scallop de Genki", made by Aomori Eco Cycle Industry Cooperative.
The powdery crushed scallop shells were 100% crushed scallop shells with a particle size of 0.106 mm to 0.005 mm, and were manufactured under the trade name of "Scallop Marker" manufactured by Aomori Eco Cycle Industry Cooperative.
The coarse-grained (fragment-shaped) scallop shell pulverized material is 80 to 90% of the pulverized scallop shells with a particle size of 10 mm to 2 mm + 10 to 20% of the pulverized scallop shells with a particle size of 0.85 mm to 0.1 mm. , trade name "Scallop Chip", manufactured by Aomori Eco Cycle Industry Cooperative.
The above-mentioned Minekal, which is a converter lime fertilizer as a pH adjuster, was used under the trade name of "Kumiai Minekal" manufactured by Sangyo Shinko Co., Ltd.
The aforementioned Keical, which is a slag siliceous fertilizer as a pH adjuster, was used under the trade name of "Kumiai Keikaru" manufactured by Murakashi Lime Industry Co., Ltd.
150 ml of yeast liquid was prepared by dissolving 8 g of yeast and 8 g of glucose in pure water.
In addition, the test specimen using mountain sand was prepared by spreading mountain sand or mountain sand and pulverized scallop shells on the bottom of a predetermined container to a depth of 40 mm, and then pouring 150 ml of yeast solution. did.
In addition, a test body using red clay (clay) is prepared by spreading red clay or red clay and pulverized scallop shells on the bottom of a predetermined container to a depth of 10 mm, and then pouring 150 ml of yeast solution. did.
Then, each test piece was allowed to stand in a room temperature environment (temperature of 30° C., humidity of 60%) for 7 days, and the support strength of each test piece was measured every day.
The supporting strength was measured using a Yamanaka hardness tester.
・実験結果
貝殻粉砕物を供給しなかった試験体、即ち、図6の試験体名「山砂」、及び、「赤土」の経時に伴って得られた支持強度の推移の結果を図7に示す。
図7に示すグラフからわかるように、貝殻粉砕物を供給せずに酵母液を供給しただけの試験体である「山砂」及び「赤土」では、十分な支持強度は得らず、期待した土壌改良効果は得られなかった。
・Experimental results Fig. 7 shows the results of changes in supporting strength obtained with the passage of time for the specimens to which no pulverized shells were supplied, that is, the specimens named "Yamasuna" and "Red soil" in Fig. 6. show.
As can be seen from the graph shown in FIG. 7, the test specimens "mountain sand" and "red soil", which were only supplied with yeast liquid without supplying crushed shells, did not provide sufficient supporting strength, which was expected. No soil improvement effect was obtained.
山砂に、それぞれ大きさの異なる貝殻粉砕物を供給した試験体「山砂+帆(中)」、試験体「山砂+帆(粉)」、試験体「山砂+帆(荒)」、及び、赤土に、それぞれ大きさの異なる貝殻粉砕物を供給した試験体「赤土+帆(粉)」、試験体「赤土+帆(中)」、試験体「赤土+帆(荒)」の経時に伴って得られた支持強度の推移の結果を示す数値を図8(a)に示し、支持強度の推移の結果を示すグラフを図8(b),(c)に示す。 Specimens "mountain sand + sail (medium)", specimen "mountain sand + sail (powder)", specimen "mountain sand + sail (coarse)" in which pulverized shells of different sizes were supplied to mountain sand , and, to the red clay, the specimens "red clay + sails (powder)", "red clay + sails (medium)", and "red clay + sails (rough)" supplied with crushed shells of different sizes. Figure 8(a) shows numerical values indicating the transition of the supporting strength obtained over time, and Figs. 8(b) and 8(c) show graphs showing the transition of the supporting strength.
図8(a),(b)からわかるように、試験体「山砂+帆(中)」、試験体「山砂+帆(粉)」、試験体「山砂+帆(荒)」は、いずれも、5日目には、支持強度が117.1N/mm2までになるという優れた土壌改良効果が得られた。 As can be seen from FIGS. 8(a) and 8(b), the test specimens "mountain sand + sail (medium)", "mountain sand + sail (powder)", and "mountain sand + sail (coarse)" are In both cases, on the 5th day, an excellent soil improvement effect was obtained in which the supporting strength was up to 117.1 N/mm 2 .
また、図8(a),(c)からわかるように、試験体「赤土+帆(粉)」では、3日目には、支持強度が480.6N/mm2までになるという顕著に優れた土壌改良効果が得られることが分かった。 In addition, as can be seen from FIGS. 8(a) and (c), the specimen “red soil + sail (powder)” is remarkably excellent in that the supporting strength reaches up to 480.6 N / mm 2 on the third day. It was found that the soil improvement effect was obtained.
上述した土壌改良効果が得られた原因としては、第1に、土壌に、未焼成の貝殻粉砕物と微生物とを供給したことによって、微生物の代謝作用により生成される二酸化炭素(炭酸イオン)と未焼成の貝殻粉砕物中の炭酸カルシウム以外のカルシウムイオンとが反応する鉱物化反応により貝殻粉砕物の粒子間に炭酸カルシウムが析出されて、貝殻粉砕物の粒子間(炭酸カルシウム層間)の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる。
第2に、実験では、硝酸カルシウムを供給したため、硝酸カルシウム中のカルシウムイオンと微生物の代謝作用により生成される二酸化炭素とが反応する鉱物化反応が促進されて貝殻粉砕物の粒子間に炭酸カルシウムが析出されることにより、貝殻粉砕物の粒子間の結合がより強固になり、貝殻粉砕物同士が結合されて固化した貝殻粉砕物固化体が形成されたと考えられる推測される。
第3に、微生物の代謝作用により生成される二酸化炭素と、土壌中に存在するカルシウムイオン、あるいは、土壌に供給された硝酸カルシウム中のカルシウムイオンとが反応(鉱物化反応)して、土粒子間に析出される炭酸塩により、土壌が固化したと考えられる。
即ち、土壌に、未焼成の貝殻粉砕物と微生物とを供給した場合、貝殻粉砕物の固化と土壌の固化との相乗効果によって、土壌改良効果が向上したと考えられる。
The reason why the above-mentioned soil improvement effect was obtained is, firstly, by supplying unburned crushed shells and microorganisms to the soil, carbon dioxide (carbonate ion) generated by the metabolic action of microorganisms and Calcium carbonate is precipitated between the particles of the crushed shells due to the mineralization reaction in which calcium ions other than calcium carbonate in the crushed shells in the unfired shell react, and the bonds between the particles of the crushed shells (interlayers of calcium carbonate) are formed. It is considered that the pulverized shells became stronger and solidified by binding the pulverized shells together to form a solidified body of pulverized shells.
Secondly, in the experiment, since calcium nitrate was supplied, the mineralization reaction in which the calcium ions in the calcium nitrate react with carbon dioxide generated by the metabolic action of microorganisms was promoted, and calcium carbonate was formed between the particles of the pulverized shells. is precipitated, the bonds between the particles of the crushed shells become stronger, and the crushed shells are bound together to form a solidified shell crushed product.
Third, carbon dioxide produced by the metabolic action of microorganisms and calcium ions present in the soil or calcium ions in the calcium nitrate supplied to the soil react (mineralization reaction) to form soil particles. It is thought that the soil solidified due to the carbonate precipitated between them.
In other words, it is considered that when the unfired pulverized shells and microorganisms were supplied to the soil, the synergistic effect of the solidification of the pulverized shells and the solidification of the soil improved the soil improvement effect.
また、山砂は、粒径5mm~0.125mmであるのに対して、粉状のホタテ貝殻粉砕物は、粒径0.106mm~0.005mm、中粒のホタテ貝殻粉砕物は、粒径2mm~0.005mm、荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm~0.1mmである。
即ち、実験では、山砂の粒径よりも小さい粒径のホタテ貝殻粉砕物を供給しているため、山砂の粒子間にホタテ貝殻粉砕物が入り込んで、山砂の粒子間の結合がより強固になり、支持強度の大きい土壌となったものと推測される。
In addition, mountain sand has a particle size of 5 mm to 0.125 mm, whereas powdery crushed scallop shells have a particle size of 0.106 mm to 0.005 mm, and medium-grain crushed scallop shells have a particle size of 2 mm to 0.005 mm, and coarse-grained (fragment-like) crushed scallop shells have a particle size of 10 mm to 0.1 mm.
That is, in the experiment, since the pulverized scallop shells having a particle size smaller than that of the mountain sand were supplied, the pulverized scallop shells entered between the particles of the mountain sand, and the bonding between the particles of the mountain sand became stronger. It is presumed that the soil became firm and had a large supporting strength.
また、赤土は、粒径0.074mm~0.005mmであるのに対して、粉状のホタテ貝殻粉砕物は、粒径0.106mm~0.005mm、中粒のホタテ貝殻粉砕物は、粒径2mm~0.005mm、荒粒(欠片状)のホタテ貝殻粉砕物は、粒径10mm~0.1mmである。 In addition, while red clay has a particle size of 0.074 mm to 0.005 mm, powdery crushed scallop shells have a particle size of 0.106 mm to 0.005 mm. The crushed scallop shells having a diameter of 2 mm to 0.005 mm and coarse grains (fragments) have a particle size of 10 mm to 0.1 mm.
即ち、試験体「赤土+帆(粉)」は、赤土の土粒子の粒径と粉状のホタテ貝殻粉砕物の粉粒子の粒径とが対応した大きさである。言い換えれば、赤土の土粒子の粒径と粉状のホタテ貝殻粉砕物の粉粒子の粒径とがほぼ同じである割合が大きい(高い)ので、粒子間の微小間隔の均等化が図られ、この均等化した粒子間の微小間隔に鉱物化反応による炭酸塩が析出されて硬化することによって、赤土全体が一体となって固化し、支持強度の著しく大きい土壌となったものと考えられる。
即ち、実験から、土壌の土粒子の大きさに対応した大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することにより、土壌の支持強度を向上できることがわかった。
That is, the test sample "red clay + sail (powder)" has a size corresponding to the particle size of the red clay soil particles and the powder particle size of the pulverized scallop shell powder. In other words, since the particle size of the red soil particles and the particle size of the powder particles of the pulverized scallop shell are substantially the same (high), the minute intervals between the particles are equalized, It is thought that the mineralization reaction precipitated carbonates in the minute spaces between the equalized particles and hardened the red soil, solidifying the entire red soil as a whole and making the soil extremely strong.
That is, it was found from the experiment that the supporting strength of the soil can be improved by supplying the crushed scallop shells and microorganisms of a size corresponding to the size of the soil particles of the soil.
また、実験で用いた粉状のホタテ貝殻粉砕物は、粒径が0.106mm~0.005mmであり、中粒のホタテ貝殻粉砕物や荒粒(欠片状)のホタテ貝殻粉砕物と比べて、赤土の粒径の上限0.074mmよりも小さい粒径の粉を多く含んでいると推測されるため、赤土の粒子間に粉状のホタテ貝殻粉砕物が入り込みやすくなり、赤土の粒子間の結合がより強固になることで、赤土全体が一体となって固化し、支持強度の著しく大きい土壌となったものと推測される。 In addition, the powdery scallop shell pulverized material used in the experiment has a particle size of 0.106 mm to 0.005 mm, compared to medium-grain pulverized scallop shells and coarse-grained (piece-like) pulverized scallop shells. , Since it is presumed that it contains a large amount of powder with a particle size smaller than the upper limit of 0.074 mm of the red soil particle size, the powdery scallop shell crushed product easily enters between the red soil particles, It is presumed that as the bond became stronger, the entire red soil solidified as one, resulting in a soil with significantly greater bearing strength.
特に、土壌に、土壌の土粒子の大きさに対応した大きさの未焼成貝殻粉砕物と微生物とを供給する方法を採用することにより、支持強度を著しく向上できる顕著に優れた土壌改良効果が得られることがわかった。
例えば、粒径0.074mm~0.005mm程度の粘土である赤土に、粒径が0.106mm~0.005mmの粉状のホタテ貝殻粉砕物を供給すること、即ち、土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを赤土(土壌)に供給することによって、赤土の粒子間に粉状のホタテ貝殻粉砕物が入り込みやすくなり、赤土の粒子間の結合がより強固になることから、支持強度を著しく向上できる顕著に優れた土壌改良効果が得られることがわかった。
In particular, by adopting a method of supplying unfired crushed shells of a size corresponding to the size of the soil particles of the soil and microorganisms to the soil, a remarkably excellent soil improvement effect that can significantly improve the supporting strength can be obtained. found to be obtained.
For example, red soil, which is clay with a particle size of about 0.074 mm to 0.005 mm, is supplied with a powdery scallop shell crushed product with a particle size of 0.106 mm to 0.005 mm, that is, soil particles of soil By supplying crushed scallop shells smaller than the diameter and microorganisms to the red clay (soil), the powdery crushed scallop shells are more likely to enter between the red clay particles, and the bonds between the red clay particles are stronger. Therefore, it was found that a remarkably excellent soil improvement effect that can significantly improve the bearing strength can be obtained.
一方で、試験体「赤土+帆(中)」や試験体「赤土+帆(荒)」では、赤土の土粒子の粒径とホタテ貝殻粉砕物の径とが大きく異なる。
即ち、赤土とホタテ貝殻粉砕物との間の間隔が大きくてばらばらな配置となってしまう。このため、赤土とホタテ貝殻粉砕物との結合が弱くなり、支持強度が得られなかったものと考えられる。
On the other hand, in the "red clay + sail (medium)" and "red clay + sail (coarse)" specimens, the particle size of the red soil particles differs greatly from the diameter of the pulverized scallop shells.
In other words, the gap between the red clay and the pulverized scallop shells is large, resulting in a disjointed arrangement. Therefore, it is considered that the bond between the red clay and the pulverized scallop shells was weakened, and the supporting strength was not obtained.
従って、実験から、土壌の土粒子の粒径以下の大きさのホタテ貝殻粉砕物と微生物とを土壌に供給することにより、土壌の支持強度を向上できることがわかった。 Therefore, from experiments, it was found that the supporting strength of soil can be improved by supplying ground scallop shells having a size equal to or smaller than the particle diameter of soil particles and microorganisms to soil.
換言すれば、土壌が粘土質の土壌である場合、当該粘土質の土壌に粉状のホタテ貝殻粉砕物と微生物とを供給することによって、粘土質の土壌の支持強度を向上でき、土壌改良効果が得られることがわかった。 In other words, when the soil is clayey soil, by supplying the powdery scallop shell crushed product and microorganisms to the clayey soil, the bearing strength of the clayey soil can be improved, and the soil improvement effect was found to be obtained.
1 法面保護層、2 法面、4 貝殻粉砕物固化層、5 土砂層。
1 slope protection layer, 2 slope, 4 crushed shell material solidified layer, 5 earth and sand layer.
Claims (4)
The slope is a slope formed by an embankment, and the embankment is constructed by alternately stacking a solidified layer of pulverized shells formed by supplying pulverized shells and microorganisms and a layer of earth and sand. The slope protection method according to claim 2 or 3, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069481A JP7175827B2 (en) | 2019-03-30 | 2019-03-30 | Slope protection layer and slope protection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069481A JP7175827B2 (en) | 2019-03-30 | 2019-03-30 | Slope protection layer and slope protection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020165269A JP2020165269A (en) | 2020-10-08 |
JP7175827B2 true JP7175827B2 (en) | 2022-11-21 |
Family
ID=72714873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019069481A Active JP7175827B2 (en) | 2019-03-30 | 2019-03-30 | Slope protection layer and slope protection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7175827B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7121683B2 (en) * | 2019-03-30 | 2022-08-18 | 株式会社熊谷組 | Solidified pulverized shells, method for producing solidified pulverized shells, and solidified pulverized shells formulation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005042343A (en) | 2003-07-24 | 2005-02-17 | Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport | Compound banking |
JP2006169940A (en) | 2004-11-17 | 2006-06-29 | Hokkaido Univ | Soil improving method and grout used for soil improvement method |
JP2007074906A (en) | 2005-09-09 | 2007-03-29 | Toppan Printing Co Ltd | Shellfishes having ic tag, system for administrating shellfish and method for attaching ic tag to shellfish |
JP3199107U (en) | 2015-05-26 | 2015-08-06 | 日本富升環保開発 有限会社 | Solution preparation equipment |
JP2017055693A (en) | 2015-09-16 | 2017-03-23 | 株式会社サン・シャレーヌ | Pearl ball and its manufacturing method |
JP6489569B1 (en) | 2018-06-29 | 2019-03-27 | 強化土エンジニヤリング株式会社 | Ground improvement method |
JP2019119637A (en) | 2017-12-28 | 2019-07-22 | バイオシェル株式会社 | Calcium-based burned product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5426004A (en) * | 1977-07-28 | 1979-02-27 | Kawasaki Steel Co | Method of stabilization construction of ground normal plane that use blast furnace granulated slag |
JPS61229023A (en) * | 1985-04-04 | 1986-10-13 | Nippon Doro Kodan | Method of building banking employing soft ground |
-
2019
- 2019-03-30 JP JP2019069481A patent/JP7175827B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005042343A (en) | 2003-07-24 | 2005-02-17 | Kanto Regional Development Bureau Ministry Of Land Infrastructure & Transport | Compound banking |
JP2006169940A (en) | 2004-11-17 | 2006-06-29 | Hokkaido Univ | Soil improving method and grout used for soil improvement method |
JP2007074906A (en) | 2005-09-09 | 2007-03-29 | Toppan Printing Co Ltd | Shellfishes having ic tag, system for administrating shellfish and method for attaching ic tag to shellfish |
JP3199107U (en) | 2015-05-26 | 2015-08-06 | 日本富升環保開発 有限会社 | Solution preparation equipment |
JP2017055693A (en) | 2015-09-16 | 2017-03-23 | 株式会社サン・シャレーヌ | Pearl ball and its manufacturing method |
JP2019119637A (en) | 2017-12-28 | 2019-07-22 | バイオシェル株式会社 | Calcium-based burned product |
JP6489569B1 (en) | 2018-06-29 | 2019-03-27 | 強化土エンジニヤリング株式会社 | Ground improvement method |
Also Published As
Publication number | Publication date |
---|---|
JP2020165269A (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dhami et al. | Biofilm and microbial applications in biomineralized concrete | |
Campbell et al. | Geochemical negative emissions technologies: Part I. Review | |
CN101666129B (en) | Construction waste sintering brick and production method thereof | |
US20080179253A1 (en) | Porous Particulate Material For Fluid Treatment, Cementitious Composition and Method of Manufacture Thereof | |
JP7175827B2 (en) | Slope protection layer and slope protection method | |
CN100400442C (en) | Closure material and treatment method for on-site stabilizing contaminated bottom mud | |
Kushwaha et al. | Stabilization of Red mud using eko soil enzyme for highway embankment | |
JP5070667B2 (en) | Underwater environment improvement method | |
JP6779069B2 (en) | Method for solidifying modified materials such as soft soil and residual soil | |
JP2000157094A (en) | Stone material for sinking and disposing in water and its production | |
Mahabub et al. | Unlocking the potential of microbes: biocementation technology for mine tailings restoration—a comprehensive review | |
JP5799585B2 (en) | Manufacturing method of artificial stone | |
JP7175828B2 (en) | Shell pile and ground improvement method | |
CN105237310B (en) | A plant unboiled water cement concrete plant culture | |
JP7273593B2 (en) | Soil improvement method | |
JP4150283B2 (en) | Bottom coating material | |
JP3729160B2 (en) | Environmental improvement method and environmental improvement materials for underwater or beach | |
CN103819065B (en) | Method for restoring polluted bottom mud by using waste concrete powder | |
EP3442672B1 (en) | Method for manufacturing a mineral sealing structure | |
KR101392275B1 (en) | Composition for solidification of the field soil and the process for preparing the same | |
CN103951035B (en) | A kind of waters improvement particulate material and preparation and application thereof | |
JP2013028941A (en) | Pavement structure and construction method using volcanic ash from mount shinmoedake | |
Christie et al. | Mineral commodity report 21–limestone, marble and dolomite | |
JP7121683B2 (en) | Solidified pulverized shells, method for producing solidified pulverized shells, and solidified pulverized shells formulation | |
JP2009040661A (en) | Back filling, back filling material for under water work using granulated blast furnace slag and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7175827 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |