JP2020165110A - Aseismatic ceiling structure - Google Patents

Aseismatic ceiling structure Download PDF

Info

Publication number
JP2020165110A
JP2020165110A JP2019064028A JP2019064028A JP2020165110A JP 2020165110 A JP2020165110 A JP 2020165110A JP 2019064028 A JP2019064028 A JP 2019064028A JP 2019064028 A JP2019064028 A JP 2019064028A JP 2020165110 A JP2020165110 A JP 2020165110A
Authority
JP
Japan
Prior art keywords
ceiling
unit
tension
suspended
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064028A
Other languages
Japanese (ja)
Other versions
JP7257844B2 (en
Inventor
和久 山里
Kazuhisa Yamasato
和久 山里
玲子 諸星
Reiko Morohoshi
玲子 諸星
賢 原山
Ken Harayama
賢 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2019064028A priority Critical patent/JP7257844B2/en
Publication of JP2020165110A publication Critical patent/JP2020165110A/en
Application granted granted Critical
Publication of JP7257844B2 publication Critical patent/JP7257844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

To provide an aseismatic ceiling structure having a high degree of freedom of facility layout, while realizing a low cost and light weight ceiling structure with high bearing rigidity, even for a ceiling using a ceiling finishing material poor in in-plane rigidity.SOLUTION: An aseismatic ceiling structure has a suspended ceiling unit 2 suspended from an upper structure 11 of a building skeleton via a suspending member 4, and a tension unit 3 joined to an upper part of the suspended ceiling unit 2 and bearing a horizontal load of the suspended ceiling unit 2. The tension unit 3 has tension materials 31 extendedly arranged in a horizontal direction longitudinally and laterally, and end part braces 32B restraining end parts of the tension material 31 to the building skeleton. Crossing parts of the longitudinally and laterally extended tension materials 31 provide the aseismatic ceiling structure of a constitution provided in an optionally settable state without installing separate braces in an attic of a certain span as a restraining point against a horizontal force.SELECTED DRAWING: Figure 2

Description

本発明は、耐震天井構造に関する。 The present invention relates to seismic ceiling structures.

従来、例えば学校、病院、生産施設、体育館、プール、空港ターミナルビル、オフィスビル、劇場、シネコン等の建物の天井として、吊り天井が多用されている。このような吊り天井は、水平の一方向に所定の間隔をあけて並設される複数の野縁と、野縁に直交し、水平の他方向に所定の間隔をあけて並設され、複数の野縁に一体に接続して設けられる複数の野縁受け材と、下端を野縁受け材に接続し、上端を上階の床材等の上部構造(建物躯体)に固着して配設される複数の吊りボルト(吊り部材)と、野縁の下面にビス留めなどによって一体に取り付けられ、下階の天井面を形成する天井パネルと、を備えて構成されている。 Conventionally, suspended ceilings are often used as ceilings of buildings such as schools, hospitals, production facilities, gymnasiums, swimming pools, airport terminal buildings, office buildings, theaters, and cine-cons. Such suspended ceilings are arranged in parallel with a plurality of field edges arranged side by side at a predetermined interval in one horizontal direction, and a plurality of field edges orthogonal to the field edge and arranged side by side with a predetermined interval in the other horizontal direction. Multiple field edge receiving materials that are integrally connected to the field edge of the building, and the lower end is connected to the field edge receiving material, and the upper end is fixed to the upper structure (building frame) such as the floor material on the upper floor. It is configured to include a plurality of hanging bolts (hanging members) to be formed, and a ceiling panel that is integrally attached to the lower surface of the field edge by screwing or the like to form a ceiling surface on the lower floor.

一方、このように野縁及び野縁受け材の天井下地と天井パネルを吊り部材で吊り下げ支持してなる吊り天井は、地震時に作用する水平方向の加速度を受けて横揺れが発生する。天井パネルは、建物躯体と構造上別々の挙動となり、横揺れが増幅する傾向にあるため、天井パネルが壁や、柱、梁などの建物躯体に衝突して破損し、脱落が生じるおそれがあった。 On the other hand, the suspended ceiling formed by suspending and supporting the ceiling base of the field edge and the field edge receiving material and the ceiling panel with a hanging member is subject to horizontal acceleration acting during an earthquake and causes rolling. The ceiling panel behaves differently from the building skeleton due to its structure, and rolling tends to be amplified.Therefore, the ceiling panel may collide with the building skeleton such as walls, columns, and beams, and may be damaged and fall off. It was.

このような吊り天井の脱落を防止するために、耐震部材として斜め部材を設置する方法や国土交通省告示第791号に記載される天井周囲に地震力を負担する壁等を配置する方法が知られている。
その他の例として、例えば特許文献1に示すような、天井パネルの下方に且つ天井パネルに沿って横方向に配設された略棒状の引張材を備え、この引張材を、両端部をそれぞれ建物躯体に接続して配設するとともに、両端部の間の中間部を天井パネルの下方から天井パネル及び/又は野縁に接続固定手段で接続固定して配設することで天井パネルと建物躯体を同調させて、天井パネルの耐震性能を高めた耐震天井構造や吊り天井ではないが支柱と梁で構成されたぶどう棚に直接天井を留め付ける直天井が知られている。
In order to prevent such suspended ceilings from falling off, it is known how to install diagonal members as seismic members and how to place walls that bear seismic force around the ceilings described in Notification No. 791 of the Ministry of Land, Infrastructure, Transport and Tourism. Has been done.
As another example, for example, as shown in Patent Document 1, a substantially rod-shaped tension material is provided below the ceiling panel and laterally arranged along the ceiling panel, and this tension material is used to build both ends of the building. The ceiling panel and the building skeleton are arranged by connecting to the skeleton and connecting and fixing the middle part between both ends to the ceiling panel and / or the field edge from below the ceiling panel by connecting and fixing means. There are known seismic ceiling structures that enhance the seismic performance of ceiling panels by synchronizing them, and straight ceilings that are not suspended ceilings but directly fasten to a vine shelf composed of columns and beams.

特開2013−177801号公報Japanese Unexamined Patent Publication No. 2013-177801

石膏ボードやケイカル板等のボード系天井材を用いた吊り天井は、天井パネルの面内剛性が高いため、天井パネルの面内方向の加速度に対して剛床として一体で挙動する。このため、耐震部材として斜め部材を設置する方法や国土交通省告示第791号に記載される天井周囲に地震力を負担する壁等を配置する方法等で、天井の耐震化を可能とするが、石膏ボードやケイカル板等のボード系天井材は、吸湿により母材耐力が低下する特性があり、湿潤環境の屋外軒天井や屋内プール、温浴施設等の場合には、吸湿による母材耐力の変化が生じない金属等の素材を用いたパネルやスパンドレル、バスリブ等の天井仕上げ材を用いる場合が多い。 Suspended ceilings using board-based ceiling materials such as gypsum board and caucal board have high in-plane rigidity of the ceiling panel, and therefore behave integrally as a rigid floor with respect to in-plane acceleration of the ceiling panel. For this reason, it is possible to make the ceiling earthquake-resistant by installing an oblique member as an earthquake-resistant member or by arranging a wall or the like that bears the seismic force around the ceiling described in Notification No. 791 of the Ministry of Land, Infrastructure, Transport and Tourism. Board-based ceiling materials such as gypsum board and caucal board have the property that the base material strength decreases due to moisture absorption, and in the case of outdoor eaves ceilings, indoor pools, hot bath facilities, etc. in moist environments, the base material strength due to moisture absorption In many cases, panels made of materials such as metal that do not change, and ceiling finishing materials such as spandrel and bath ribs are used.

また、天井パネルの下面に引張材を配置して耐震性をもたせた特許文献1のような構造の場合にも、ボード系天井板の面内剛性に基づく耐震天井の構造であるため、同様に吸湿により母材耐力が低下する特性を有する。 Further, even in the case of a structure as in Patent Document 1 in which a tension material is arranged on the lower surface of the ceiling panel to provide seismic resistance, the structure of the seismic ceiling is based on the in-plane rigidity of the board-based ceiling plate. It has the property that the strength of the base material decreases due to moisture absorption.

さらに、金属等の素材を用いたパネルやスパンドレル、バスリブ等の天井仕上げ材は、面内剛性に乏しいため、天井下地材の断面性能を高めて耐震化設計を行う必要がある。すなわち、天井下地材をぶどう棚で計画することになるが、支柱、梁、斜材等で構成する鋼製ぶどう棚は、コスト高や荷重増といった課題があり、その点で改善の余地があった。 Furthermore, since ceiling finishing materials such as panels, spandrel, and bath ribs made of materials such as metal have poor in-plane rigidity, it is necessary to improve the cross-sectional performance of the ceiling base material and perform seismic design. In other words, the ceiling base material will be planned with a grape shelf, but the steel grape shelf composed of columns, beams, diagonal materials, etc. has problems such as high cost and increased load, and there is room for improvement in that respect. It was.

本発明は、上述する問題点に鑑みてなされたもので、面内剛性の乏しい天井板を用いた天井について、低コストで軽量な耐震天井構造を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a low-cost and lightweight seismic-resistant ceiling structure for a ceiling using a ceiling plate having poor in-plane rigidity.

上記目的を達成するため、本発明に係る耐震天井構造は、吊り部材を介して建物躯体の上部構造に吊り下げ支持される吊り天井ユニットと、前記吊り天井ユニットの上部に接合され、前記吊り天井ユニットの水平荷重を負担する引張ユニットと、を備え、前記引張ユニットは、縦横に水平方向に延びて配列される引張材と、前記引張材の端部を前記建物躯体と拘束する第1ブレースと、を備え、前記縦横に延びる前記引張材の交差部は、水平力に対する拘束点として一定スパン間の天井裏に別のブレースを設置することなく任意に設定可能に設けられていることを特徴としている。 In order to achieve the above object, the seismic ceiling structure according to the present invention is joined to a suspended ceiling unit that is suspended and supported by an upper structure of a building skeleton via a suspension member and above the suspended ceiling unit. A tension unit that bears the horizontal load of the unit is provided, and the tension unit includes a tension material that extends vertically and horizontally and is arranged, and a first brace that restrains an end portion of the tension material from the building frame. The intersection of the tension members extending vertically and horizontally is provided as a restraint point against a horizontal force so as to be arbitrarily set without installing another brace behind the ceiling for a certain span. There is.

本発明に係る耐震天井構造では、吊り天井ユニットの上部に接合される引張材を水平方向に延在させて配置するとともに、その引張材がその端部を拘束する第1ブレースを介して上部構造に接合することで、吊り天井ユニットが建物躯体と一体に水平方向に挙動することとなり、吊り天井ユニットの揺れの増幅を抑制することができる。
すなわち、本発明による耐震天井構造では、地震時に作用する天井部の水平慣性力を確実に建物躯体に伝搬させることができ、従来のように天井部が建物の壁、柱、梁などの躯体に衝突することを防止する耐力剛性が高い天井構造を実現することができる。
In the seismic ceiling structure according to the present invention, a tension material to be joined to the upper part of the suspended ceiling unit is arranged so as to extend in the horizontal direction, and the tension material extends the upper part via a first brace that restrains the end portion thereof. By joining to, the suspended ceiling unit behaves in the horizontal direction integrally with the building frame, and the amplification of the shaking of the suspended ceiling unit can be suppressed.
That is, in the seismic ceiling structure according to the present invention, the horizontal inertial force of the ceiling portion acting at the time of an earthquake can be reliably propagated to the building skeleton, and the ceiling portion is applied to the skeleton such as a building wall, pillar, or beam as in the conventional case. It is possible to realize a ceiling structure with high bearing capacity and rigidity to prevent collision.

また、本発明では、引張ユニット、吊り天井ユニット共に鉛直支持は短スパンで配置された吊り材で負担する構造なので、鉛直方向の曲げ荷重を小さく設定でき、引張ユニットが負担する水平方向の大きな荷重については、金属の引張力で効率よく伝搬することができる。
そして、本発明では、引張ユニットとの接合部である水平力に対する拘束点間を任意に設定できるので、水平力に対する拘束点間を短スパンで構成すれば、天井下地材が負担する水平力による曲げ荷重は小さくなり、耐震部材を含めた吊り天井ユニットを低コストで軽量な軽量形鋼で構成する耐震天井の設計が可能となる。
Further, in the present invention, since the vertical support of both the tension unit and the suspended ceiling unit is borne by the suspension material arranged in a short span, the bending load in the vertical direction can be set small, and the large load in the horizontal direction borne by the tension unit can be set small. Can be efficiently propagated by the tensile force of the metal.
In the present invention, the distance between the restraint points for the horizontal force, which is the joint with the tension unit, can be arbitrarily set. Therefore, if the distance between the restraint points for the horizontal force is configured in a short span, the horizontal force borne by the ceiling base material is used. The bending load is reduced, and it is possible to design seismic ceilings in which the suspended ceiling unit including seismic members is made of lightweight and lightweight shaped steel at low cost.

また、本発明では、ブレースの配置は基本的に天井端部となるため、一定スパン間の天井裏について、設備レイアウトの自由度を高めることができ、設備改修の際にも柔軟に対応可能な耐震天井を実現することができる。 Further, in the present invention, since the brace is basically arranged at the ceiling end, the degree of freedom in equipment layout can be increased for the ceiling behind a certain span, and it is possible to flexibly respond to equipment repair. Seismic ceilings can be realized.

また、本発明に係る耐震天井構造は、前記引張材の長さ方向の中間部分に中間補剛となる第2ブレースが設けられていることを特徴としてもよい。 Further, the seismic ceiling structure according to the present invention may be characterized in that a second brace serving as an intermediate stiffener is provided in an intermediate portion of the tension material in the length direction.

この場合に、引張材の中間部分に中間補剛となる第2ブレースを設置することで引張材をより大きなスパンで構成することが可能となる。 In this case, by installing a second brace that serves as an intermediate stiffener in the intermediate portion of the tensile material, the tensile material can be configured with a larger span.

また、本発明に係る耐震天井構造は、前記吊り天井ユニットは、天井下地材と天井板とを有し、前記吊り部材を介して前記上部構造から鉛直方向に支持されるとともに、前記引張ユニットの水平力に対する拘束点に設置した下地材接合部材と緊結することで水平方向に支持されている。 Further, in the seismic ceiling structure according to the present invention, the suspended ceiling unit has a ceiling base material and a ceiling plate, is supported in the vertical direction from the upper structure via the suspended member, and is supported by the tension unit. It is supported in the horizontal direction by being tightly connected to the base material joining member installed at the restraint point against the horizontal force.

また、本発明に係る耐震天井構造は、前記引張材は、前記吊り天井ユニットに対して、水平縦方向の部材と水平横方向の部材の交点に設置した下地材接合部材を引張材連結板として接合されていてもよい。 Further, in the seismic ceiling structure according to the present invention, the tension material uses a base material joining member installed at the intersection of a member in the horizontal vertical direction and a member in the horizontal and horizontal direction as a tension material connecting plate with respect to the suspended ceiling unit. It may be joined.

本発明の耐震天井構造によれば、耐力剛性の高い天井構造を実現できるうえ、面内剛性の乏しい天井仕上材を用いた天井において、低コストで軽量な耐力剛性の高い天井構造を実現できる耐震天井を提供できる。 According to the seismic ceiling structure of the present invention, a ceiling structure having high withstand rigidity can be realized, and a low-cost, lightweight ceiling structure with high withstand rigidity can be realized in a ceiling using a ceiling finishing material having poor in-plane rigidity. Can provide a ceiling.

本発明の実施形態による耐震天井構造を示す斜視図であって、吊り天井ユニットと引張ユニットとを分解した図である。It is a perspective view which shows the seismic ceiling structure by embodiment of this invention, and is the figure which disassembled the suspended ceiling unit and the tension unit. 耐震天井構造を第2水平方向から見た側面図である。It is a side view of the seismic ceiling structure seen from the second horizontal direction. 引張材連結板に引張材の端部を接続した状態を下方からみた平面図である。It is a top view which looked at the state which connected the end of the tension material to the tension material connecting plate from the bottom. 図3に示すA−A線矢視図であって、引張材連結板の側面図である。FIG. 3 is a view taken along the line AA shown in FIG. 3, which is a side view of the tension material connecting plate. 引張ユニットの端部ブレースの正面図である。It is a front view of the end brace of a tension unit. 図5に示すB−B線矢視図であって、端部ブレースの側面図である。FIG. 5 is a view taken along the line BB shown in FIG. 5, which is a side view of the end brace. 引張ユニットの中間ブレースの正面図である。It is a front view of the intermediate brace of a tension unit. 図7に示すC−C線矢視図であって、端部ブレースの側面図である。FIG. 7 is a view taken along the line CC shown in FIG. 7, which is a side view of the end brace.

以下、本発明の実施形態による耐震天井構造について、図面に基づいて説明する。 Hereinafter, the seismic ceiling structure according to the embodiment of the present invention will be described with reference to the drawings.

本実施形態による耐震天井構造1は、図1及び図2に示すように、例えば湿潤環境の屋外軒天井や屋内プール、温浴施設等建物で、吸湿による母材耐力の変化が生じない金属等の素材を用いたパネルやスパンドレル、バスリブ等の天井仕上げ材を用いた天井に適用可能であり、新設の建物は勿論、既設の建物を耐震化する改修工事にも適用される。 As shown in FIGS. 1 and 2, the seismic ceiling structure 1 according to the present embodiment is, for example, in a building such as an outdoor eaves ceiling, an indoor pool, or a hot bath facility in a moist environment, such as a metal whose base material strength does not change due to moisture absorption. It can be applied to panels made of materials and ceilings made of ceiling finishing materials such as spandrel and bath ribs, and is applied not only to new buildings but also to renovation work to make existing buildings earthquake-resistant.

耐震天井構造1は、吊り部材4(図2参照)を介して建物躯体の上部構造11(図2参照)に吊り下げ支持される吊り天井ユニット2と、吊り天井ユニット2の上部に接合され、地震時に発生する天井の水平方向の慣性力を上部構造11に伝える引張ユニット3と、を備えている。
本実施形態において引張ユニット3は、平面視で一方向に長い長方形状の範囲に配置されている。この長手方向を第1水平方向X1とし、短手方向を第2水平方向X2として以下説明する。
The seismic ceiling structure 1 is joined to the suspended ceiling unit 2 which is suspended and supported by the superstructure 11 (see FIG. 2) of the building frame via the suspension member 4 (see FIG. 2) and the upper part of the suspended ceiling unit 2. It includes a tension unit 3 that transmits the horizontal inertial force of the ceiling generated at the time of an earthquake to the superstructure 11.
In the present embodiment, the tension unit 3 is arranged in a rectangular range that is long in one direction in a plan view. The longitudinal direction will be referred to as the first horizontal direction X1, and the lateral direction will be referred to as the second horizontal direction X2.

吊り天井ユニット2は、吊り部材4及び吊り部材4を介して上部構造11に吊り下げ支持される野縁受け材21と、野縁受け材21の上面に取り付けられ引張ユニット3と接合される野縁受け直交材30(下地材接合部材)と、野縁受け材21の下面に取り付けられる野縁22と、野縁22の下面に取り付けられた天井パネル23(天井板)と、を備えている。天井パネル23の下面は、天井面を形成している。ここで、上述した吊り部材4、野縁受け材21、野縁22、野縁受け直交材30、及びこれらの接合部金物で天井下地材を構成している。
すなわち、吊り天井ユニット2は、吊り部材4を介して上部構造11から鉛直方向に支持されるとともに、引張ユニット3の水平力に対する拘束点に設置した引張材連結板33と緊結することで水平方向に支持された構成となっている。
The suspended ceiling unit 2 has a field edge receiving member 21 that is suspended and supported by the superstructure 11 via the hanging member 4 and the hanging member 4, and a field that is attached to the upper surface of the field edge receiving member 21 and joined to the tension unit 3. It includes an edge receiving orthogonal member 30 (base material joining member), a field edge 22 attached to the lower surface of the field edge receiving material 21, and a ceiling panel 23 (ceiling plate) attached to the lower surface of the field edge 22. .. The lower surface of the ceiling panel 23 forms a ceiling surface. Here, the ceiling base material is composed of the above-mentioned hanging member 4, the field edge receiving material 21, the field edge 22, the field edge receiving orthogonal member 30, and the metal joints thereof.
That is, the suspended ceiling unit 2 is supported in the vertical direction from the superstructure 11 via the suspension member 4, and is tightly connected to the tension material connecting plate 33 installed at the restraint point with respect to the horizontal force of the tension unit 3 in the horizontal direction. It has a structure supported by.

野縁受け材21は、例えば40×20×1.6の角型鋼管であり、第1水平方向X1に沿って水平に延設され、且つ第2水平方向X2に所定の間隔をあけて平行に複数配設されている。野縁受け材21は、野縁22と交差するように配設されるとともに、複数の野縁22を上方から支持した状態で配設される。そして、野縁受け材21は、野縁22に交差する部分で、野縁接続用金具である耐震クリップ38(図2参照)を使用することにより野縁22に接続されている。 The field edge receiving material 21 is, for example, a 40 × 20 × 1.6 square steel pipe, which is horizontally extended along the first horizontal direction X1 and parallel to the second horizontal direction X2 at a predetermined interval. A plurality of them are arranged in. The field edge receiving material 21 is arranged so as to intersect the field edge 22, and is arranged in a state where a plurality of field edges 22 are supported from above. The field edge receiving material 21 is connected to the field edge 22 by using a seismic clip 38 (see FIG. 2), which is a metal fitting for connecting the field edge, at a portion intersecting the field edge 22.

野縁22は、例えばJIS A 6517に規定される薄板鋼材であり、第2水平方向X2に沿って水平に延設され、且つ第1水平方向X1に所定の間隔をあけて平行に複数配設されている。 The field edge 22 is, for example, a thin sheet steel material specified in JIS A 6517, extends horizontally along the second horizontal direction X2, and is arranged in parallel in the first horizontal direction X1 with a predetermined interval. Has been done.

吊り部材4は、図2に示すように、円柱棒状に形成されるとともに外周面に雄ねじの螺刻を有する吊りボルトであり、上端を上階の床材等の上部構造11に固着、または鋼製の根太等に緊結して垂下され、下端側を、吊り部材接続用金具である耐震ハンガー41を用いることにより野縁受け材21に接続して複数配設されている。また、複数の吊り部材4は、野縁受け材21に対して例えば例えば1mピッチで配置される。吊り天井ユニット2における長期荷重及び地震時の鉛直方向の慣性力は、吊り部材4によって建物躯体から支持するように構成されている。 As shown in FIG. 2, the suspension member 4 is a suspension bolt formed in a cylindrical rod shape and having a male screw thread on the outer peripheral surface, and the upper end thereof is fixed to an upper structure 11 such as a floor material on an upper floor, or steel. The lower end side is connected to the field edge receiving member 21 by using a seismic hanger 41 which is a metal fitting for connecting a hanging member, and a plurality of the lower end sides are arranged. Further, the plurality of suspension members 4 are arranged with respect to the field edge receiving member 21, for example, at a pitch of 1 m. The long-term load in the suspended ceiling unit 2 and the inertial force in the vertical direction at the time of an earthquake are configured to be supported from the building frame by the suspended member 4.

天井パネル23は、例えばアルミスパンドレル等の面内剛性の乏しいものであり、例えば天井付帯設備等の重量と併せて、例えば1mあたり25kg以下の重量で形成されている。天井パネル23は、複数の野縁22の下面にビス留めなどして設置されている。なお、天井パネル23は、アルミスパンドレル以外のスパンドレルやパネル、バスリブ等の天井面の面内剛性が乏しい天井仕上げ材で構成されていてもよいし、天井面が一体で挙動する面内剛性が大きなボード系の天井パネルで構成されていてもよい。 The ceiling panel 23 has poor in-plane rigidity such as an aluminum spandrel, and is formed of, for example, a weight of 25 kg or less per 1 m 2 together with the weight of ancillary equipment such as a ceiling. The ceiling panel 23 is installed on the lower surface of the plurality of field edges 22 by fastening with screws or the like. The ceiling panel 23 may be made of a ceiling finishing material having a poor in-plane rigidity of the ceiling surface such as a spandrel other than the aluminum spandrel, a panel, or a bath rib, or the ceiling surface may behave integrally with a large in-plane rigidity. It may be composed of a board-type ceiling panel.

引張ユニット3は、図1及び図2に示すように、第1水平方向X1と第2水平方向X2の縦横に延びて配列される引張材31と、縦横の引張材31の交点の接合部材である引張材連結板33と、引張材31の端部(外端部31b)に接合され、上端が上部構造11に固定されたブレース32(32A、32B)と、を備えている。 As shown in FIGS. 1 and 2, the tension unit 3 is a joining member at the intersection of the tension members 31 extending vertically and horizontally in the first horizontal direction X1 and the second horizontal direction X2 and the tension members 31 in the vertical and horizontal directions. A certain tensile material connecting plate 33 and a brace 32 (32A, 32B) joined to an end portion (outer end portion 31b) of the tensile material 31 and whose upper end is fixed to the superstructure 11 are provided.

また、引張ユニット3は、引張材連結板33を介して吊り天井ユニット2に接合する。引張材連結板33とボルト等によって固定されている野縁受け直交材30は、上方から見て野縁受け材21に対して直交する第2水平方向X2に沿って延在する。 Further, the tension unit 3 is joined to the suspended ceiling unit 2 via the tension material connecting plate 33. The field edge receiving orthogonal member 30 fixed to the tension material connecting plate 33 by bolts or the like extends along the second horizontal direction X2 orthogonal to the field edge receiving member 21 when viewed from above.

引張材31の下面は、吊り天井ユニット2の上面とほぼ同レベル(高さ)に配置され、例えばアルミ押出型材、平角パイプ、軽量形鋼等を使用することができる。図3及び図4では、平角鋼管が採用されている。引張材31は、地震時に吊り天井ユニット2に働く水平方向の慣性力を、耐力及び剛性に有効な支持構造体である建物躯体の上部構造11に伝搬させるための部材である。すなわち、引張材31は、水平縦方向の部材と水平横方向の部材の交点に設置した引張材連結板33を介して、吊り天井ユニット2の野縁受け直交材30と接合されている。 The lower surface of the tension material 31 is arranged at substantially the same level (height) as the upper surface of the suspended ceiling unit 2, and for example, an aluminum extruded mold material, a flat pipe, a lightweight shaped steel, or the like can be used. In FIGS. 3 and 4, a flat steel pipe is adopted. The tension member 31 is a member for propagating the horizontal inertial force acting on the suspended ceiling unit 2 during an earthquake to the superstructure 11 of the building frame, which is a support structure effective for proof stress and rigidity. That is, the tensile member 31 is joined to the field edge receiving orthogonal member 30 of the suspended ceiling unit 2 via a tensile member connecting plate 33 installed at an intersection of a member in the horizontal vertical direction and a member in the horizontal and horizontal direction.

引張材31は、第1水平方向X1に延びる複数(図1では3本)の第1引張材31Aと、第2水平方向X2に延びる複数(図1では8本)の第2引張材31Bと、が縦横に同一の水平面内で互いに直交して配列されている。ここで、図3及び図4に示すように、第1引張材31Aと第2引張材31Bは、それぞれの交点で引張材連結板33によって接合されている。引張材31は、図1に示すように、上面視で引張ユニット3を構成する引張材31の外周部に位置する外端部31bが前記交点(引張材連結板33)よりも外側に位置している。 The tensile member 31 includes a plurality of first tensile members 31A extending in the first horizontal direction X1 (three in FIG. 1) and a plurality of second tensile members 31B extending in the second horizontal direction X2 (eight in FIG. 1). , Are arranged orthogonally to each other in the same horizontal plane vertically and horizontally. Here, as shown in FIGS. 3 and 4, the first tensile member 31A and the second tensile member 31B are joined by a tensile member connecting plate 33 at their respective intersections. As shown in FIG. 1, the tensile member 31 has an outer end portion 31b located on the outer peripheral portion of the tensile member 31 constituting the tensile member 3 when viewed from above, and is located outside the intersection (tensile member connecting plate 33). ing.

引張材連結板33は、例えば2.5mピッチで吊り天井ユニット2に対する引張材31の拘束点に設けられる。引張材連結板33は、平面視で正方形の板状をなし、上面33aに引張材31の端部が載置されプレート下面側からドリルねじ331で固定されている。 The tension material connecting plate 33 is provided at a restraining point of the tension material 31 with respect to the suspended ceiling unit 2 at a pitch of, for example, 2.5 m. The tension material connecting plate 33 has a square plate shape in a plan view, and the end portion of the tension material 31 is placed on the upper surface 33a and fixed with a drill screw 331 from the lower surface side of the plate.

ブレース32(32A、32B)は、図1及び図2に示すように、上面視で引張ユニット3の外周に位置する引張材31の端部(中央端部31a)を拘束するレ字状に形成された端部ブレース32A(第1ブレース)と、上面視で引張ユニット3の中間に位置する第1引張材31Aの中間部に設置されるV字状に形成された中間ブレース32B(第2ブレース)と、を有する。 As shown in FIGS. 1 and 2, the brace 32 (32A, 32B) is formed in a V shape that restrains the end portion (central end portion 31a) of the tension member 31 located on the outer periphery of the tension unit 3 in a top view. V-shaped intermediate brace 32B (second brace) installed in the middle of the end brace 32A (first brace) and the first tensile member 31A located between the tension unit 3 in the top view. ) And.

ブレース32A、32Bは、図5乃至図8に示すように、例えばリップ溝形鋼が用いられ、上端32aが上部構造11の下面に対してそれぞれ第1接続金物34、及び第2接続金物36を介して接続され、下端32bが第1ブレース接合板35を介して引張材31に接合されている。接続金物34、36は、アンカーボルト341によって上部構造11に固定されている。第1接続金物34は、ブレース32の上端32aとドリルねじ342により接合され、第2接続金物36は、ブレース32の上端32aとドリルねじ362により接合されている。このように、本実施形態では、ブレース32と上部構造11との接続を第1接続金物34、第2接続金物36によって容易に行うことができる。 As shown in FIGS. 5 to 8, for the braces 32A and 32B, for example, lip channel steel is used, and the upper end 32a has the first connecting metal 34 and the second connecting metal 36 with respect to the lower surface of the superstructure 11, respectively. The lower end 32b is joined to the tension member 31 via the first brace joint plate 35. The connecting hardwares 34 and 36 are fixed to the superstructure 11 by anchor bolts 341. The first connecting metal fitting 34 is joined to the upper end 32a of the brace 32 by a drill screw 342, and the second connecting metal fitting 36 is joined to the upper end 32a of the brace 32 by a drill screw 362. As described above, in the present embodiment, the brace 32 and the superstructure 11 can be easily connected by the first connecting metal fitting 34 and the second connecting metal fitting 36.

端部ブレース32Aは、図5に示すように、鉛直方向に延びる鉛直材321と、鉛直材321の下端から斜め上方に向けて延びる第1斜材322と、を有している。鉛直材321と第1斜材322とは、それぞれの下端32b、32bが第1ブレース接合板35に接合され、これにより側面視で略レ字状に形成された状態で設けられとなるように配置されている。端部ブレース32Aは、平面図で引張ユニット3の配置領域において鉛直材321よりも内側に第1斜材322が位置するように配置されている。 As shown in FIG. 5, the end brace 32A has a vertical member 321 extending in the vertical direction and a first diagonal member 322 extending obliquely upward from the lower end of the vertical member 321. The vertical member 321 and the first diagonal member 322 are provided so that their lower ends 32b and 32b are joined to the first brace joining plate 35 so as to be formed in a substantially V shape in a side view. Have been placed. The end brace 32A is arranged so that the first diagonal member 322 is located inside the vertical member 321 in the arrangement region of the tension unit 3 in the plan view.

第1ブレース接合板35は、板状部材であって、面方向を鉛直方向に向けて配置され、その一方面35aに鉛直材321及び第1斜材322のそれぞれの下端32b、32bと、引張材31の外端部31bとドリルねじ352によりにより固定されている。 The first brace joint plate 35 is a plate-shaped member, which is arranged with the surface direction facing the vertical direction, and the lower ends 32b and 32b of the vertical member 321 and the first diagonal member 322, respectively, and tension on one surface 35a. It is fixed by the outer end portion 31b of the material 31 and the drill screw 352.

中間ブレース32Bは、図7に示すように、左右対称に下端から斜め上方に向けて延びる一対の第2斜材323、323を有している。これら一対の第2斜材323は、それぞれの下端32b、32bが第2ブレース接合板37に接合され、これにより側面視で略V字状に形成された状態で設けられとなるように配置されている。 As shown in FIG. 7, the intermediate brace 32B has a pair of second diagonal members 323 and 323 that extend symmetrically from the lower end to the diagonally upward direction. The pair of second diagonal members 323 are arranged so that their lower ends 32b and 32b are joined to the second brace joint plate 37 so as to be formed in a substantially V shape in a side view. ing.

第2ブレース接合板37は、板状部材であって、面方向を鉛直方向に向けて配置され、その一方の面37aに一対の第2斜材323、323のそれぞれの下端32b、32bと、引張材31の中間端部31aとドリルねじ372により固定されている。 The second brace joint plate 37 is a plate-shaped member, which is arranged with the surface direction facing the vertical direction, and the lower ends 32b and 32b of the pair of second diagonal members 323 and 323 on one surface 37a, respectively. It is fixed by the intermediate end portion 31a of the tension member 31 and the drill screw 372.

次に、上述した耐震天井構造1の作用について、図面に基づいて詳細に説明する。
本実施形態による耐震天井構造1では、図1及び図2に示すように、吊り天井ユニットの上部に接合される引張材31を水平方向に延在させて配置するとともに、その引張材31がその外端部31bを拘束するレ字状の端部ブレース32Aを介して上部構造11に接合することで、吊り天井ユニット2が建物躯体と一体に水平方向に挙動することとなり、吊り天井ユニット2の揺れの増幅を抑制することができる。
すなわち、本実施形態の耐震天井構造1では、地震時に作用する天井部の水平慣性力を確実に建物躯体に伝搬させることができ、従来のように天井部が建物の壁、柱、梁などの躯体に衝突することを防止する耐力剛性が高い天井構造を実現することができる。
Next, the operation of the seismic ceiling structure 1 described above will be described in detail with reference to the drawings.
In the seismic ceiling structure 1 according to the present embodiment, as shown in FIGS. 1 and 2, the tension member 31 joined to the upper part of the suspended ceiling unit is arranged so as to extend in the horizontal direction, and the tension member 31 is the tension member 31. By joining to the superstructure 11 via the V-shaped end brace 32A that restrains the outer end 31b, the suspended ceiling unit 2 behaves in the horizontal direction integrally with the building frame, and the suspended ceiling unit 2 Amplification of shaking can be suppressed.
That is, in the seismic ceiling structure 1 of the present embodiment, the horizontal inertial force of the ceiling portion acting at the time of an earthquake can be reliably propagated to the building frame, and the ceiling portion is a wall, pillar, beam, etc. of the building as in the conventional case. It is possible to realize a ceiling structure with high bearing capacity and rigidity that prevents collision with the skeleton.

また、本実施形態では、引張ユニット3、吊り天井ユニット2共に鉛直支持は短スパンで配置された吊り材4で負担する構造なので、鉛直方向の曲げ荷重を小さく設定でき、引張ユニット3が負担する水平方向の大きな荷重については、金属の引張力で効率よく伝搬することができる。
そして、本実施形態では、引張ユニット3との接合部である水平力に対する拘束点間を任意に設定できるので、水平力に対する拘束点間を短スパンで構成すれば、天井下地材が負担する水平力による曲げ荷重は小さくなり、耐震部材を含めた吊り天井ユニット2を低コストで軽量な軽量形鋼で構成する耐震天井の設計が可能となる。
Further, in the present embodiment, since the vertical support of both the tension unit 3 and the suspended ceiling unit 2 is borne by the suspending material 4 arranged in a short span, the bending load in the vertical direction can be set small, and the tension unit 3 bears the vertical support. Large loads in the horizontal direction can be efficiently propagated by the tensile force of the metal.
In the present embodiment, the distance between the restraint points for the horizontal force, which is the joint with the tension unit 3, can be arbitrarily set. Therefore, if the distance between the restraint points for the horizontal force is configured in a short span, the ceiling base material bears the horizontal. The bending load due to the force becomes small, and it becomes possible to design a seismic ceiling in which the suspended ceiling unit 2 including the seismic member is made of lightweight and lightweight shaped steel at low cost.

また、本実施形態では、ブレースの配置は基本的に天井端部となるため、一定スパンの天井裏について、設備レイアウトの自由度を高めることができ、設備改修の際にも柔軟に対応可能な耐震天井を実現することができる。 Further, in the present embodiment, since the brace is basically arranged at the ceiling end, the degree of freedom in equipment layout can be increased for the ceiling of a certain span, and it is possible to flexibly respond to equipment repair. Seismic ceilings can be realized.

また、本実施形態では、引張材31の中間部分に中間補剛となる中間ブレース32Aを設置することで引張材31をより大きなスパンで構成することが可能となる。 Further, in the present embodiment, the tensile member 31 can be configured with a larger span by installing the intermediate brace 32A which is an intermediate stiffener in the intermediate portion of the tensile member 31.

上述のように本実施形態による耐震天井構造では、耐力剛性の高い天井構造を実現できるうえ、面内剛性の乏しい天井仕上材を用いた天井において、低コストで軽量な耐力剛性の高い天井構造を実現できる耐震天井を提供できる。 As described above, in the seismic ceiling structure according to the present embodiment, a ceiling structure having high withstand rigidity can be realized, and in a ceiling using a ceiling finishing material having poor in-plane rigidity, a low-cost, lightweight ceiling structure with high withstand rigidity can be realized. It is possible to provide a feasible earthquake-resistant ceiling.

以上、本発明による耐震天井構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiment of the seismic ceiling structure according to the present invention has been described above, the present invention is not limited to the above embodiment and can be appropriately modified without departing from the spirit of the present invention.

例えば、本実施形態では、引張ユニット3において、引張材31同士を接続する引張材連結板33が設けられているが、この引張材連結板33の構成は適宜設定することができる。要は、同方向に延在する引張材31同士が同軸上に連結されるように接続される構成であればよいのである。 For example, in the present embodiment, the tension unit 3 is provided with a tension material connecting plate 33 for connecting the tension materials 31 to each other, and the configuration of the tension material connecting plate 33 can be appropriately set. The point is that the tension members 31 extending in the same direction may be connected so as to be coaxially connected to each other.

また、ブレース32における一対のブレース部材(端部ブレース32Aでは鉛直材321と第1斜材322、中間ブレース32Bでは一対の第2斜材323)の下端同士を接合する板状のブレース接合板35が設けられているが、他の接合構造を採用することも可能である。 Further, a plate-shaped brace joint plate 35 for joining the lower ends of a pair of brace members in the brace 32 (vertical member 321 and first diagonal member 322 in end brace 32A, pair of second diagonal member 323 in intermediate brace 32B). However, other joint structures can be adopted.

さらに、本実施形態では、引張材31の長さ方向の中間部分に中間補剛となる中間ブレース32B(第2ブレース)を設けた構成としているが、この中間ブレース32Bを設けることに制限されることはなく、省略してもよい。例えば、引張ユニット3の長さが短い場合で十分な強度が確保できれば、中間ブレースを省略できる。すなわち、本実施形態のように中間ブレース32Bを設置することで、大スパンの引張ユニットを構成することが可能となる。 Further, in the present embodiment, the intermediate brace 32B (second brace) that serves as an intermediate stiffener is provided in the intermediate portion of the tension member 31 in the length direction, but the provision of the intermediate brace 32B is limited. It does not matter and may be omitted. For example, if the length of the tension unit 3 is short and sufficient strength can be secured, the intermediate brace can be omitted. That is, by installing the intermediate brace 32B as in the present embodiment, it is possible to form a large-span tensile unit.

さらにまた、上述した実施形態では、端部ブレース32Aとして側面視で略レ字状に形成されたブレースを採用し、中間ブレース32Bとして側面視で略V字状に形成されたブレースを採用しているが、これに限定されることはなく、例えば端部ブレース32Aに略V字状に形成されたブレースを適用することも可能である。 Furthermore, in the above-described embodiment, a brace formed in a substantially V shape in a side view is adopted as the end brace 32A, and a brace formed in a substantially V shape in a side view is adopted as an intermediate brace 32B. However, the present invention is not limited to this, and for example, a brace formed in a substantially V shape can be applied to the end brace 32A.

また、本実施形態では、吊り天井ユニット2として野縁受け直交材30、野縁受け材21、野縁22、およびこれらの接合金物で構成としているが、このような構成に限定されることはない。例えば、支持スパンと部材断面性能に応じて野縁受け直交材30のような下地材を省略することも可能であり、この場合には野縁受け材21に引張材31が直接接合される構成を採用できる。 Further, in the present embodiment, the suspended ceiling unit 2 is composed of a field edge receiving orthogonal member 30, a field edge receiving material 21, a field edge 22, and a metal joint thereof, but the structure is not limited to such a structure. Absent. For example, it is possible to omit the base material such as the field edge receiving orthogonal member 30 depending on the support span and the member cross-sectional performance. In this case, the tension material 31 is directly joined to the field edge receiving material 21. Can be adopted.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to replace the constituent elements in the above-described embodiment with well-known constituent elements as appropriate without departing from the spirit of the present invention.

1 耐震天井構造
2 吊り天井ユニット
3 引張ユニット
4 吊り部材
11 上部構造
21 野縁受け材
22 野縁
23 天井パネル(天井板)
30 野縁受け直交材(下地材接合部材)
31 引張材
31a 中間端部
31b 外端部
32 ブレース
32a 上端
32A 端部ブレース(第1ブレース)
32B 中間ブレース(第2ブレース)
33 引張材連結板
34 第1接続金物
35 第1ブレース接合板
36 第2接続金物
37 第2ブレース接合板
38 耐震クリップ
41 耐震ハンガー
X1 第1水平方向
X2 第2水平方向
1 Seismic ceiling structure 2 Suspended ceiling unit 3 Tensile unit 4 Suspended member 11 Superstructure 21 Field edge receiving material 22 Field edge 23 Ceiling panel (ceiling board)
30 Field edge support orthogonal material (base material joining member)
31 Tensile material 31a Intermediate end 31b Outer end 32 Brace 32a Upper end 32A End brace (1st brace)
32B middle brace (second brace)
33 Tension material connecting plate 34 1st connecting hardware 35 1st brace joint plate 36 2nd connecting hardware 37 2nd brace joint plate 38 Seismic clip 41 Seismic hanger X1 1st horizontal direction X2 2nd horizontal direction

Claims (4)

吊り部材を介して建物躯体の上部構造に吊り下げ支持される吊り天井ユニットと、
前記吊り天井ユニットの上部に接合され、前記吊り天井ユニットの水平荷重を負担する引張ユニットと、を備え、
前記引張ユニットは、
縦横に水平方向に延びて配列される引張材と、
前記引張材の端部を前記建物躯体と拘束する第1ブレースと、を備え、
前記縦横に延びる前記引張材の交差部は、水平力に対する拘束点として一定スパン間の天井裏に別のブレースを設置することなく任意に設定可能に設けられていることを特徴とする耐震天井構造。
A suspended ceiling unit that is suspended and supported by the superstructure of the building frame via a suspension member,
A tension unit that is joined to the upper part of the suspended ceiling unit and bears the horizontal load of the suspended ceiling unit is provided.
The tension unit is
Tensile members that are arranged vertically and horizontally in the horizontal direction,
A first brace that restrains the end of the tension material from the building skeleton is provided.
The seismic-resistant ceiling structure is characterized in that the intersection of the tensile members extending vertically and horizontally is provided as a restraint point against a horizontal force so as to be arbitrarily set without installing another brace behind the ceiling for a certain span. ..
前記引張材の長さ方向の中間部分に中間補剛となる第2ブレースが設けられていることを特徴とする請求項1に記載の耐震天井構造。 The seismic ceiling structure according to claim 1, wherein a second brace that serves as an intermediate stiffener is provided at an intermediate portion in the length direction of the tensile material. 前記吊り天井ユニットは、天井下地材と天井板とを有し、前記吊り部材を介して前記上部構造から鉛直方向に支持されるとともに、前記引張ユニットの水平力に対する拘束点と緊結することで水平方向に支持されていることを特徴とする請求項1又は2に記載の耐震天井構造。 The suspended ceiling unit has a ceiling base material and a ceiling plate, is supported in the vertical direction from the upper structure via the hanging member, and is horizontal by being tightly connected to a restraining point for a horizontal force of the tension unit. The seismic ceiling structure according to claim 1 or 2, wherein the seismic ceiling structure is supported in a direction. 前記引張材は、前記吊り天井ユニットに対して、水平縦方向の部材と水平横方向の部材の交点に設置した下地材接合部材によって接合されていることを特徴とする請求項1乃至3のいずれか1項に記載の耐震天井構造。 Any of claims 1 to 3, wherein the tension material is joined to the suspended ceiling unit by a base material joining member installed at an intersection of a member in the horizontal vertical direction and a member in the horizontal and horizontal direction. The seismic ceiling structure described in item 1.
JP2019064028A 2019-03-28 2019-03-28 Seismic ceiling structure Active JP7257844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064028A JP7257844B2 (en) 2019-03-28 2019-03-28 Seismic ceiling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064028A JP7257844B2 (en) 2019-03-28 2019-03-28 Seismic ceiling structure

Publications (2)

Publication Number Publication Date
JP2020165110A true JP2020165110A (en) 2020-10-08
JP7257844B2 JP7257844B2 (en) 2023-04-14

Family

ID=72717218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064028A Active JP7257844B2 (en) 2019-03-28 2019-03-28 Seismic ceiling structure

Country Status (1)

Country Link
JP (1) JP7257844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230037821A (en) * 2021-09-10 2023-03-17 서울대학교산학협력단 integrated ceiling brace system using in-plane stiffness reinforcement member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090001A (en) * 2013-11-05 2015-05-11 戸田建設株式会社 Ceiling earthquake-proof countermeasure construction method
JP2017053216A (en) * 2012-01-31 2017-03-16 清水建設株式会社 Suspension ceiling structure and construction method of suspension ceiling structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053216A (en) * 2012-01-31 2017-03-16 清水建設株式会社 Suspension ceiling structure and construction method of suspension ceiling structure
JP2015090001A (en) * 2013-11-05 2015-05-11 戸田建設株式会社 Ceiling earthquake-proof countermeasure construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230037821A (en) * 2021-09-10 2023-03-17 서울대학교산학협력단 integrated ceiling brace system using in-plane stiffness reinforcement member
KR102587786B1 (en) * 2021-09-10 2023-10-11 서울대학교산학협력단 integrated ceiling brace system using in-plane stiffness reinforcement member

Also Published As

Publication number Publication date
JP7257844B2 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
JP2020165110A (en) Aseismatic ceiling structure
US20160208485A1 (en) Interstitial Seismic Resistant Support for an Acoustic Ceiling Grid
JP6226173B2 (en) Suspended ceiling structure
JP7375237B2 (en) Earthquake-resistant ceiling structure
JP7208028B2 (en) Construction method of earthquake-resistant ceiling structure
JP2018178708A (en) Suspended ceiling structure
JP7208044B2 (en) Seismic ceiling structure
JP5213048B2 (en) Ceiling steady rest system
JP5667775B2 (en) building
JP6226172B2 (en) Suspended ceiling structure
JP2014224445A (en) Metal fitting for brace connection for suspended ceiling, metal fitting for suspension member connection for suspended ceiling and suspended ceiling structure
JP5736168B2 (en) Wooden building
JP2016056662A (en) Reinforcement brace connecting metal fitting of suspended ceiling
JP5833854B2 (en) Support structure for roof eaves
JP5693867B2 (en) building
WO2012080561A1 (en) Method for making a building frame, frame element and building frame
US20220228358A1 (en) Interior Construction Structures and Systems
JP2017031707A (en) Suspension ceiling reinforcement structure
JP2007056643A (en) Room-reinforcing frame of building and room-reinforcing structure of building using the same
JP2018071137A (en) Hanging ceiling reinforcement structure
JP6553859B2 (en) Seismic support structure for partition walls
JP4083041B2 (en) Seismic hardware
JP2010001657A (en) Ceiling furring material support structure
JP2020037842A (en) Opening type bearing reinforcement structure
JP2012229603A (en) Ceiling support structure for unit building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7257844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150