JP7375237B2 - Earthquake-resistant ceiling structure - Google Patents

Earthquake-resistant ceiling structure Download PDF

Info

Publication number
JP7375237B2
JP7375237B2 JP2023026502A JP2023026502A JP7375237B2 JP 7375237 B2 JP7375237 B2 JP 7375237B2 JP 2023026502 A JP2023026502 A JP 2023026502A JP 2023026502 A JP2023026502 A JP 2023026502A JP 7375237 B2 JP7375237 B2 JP 7375237B2
Authority
JP
Japan
Prior art keywords
horizontal force
ceiling
earthquake
force propagation
field edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023026502A
Other languages
Japanese (ja)
Other versions
JP2023054269A (en
Inventor
和久 山里
記彦 櫻庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2023026502A priority Critical patent/JP7375237B2/en
Publication of JP2023054269A publication Critical patent/JP2023054269A/en
Application granted granted Critical
Publication of JP7375237B2 publication Critical patent/JP7375237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐震天井構造に関する。 The present invention relates to an earthquake-resistant ceiling structure.

従来、例えば学校、病院、生産施設、体育館、プール、空港ターミナルビル、オフィスビル、劇場、シネコン等の建物の天井として、吊り天井が多用されている。このような吊り天井は、水平の一方向に所定の間隔をあけて並設される複数の野縁と、野縁に直交し、水平の他方向に所定の間隔をあけて並設され、複数の野縁に一体に接続して設けられる複数の野縁受けと、下端を野縁受けに接続し、上端を上階の床材等の上部構造(建物躯体)に固着して配設される複数の吊りボルト(吊り部材)と、野縁の下面にビス留めなどによって一体に取り付けられ、下階の天井面を形成する天井パネルと、を備えて構成されている。 Hitherto, suspended ceilings have been widely used as ceilings in buildings such as schools, hospitals, production facilities, gymnasiums, swimming pools, airport terminal buildings, office buildings, theaters, and cinema complexes. Such a suspended ceiling has a plurality of roof edges arranged in parallel at a predetermined interval in one horizontal direction, and a plurality of roof edges arranged in parallel at a predetermined interval in the other horizontal direction perpendicular to the roof border. The lower end is connected to the roof edge and the upper end is fixed to the upper structure (building frame) such as the flooring on the upper floor. It is comprised of a plurality of hanging bolts (hanging members) and a ceiling panel that is integrally attached to the underside of the veranda with screws or the like and forms the ceiling surface of the lower floor.

一方、このように野縁及び野縁受けの天井下地と天井パネルを吊り部材で吊り下げ支持してなる吊り天井は、地震時に作用する水平方向の加速度を受けて横揺れが発生する。天井パネルは、建物躯体と構造上別々の挙動となり、横揺れが増幅する傾向にあるため、天井パネルが壁や、柱、梁などの建物躯体に衝突して破損し、脱落が生じるおそれがあった。 On the other hand, a suspended ceiling formed by suspending and supporting the roof edge and the ceiling base of the roof edge support and the ceiling panel using hanging members is subject to horizontal sway due to the horizontal acceleration that is applied during an earthquake. Structurally, ceiling panels behave differently from the building frame and tend to amplify lateral shaking, so there is a risk that the ceiling panels will collide with the building frame such as walls, columns, beams, etc. and be damaged and fall off. Ta.

このような吊り天井の脱落を防止するために、耐震部材として斜め部材を設置する方法や国土交通省告示第791号に記載される天井周囲に地震力を負担する壁等を配置する方法が知られている。
その他の例として、例えば特許文献1に示すような、天井パネルの下方に且つ天井パネルに沿って横方向に配設された略棒状の引張材を備え、この引張材を、両端部をそれぞれ建物躯体に接続して配設するとともに、両端部の間の中間部を天井パネルの下方から天井パネル及び/又は野縁に接続固定手段で接続固定して配設することで天井パネルと建物躯体を同調させて、天井パネルの耐震性能を高めた耐震天井構造や吊り天井ではないが支柱と梁で構成されたぶどう棚に直接天井を留め付ける直天井が知られている。
In order to prevent such suspended ceilings from falling, there are known methods such as installing diagonal members as earthquake-resistant members and placing walls around the ceiling that bear the earthquake force as described in Ministry of Land, Infrastructure, Transport and Tourism Notification No. 791. It is being
As another example, as shown in Patent Document 1, for example, a substantially rod-shaped tension member is provided below a ceiling panel and laterally along the ceiling panel, and both ends of this tension member are attached to a building. The ceiling panel and the building frame can be connected to the building frame by connecting and fixing the middle part between both ends to the ceiling panel and/or the roof edge from below the ceiling panel using a connecting and fixing means. At the same time, earthquake-resistant ceiling structures that improve the seismic performance of ceiling panels and direct ceilings, which are not suspended ceilings, but in which the ceiling is directly attached to a trellis made of columns and beams, are known.

特開2013-177801号公報Japanese Patent Application Publication No. 2013-177801

空気中の粉塵量の制御が要求されるクリーンルームや湿潤環境の屋外軒天井や屋内プール、温浴施設等の場合には、気密性を確保するために天井周囲の壁や柱、梁などと天井を構成する部材とのクリアランス(以後、天井クリアランスと呼ぶ)が無いものが好ましい。また、クリーンルームでは、天井裏に多くの設備を有するために耐震部材との干渉が課題となる。
耐震部材として斜め部材を設置する方法は、天井パネルが吊元の上部構造と同調して動き天井周囲の柱や壁と異なる動きをするために、天井周囲に気密性の保持が困難なクリアランスが必要であり、天井周囲に地震力を負担する壁等を配置する方法の場合は、日常的には天井周囲にクリアランスは無いが、地震時には天井パネルと地震力を負担する壁等が衝突して隙間ができるためクリーンルームの気密性が失われてしまう。
ぶどう棚に直接天井を留め付ける直天井や天井パネルの下面に引張材を配置して耐震性をもたせた特許文献1のような構造にすると、地震時にも気密性を保持し易くなるが、ぶどう棚を用いた直天井の場合は、コスト高や荷重増の課題に加えて、天井内設備との干渉調整等による天井懐高さの増加により、天井面の高さが低くなってしまうという問題があった。
また、特許文献1のように天井パネルの下面に引張材を配置して耐震性をもたせた構造にすると、粉塵の付着防止の観点から天井面の凹凸を好まないクリーンルームの要求性能に対して問題があった。
In clean rooms where the amount of dust in the air must be controlled, outdoor eaves in humid environments, indoor pools, hot bath facilities, etc., it is necessary to connect walls, columns, beams, etc. around the ceiling to ensure airtightness. It is preferable that there is no clearance (hereinafter referred to as ceiling clearance) with the constituent members. In addition, since clean rooms have many facilities under the ceiling, interference with earthquake-resistant members becomes a problem.
The method of installing diagonal members as earthquake-resistant members is because the ceiling panel moves in sync with the upper structure from which it is suspended and moves differently from the pillars and walls surrounding the ceiling, which creates clearances around the ceiling that make it difficult to maintain airtightness. In the case of placing walls, etc. that bear the seismic force around the ceiling, there is usually no clearance around the ceiling, but in the event of an earthquake, the ceiling panel and the wall, etc. that bear the seismic force collide. The airtightness of the clean room is lost because of the gaps created.
If you create a structure like the one in Patent Document 1, where the ceiling is fixed directly to the grape trellis or a tensile material is placed on the underside of the ceiling panel to provide earthquake resistance, it will be easier to maintain airtightness during an earthquake. In the case of direct ceilings using shelves, in addition to the problems of high cost and increased load, the height of the ceiling surface increases due to interference adjustment with equipment in the ceiling, which causes the height of the ceiling surface to become lower. was there.
In addition, if a tensile material is placed on the lower surface of the ceiling panel to create an earthquake-resistant structure as in Patent Document 1, there will be problems with the required performance of clean rooms that do not like irregularities on the ceiling surface from the perspective of preventing dust from adhering. was there.

本発明は、上述する問題点に鑑みてなされたもので、耐力剛性の高い天井構造を実現できるうえ、天井下地部に耐震構造を設けることによって天井仕上面に凹凸等の形状的な制約を生じない耐震天井構造を提供することである。 The present invention has been made in view of the above-mentioned problems, and it is possible to realize a ceiling structure with high load-bearing rigidity.In addition, by providing an earthquake-resistant structure in the ceiling base, geometrical restrictions such as unevenness on the finished surface of the ceiling are avoided. It is to provide an earthquake-resistant ceiling structure.

上記目的を達成するため、本発明に係る耐震天井構造は、吊り部材を介して建物躯体の上部構造に吊り下げ支持される野縁受けと、前記野縁受けに取り付けられる野縁と、前記野縁の下面に取り付けられた天井パネルと、を備えた耐震天井構造であって、前記天井パネルの上面に直接又は前記野縁を介して固定され、前記天井パネルに沿って水平方向に延在する長尺の水平力伝搬材が設けられ、前記水平力伝搬材は、互いに異なる二方向に延在方向を向けて配置されており、二方向に延在する第1水平力伝搬材と第2水平力伝搬材とは、同一の高さに配置され、前記第1水平力伝搬材と前記第2水平力伝搬材との交差部分は、少なくとも一方の水平力伝搬材に対して上下方向に開口する切欠凹部が形成され、該切欠凹部は、他方の水平力伝搬材が当該他方の水平力伝搬材の延在方向に移動可能に嵌合していることを特徴とする。 In order to achieve the above object, the earthquake-resistant ceiling structure according to the present invention includes: a field edge support that is suspended and supported by the upper structure of a building frame via a hanging member; an earthquake-resistant ceiling structure, comprising: a ceiling panel attached to the lower surface of the edge; A long horizontal force propagation member is provided, and the horizontal force propagation member is arranged with its extension direction facing two different directions, and a first horizontal force propagation member and a second horizontal force propagation member extending in two directions are provided. The force propagation materials are arranged at the same height, and the intersection of the first horizontal force propagation material and the second horizontal force propagation material is open in the vertical direction with respect to at least one of the horizontal force propagation materials. A cutout recess is formed, and the other horizontal force propagation member is fitted into the cutout recess so as to be movable in the extending direction of the other horizontal force propagation member.

本発明では、第1水平力伝搬材と第2水平力伝搬材とを同一の高さの位置で交差させるため、例えば互いに上下に重なって交差する場合に比べて、第1水平力伝搬材と第2水平力伝搬材を共に天井パネルに直接接合でき、他の部材やその部材の接合部の耐力および剛性に影響されず、力の流れを単純化できる。 In the present invention, since the first horizontal force propagating material and the second horizontal force propagating material intersect at the same height position, the first horizontal force propagating material Both the second horizontal force propagation members can be directly joined to the ceiling panel, and the flow of force can be simplified without being affected by the strength and rigidity of other members or joints of the members.

本発明によれば、耐力剛性の高い天井構造を実現できるうえ、天井下地部に耐震構造を設けることによって天井仕上面に凹凸等の形状的な制約を生じない耐震天井構造を提供することができる。 According to the present invention, it is possible to realize a ceiling structure with high load-bearing rigidity, and by providing an earthquake-resistant structure in the ceiling base, it is possible to provide an earthquake-resistant ceiling structure that does not cause geometric restrictions such as unevenness on the finished surface of the ceiling. .

本発明の実施形態による耐震天井構造を示す斜視図である。FIG. 1 is a perspective view showing an earthquake-resistant ceiling structure according to an embodiment of the present invention. 図1に示す耐震天井構造を第2横方向から見た側断面図である。FIG. 2 is a side sectional view of the earthquake-resistant ceiling structure shown in FIG. 1 viewed from a second lateral direction. 図1に示す耐震天井構造の1区間を上方から見た平面図であって、野縁受け及び野縁を省略した図である。FIG. 2 is a plan view of one section of the earthquake-resistant ceiling structure shown in FIG. 1 viewed from above, with the field edge receiver and field edge omitted. 図2に示す耐震天井構造において、野縁受け材からなる水平力伝搬材と建物躯体の受梁との接合部の要部を示す側断面図である。In the earthquake-resistant ceiling structure shown in FIG. 2, it is a side sectional view showing the principal part of the joint part of the horizontal force propagation material made of a field edge support material, and the support beam of a building frame. 図2に示す耐震天井構造において、野縁材からなる水平力伝搬材と建物躯体の受梁との接合部の要部を示す側断面図である。In the earthquake-resistant ceiling structure shown in FIG. 2, it is a side sectional view showing the main part of the joint part of the horizontal force propagation material made of a field edge material and the support beam of a building frame. アルミ押出形材からなる水平力伝搬材の連結部分を示す図であって、(a)は上方から見た平面図、(b)は側断面図、(c)は(a)および(b)に示すA-A線断面図である。FIG. 3 is a diagram showing a connecting part of horizontal force propagation materials made of extruded aluminum sections, in which (a) is a plan view seen from above, (b) is a side sectional view, and (c) is (a) and (b). FIG. 2 is a cross-sectional view taken along line AA shown in FIG. アルミ押出形材からなる水平力伝搬材の交差部分を示す図であって、(a)は上方から見た平面図、(b)は(a)に示すB-B線断面図、(c)は(a)に示すC-C線断面図である。FIG. 3 is a diagram showing an intersection of horizontal force propagation materials made of extruded aluminum sections, in which (a) is a plan view seen from above, (b) is a sectional view taken along the line BB shown in (a), and (c) is a sectional view taken along line CC shown in (a). 耐震天井構造の施工方法を説明する図であって、第1アルミ押出形材と天井板の接合方法および野縁受けでの仮受け方法を示した要部側断面図である。It is a figure explaining the construction method of an earthquake-resistant ceiling structure, Comprising: It is a main part side sectional view which showed the joining method of a 1st aluminum extrusion profile and a ceiling board, and the temporary receiving method with a field edge receiver. 耐震天井構造の施工方法を説明する図であって、第2アルミ押出形材と同じレベルにある野縁との納まり方法および吊りボルトでの仮受け方法を示した要部側断面図である。It is a figure explaining the construction method of an earthquake-resistant ceiling structure, Comprising: It is a main part side sectional view showing the method of fitting into the edge of a field on the same level as a 2nd aluminum extrusion shape, and the method of temporarily receiving with a hanging bolt.

以下、本発明の実施形態による耐震天井構造について、図面に基づいて説明する。 Hereinafter, an earthquake-resistant ceiling structure according to an embodiment of the present invention will be described based on the drawings.

本実施形態による耐震天井構造1は、図1及び図2に示すように、例えば天井の密閉性が要求されるクリーンルーム、生産工場、研究施設、屋内プール、温浴施設等の建物の天井に採用されている。この耐震天井構造1は、新設の建物は勿論、既設の建物を耐震化する改修工事にも適用される。 As shown in FIGS. 1 and 2, the earthquake-resistant ceiling structure 1 according to the present embodiment is used for the ceilings of buildings such as clean rooms, production plants, research facilities, indoor pools, and hot bath facilities that require ceiling sealing. ing. This earthquake-resistant ceiling structure 1 can be applied not only to newly constructed buildings but also to renovation work to make existing buildings earthquake-resistant.

耐震天井構造1は、吊り部材6を介して建物躯体の上部構造に吊り下げ支持される野縁受け2と、野縁受け2に取り付けられる野縁3と、野縁3の下面3aに取り付けられた天井パネル4と、天井パネル4の上面4bに直接又は野縁3を介して固定され、天井パネル4に沿って水平方向に延在する長尺の水平力伝搬材5(5A、5B)と、を備えている。 The earthquake-resistant ceiling structure 1 includes a field edge support 2 that is suspended and supported by the upper structure of the building frame via a hanging member 6, a field edge 3 that is attached to the field edge support 2, and a field edge 3 that is attached to the lower surface 3a of the field edge 3. a ceiling panel 4, and a long horizontal force propagation member 5 (5A, 5B) fixed to the upper surface 4b of the ceiling panel 4 directly or via the edge 3 and extending horizontally along the ceiling panel 4. , is equipped with.

野縁3は、例えばJIS A 6517に規定される薄板鋼材であり、水平に延設され、且つ水平の一方向(図1及び図2で紙面左右方向)の第1横方向X1に所定の間隔をあけて平行に複数配設されている(図3参照)。 The field edge 3 is, for example, a thin steel sheet specified in JIS A 6517, and extends horizontally at a predetermined interval in the first lateral direction A plurality of them are arranged in parallel with space between them (see Fig. 3).

野縁受け2は、例えばJIS A 6517に規定される薄板鋼材であり、水平に延設され、且つ水平の他方向で第1横方向X1に直交する第2横方向X2(図2で紙面に直交する方向)に所定の間隔をあけて平行に複数配設されている(図3参照)。野縁受け2は、野縁3と交差するように配設されるとともに、複数の野縁3上に載置した状態で配設される。そして、各野縁受け2は、野縁3に交差する部分で、野縁接続用金具(以下、クリップ22という)を使用することにより野縁3に接続されている。 The field edge support 2 is, for example, a thin plate steel material specified in JIS A 6517, and extends horizontally, and has a second lateral direction X2 perpendicular to the first lateral direction X1 in the other horizontal direction (as shown in A plurality of them are arranged in parallel at predetermined intervals in the perpendicular direction (see FIG. 3). The field edge receiver 2 is disposed so as to intersect with the field edge 3, and is placed on a plurality of field edges 3. Each field edge receiver 2 is connected to the field edge 3 at a portion intersecting with the field edge 3 by using a field edge connection fitting (hereinafter referred to as a clip 22).

吊り部材6は、円柱棒状に形成されるとともに外周面に雄ねじの螺刻を有する吊りボルトであり、上端を上階の床材等の上部構造11に固着、または鋼製の根太等に緊結して垂下され、下端側を、吊り部材接続用金具である耐震ハンガー60を用いることにより野縁受け2に接続して複数配設されている。また、複数の吊り部材6は、所定の間隔をあけて分散配置されている。 The hanging member 6 is a hanging bolt that is formed in the shape of a cylindrical rod and has a male thread on the outer circumferential surface, and its upper end is fixed to a superstructure 11 such as flooring on the upper floor or fastened to a steel joist or the like. A plurality of hanging members are connected to the field edge receivers 2 by using seismic hangers 60, which are hanging member connection fittings, at the lower ends. Further, the plurality of hanging members 6 are distributed at predetermined intervals.

天井パネル4は、例えば2枚のボードを貼り付けて一体に積層形成したものであり、例えば天井付帯設備等の重量と併せて、例えば1m2あたり30kg以下の重量で形成されている。天井パネル4は、複数の野縁3の下面3aにビス留めなどして設置されている。なお、天井パネル4は、1枚および3枚以上のボードで構成されていてもよい。 The ceiling panel 4 is formed by laminating two boards together, for example, and has a weight of, for example, 30 kg or less per square meter, including the weight of the ceiling equipment and the like. The ceiling panel 4 is installed on the lower surface 3a of the plurality of roof edges 3 by screwing or the like. Note that the ceiling panel 4 may be composed of one board or three or more boards.

このように耐震天井構造1では、吊り部材6を介して天井上部の建物構造部(上部構造11)に、野縁3と野縁受け2と天井パネル4とが吊り下げ支持されている。また、野縁3と野縁受け2によって天井下地2Aが形成され、この天井下地2Aに取り付けた天井パネル4によって天井部が形成される。そして、この天井部によって天井面4aが形成されている。 In this manner, in the earthquake-resistant ceiling structure 1, the roof edge 3, the roof edge receiver 2, and the ceiling panel 4 are suspended and supported by the building structure (superstructure 11) at the upper part of the ceiling via the hanging members 6. Moreover, a ceiling base 2A is formed by the field edge 3 and the field edge receiver 2, and a ceiling part is formed by the ceiling panel 4 attached to this ceiling base 2A. This ceiling portion forms a ceiling surface 4a.

耐震天井構造1における建物躯体10は、図1、図2及び図4に示すように、壁、柱、梁、床等の建物の主要構造部である。本実施形態では、柱材12同士に一体に接合されて所定の高さに配置された受梁13を有している。 The building frame 10 in the earthquake-resistant ceiling structure 1 is the main structural parts of the building such as walls, columns, beams, and floors, as shown in FIGS. 1, 2, and 4. In this embodiment, the support beams 13 are integrally joined to the pillar members 12 and arranged at a predetermined height.

柱材12は、第1横方向X1及び第2横方向X2に所定の間隔をあけて複数設けられていてもよい。例えば、柱材12のスパンとして、10m以上×10m以上に設定することができる。 A plurality of pillar members 12 may be provided at predetermined intervals in the first lateral direction X1 and the second lateral direction X2. For example, the span of the pillar material 12 can be set to 10 m or more x 10 m or more.

受梁13は、図2に示すように、地震時に天井面4aに発生する水平慣性力を支持し、柱材12、12間に水平に配置される。受梁13は、野縁3及び野縁受け2と平行な第1横方向X1と第2横方向X2に沿って延在するように複数設けられている。図4及び図5に示すように、受梁13のウェブ13Aの両面には、梁長方向に直交する方向に平面を向けた補強リブ131が長さ方向に間隔をあけて接合されている。
また、受梁13には、梁長方向に所定の間隔をあけて上部構造から支持された吊材132によって吊り支持されている。吊材132を設けることで、受梁13の自重による撓みを防止できる。
As shown in FIG. 2, the support beam 13 supports the horizontal inertia force generated on the ceiling surface 4a during an earthquake, and is arranged horizontally between the columns 12, 12. A plurality of support beams 13 are provided so as to extend along a first lateral direction X1 and a second lateral direction X2 that are parallel to the field edge 3 and the field edge support 2. As shown in FIGS. 4 and 5, reinforcing ribs 131 whose planes are oriented in a direction perpendicular to the beam length direction are joined to both sides of the web 13A of the support beam 13 at intervals in the length direction.
Further, the support beam 13 is suspended and supported by hanging members 132 supported from the upper structure at predetermined intervals in the beam length direction. By providing the hanging material 132, it is possible to prevent the support beam 13 from deflecting due to its own weight.

柱材12及び受梁13として、例えばH形鋼、I形鋼、溝形鋼などの形鋼や角鋼管などの管材や鉄筋コンクリート造のものを採用できる。本実施形態の受梁13では、H形鋼が採用されており、例えばH-500×200×10×16を横向き(ウェブ13Aを横向き)に配置している。 As the pillar material 12 and the support beam 13, for example, shaped steel such as H-shaped steel, I-shaped steel, or channel steel, pipe material such as square steel pipe, or reinforced concrete construction can be used. The support beam 13 of this embodiment employs H-section steel, and for example, H-500 x 200 x 10 x 16 steel is arranged horizontally (web 13A is horizontal).

水平力伝搬材5は、地震時に天井面構成部材に働く水平方向の慣性力を天井面4aのレベル付近に耐力及び剛性に有効な支持構造体である建物躯体10に伝搬させる部材である。水平力伝搬材5は、天井パネル4の上方で第1横方向X1及び第2横方向X2に延在するように配設される略棒状の引張材からなる。水平力伝搬材5における第1横方向X1と第2横方向X2に配置される間隔は、例えば2500mmピッチの格子状に配設される。 The horizontal force propagation material 5 is a member that propagates the horizontal inertia force acting on the ceiling surface constituent members during an earthquake to the building frame 10, which is a support structure effective in strength and rigidity, near the level of the ceiling surface 4a. The horizontal force propagation member 5 is a substantially rod-shaped tensile member disposed above the ceiling panel 4 so as to extend in the first lateral direction X1 and the second lateral direction X2. The intervals between the horizontal force propagation members 5 in the first lateral direction X1 and the second lateral direction X2 are arranged in a lattice shape with a pitch of, for example, 2500 mm.

水平力伝搬材5としては、例えばアルミ押出形材、スチール部材、あるいは野縁受け材と野縁材などを採用することができる。図1乃至図4に示す水平力伝搬材5として、野縁受け材を採用しており、上述した天井下地2Aの野縁3と野縁受け2とは別で設けられている。この野縁受け材からなる水平力伝搬材5は、リップ溝形鋼もしくは軽溝形鋼で例えば幅38mm、高さ12mm、厚さ1.2mmの寸法のものが使用される。水平力伝搬材5、5同士は、不図示の接合板を使用してビス止めにより連結される。
なお、図4は、第1水平力伝搬材5Aと受梁13との接合状態を示しているが、第2水平力伝搬材5Bにおける受梁13との接合状態も同じ構造である。
As the horizontal force propagation material 5, for example, an aluminum extruded shape, a steel member, a field edge receiving material and a field edge material, etc. can be adopted. A field edge receiving material is adopted as the horizontal force propagation material 5 shown in FIGS. 1 to 4, and the field edge 3 and field edge receiver 2 of the ceiling base 2A described above are provided separately. The horizontal force propagation material 5 made of this edge receiving material is lip channel steel or light channel steel, and has dimensions of, for example, 38 mm in width, 12 mm in height, and 1.2 mm in thickness. The horizontal force propagation members 5, 5 are connected to each other by screws using a connecting plate (not shown).
In addition, although FIG. 4 has shown the joining state of the 1st horizontal force propagation material 5A and the receiving beam 13, the joining state with the receiving beam 13 in the 2nd horizontal force propagation material 5B also has the same structure.

水平力伝搬材5は、連結材7を介して受梁13の下端13aに接続されている。連結材7は、図4に示すように、矩形状の鋼板であって、上部にボルト穴が形成され、このボルト穴を使用してボルト71の締結により受梁13の補強リブ131に固定されている。連結材7の下部には、複数のボルト、ねじ等の固定部材72により水平力伝搬材5に固定されている。 The horizontal force propagation member 5 is connected to the lower end 13a of the support beam 13 via the connecting member 7. As shown in FIG. 4, the connecting member 7 is a rectangular steel plate with a bolt hole formed in the upper part, and is fixed to the reinforcing rib 131 of the support beam 13 by fastening the bolt 71 using the bolt hole. ing. The lower part of the connecting member 7 is fixed to the horizontal force propagating member 5 by a plurality of fixing members 72 such as bolts and screws.

図5は、水平力伝搬材5として野縁材を使用した構造を示している。水平力伝搬材5には、水平力伝搬材5の長手方向に沿って延びる帯状の接合板73がねじで固定されている。そして、この接合板73と、受梁13に固定された連結材7とが連結片74によって固定されている。連結片74は、下端が溶接部75を介して接合板73の上端に固定され、上部でボルト76によって連結材7の下部に固定されている。
なお、図5は、第1水平力伝搬材5Aと受梁13との接合状態を示しているが、第2水平力伝搬材5Bにおける受梁13との接合状態も同じ構造である。
FIG. 5 shows a structure in which a field edge material is used as the horizontal force propagation material 5. A strip-shaped joint plate 73 extending along the longitudinal direction of the horizontal force propagation material 5 is fixed to the horizontal force propagation material 5 with screws. This joining plate 73 and the connecting member 7 fixed to the support beam 13 are fixed by a connecting piece 74. The lower end of the connecting piece 74 is fixed to the upper end of the joint plate 73 via a welding part 75, and the upper part is fixed to the lower part of the connecting member 7 by a bolt 76.
In addition, although FIG. 5 has shown the joining state of 5 A of 1st horizontal force propagation materials, and the receiving beam 13, the joining state of the receiving beam 13 in the 2nd horizontal force propagation material 5B also has the same structure.

また、水平力伝搬材5として、図6(a)~(c)、及び図7(a)~(c)に示すように、アルミ押出形材を用いたものであってもよい。ここで、図6及び図7では、アルミ押出形材に対して符号51で示している。
アルミ押出形材51は、図6(a)~(c)に示すように、溝部511と、溝部511の内側で高さ方向の中央部に配置された補強片512と、を有する長尺なアルミ合金の押出成型材である。
Further, as the horizontal force propagating material 5, an extruded aluminum member may be used as shown in FIGS. 6(a) to 6(c) and FIGS. 7(a) to 7(c). Here, in FIGS. 6 and 7, the aluminum extruded shape is indicated by the reference numeral 51.
As shown in FIGS. 6(a) to 6(c), the extruded aluminum member 51 is a long piece having a groove 511 and a reinforcing piece 512 arranged at the center in the height direction inside the groove 511. It is an extruded aluminum alloy material.

アルミ押出形材51の延在方向の中間部で分割された接続部は、その分割端部51a、51a同士を突き合わせた状態で接続金物52により連結されている。アルミ押出形材51の端部51a側の両側壁513、513には、それぞれに対向するボルト穴が延在方向に沿って複数形成されている。 The connecting portions of the extruded aluminum profile 51 that are divided at the middle in the extending direction are connected by the connecting hardware 52 with the divided ends 51a and 51a abutted against each other. A plurality of opposing bolt holes are formed in both side walls 513, 513 on the end 51a side of the extruded aluminum member 51 along the extending direction.

接続金物52は、下側に開口する溝部材であって、アルミ押出形材51の溝開口側から外嵌可能に設けられている。接続金物52の両側壁521、521には、それぞれに対向するボルト穴が延在方向に沿って複数形成されている。アルミ押出形材51と接続金物52のそれぞれのボルト穴は、接続金物52を分割されたアルミ押出形材51に外嵌させた状態で一致する位置に配置されている。そして、アルミ押出形材51と接続金物52のそれぞれのボルト穴にボルト53を挿通させてナット54で締め付けることで、分割されたアルミ押出形材51、51が延在方向に接続される。 The connecting hardware 52 is a groove member that opens downward, and is provided so as to be able to fit outward from the groove opening side of the aluminum extrusion section 51. A plurality of opposing bolt holes are formed in both side walls 521, 521 of the connecting hardware 52 along the extending direction. The respective bolt holes of the aluminum extrusion section 51 and the connecting hardware 52 are arranged at matching positions with the connection hardware 52 being fitted onto the divided aluminum extrusion section 51. Then, by inserting bolts 53 into respective bolt holes of the aluminum extrusion section 51 and the connecting hardware 52 and tightening them with nuts 54, the divided aluminum extrusion sections 51, 51 are connected in the extending direction.

図7(a)~(c)に示すように、アルミ押出形材51における第1横方向X1と第2横方向X2との交差部は、互いに干渉しないように構成されている。一方の第1アルミ押出形材51A(5A)には下端51bから上方に凹む下側切欠部55が形成され、他方の第2水平力伝搬材51B(5B)には上端51cから下方に凹む上側切欠部56が形成されている。 As shown in FIGS. 7(a) to 7(c), the intersections of the first lateral direction X1 and the second lateral direction X2 in the extruded aluminum profile 51 are configured so as not to interfere with each other. One of the first extruded aluminum members 51A (5A) has a lower notch 55 recessed upward from the lower end 51b, and the other second horizontal force propagation member 51B (5B) has an upper notch 55 recessed downward from the upper end 51c. A notch 56 is formed.

このように形成した互いに直交するアルミ押出形材51A、51Bは、双方の交差部において、第1アルミ押出形材51Aの下側切欠部55と、第2アルミ押出形材51Bの上側切欠部56とを上下に嵌合させることで、それぞれが同じ高さレベルで格子状に配設されている。なお、交差部で嵌合されたアルミ押出形材51A、51B同士は、接合されていないので、それぞれの軸方向(延在方向)の引張力は各アルミ押出形材51A、51Bの両端部を介して建物躯体10の受梁13(図1及び図2参照)に伝達されるようになっている。 The thus formed extruded aluminum sections 51A and 51B, which are orthogonal to each other, have a lower notch 55 in the first extruded aluminum section 51A and an upper notch 56 in the second extruded aluminum section 51B at their intersections. By fitting them vertically, they are arranged in a grid pattern at the same height level. Note that the aluminum extruded shapes 51A and 51B that are fitted at the intersection are not joined, so the tensile force in the axial direction (extending direction) is applied to both ends of the aluminum extruded shapes 51A and 51B. The signal is transmitted to the support beam 13 (see FIGS. 1 and 2) of the building frame 10 through the support beam 13 of the building frame 10.

ここで、本実施形態の水平力伝搬材5の設計例について説明する。この設計例では、上述したアルミ押出形材51を設計対象とする。
先ず、水平力伝搬材1本が負担する天井面における地震時の水平慣性力は、(1)式により安全側の数値を算定する。
例えば、最大設計用水平震度(maxK)を2.2、天井の最大設計用荷重(maxW)を30kg/m×9.8N/kg、水平力伝搬材の最大設置間隔(支配幅)(maxb)を10m、水平力伝搬材の最大支点間距離(maxl)を2.5mとしたとき、(1)式より水平力伝搬材の最大張力(maxH)は16170Nとなる。
Here, a design example of the horizontal force propagation material 5 of this embodiment will be explained. In this design example, the above-mentioned aluminum extrusion section 51 is the design target.
First, the horizontal inertia force on the ceiling surface during an earthquake that is borne by one horizontal force propagation material is calculated on the safe side using equation (1).
For example, the maximum design horizontal seismic coefficient (maxK) is 2.2, the maximum design load (maxW) on the ceiling is 30kg/m 2 × 9.8N/kg, and the maximum installation interval (controlling width) of horizontal force propagation materials (maxb ) is 10 m, and the maximum distance between fulcrums (maxl) of the horizontal force propagation material is 2.5 m, the maximum tension (maxH) of the horizontal force propagation material is 16170N from equation (1).

Figure 0007375237000001
Figure 0007375237000001

そして、一例として、アルミ合金A5083-H112のF値(基準強度)は110N/mmであるので、上記(1)式の結果より設計上必要な有効断面積(mm)は以下の通りとなる。
アルミ合金A5083-H112:16170N/110N/mm=147mm
軽量形鋼を用いた場合には、材料となるメッキ薄板鋼板SPCCのF値は205N/mmであるので、上記(1)式の結果より設計上必要な有効断面積(mm)は以下の通りとなる。
メッキ薄板鋼板SPCC:16170N/205N/mm=79mm
As an example, since the F value (standard strength) of aluminum alloy A5083-H112 is 110N/mm 2 , the effective cross-sectional area (mm 2 ) required for design from the result of equation (1) above is as follows. Become.
Aluminum alloy A5083-H112: 16170N/110N/mm 2 = 147mm 2
When lightweight section steel is used, the F value of the plated thin steel sheet SPCC used as the material is 205 N/mm 2 , so from the result of equation (1) above, the effective cross-sectional area (mm 2 ) required for design is as follows: It will be as follows.
Plated thin steel plate SPCC: 16170N/205N/mm 2 = 79mm 2

また、天井面構成部材の地震時水平慣性力を水平力伝搬材に直接伝達させるため、天井板に直接接合する場合は、ボードビス接合可能なアルミ合金もしくは厚1.2mm以下の鋼板、野縁を介して接合する場合は野縁材および接合金物が耐力上負担可能なものを条件とする。
アルミ押出型材での計画の場合に25mmせいで設計することで、水平力伝搬部材以外の天井下地材を一般的に流通している在来工法の野縁や野縁受を利用しての設計が可能となる。また、水平力伝搬部材を野縁受に市販のクリップで取り付け可能な形状、かつ吊りボルトでの直接支持が可能な形状とすることで、施工中の仮支持を可能とし、施工を容易にすることができる。
In addition, in order to directly transmit the horizontal inertia of the ceiling surface components to the horizontal force propagation material, when directly bonding to the ceiling plate, use an aluminum alloy that can be bonded with board screws, a steel plate with a thickness of 1.2 mm or less, or an edge. In the case of joining through a wire, the border materials and joining hardware must be able to bear the load.
In the case of a plan using extruded aluminum, by designing with a thickness of 25 mm, it is possible to design using conventional construction methods such as no-edge and no-edge supports, which are commonly used as ceiling base materials other than horizontal force propagation members. becomes possible. In addition, the horizontal force transmission member is shaped so that it can be attached to the field fence with commercially available clips, and can be directly supported with hanging bolts, making it possible to provide temporary support during construction, making construction easier. be able to.

次に、水平力伝搬材5の施工方法について、図8及び図9等に基づいて詳細に説明する。
ここでは、水平力伝搬材5として、アルミ押出形材51(51A、51B)を使用して説明する。
Next, a method for constructing the horizontal force propagation material 5 will be described in detail based on FIGS. 8, 9, and the like.
Here, as the horizontal force propagation material 5, aluminum extrusion sections 51 (51A, 51B) will be used for explanation.

先ず、図8に示すように、野縁受け2は吊り部材6に耐震ハンガー60によって支持され、野縁3が野縁受け2の下面2aに第1耐震クリップ21によって支持されている。
次に、この状態において、野縁受け2の下側において、野縁受け2と直交する第2横方向X2(野縁3と平行な方向)に延在するように第2アルミ押出形材51Bを仮受けした状態とする。具体的には、野縁受け2の下面2aに第1耐震クリップ21を使用して第2アルミ押出形材51Bを支持する。
なお、第1耐震クリップ21は、例えば爪折クリップ等であって、第2アルミ押出形材51Bに対して着脱可能なクリップを用いてもよい。これにより、野縁受け2に対して第2アルミ押出形材51Bの仮受け状態が解除しやすくなる。
First, as shown in FIG. 8, the field edge receiver 2 is supported by an earthquake-resistant hanger 60 on the hanging member 6, and the field edge 3 is supported on the lower surface 2a of the field edge receiver 2 by a first earthquake-resistant clip 21.
Next, in this state, on the lower side of the field edge receiver 2, a second aluminum extruded shape 51B is formed so as to extend in a second lateral direction X2 perpendicular to the field edge receiver 2 (direction parallel to the field edge 3). is temporarily accepted. Specifically, the first seismic clip 21 is used on the lower surface 2a of the field edge support 2 to support the second aluminum extrusion section 51B.
Note that the first earthquake-resistant clip 21 may be, for example, a claw clip or the like, and may be a clip that can be attached to and detached from the second extruded aluminum section 51B. This makes it easier to release the second aluminum extrusion section 51B from the temporary receiving state on the field edge receiver 2.

また、図9に示すように、上述した野縁受け2で仮受けした第2アルミ押出形材51B(図8参照)と同じ高さの位置において、野縁受け2の延在方向(第1横方向X1)に沿って延在するように第1アルミ押出形材51Aを仮設の吊りボルト61で吊り下げて仮受けする。具体的には、第1アルミ押出形材51Aと、吊りボルト61の下端61aにそれぞれボルト63、63が設けられ、その上下のボルト63、63との間にターンバックル62が連結されている。ターンバックル62を回転させることで、第1アルミ押出形材51Aの高さを調整することができる。
ここで、第1アルミ押出形材51Aと干渉する第2横方向X2に延在する野縁3は、その干渉部分を切断しておく。
Further, as shown in FIG. 9, in the same height position as the second extruded aluminum profile 51B (see FIG. 8) temporarily received by the field edge receiver 2 described above, in the extending direction of the field edge receiver 2 (first The first aluminum extrusion section 51A is suspended and temporarily supported by temporary suspension bolts 61 so as to extend along the lateral direction X1). Specifically, bolts 63, 63 are provided on the first aluminum extrusion section 51A and the lower end 61a of the hanging bolt 61, respectively, and a turnbuckle 62 is connected between the upper and lower bolts 63, 63. By rotating the turnbuckle 62, the height of the first extruded aluminum member 51A can be adjusted.
Here, the interference portion of the edge 3 extending in the second lateral direction X2 that interferes with the first aluminum extrusion section 51A is cut off.

なお、第1アルミ押出形材51Aと第2アルミ押出形材51Bとは、どちらを先に仮受けしてもよいし、同時に仮受けするようにしてもよい。ただし、図7(a)~(c)に示すように双方が同じ高さで仮受けする場合には、交差部が生じるので、第1横方向X1と第2横方向X2のいずれか一方向に配列されるアルミ押出形材51のみを先行させて仮受けしてから、他方向に配列されるアルミ押出形材51を仮受けさせることが好ましい。 Note that either the first extruded aluminum member 51A or the second extruded aluminum member 51B may be temporarily received first, or may be temporarily received at the same time. However, as shown in FIGS. 7(a) to 7(c), when both are temporarily received at the same height, an intersection occurs, so either one of the first lateral direction X1 and the second lateral direction It is preferable that only the aluminum extruded sections 51 arranged in the direction are temporarily received first, and then the aluminum extruded sections 51 arranged in the other direction are temporarily received.

次に、図1に示すように、仮受けした状態の第1アルミ押出形材51Aと第2アルミ押出形材51Bのそれぞれの両端部を建物躯体の受梁13の下面13aに接合する(図1及び図2参照)。 Next, as shown in FIG. 1, both ends of the first extruded aluminum profile 51A and the second extruded aluminum profile 51B, which have been temporarily supported, are joined to the lower surface 13a of the support beam 13 of the building frame (Fig. 1 and Figure 2).

そして、第1アルミ押出形材51Aと第2アルミ押出形材51Bを受梁13に固定した後、天井板の留め付けを行う。第1アルミ押出形材51Aと第2アルミ押出形材51Bはともに、呼び径3.5mm以上のビスを用いて天井板と100mmピッチ以下で接合する。その際、第1アルミ押出形材51Aを第1耐震クリップ21から取り外して野縁受け2との仮受けを解除する。なお、第1アルミ押出形材51Aと野縁受け2との仮受けが緊結状態にない場合は解除しない状態であってもかまわない。 After fixing the first extruded aluminum profile 51A and the second extruded aluminum profile 51B to the support beam 13, the ceiling board is fastened. Both the first aluminum extrusion section 51A and the second aluminum extrusion section 51B are joined to the ceiling board at a pitch of 100 mm or less using screws with a nominal diameter of 3.5 mm or more. At that time, the first aluminum extrusion section 51A is removed from the first earthquake-resistant clip 21 to release the temporary support from the field edge support 2. Note that if the temporary support between the first aluminum extrusion member 51A and the field edge support 2 is not in a tight state, it may be in a state where it is not released.

次に、上述した耐震天井構造の作用について、図面に基づいて詳細に説明する。
本実施形態では、図1及び図2に示すように、天井パネル4の上面側に配置される水平力伝搬材5を水平方向に延在させて配置するとともに、その水平力伝搬材5の両端部が建物躯体10と一体で挙動する支持構造部である受梁13に接合された耐力剛性が高い天井構造を実現することができる。そのため、地震時において、水平力伝搬材5の下面側に固定される天井パネル4を有する天井部が建物躯体10と一体に水平方向に挙動することとなり、天井部が建物の壁、柱、梁などの躯体に衝突することを防止できる。
Next, the operation of the earthquake-resistant ceiling structure described above will be explained in detail based on the drawings.
In this embodiment, as shown in FIGS. 1 and 2, the horizontal force propagation material 5 arranged on the upper surface side of the ceiling panel 4 is arranged to extend in the horizontal direction, and both ends of the horizontal force propagation material 5 are arranged so as to extend in the horizontal direction. It is possible to realize a ceiling structure with high load-bearing rigidity, in which the section is joined to the support beam 13, which is a support structure section that behaves integrally with the building frame 10. Therefore, in the event of an earthquake, the ceiling section having the ceiling panel 4 fixed to the lower surface side of the horizontal force propagation material 5 moves in the horizontal direction together with the building frame 10, and the ceiling section Collision with other structures can be prevented.

また、本実施形態では、上述したように天井部が建物躯体10と一体に水平方向に挙動するため、天井面4aと建物躯体10との間に水平方向のクリアランスを設ける必要がなくなる。そのため、クリーンルーム、屋内プール、温浴施設等の気密性が要求される建物に適用することができる。
さらに、本実施形態では、水平力伝搬材5が天井パネル4よりも上方で天井裏に配置され、天井面4a(天井パネルの下面)に耐震部材が配置されることがないので、天井面に凹凸を有する形状の耐震部材が露出することがなく、意匠性が低下することもない。
Furthermore, in this embodiment, as described above, the ceiling section moves horizontally together with the building frame 10, so there is no need to provide a horizontal clearance between the ceiling surface 4a and the building frame 10. Therefore, it can be applied to buildings that require airtightness, such as clean rooms, indoor pools, and hot bath facilities.
Furthermore, in this embodiment, the horizontal force propagation material 5 is arranged above the ceiling panel 4 in the ceiling, and no earthquake-resistant member is arranged on the ceiling surface 4a (lower surface of the ceiling panel). The earthquake-resistant member having an uneven shape is not exposed, and the design is not deteriorated.

また、本実施形態では、地震時において、天井部に作用する水平力を格子状に配置される二方向の第1水平力伝搬材5Aと第2水平力伝搬材5Bおよび受梁13により建物躯体10に伝搬させることができる。そのため、天井部が建物躯体10とより確実に一体に水平方向に挙動することとなり、天井部の揺れの増幅を抑制することができる。 In addition, in this embodiment, in the event of an earthquake, the horizontal force acting on the ceiling is transferred to the building frame by the first horizontal force propagating member 5A, the second horizontal force propagating member 5B and the support beam 13 arranged in two directions in a grid pattern. 10. Therefore, the ceiling section moves horizontally in unison with the building frame 10 more reliably, and amplification of shaking of the ceiling section can be suppressed.

また、本実施形態では、第1水平力伝搬材5Aと第2水平力伝搬材5Bのうち一方の切欠凹部に他方の水平力伝搬材5が嵌合することで、第1水平力伝搬材5Aと第2水平力伝搬材5Bとを同一の高さの位置で交差させることができる。
そのため、格子状に配置される水平力伝搬材5の高さを一般的に流通している在来工法の25mmせいの野縁材の高さに抑えることができ、天井裏の高さ寸法の増大を抑制できる。
Moreover, in this embodiment, the other horizontal force propagation material 5 fits into the notch recess of one of the first horizontal force propagation material 5A and the second horizontal force propagation material 5B, so that the first horizontal force propagation material 5A and the second horizontal force propagation material 5B can intersect at the same height position.
Therefore, the height of the horizontal force propagation materials 5 arranged in a lattice pattern can be kept to the height of the 25 mm edge material of the conventional construction method that is generally distributed, and the height of the ceiling space can be reduced. Increase can be suppressed.

また、本実施形態では、接続金物によって水平力伝搬材5の端部同士を突き合わせた状態で延長方向に同軸に連結することができる。これにより、複数の水平力伝搬材5を一体的に設けることができ、受梁13の水平方向のスパンが大きな場合でも、複数の水平力伝搬材5により天井部に作用する水平力を効率よく受梁13に伝搬させることができる。 Further, in this embodiment, the ends of the horizontal force propagation member 5 can be coaxially connected in the extension direction with the ends of the horizontal force propagation member 5 butted against each other using the connecting hardware. As a result, a plurality of horizontal force propagation members 5 can be provided integrally, and even if the horizontal span of the support beam 13 is large, the horizontal force acting on the ceiling can be efficiently transmitted by the plurality of horizontal force propagation members 5. It can be propagated to the receiving beam 13.

上述のように本実施形態による耐震天井構造では、耐力剛性の高い天井構造を実現できるうえ、建物躯体の変形に追従するため天井クリアランスが不要とすることができる。
また、本実施形態では、在来工法を用いた天井下地材に加え、野縁材と同じ高さレベルに野縁材と同じ高さの小断面な耐震材を水平方向に設置する構造であるため、天井裏に多くの設備を有する部位でも干渉を避けられ、大きな耐震部材を設置するために階高さを大きくしたり、天井面を低くする必要がない。
As described above, the earthquake-resistant ceiling structure according to the present embodiment can realize a ceiling structure with high strength and rigidity, and can also eliminate the need for ceiling clearance because it follows the deformation of the building frame.
In addition, in this embodiment, in addition to the ceiling base material using conventional construction methods, the structure is such that earthquake-resistant materials with a small cross section at the same height as the field edge materials are installed horizontally at the same height level as the field edge materials. Therefore, interference can be avoided even in areas with many facilities under the ceiling, and there is no need to increase the floor height or lower the ceiling surface to install large earthquake-resistant members.

以上、本発明による耐震天井構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiments of the earthquake-resistant ceiling structure according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate without departing from the spirit thereof.

例えば、本実施形態では、水平力伝搬材5A、5Bの延在方向が互いに直交する二方向で、格子状に配置されているが、このように二方向に直交した格子状に配置されていることに限定されることはない。要は、水平力伝搬材5は天井パネル4に沿って水平方向に延在する長尺の部材であればよいのである。 For example, in this embodiment, the horizontal force propagation members 5A and 5B are arranged in a grid pattern in two directions perpendicular to each other; It is not limited to that. In short, the horizontal force propagation material 5 only needs to be a long member that extends horizontally along the ceiling panel 4.

また、本実施形態では、二方向に延在する第1水平力伝搬材5Aと第2水平力伝搬材5Bとが同一の高さに配置されているが、双方の水平力伝搬材5A、5Bが同じ高さレベルであることに制限されることはなく、上下にずれた位置に配置されていてもよい。
例えば、図1乃至図5に示すように、水平力伝搬材5Aを野縁受けの高さに、水平力伝搬材5Bを野縁の高さに配置しても良い。この場合は、上下にずれた位置に配置されているので、交差部に切欠凹部を形成させて嵌合する必要はない。
Further, in this embodiment, the first horizontal force propagation member 5A and the second horizontal force propagation member 5B extending in two directions are arranged at the same height, but both horizontal force propagation members 5A, 5B are not limited to being at the same height level, but may be placed at vertically shifted positions.
For example, as shown in FIGS. 1 to 5, the horizontal force propagation material 5A may be placed at the height of the field edge receiver, and the horizontal force propagation material 5B may be placed at the height of the field edge. In this case, since they are arranged at vertically shifted positions, there is no need to form a cutout recess at the intersection for fitting.

さらに、第1水平力伝搬材5Aと第2水平力伝搬材5Bとが同一の高さに配置される場合における互いの交差部分の構造として、上述した少なくとも一方の水平力伝搬材5に直交方向に開口する切欠凹部が形成され、切欠凹部に他方の水平力伝搬材5が延在方向に移動可能に嵌合することで交差部分が形成された構成としているが、このような構成に限定されることはない。 Furthermore, when the first horizontal force propagation material 5A and the second horizontal force propagation material 5B are arranged at the same height, the structure of the mutually intersecting portion is arranged in a direction orthogonal to at least one of the horizontal force propagation materials 5 mentioned above. A notch opening is formed in the cross section, and the other horizontal force propagation member 5 is fitted into the notch recess so as to be movable in the extending direction, thereby forming an intersection. However, the present invention is not limited to such a configuration. It never happens.

また、水平力伝搬材5における延在方向の中間部の分割端部同士を突き合わせた状態で接続金物52により連結された構成としているが、これに限定されることはなく、接続金物52を使用しない接続構造を採用することも可能である。 In addition, although the split ends of the horizontal force propagation member 5 in the middle part in the extending direction are butted against each other and connected by the connecting hardware 52, the structure is not limited to this, and the connecting hardware 52 is used. It is also possible to adopt a connection structure that does not.

また、本実施形態では、水平力伝搬材5をH形鋼の受梁13に接合する構成としているが、受梁13であることに制限されるものではない。例えば、支持構造部として角型鋼管の受梁であってもよいし、鉄筋コンクリート造の受梁であってもかまわない。さらに、水平力伝搬材5の接合部として梁材であることに限定されず、例えば水平力伝搬材5を建物躯体である柱材12に対して接合される構成としてもよい。 Further, in this embodiment, the horizontal force propagation member 5 is configured to be joined to the support beam 13 made of H-section steel, but it is not limited to the support beam 13. For example, the support structure may be a support beam made of a square steel pipe or a support beam made of reinforced concrete. Furthermore, the joining portion of the horizontal force propagation material 5 is not limited to a beam material, and for example, the horizontal force propagation material 5 may be joined to a pillar material 12 that is a building frame.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components without departing from the spirit of the present invention.

1 耐震天井構造
2 野縁受け
2A 天井下地
3 野縁
4 天井パネル
4a 天井面
5 水平力伝搬材
5A 第1水平力伝搬材
5B 第2水平力伝搬材
6 吊り部材
7 連結材
10 建物躯体
11 上部構造
12 柱材
13 受梁(支持構造部)
51、51A、51B アルミ押出形材
52 接続金物
X1 第1横方向
X2 第2横方向
1 Earthquake-resistant ceiling structure 2 Edge support 2A Ceiling base 3 Edge 4 Ceiling panel 4a Ceiling surface 5 Horizontal force propagation material 5A First horizontal force propagation material 5B Second horizontal force propagation material 6 Hanging member 7 Connecting material 10 Building frame 11 Upper part Structure 12 Column material 13 Support beam (support structure part)
51, 51A, 51B Aluminum extrusion shape 52 Connection hardware X1 First lateral direction X2 Second lateral direction

Claims (4)

吊り部材を介して建物躯体の上部構造に吊り下げ支持される野縁受けと、
前記野縁受けに取り付けられる野縁と、
前記野縁の下面に取り付けられた天井パネルと、を備えた耐震天井構造であって、
前記天井パネルの上面に直接又は前記野縁を介して固定され、前記天井パネルに沿って水平方向に延在する長尺の水平力伝搬材が設けられ、
前記水平力伝搬材は、
互いに異なる二方向に延在方向を向けて配置されており、
二方向に延在する第1水平力伝搬材と第2水平力伝搬材とは、同一の高さに配置され、
前記第1水平力伝搬材と前記第2水平力伝搬材との交差部分は、少なくとも一方の水平力伝搬材に対して上下方向に開口する切欠凹部が形成され、
該切欠凹部は、他方の水平力伝搬材が当該他方の水平力伝搬材の延在方向に移動可能に嵌合していることを特徴とする耐震天井構造。
a field support that is suspended and supported by the upper structure of the building frame via a hanging member;
a field edge attached to the field edge receiver;
An earthquake-resistant ceiling structure comprising: a ceiling panel attached to the lower surface of the veranda;
An elongated horizontal force propagation member is provided that is fixed to the upper surface of the ceiling panel directly or via the edge and extends horizontally along the ceiling panel,
The horizontal force propagation material is
They are arranged with their extension directions pointing in two different directions,
The first horizontal force propagation member and the second horizontal force propagation member extending in two directions are arranged at the same height,
At the intersection of the first horizontal force propagating material and the second horizontal force propagating material, a cutout recess that opens in the vertical direction with respect to at least one horizontal force propagating material is formed,
An earthquake-resistant ceiling structure characterized in that the other horizontal force propagation member is fitted into the cutout recess so that the other horizontal force propagation member can move in the extending direction of the other horizontal force propagation member.
前記水平力伝搬材は、互いに直交する二方向に延在方向を向けた格子状に配置されていることを特徴とする請求項1に記載の耐震天井構造。 The earthquake-resistant ceiling structure according to claim 1, wherein the horizontal force propagation materials are arranged in a lattice shape with extending directions in two directions perpendicular to each other. 前記水平力伝搬材は、延在方向の中間部で分割され、その分割端部同士を突き合わせた状態で接続金物により連結されていることを特徴とする請求項1または2に記載の耐震天井構造。 The earthquake-resistant ceiling structure according to claim 1 or 2, wherein the horizontal force propagation material is divided at an intermediate portion in the extending direction, and the divided ends are butted against each other and connected by connecting hardware. . 前記水平力伝搬材は、野縁受け材と野縁材との組み合わせによって構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の耐震天井構造。

The earthquake-resistant ceiling structure according to any one of claims 1 to 3, wherein the horizontal force propagation material is constituted by a combination of a field edge receiving material and a field edge material.

JP2023026502A 2019-01-18 2023-02-22 Earthquake-resistant ceiling structure Active JP7375237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023026502A JP7375237B2 (en) 2019-01-18 2023-02-22 Earthquake-resistant ceiling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006872A JP7272800B2 (en) 2019-01-18 2019-01-18 Seismic ceiling structure
JP2023026502A JP7375237B2 (en) 2019-01-18 2023-02-22 Earthquake-resistant ceiling structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019006872A Division JP7272800B2 (en) 2019-01-18 2019-01-18 Seismic ceiling structure

Publications (2)

Publication Number Publication Date
JP2023054269A JP2023054269A (en) 2023-04-13
JP7375237B2 true JP7375237B2 (en) 2023-11-07

Family

ID=71890216

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019006872A Active JP7272800B2 (en) 2019-01-18 2019-01-18 Seismic ceiling structure
JP2023026502A Active JP7375237B2 (en) 2019-01-18 2023-02-22 Earthquake-resistant ceiling structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019006872A Active JP7272800B2 (en) 2019-01-18 2019-01-18 Seismic ceiling structure

Country Status (1)

Country Link
JP (2) JP7272800B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020186A (en) 2012-07-24 2014-02-03 Riken Light Metal Ind Co Ltd Earthquake-proof ceiling fitting structure
JP2016151127A (en) 2015-02-17 2016-08-22 フクビ化学工業株式会社 Ceiling substrate structure
JP2016223152A (en) 2015-05-29 2016-12-28 旭ビルト工業株式会社 Light-weight system ceiling substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340041A (en) * 1986-08-05 1988-02-20 ナショナル住宅産業株式会社 Execution of ceiling substrate panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020186A (en) 2012-07-24 2014-02-03 Riken Light Metal Ind Co Ltd Earthquake-proof ceiling fitting structure
JP2016151127A (en) 2015-02-17 2016-08-22 フクビ化学工業株式会社 Ceiling substrate structure
JP2016223152A (en) 2015-05-29 2016-12-28 旭ビルト工業株式会社 Light-weight system ceiling substrate

Also Published As

Publication number Publication date
JP7272800B2 (en) 2023-05-12
JP2020117855A (en) 2020-08-06
JP2023054269A (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP5833564B2 (en) Paneled structural system for building
JP6349207B2 (en) Fireproof structure of balcony
JP7375237B2 (en) Earthquake-resistant ceiling structure
CA2830379C (en) 30-minute residential fire protection of floors
US9481999B2 (en) Method of building and installation of an interstitial seismic resistant support for an acoustic ceiling grid
JP7257844B2 (en) Seismic ceiling structure
JP7208044B2 (en) Seismic ceiling structure
JP7208028B2 (en) Construction method of earthquake-resistant ceiling structure
JP4854749B2 (en) Floor structure and building for bus unit installation
JP6831819B2 (en) Insulation or heat shield mounting structure
KR101273087B1 (en) Method for installing alc panel to concrete slab
JP7373115B2 (en) Column beam joint structure and building
JP6990066B2 (en) Building balcony structure
JPH0525876A (en) Fitting structure of floor panel
JP5967895B2 (en) Floor structure
JP2022157403A (en) suspended ceiling structure
WO2013012012A1 (en) Wooden framework building
JP2017020210A (en) Building outer wall structure
JP2010001657A (en) Ceiling furring material support structure
JP2023075961A (en) Ceiling structure and construction method of the same
JP2021025308A (en) Floor structure, building and beam
JP2021134593A (en) Boundary wall structure
JP2018178708A (en) Suspended ceiling structure
JP2001342708A (en) Building structure using panel member for construction and mounting structure of heat-insulating material and building
JP2011047192A (en) Floor structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7375237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150