JP6079986B2 - How to disassemble sludge and turn it into sand - Google Patents

How to disassemble sludge and turn it into sand Download PDF

Info

Publication number
JP6079986B2
JP6079986B2 JP2012117804A JP2012117804A JP6079986B2 JP 6079986 B2 JP6079986 B2 JP 6079986B2 JP 2012117804 A JP2012117804 A JP 2012117804A JP 2012117804 A JP2012117804 A JP 2012117804A JP 6079986 B2 JP6079986 B2 JP 6079986B2
Authority
JP
Japan
Prior art keywords
iron
sludge
fulvic acid
block
fulvic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012117804A
Other languages
Japanese (ja)
Other versions
JP2013245118A (en
Inventor
大貴 古賀
大貴 古賀
Original Assignee
大貴 古賀
大貴 古賀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大貴 古賀, 大貴 古賀 filed Critical 大貴 古賀
Priority to JP2012117804A priority Critical patent/JP6079986B2/en
Publication of JP2013245118A publication Critical patent/JP2013245118A/en
Application granted granted Critical
Publication of JP6079986B2 publication Critical patent/JP6079986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、ヘドロ(汚濁底質)を分解して砂地化する方法に関する。 The present invention relates to a method for decomposing sludge (polluted sediment) into sand .

河川の浄化や海の磯焼け防止等の水環境保全のためにフルボ酸鉄が使用されている(引用文献1、2参照)。フルボ酸は腐植物質の一形態であり、長い年月をかけて植物の葉や茎の部分が腐食して出来た有機成分を腐植物質と言い、例えば、森に永い歳月を経て堆積した腐葉土や好気条件下で腐熟された完熟堆肥がそれである。この腐植物質には酸により沈殿する分画をフミン酸と呼び、沈殿しない分画をフルボ酸と呼び、このフルボ酸と鉄(Fe)が反応してフルボ酸鉄ができる。   Iron fulvic acid is used for water environment conservation such as purification of rivers and prevention of sea burning (see cited references 1 and 2). Fulvic acid is a form of humic substance, and organic components that are formed by corroding the leaves and stems of plants over a long period of time are called humic substances. For example, humic soil deposited in forests over a long period of time It is a mature compost that has been ripened under aerobic conditions. In this humic substance, the fraction that precipitates with an acid is called humic acid, and the fraction that does not precipitate is called fulvic acid, and this fulvic acid reacts with iron (Fe) to produce iron fulvic acid.

鉄イオンを含む製紙スラッジに汚泥(下水汚泥又は食品廃棄物等)と発酵菌(キノコ菌、放線菌等)を混合し、発酵処理した物や又は木屑と汚泥、鉄イオン含有物(ポリ硫酸第二鉄、塩化第二鉄、シリカー鉄系無機凝集剤等)、発酵菌を混合し、その発酵途中に光フェントン反応により、フルボ酸鉄含有物質を生成する。この物質より微量のフルボ酸鉄が溶出し、海や河川に流出することによって、生態系を活性化し海や河川の水質改善を図ることが可能になる。   Paper sludge containing iron ions is mixed with sludge (sewage sludge or food waste, etc.) and fermenting bacteria (mushrooms, actinomycetes, etc.), fermented or wood chips and sludge, iron ion containing substances (polysulfuric acid Ferric acid, ferric chloride, silica-iron inorganic flocculant, etc.) and fermenting bacteria are mixed, and an iron fulvic acid-containing substance is produced by the photo-Fenton reaction during the fermentation. When a small amount of iron fulvic acid is eluted from this substance and flows into the sea or river, it becomes possible to activate the ecosystem and improve the water quality of the sea or river.

フルボ酸鉄を溶出する形態として、前記特許文献1には、二価鉄含有物質と腐植含有物質をココナッツ繊維からなる袋材に詰めた水域環境保全材料が記載されている。また、前記特許文献2には、ダム湖底に堆積した腐植物等の堆積物を採取して固形化した固形有機態と、二価鉄含有物質とを収納したイオン溶出性収容体が記載されている。このイオン溶出性収容体は、透水性のココナッツヤシ繊維を袋にした中袋と、この中袋の外側を覆うヤシネットとの二重構造の袋体であり、中袋の中に固形有機態と鉄含有物質を所定量投入し、開口部を封止したものである。   As a form for eluting fulvic acid iron, Patent Document 1 describes a water environment conservation material in which a divalent iron-containing substance and a humus-containing substance are packed in a bag made of coconut fiber. Patent Document 2 describes an ion-eluting container that contains a solid organic state obtained by collecting and solidifying sediments such as humus deposited on the bottom of a dam lake, and a divalent iron-containing substance. Yes. This ion-eluting container is a double-structured bag body consisting of a water-permeable coconut palm fiber bag and a palm net covering the outside of the bag. A predetermined amount of iron-containing material is charged and the opening is sealed.

特開2005−34140号公報JP 2005-34140 A 特開2010−110255号公報JP 2010-110255 A

前記特許文献に記載されている鉄イオン溶出体は、二価鉄含有物質が繊維からなる袋体に詰められていることから鉄イオンの溶出が早いので、寿命が短いという欠点があった。   The iron ion eluent described in the above-mentioned patent document has a drawback that the life of the iron ion elution body is short because the iron ion elution is quick because the divalent iron-containing substance is packed in a bag body made of fibers.

そこで、本発明は、フルボ酸鉄の溶出を長期間にわたって維持することによって河川の浄化、海の磯焼け防止、魚の養殖場の浄化等の水環境を保全することが可能なフルボ酸鉄を溶出する水環境浄化用コンクリートブロックによりヘドロを分解して砂地化する方法を提供するものである。 Therefore, the present invention elutes fulvic acid iron that can preserve the water environment such as purification of rivers, prevention of sea urchin burning, and purification of fish farms by maintaining elution of iron fulvic acid over a long period of time. The present invention provides a method for decomposing sludge and converting it to sand using a concrete block for water environment purification.

本願請求項1の発明は、コンクリート100質量%に対してフルボ酸鉄を溶出するフルボ酸鉄含有資材を3質量%〜50質量%含み、前記フルボ酸鉄含有資材が腐植物質資材と放線菌が混合されて生成されたフルボ酸鉄含有資材であるとともにシリカー鉄系のPSIが混合されているコンクリートブロックをヘドロが堆積する場所に設置することを特徴とするヘドロを分解して砂地化する方法である。 The invention of claim 1, fulvic iron fulvic iron-containing material eluting 3% by mass to 50% seen including a against 100 wt% concrete, the fulvic iron-containing material is humic substances Materials and actinomycetes A method of disassembling sludge and converting it to sandy ground, wherein a concrete block which is an iron-containing fulvic acid-containing material and mixed with silica-iron-based PSI is installed in a place where the sludge accumulates It is.

本発明の水環境浄化用コンクリートブロックで使用するコンクリートは、骨材、セメント、水を混練した通常のコンクリートである。   The concrete used in the concrete block for water environment purification of the present invention is ordinary concrete in which aggregate, cement and water are kneaded.

本発明で使用するフルボ酸鉄含有資材は、公知の腐植物質(腐葉土、木屑、製紙スラッジ、ダム低土等)と鉄イオン物質を混合し、光フェントン反応により生成したフルボ酸鉄を含有する資材であればよく、特に限定されるものではない。   The material containing iron fulvic acid used in the present invention is a material containing iron fulvic acid produced by a photo-Fenton reaction by mixing a known humic substance (humus soil, wood chip, paper sludge, dam low soil, etc.) and an iron ion substance. There is no particular limitation as long as it is sufficient.

本発明で使用する鉄含有物質は、一般に市販されているポリ硫酸第二鉄、塩化第二鉄、シリカー鉄系凝集剤(PSI)の溶液状のもの又は鉄鋼スラグ等で、特に限定されるものではない。また、使い捨てカイロ中の鉄分、市販の鉄分も使用できる。   The iron-containing material used in the present invention is generally limited to commercially available polyferric sulfate, ferric chloride, silica-iron type flocculant (PSI) solution or steel slag, etc. is not. Moreover, the iron content in a disposable body warmer and a commercially available iron content can also be used.

フルボ酸鉄含有物質混合割合は、コンクリート100質量%に対して、フルボ酸鉄含有資材3質量%〜50質量%である。鉄含有物質は、水中にフルボ酸鉄を放出していく量があればよい。   The mixing ratio of the fulvic acid iron-containing substance is 3% by mass to 50% by mass of the fulvic acid iron-containing material with respect to 100% by mass of the concrete. The iron-containing substance only needs to have an amount that releases iron fulvic acid into water.

本発明のコンクリートブロックは、Feは酸化作用から守られるが、2cm(20,000μm)のコンクリートは 約60年で中性化するので、100μmのセメント被覆は約4ケ月で中性化され、フルボ酸鉄含有資材中の余剰のフルボ酸とFeが結合しやすい状態となる。   In the concrete block of the present invention, Fe is protected from oxidation, but 2 cm (20,000 μm) concrete is neutralized in about 60 years, so that a 100 μm cement coating is neutralized in about 4 months. The surplus fulvic acid in the iron oxide-containing material and Fe are easily bonded.

製造上、100〜2,000μmの範囲でコンクリート層が形成されているのでFeは順次6年ほどフルボ酸と反応して、フルボ酸鉄を放出することとなる。フルボ酸については、木片に付着させた放線菌などの微生物で順次生成される。   Since a concrete layer is formed in the range of 100 to 2,000 μm in production, Fe reacts with fulvic acid sequentially for about 6 years to release iron fulvic acid. Fulvic acid is sequentially produced by microorganisms such as actinomycetes attached to wood chips.

本発明の水環境浄化用コンクリートブロックは、ヘドロを、温度・酸素濃度(DO)、淡水・海水に関係なく、分解することが可能となる。ヘドロ分解後は、通常の微生物による浄化を継続することができる。   The concrete block for water environment purification of the present invention can decompose sludge regardless of temperature / oxygen concentration (DO), fresh water / seawater. After sludge degradation, purification by normal microorganisms can be continued.

また、本発明の水環境浄化用コンクリートブロックは、ヘドロ場所に投入するだけなので、非常に簡単な施工が可能となる。 Moreover, since the concrete block for water environment purification of this invention is only thrown into the sludge place, very simple construction is attained.

本発明の水環境浄化用コンクリートブロックの各種形状を示す斜視図である。It is a perspective view which shows the various shapes of the concrete block for water environment purification | cleaning of this invention. 本発明の水環境浄化用コンクリートブロックをヘドロが堆積する水路に敷設した直後と、2週間後の状態を示す写真である。It is a photograph which shows the state immediately after laying in the water channel where sludge accumulates the concrete block for water environment purification of this invention, and two weeks later. ヘドロが堆積する伊万里湾河口の干潟にブロックを設置し、約3週間後の状態を示す写真であり、(a)は本発明の、フルボ酸鉄資材を含有するコンクリートブロックの状態、(b)はフルボ酸鉄資材を含有しない普通コンクリートブロックの状態を示す。It is a photograph showing a state after about 3 weeks after installing a block on the tidal flat in the Imari Bay estuary where sludge accumulates, (a) is the state of the concrete block containing the fulvic acid iron material of the present invention, (b) Indicates the state of ordinary concrete blocks containing no fulvic acid iron material.

本発明のフルボ酸鉄資材を含有した水環境浄化用コンクリートブロック(以下単に「ブロック」という。)は、セメント、骨材、フルボ酸鉄資材、水を混合し、例えば平板状のブロックを形成する。ブロックは透水性がある。骨材に鉄鋼スラグを使用し、鉄分の補給をすることも出来る。 Water Environment purifying concrete blocks containing fulvic iron material of the present invention (hereinafter, simply referred to as "block".) Is cement, aggregate, fulvic iron materials, of water were mixed, for example, a flat block formation To do. The block is permeable. Steel slag can be used for the aggregate to supply iron.

ブロックの形状は、図1(a)に示す平板状のブロックや図1(b)に示す凹凸を有するブロックだけでなく、(c)に示すように、ブロックに底付きの穴部を形成し、その中にフルボ酸鉄資材を充填してキャップで塞いだ形状にし、ブロックは透水性があるので、穴部のフルボ酸鉄資材は適宜溶出し、浄化効果を発揮する。溶出量は、ブロックの透水性能により決定する。   The shape of the block is not only a flat block shown in FIG. 1 (a) or a block having irregularities shown in FIG. 1 (b), but also a hole with a bottom formed in the block as shown in (c). Since the fulvic acid material is filled with a cap and closed with a cap, and the block is permeable to water, the fulvic acid material in the hole is appropriately eluted and exhibits a purification effect. The amount of elution is determined by the water permeability of the block.

フルボ酸は長い年月をかけて植物の葉や茎の部分が腐食して出来た有機成分であるが、長い年月を短縮するために自然界で腐植物質を生成するために必要な放線菌・光合成細菌・バチルス菌などの自然界に存在する有用微生物群を添加し、空気を加えながら発酵させることで時間を短縮する。条件にもよるが約10日間で醗酵可能である。   Fulvic acid is an organic component produced by corroding the leaves and stems of plants over a long period of time. However, actinomycetes necessary to produce humic substances in nature to shorten the long years Add useful microorganisms that exist in nature such as photosynthetic bacteria and Bacillus bacteria, and ferment while adding air to reduce time. Depending on the conditions, it can be fermented in about 10 days.

本発明の実施例で使用するフルボ酸鉄資材は、フルボ酸を短期間に生成するために、木片チップに、下水汚泥又は食品工場汚泥と有用微生物(放線菌・光合成細菌・バチルス菌・キノコ菌など)を混合し、発酵処理(20日間)して製造され、これに可溶性の鉄を含んだシリカー鉄系のPSIを混合し、太陽光の当る所に20日程度放置し、フルボ酸鉄を生成した資材である。   In order to produce fulvic acid in a short period of time, the fulvic acid iron material used in the examples of the present invention is made of wood chip, sewage sludge or food factory sludge and useful microorganisms (actinomycetes, photosynthetic bacteria, Bacillus bacteria, mushrooms Etc.), fermented (20 days), and mixed with silica-iron-based PSI containing soluble iron, and left in a place exposed to sunlight for about 20 days. It is the generated material.

<ブロックからのフルボ酸および鉄イオン溶出試験結果>
試験条件
フルボ酸鉄資材含有(10質量%)ブロック:87.5g
水道水:400cc
期間:33日間
検査機関: 株式会社 日本食品機能分析研究所
検査水:250ml 持ち込み提出
試験結果
フルボ酸 : 273mg/L 全有機炭素計測定法(TOC)
可溶性鉄 : 3.1ppb ICP−MS測定法
フミン酸 : 1mg/L 以下
<Results of elution test of fulvic acid and iron ion from block>
Test condition Iron fulvic acid material content (10 mass%) block: 87.5g
Tap water: 400cc
Period: 33 days
Inspection organization: Japan Food Functional Analysis Laboratory Co., Ltd.
Inspection water: 250ml
Test results
Fulvic acid: 273 mg / L Total organic carbon meter measurement method (TOC)
Soluble iron: 3.1 ppb ICP-MS measurement method
Humic acid: 1 mg / L or less

以上により、ブロックから潤沢にフルボ酸が溶出し、また、可溶性鉄も浄化に必要とされる0.1ppb以上の充分な量溶出していることが判明し、フルボ酸鉄が生成されていることが判明した。   From the above, it was found that fulvic acid was eluted from the block abundantly, and that soluble iron was also eluted in a sufficient amount of 0.1 ppb or more required for purification, and fulvic acid iron was produced. There was found.

<試験例1>
本実施例のブロックと比較例のブロックの配合比率、ヘドロ分解の有効性の結果は表1に示すとおりである。
表1に示されるとおり、実施例1〜3においてヘドロ分解に有効であることを確認することができた。
<Test Example 1>
Table 1 shows the blending ratio of the block of this example and the block of the comparative example and the results of the effectiveness of sludge decomposition.
As shown in Table 1, it was confirmed that Examples 1 to 3 were effective for sludge decomposition.

<試験例2>
底面にヘドロが堆積する水路(幅1.4m)にブロック(横19cm、縦39cm、高さ9cm)を長さ4.68m 幅1.0mに敷設し、敷設した直後と、2週間の状態を観察した。
図2の写真に示されるように、底面のヘドロが分解・分離され、下地のコンクリートが見えるようになっており、砂地化していることから、浄化されていることが確認された。
<Test Example 2>
A block (width: 19 cm, height: 39 cm, height: 9 cm) is laid in a water channel (width: 1.4 m) where sludge accumulates on the bottom, length: 4.68 m, width: 1.0 m, and immediately after laying, Observed.
As shown in the photograph in FIG. 2, the sludge on the bottom surface was decomposed and separated, and the underlying concrete was visible, and it was confirmed that it was cleaned because it was sandy.

<試験例3>
ヘドロが堆積する伊万里湾河口の干潟に普通コンクリートブロックとフルボ酸鉄資材を含有するブロックを設置した(ブロックはいずれも、横20cm、縦20cm、高さ6cmである。)。約3週間後の状態は図2に示すとおりであった。
<Test Example 3>
An ordinary concrete block and a block containing iron fulvic acid material were installed on the tidal flat in the Imari Bay estuary where sludge accumulates (each block is 20 cm wide, 20 cm long, and 6 cm high). The state after about 3 weeks was as shown in FIG.

図3(b)に示す普通コンクリートブロックはヘドロ分解がないためヘドロ内に沈み込んでいるのに対して、図3(a)に示すフルボ酸鉄資材を含有するブロックはヘドロ分解をしているため周りのヘドロが減少し、砂地化しているため、ヘドロに埋没していない状況が確認された。   The ordinary concrete block shown in FIG. 3B sinks in the sludge because there is no sludge decomposition, whereas the block containing the fulvic acid iron material shown in FIG. 3A has sludge decomposition. As a result, the surrounding sludge has decreased and sandy ground has been confirmed.

1:ブロック
2:ヘドロ
3:砂
1: Block 2: Sludge 3: Sand

Claims (1)

コンクリート100質量%に対してフルボ酸鉄を溶出するフルボ酸鉄含有資材を3質量%〜50質量%含み、前記フルボ酸鉄含有資材が腐植物質資材と放線菌が混合されて生成されたフルボ酸鉄含有資材であるとともにシリカー鉄系のPSIが混合されているコンクリートブロックをヘドロが堆積する場所に設置することを特徴とするヘドロを分解して砂地化する方法 Concrete 100 wt% fulvic iron 3 wt% to 50 wt% observed containing fulvic iron-containing material eluting with respect, the fulvic iron-containing material is produced by mixing the humic substances Materials and actinomycetes fulvic A method for disassembling sludge and converting it into sandy ground, characterized in that a concrete block which is a material containing acid iron and mixed with silica-iron-based PSI is installed in a place where the sludge accumulates
JP2012117804A 2012-05-23 2012-05-23 How to disassemble sludge and turn it into sand Active JP6079986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117804A JP6079986B2 (en) 2012-05-23 2012-05-23 How to disassemble sludge and turn it into sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117804A JP6079986B2 (en) 2012-05-23 2012-05-23 How to disassemble sludge and turn it into sand

Publications (2)

Publication Number Publication Date
JP2013245118A JP2013245118A (en) 2013-12-09
JP6079986B2 true JP6079986B2 (en) 2017-02-15

Family

ID=49845182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117804A Active JP6079986B2 (en) 2012-05-23 2012-05-23 How to disassemble sludge and turn it into sand

Country Status (1)

Country Link
JP (1) JP6079986B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065684B2 (en) * 2018-04-27 2022-05-12 デンカ株式会社 Rocky-shore shore prevention material
KR102274556B1 (en) * 2021-02-02 2021-07-07 허교 Composition for removing harmful algae and block manufactured using the same
WO2024189693A1 (en) * 2023-03-10 2024-09-19 株式会社朝日テック Covering material for underwater structure, underwater structure, and manufacturing method for covering material-equipped underwater structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328439B2 (en) * 1994-09-06 2002-09-24 活生株式会社 Composition for fluid treatment agent
JP3118220B2 (en) * 1998-06-30 2000-12-18 社団法人日本農業集落排水協会 Organic wastewater biological treatment method
JP3861257B2 (en) * 1999-08-26 2006-12-20 独立行政法人科学技術振興機構 Artificial reef and manufacturing method thereof
JP2002167258A (en) * 2000-11-27 2002-06-11 Tama Ogasawara Concrete structure for hydrosphere
JP3829140B2 (en) * 2003-07-02 2006-10-04 西松建設株式会社 How to repair salmon burn
JP5258171B2 (en) * 2006-03-10 2013-08-07 幹生 杉本 Iron ion eluent
AU2007313630B2 (en) * 2006-10-31 2013-07-04 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
JP2008194662A (en) * 2007-02-08 2008-08-28 Tatsuhisa Mitoma Method for treating organic waste water with humus material, light and divalent iron ion
JP2009254243A (en) * 2008-04-14 2009-11-05 Eco Green:Kk Environmental preservation material for water area, method for producing the material, and method for composting the material
JP2010104362A (en) * 2008-10-02 2010-05-13 Komiya Kensetsu:Kk Hardened material for creating seaweed bed
JP5180106B2 (en) * 2009-01-16 2013-04-10 株式会社山隆組 The sludge deodorization and solidification method, the water purification solid produced by the sludge deodorization and solidification method, and the regenerated lower layer roadbed material
JP2011062689A (en) * 2009-08-17 2011-03-31 Toshiyuki Takahashi Method of decomposing and deodorizing sludge odor using metal oxide mixed composition and method of decomposing sludge
JP2011050934A (en) * 2009-09-04 2011-03-17 Nihon Technical Development Center Co Ltd Solid matter for water purification and marine resource growth
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
JP5921022B2 (en) * 2010-10-12 2016-05-24 太平洋セメント株式会社 Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same

Also Published As

Publication number Publication date
JP2013245118A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
JP4719316B2 (en) How to backfill the Ogikubo land
Randall et al. Bioretention gardens for improved nutrient removal
Jing et al. Practice of integrated system of biofilter and constructed wetland in highly polluted surface water treatment
Li et al. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff
JP6079986B2 (en) How to disassemble sludge and turn it into sand
CN106477835B (en) A kind of modified barrier of the in-situ chemical of high pollution bed mud and application
Bwire et al. Use of vetiver grass constructed wetland for treatment of leachate
CN111357609A (en) Sponge urban formula engineering soil and bioretention system
JP2010047645A (en) Water-retaining solidifying and conditioning agent for soil
Quadra et al. Nutrient Pollution
Wen et al. Effect of modified basic oxygen furnace slag on the controlled release of nitrate nitrogen and the functional microbial community in soil
Xu et al. Influence of earthworm Eisenia fetida on Iris pseudacorus's photosynthetic characteristics, evapotranspiration losses and purifying capacity in constructed wetland systems
Pulikova et al. Nitrogen Cycling Processes in Urban Soils: Stocks, Fluxes, and Microbial Transformations
JP5316492B2 (en) Algae growth suppression method
Liu et al. Effects of different soil amendments on dredged sediment improvement and impact assessment on reed planting
Hirschman et al. Performance enhancing devices for stormwater best management practices
Choi et al. A mesocosm study on biogeochemical role of rice paddy soils in controlling water chemistry and nitrate attenuation during infiltration
JP2009011947A (en) Purification ground and method for soil saturation water
Sushil Performance Evaluation of Reed Grass (Phragmites karka) in Constructed Reed Bed System (CRBs) on Domestic sludge, Ujjain city, India
Barron et al. Determining the effectiveness of best management practices to reduce nutrient flows in urban drains managed by the Water Corporation
Carr Investigation into phosphorus removal by iron ochre for the potential treatment of aquatic phosphorus pollution
Hauda Adsorption Media for the Removal of Phosphorus in Subsurface Drainage for Michigan Corn Fields
Nepfumbada The synthesis of calcium phosphate from municipal wastewater and its application for the removal of metals from acidic effluents
Kumar et al. Water Pollution: Causes, Impacts, Solutions and Treatment Technologies
Wu The treatment of phosphogypsum leachate is more urgent than phosphogypsum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R150 Certificate of patent or registration of utility model

Ref document number: 6079986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250