JP2020117855A - Aseismatic ceiling structure - Google Patents

Aseismatic ceiling structure Download PDF

Info

Publication number
JP2020117855A
JP2020117855A JP2019006872A JP2019006872A JP2020117855A JP 2020117855 A JP2020117855 A JP 2020117855A JP 2019006872 A JP2019006872 A JP 2019006872A JP 2019006872 A JP2019006872 A JP 2019006872A JP 2020117855 A JP2020117855 A JP 2020117855A
Authority
JP
Japan
Prior art keywords
ceiling
horizontal force
propagating
edge
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019006872A
Other languages
Japanese (ja)
Inventor
和久 山里
Kazuhisa Yamasato
和久 山里
記彦 櫻庭
Norihiko Sakuraba
記彦 櫻庭
Original Assignee
清水建設株式会社
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設株式会社, Shimizu Corp filed Critical 清水建設株式会社
Priority to JP2019006872A priority Critical patent/JP2020117855A/en
Publication of JP2020117855A publication Critical patent/JP2020117855A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an aseismatic ceiling structure that can realize a ceiling structure with high force-bearing rigidity, can eliminate the necessity of diagonal members and ceiling clearance in attics, and has an aseismatic structure in the ceiling backing part creating no geometric constraint such as irregularity on the finished surface of the ceiling.SOLUTION: An aseismatic ceiling structure in this invention comprises a ceiling joist holder 2 suspended with a suspender member 6 from the upper structure 11 of a building skeleton 10, a ceiling joist 3 fixed on the ceiling joist holder 2, and a ceiling panel 4 fitted on the bottom surface of the ceiling joist 3. It has a configuration that a long horizontal force transmission member 5 is provided to be fixed on the upper surface of the ceiling panel 4 directly or via the ceiling joist 3 and to horizontally extend along the ceiling panel 4, and both end parts of the horizontal force transmission member 5 are attached to a bearing beam 13 of the building skeleton 10.SELECTED DRAWING: Figure 1

Description

本発明は、耐震天井構造に関する。 The present invention relates to an earthquake-resistant ceiling structure.
従来、例えば学校、病院、生産施設、体育館、プール、空港ターミナルビル、オフィスビル、劇場、シネコン等の建物の天井として、吊り天井が多用されている。このような吊り天井は、水平の一方向に所定の間隔をあけて並設される複数の野縁と、野縁に直交し、水平の他方向に所定の間隔をあけて並設され、複数の野縁に一体に接続して設けられる複数の野縁受けと、下端を野縁受けに接続し、上端を上階の床材等の上部構造(建物躯体)に固着して配設される複数の吊りボルト(吊り部材)と、野縁の下面にビス留めなどによって一体に取り付けられ、下階の天井面を形成する天井パネルと、を備えて構成されている。 Conventionally, suspended ceilings are often used as ceilings for buildings such as schools, hospitals, production facilities, gymnasiums, pools, airport terminal buildings, office buildings, theaters, and cinemas. Such a suspended ceiling is arranged in parallel with a plurality of field edges arranged in a horizontal direction at a predetermined interval, and a plurality of field edges orthogonal to the field edge in a horizontal direction at a predetermined interval. A plurality of field rim receivers that are integrally connected to the field rim, the lower end is connected to the field rim receiver, and the upper end is fixedly attached to the upper structure (building frame) such as the floor material of the upper floor. It is configured to include a plurality of suspension bolts (suspension members) and a ceiling panel that is integrally attached to the lower surface of the field edge with screws or the like and forms a ceiling surface of the lower floor.
一方、このように野縁及び野縁受けの天井下地と天井パネルを吊り部材で吊り下げ支持してなる吊り天井は、地震時に作用する水平方向の加速度を受けて横揺れが発生する。天井パネルは、建物躯体と構造上別々の挙動となり、横揺れが増幅する傾向にあるため、天井パネルが壁や、柱、梁などの建物躯体に衝突して破損し、脱落が生じるおそれがあった。 On the other hand, the suspended ceiling in which the ceiling base and the ceiling panel of the field edge and the field edge support are suspended and supported by the suspension member in this way, undergoes horizontal swaying due to the horizontal acceleration acting during an earthquake. The ceiling panel behaves differently in structure from the structure of the building, and the rolling motion tends to increase.Therefore, the ceiling panel may collide with the building structure such as walls, pillars, and beams, and may be damaged and fall off. It was
このような吊り天井の脱落を防止するために、耐震部材として斜め部材を設置する方法や国土交通省告示第791号に記載される天井周囲に地震力を負担する壁等を配置する方法が知られている。
その他の例として、例えば特許文献1に示すような、天井パネルの下方に且つ天井パネルに沿って横方向に配設された略棒状の引張材を備え、この引張材を、両端部をそれぞれ建物躯体に接続して配設するとともに、両端部の間の中間部を天井パネルの下方から天井パネル及び/又は野縁に接続固定手段で接続固定して配設することで天井パネルと建物躯体を同調させて、天井パネルの耐震性能を高めた耐震天井構造や吊り天井ではないが支柱と梁で構成されたぶどう棚に直接天井を留め付ける直天井が知られている。
In order to prevent such a suspended ceiling from falling off, a method of installing an oblique member as a seismic resistant member and a method of arranging a wall that bears seismic force around the ceiling described in Ministry of Land, Infrastructure, Transport and Tourism Notification No. 791 are known. Has been.
As another example, as shown in Patent Document 1, for example, a substantially rod-shaped tension member disposed below the ceiling panel and laterally along the ceiling panel is provided, and both ends of the tension member are respectively constructed. The ceiling panel and the building frame are arranged by connecting and arranging them to the skeleton, and by arranging the middle part between both ends from the lower part of the ceiling panel by connecting and fixing them to the ceiling panel and/or the field edge by the connecting and fixing means. There are known seismic-resistant ceiling structures that have been synchronized with each other to improve the seismic performance of ceiling panels, and direct ceilings that are not suspended ceilings but are directly fastened to a grape rack composed of columns and beams.
特開2013−177801号公報JP, 2013-177801, A
空気中の粉塵量の制御が要求されるクリーンルームや湿潤環境の屋外軒天井や屋内プール、温浴施設等の場合には、気密性を確保するために天井周囲の壁や柱、梁などと天井を構成する部材とのクリアランス(以後、天井クリアランスと呼ぶ)が無いものが好ましい。また、クリーンルームでは、天井裏に多くの設備を有するために耐震部材との干渉が課題となる。
耐震部材として斜め部材を設置する方法は、天井パネルが吊元の上部構造と同調して動き天井周囲の柱や壁と異なる動きをするために、天井周囲に気密性の保持が困難なクリアランスが必要であり、天井周囲に地震力を負担する壁等を配置する方法の場合は、日常的には天井周囲にクリアランスは無いが、地震時には天井パネルと地震力を負担する壁等が衝突して隙間ができるためクリーンルームの気密性が失われてしまう。
ぶどう棚に直接天井を留め付ける直天井や天井パネルの下面に引張材を配置して耐震性をもたせた特許文献1のような構造にすると、地震時にも気密性を保持し易くなるが、ぶどう棚を用いた直天井の場合は、コスト高や荷重増の課題に加えて、天井内設備との干渉調整等による天井懐高さの増加により、天井面の高さが低くなってしまうという問題があった。
また、特許文献1のように天井パネルの下面に引張材を配置して耐震性をもたせた構造にすると、粉塵の付着防止の観点から天井面の凹凸を好まないクリーンルームの要求性能に対して問題があった。
In the case of a clean room where it is necessary to control the amount of dust in the air, an outdoor eaves ceiling in a humid environment, an indoor pool, a hot bath facility, etc., in order to ensure airtightness, the walls, columns, beams, etc. around the ceiling and the ceiling should be installed. It is preferable that there is no clearance (hereinafter, referred to as a ceiling clearance) with the constituent members. Further, in a clean room, since there are many facilities behind the ceiling, interference with the seismic member becomes a problem.
The method of installing diagonal members as earthquake-resistant members is that the ceiling panel moves in synchronism with the upper structure of the suspension source and moves differently from the columns and walls around the ceiling, so there is a clearance around the ceiling where it is difficult to maintain airtightness. In the case of the method of arranging walls that bear the seismic force around the ceiling, there is no clearance around the ceiling on a daily basis, but during an earthquake, the ceiling panel collides with the walls that bear the seismic force. Since there is a gap, the airtightness of the clean room is lost.
If a structure like that of Patent Document 1 in which a tensile member is arranged on the lower surface of a ceiling or a ceiling panel to fasten the ceiling directly to the grape rack to provide earthquake resistance, it is easy to maintain airtightness even during an earthquake, but grapes In the case of a straight ceiling using shelves, in addition to the problems of high cost and increased load, the height of the ceiling surface becomes low due to an increase in the ceiling height due to interference adjustment with equipment inside the ceiling. was there.
In addition, when a tensile member is arranged on the lower surface of the ceiling panel to provide earthquake resistance as in Patent Document 1, there is a problem with the required performance of a clean room that does not like unevenness on the ceiling surface from the viewpoint of preventing dust adhesion. was there.
本発明は、上述する問題点に鑑みてなされたもので、耐力剛性の高い天井構造を実現できるうえ、天井裏の斜め部材や天井クリアランスを不要とすることができる耐震天井構造を提供することを目的とする。
また、本発明の他の目的は、天井下地部に耐震構造を設けることによって天井仕上面に凹凸等の形状的な制約を生じない耐震天井構造を提供することである。
The present invention has been made in view of the above-described problems, and provides a seismic resistant ceiling structure that can realize a ceiling structure with high yield strength and can eliminate the need for diagonal members and ceiling clearances behind the ceiling. To aim.
Another object of the present invention is to provide a seismic-resistant ceiling structure in which the ceiling base is provided with a seismic-resistant structure so that the finished surface of the ceiling is not subject to geometrical restrictions such as irregularities.
上記目的を達成するため、本発明に係る耐震天井構造は、吊り部材を介して建物躯体の上部構造に吊り下げ支持される野縁受けと、前記野縁受けに取り付けられる野縁と、前記野縁の下面に取り付けられた天井パネルと、を備えた耐震天井構造であって、前記天井パネルの上面に直接又は前記野縁を介して固定され、前記天井パネルに沿って水平方向に延在する長尺の水平力伝搬材が設けられ、前記水平力伝搬材の両端部は、前記建物躯体、又は該建物躯体の支持構造部に接合されていることを特徴としている。 In order to achieve the above object, the earthquake-resistant ceiling structure according to the present invention includes a field rim receiver suspended and supported by a superstructure of a building body via a suspension member, a field rim attached to the field rim receiver, and the field rim. An earthquake-resistant ceiling structure comprising: a ceiling panel attached to a lower surface of a rim; fixed to the upper surface of the ceiling panel directly or through the field edge, and extending horizontally along the ceiling panel. A long horizontal force propagating material is provided, and both ends of the horizontal force propagating material are joined to the building skeleton or a supporting structure portion of the building skeleton.
本発明では、天井パネルの上面側に配置される水平力伝搬材を水平方向に延在させて配置するとともに、その水平力伝搬材の両端部が建物躯体、又は建物躯体の支持構造部に接合された耐力剛性が高い天井構造を実現することができる。そのため、地震時において、水平力伝搬材の下面側に固定される天井パネルを有する天井部が建物躯体と一体に水平方向に挙動することとなり、天井部の揺れの増幅を抑制することができる。
すなわち、本発明による耐震天井構造では、地震時に作用する天井部の水平慣性力を確実に建物躯体に伝搬させることができ、従来のように天井部が建物の壁、柱、梁などの躯体に衝突することを防止できる。
In the present invention, the horizontal force propagating material arranged on the upper surface side of the ceiling panel is arranged so as to extend in the horizontal direction, and both ends of the horizontal force propagating material are joined to the building frame or the supporting structure part of the building frame. It is possible to realize a ceiling structure having high yield strength and rigidity. Therefore, at the time of an earthquake, the ceiling part having the ceiling panel fixed to the lower surface side of the horizontal force propagating member behaves in the horizontal direction integrally with the building skeleton, and the amplification of the shaking of the ceiling part can be suppressed.
That is, in the earthquake-resistant ceiling structure according to the present invention, it is possible to reliably propagate the horizontal inertial force of the ceiling portion that acts at the time of an earthquake to the building body, and the ceiling portion is a building wall, pillar, beam or the like body as in the conventional structure. It can prevent a collision.
また、本発明では、上述したように天井部が建物躯体と一体に水平方向に挙動するため、天井面と建物躯体、又は建物躯体の支持構造部との間に水平方向のクリアランスを設ける必要がなくなる。そのため、クリーンルーム、屋内プール、温浴施設等の気密性が要求される建物に適用することができる。
さらに、水平力伝搬材が天井パネルよりも上方で天井裏に配置され、天井面(天井の下面)に耐震部材が配置されることがないので、天井面に凹凸を有する形状の耐震部材が露出することがなく、意匠性が低下することもない。
Further, in the present invention, since the ceiling part behaves in the horizontal direction integrally with the building frame as described above, it is necessary to provide a horizontal clearance between the ceiling surface and the building frame, or the supporting structure part of the building frame. Disappear. Therefore, it can be applied to a building requiring air tightness such as a clean room, an indoor pool, and a hot bath facility.
Furthermore, since the horizontal force transmission material is placed above the ceiling panel in the back of the ceiling and no seismic resistant member is placed on the ceiling surface (the lower surface of the ceiling), the seismic resistant member with the uneven shape is exposed on the ceiling surface. And the designability does not deteriorate.
また、本発明に係る耐震天井構造は、前記水平力伝搬材は、互いに直交する二方向に延在方向を向けた格子状に配置されていることが好ましい。 Further, in the earthquake-resistant ceiling structure according to the present invention, it is preferable that the horizontal force propagating members are arranged in a lattice shape having extension directions in two directions orthogonal to each other.
この場合には、地震時において、建物躯体に作用する直交する二方向の水平力を格子状に配置される二方向の水平力伝搬材から天井部に伝搬させることができる。そのため、天井部が建物躯体とより確実に一体に水平方向に挙動することとなり、天井部の揺れを抑制することができる。 In this case, in the event of an earthquake, the horizontal two-direction horizontal forces acting on the building frame can be propagated to the ceiling from the two-direction horizontal force propagating members arranged in a grid pattern. Therefore, the ceiling portion behaves more reliably and integrally with the building body in the horizontal direction, and the swinging of the ceiling portion can be suppressed.
また、本発明に係る耐震天井構造は、二方向に延在する第1水平力伝搬材と第2水平力伝搬材とは、交差部分で互いに影響しないように異なる高さで配置されていることが好ましい。 Further, in the earthquake-resistant ceiling structure according to the present invention, the first horizontal force propagating material and the second horizontal force propagating material extending in two directions are arranged at different heights so as not to affect each other at the intersection. Is preferred.
この場合には、交差部分で互いに影響しないように設置された二方向に延在する第1水平力伝搬材と第2水平力伝搬材には、地震時に発生する天井面の水平力を伝搬する際に部材を曲げる方向への力が働くことがなくなり、材軸方向への引張力のみ負担する構造となる。このため小さな断面で水平力を伝搬することが可能となり、格子状に配置される水平力伝搬材の高さを抑えることができ、天井裏の高さ寸法の増大を抑制できることから、天井面の高さが低くなることを防止できる。 In this case, the horizontal force of the ceiling surface generated during the earthquake is propagated to the first horizontal force propagating material and the second horizontal force propagating material that extend in two directions and are installed so as not to affect each other at the intersection. At this time, no force acts in the direction of bending the member, and only the tensile force in the axial direction of the material is borne. For this reason, horizontal force can be propagated with a small cross section, the height of the horizontal force propagating material arranged in a lattice can be suppressed, and the increase in the height dimension of the ceiling space can be suppressed. It is possible to prevent the height from decreasing.
また、本発明に係る耐震天井構造は、二方向に延在する第1水平力伝搬材と第2水平力伝搬材とは、同一の高さに配置され、前記第1水平力伝搬材と前記第2水平力伝搬材との交差部分は、少なくとも一方の水平力伝搬材に対して上下方向に開口する切欠凹部が形成され、該切欠凹部は、他方の水平力伝搬材が当該他方の水平力伝搬材の延在方向に移動可能に嵌合していることを特徴としてもよい。 Further, in the earthquake-resistant ceiling structure according to the present invention, the first horizontal force propagating material and the second horizontal force propagating material extending in two directions are arranged at the same height, and the first horizontal force propagating material and the first horizontal force propagating material are provided. At a crossing portion with the second horizontal force propagating material, a notch concave portion that opens in the vertical direction with respect to at least one horizontal force propagating material is formed, and in the notch concave portion, the other horizontal force propagating material has the other horizontal force. It may be characterized in that it is fitted so as to be movable in the extending direction of the propagating material.
このように、第1水平力伝搬材と第2水平力伝搬材とを同一の高さの位置で交差させる場合には、例えば互いに上下に重なって交差する場合に比べて、第1水平力伝搬材と第2水平力伝搬材を共に天井パネルに直接接合できるため他の部材やその部材の接合部の耐力および剛性に影響されないため、力の流れを単純化できる。 As described above, when the first horizontal force propagating material and the second horizontal force propagating material intersect at the same height position, for example, the first horizontal force propagating material is compared to the case where the first horizontal force propagating material and the second horizontal force propagating material intersect each other vertically. Since both the material and the second horizontal force transmitting material can be directly bonded to the ceiling panel, they are not affected by the proof stress and the rigidity of other members and the bonding portion of the members, so that the force flow can be simplified.
また、本発明に係る耐震天井構造は、前記水平力伝搬材は、延在方向の中間部で分割され、その分割端部同士を突き合わせた状態で接続金物により連結されていることが好ましい。 Further, in the earthquake-resistant ceiling structure according to the present invention, it is preferable that the horizontal force propagating material is divided at an intermediate portion in the extending direction, and the divided end portions are abutted to each other and connected by a connecting metal fitting.
この場合には、接続金物によって水平力伝搬材の端部同士を突き合わせた状態で延長方向に同軸に連結することができる。これにより、複数の水平力伝搬材を一体的に設けることができ、建物躯体間の水平方向のスパンが大きな場合でも、複数の水平力伝搬材に建物躯体に作用する水平力を効率よく伝搬させることができる。 In this case, it is possible to connect the end portions of the horizontal force transmitting members coaxially with each other in the extension direction by the connecting hardware. As a result, a plurality of horizontal force propagating materials can be provided integrally, and even if the horizontal span between the building frames is large, the horizontal force acting on the building frame can be efficiently propagated to the plurality of horizontal force propagating materials. be able to.
また、本発明に係る耐震天井構造は、前記水平力伝搬材は、野縁受け材と野縁材との組み合わせによって構成されていることを特徴としてもよい。 Further, the earthquake-resistant ceiling structure according to the present invention may be characterized in that the horizontal force transmitting material is configured by a combination of a field edge receiving material and a field edge material.
また、本発明に係る耐震天井構造は、前記水平力伝搬材は、アルミ合金の押出成型材であることを特徴としてもよい。 The earthquake-resistant ceiling structure according to the present invention may be characterized in that the horizontal force transmitting material is an extruded aluminum alloy material.
本発明の耐震天井構造によれば、耐力剛性の高い天井構造を実現できるうえ、天井裏の斜め部材や天井クリアランスを不要とすることができる。
また、本発明によれば、天井下地部に耐震構造を設けることによって天井仕上面に凹凸等の形状的な制約を生じないうえ、天井パネルや設備とそれらを支持する部材の配置との干渉が少なく、天井部に耐震構造を設けることによって天井面が低くなることもない。
According to the earthquake-resistant ceiling structure of the present invention, a ceiling structure having high yield strength and rigidity can be realized, and an oblique member behind the ceiling and a ceiling clearance can be eliminated.
Further, according to the present invention, by providing a seismic resistant structure in the ceiling base portion, there is no shape restriction such as unevenness on the ceiling finished surface, and there is no interference between the ceiling panel and equipment and the arrangement of the members supporting them. The ceiling surface will not be lowered by installing a seismic structure on the ceiling.
本発明の実施形態による耐震天井構造を示す斜視図である。1 is a perspective view showing an earthquake-resistant ceiling structure according to an embodiment of the present invention. 図1に示す耐震天井構造を第2横方向から見た側断面図である。It is the sectional side view which looked at the earthquake-resistant ceiling structure shown in FIG. 1 from the 2nd horizontal direction. 図1に示す耐震天井構造の1区間を上方から見た平面図であって、野縁受け及び野縁を省略した図である。It is the top view which looked at 1 area of the earthquake-resistant ceiling structure shown in FIG. 1 from the upper side, and is the figure which abbreviated the field rim receiver and field rim. 図2に示す耐震天井構造において、野縁受け材からなる水平力伝搬材と建物躯体の受梁との接合部の要部を示す側断面図である。FIG. 3 is a side cross-sectional view showing a main part of a joint portion between a horizontal force propagating material made of a field edge receiving material and a receiving beam of a building frame in the earthquake-resistant ceiling structure shown in FIG. 2. 図2に示す耐震天井構造において、野縁材からなる水平力伝搬材と建物躯体の受梁との接合部の要部を示す側断面図である。FIG. 3 is a side cross-sectional view showing a main part of a joint between a horizontal force propagating material made of a field edge material and a receiving beam of a building frame in the earthquake-resistant ceiling structure shown in FIG. 2. アルミ押出形材からなる水平力伝搬材の連結部分を示す図であって、(a)は上方から見た平面図、(b)は側断面図、(c)は(a)および(b)に示すA−A線断面図である。It is a figure which shows the connection part of the horizontal force transmission material which consists of an aluminum extrusion profile, (a) is a top view seen from above, (b) is a side sectional view, (c) is (a) and (b). It is the sectional view on the AA line shown in FIG. アルミ押出形材からなる水平力伝搬材の交差部分を示す図であって、(a)は上方から見た平面図、(b)は(a)に示すB−B線断面図、(c)は(a)に示すC−C線断面図である。It is a figure which shows the intersection part of the horizontal force transmission material which consists of an aluminum extrusion profile, Comprising: (a) is the top view seen from above, (b) is BB sectional drawing shown in (a), (c). FIG. 7 is a cross-sectional view taken along the line CC of FIG. 耐震天井構造の施工方法を説明する図であって、第1アルミ押出形材と天井板の接合方法および野縁受けでの仮受け方法を示した要部側断面図である。It is a figure explaining the construction method of an earthquake-resistant ceiling structure, Comprising: It is a principal part side cross-sectional view which showed the joining method of a 1st aluminum extrusion profile and a ceiling board, and the temporary receiving method in a field rim receiver. 耐震天井構造の施工方法を説明する図であって、第2アルミ押出形材と同じレベルにある野縁との納まり方法および吊りボルトでの仮受け方法を示した要部側断面図である。It is a figure explaining the construction method of an earthquake-resistant ceiling structure, Comprising: It is a principal part side cross-sectional view which showed the method of accommodating with a field edge in the same level as a 2nd aluminum extrusion profile, and the temporary receiving method with a suspension bolt.
以下、本発明の実施形態による耐震天井構造について、図面に基づいて説明する。 An earthquake-resistant ceiling structure according to an embodiment of the present invention will be described below with reference to the drawings.
本実施形態による耐震天井構造1は、図1及び図2に示すように、例えば天井の密閉性が要求されるクリーンルーム、生産工場、研究施設、屋内プール、温浴施設等の建物の天井に採用されている。この耐震天井構造1は、新設の建物は勿論、既設の建物を耐震化する改修工事にも適用される。 As shown in FIGS. 1 and 2, the earthquake-resistant ceiling structure 1 according to the present embodiment is applied to the ceiling of a building such as a clean room, a production factory, a research facility, an indoor pool, a hot bath facility, etc., which requires sealing of the ceiling. ing. The earthquake-resistant ceiling structure 1 is applied not only to new buildings but also to renovation work to make existing buildings earthquake-resistant.
耐震天井構造1は、吊り部材6を介して建物躯体の上部構造に吊り下げ支持される野縁受け2と、野縁受け2に取り付けられる野縁3と、野縁3の下面3aに取り付けられた天井パネル4と、天井パネル4の上面4bに直接又は野縁3を介して固定され、天井パネル4に沿って水平方向に延在する長尺の水平力伝搬材5(5A、5B)と、を備えている。 The earthquake-resistant ceiling structure 1 is attached to the field rim receiver 2 that is hung and supported by the upper structure of the building body via the suspension member 6, the field rim 3 that is attached to the field rim receiver 2, and the lower surface 3 a of the field rim 3. A ceiling panel 4 and a long horizontal force transmitting material 5 (5A, 5B) fixed to the upper surface 4b of the ceiling panel 4 directly or via the field edge 3 and extending in the horizontal direction along the ceiling panel 4; , Are provided.
野縁3は、例えばJIS A 6517に規定される薄板鋼材であり、水平に延設され、且つ水平の一方向(図1及び図2で紙面左右方向)の第1横方向X1に所定の間隔をあけて平行に複数配設されている(図3参照)。 The field edge 3 is, for example, a thin plate steel material specified in JIS A 6517, is extended horizontally, and has a predetermined interval in the first horizontal direction X1 in one horizontal direction (the horizontal direction of the paper surface in FIGS. 1 and 2). A plurality of them are arranged in parallel with each other (see FIG. 3).
野縁受け2は、例えばJIS A 6517に規定される薄板鋼材であり、水平に延設され、且つ水平の他方向で第1横方向X1に直交する第2横方向X2(図2で紙面に直交する方向)に所定の間隔をあけて平行に複数配設されている(図3参照)。野縁受け2は、野縁3と交差するように配設されるとともに、複数の野縁3上に載置した状態で配設される。そして、各野縁受け2は、野縁3に交差する部分で、野縁接続用金具(以下、クリップ22という)を使用することにより野縁3に接続されている。 The field receiver 2 is, for example, a thin plate steel material specified in JIS A 6517, is horizontally extended, and extends in a second horizontal direction X2 orthogonal to the first horizontal direction X1 in the other horizontal direction (in FIG. A plurality of them are arranged in parallel at a predetermined interval in the (orthogonal direction) (see FIG. 3). The field rim receiver 2 is arranged so as to intersect with the field rim 3 and is arranged in a state of being placed on the plurality of field rims 3. Then, each field edge receiver 2 is connected to the field edge 3 by using a field edge connection metal fitting (hereinafter, referred to as a clip 22) at a portion intersecting the field edge 3.
吊り部材6は、円柱棒状に形成されるとともに外周面に雄ねじの螺刻を有する吊りボルトであり、上端を上階の床材等の上部構造11に固着、または鋼製の根太等に緊結して垂下され、下端側を、吊り部材接続用金具である耐震ハンガー60を用いることにより野縁受け2に接続して複数配設されている。また、複数の吊り部材6は、所定の間隔をあけて分散配置されている。 The hanging member 6 is a hanging bolt that is formed in a cylindrical rod shape and has an external thread on its outer peripheral surface. The upper end is fixed to an upper structure 11 such as a floor material on the upper floor, or is tightly connected to a steel joist or the like. And a plurality of lower ends are connected to the field rim receiver 2 by using the seismic hanger 60 which is a metal fitting for connecting a hanging member. Further, the plurality of suspension members 6 are dispersed and arranged at a predetermined interval.
天井パネル4は、例えば2枚のボードを貼り付けて一体に積層形成したものであり、例えば天井付帯設備等の重量と併せて、例えば1mあたり30kg以下の重量で形成されている。天井パネル4は、複数の野縁3の下面3aにビス留めなどして設置されている。なお、天井パネル4は、1枚および3枚以上のボードで構成されていてもよい。 The ceiling panel 4 is, for example, one formed by laminating two boards and laminating them integrally, and is formed with a weight of 30 kg or less per 1 m 2 together with the weight of, for example, a facility attached to the ceiling. The ceiling panel 4 is installed on the lower surfaces 3a of the plurality of field edges 3 with screws or the like. The ceiling panel 4 may be composed of one board or three or more boards.
このように耐震天井構造1では、吊り部材6を介して天井上部の建物構造部(上部構造11)に、野縁3と野縁受け2と天井パネル4とが吊り下げ支持されている。また、野縁3と野縁受け2によって天井下地2Aが形成され、この天井下地2Aに取り付けた天井パネル4によって天井部が形成される。そして、この天井部によって天井面4aが形成されている。 As described above, in the earthquake-resistant ceiling structure 1, the field edge 3, the field edge support 2, and the ceiling panel 4 are suspended and supported by the building structure portion (upper structure 11) above the ceiling via the suspension member 6. Moreover, the ceiling base 2A is formed by the field edge 3 and the field support 2, and the ceiling portion is formed by the ceiling panel 4 attached to the ceiling base 2A. A ceiling surface 4a is formed by this ceiling portion.
耐震天井構造1における建物躯体10は、図1、図2及び図4に示すように、壁、柱、梁、床等の建物の主要構造部である。本実施形態では、柱材12同士に一体に接合されて所定の高さに配置された受梁13を有している。 The building frame 10 in the earthquake-resistant ceiling structure 1 is a main structural portion of the building such as walls, columns, beams, and floors, as shown in FIGS. 1, 2, and 4. In this embodiment, the pillars 12 have the receiving beams 13 integrally joined to each other and arranged at a predetermined height.
柱材12は、第1横方向X1及び第2横方向X2に所定の間隔をあけて複数設けられていてもよい。例えば、柱材12のスパンとして、10m以上×10m以上に設定することができる。 A plurality of column members 12 may be provided at a predetermined interval in the first lateral direction X1 and the second lateral direction X2. For example, the span of the pillar 12 can be set to 10 m or more×10 m or more.
受梁13は、図2に示すように、地震時に天井面4aに発生する水平慣性力を支持し、柱材12、12間に水平に配置される。受梁13は、野縁3及び野縁受け2と平行な第1横方向X1と第2横方向X2に沿って延在するように複数設けられている。図4及び図5に示すように、受梁13のウェブ13Aの両面には、梁長方向に直交する方向に平面を向けた補強リブ131が長さ方向に間隔をあけて接合されている。
また、受梁13には、梁長方向に所定の間隔をあけて上部構造から支持された吊材132によって吊り支持されている。吊材132を設けることで、受梁13の自重による撓みを防止できる。
As shown in FIG. 2, the receiving beam 13 supports the horizontal inertial force generated on the ceiling surface 4a at the time of an earthquake, and is horizontally arranged between the column members 12 and 12. A plurality of receiving beams 13 are provided so as to extend along a first lateral direction X1 and a second lateral direction X2 that are parallel to the field edge 3 and the field edge receiver 2. As shown in FIGS. 4 and 5, reinforcing ribs 131 having flat surfaces oriented in a direction orthogonal to the beam length direction are joined to both surfaces of the web 13A of the receiving beam 13 at intervals in the length direction.
Further, the receiving beam 13 is suspended and supported by a suspending member 132 supported from the upper structure at a predetermined interval in the beam length direction. By providing the hanging member 132, it is possible to prevent the receiving beam 13 from bending due to its own weight.
柱材12及び受梁13として、例えばH形鋼、I形鋼、溝形鋼などの形鋼や角鋼管などの管材や鉄筋コンクリート造のものを採用できる。本実施形態の受梁13では、H形鋼が採用されており、例えばH−500×200×10×16を横向き(ウェブ13Aを横向き)に配置している。 As the column member 12 and the receiving beam 13, for example, shaped steel such as H-shaped steel, I-shaped steel, and channel steel, pipe material such as square steel pipe, or reinforced concrete construction can be adopted. In the beam girder 13 of the present embodiment, H-section steel is adopted, and for example, H-500×200×10×16 is arranged sideways (web 13A is sideways).
水平力伝搬材5は、地震時に天井面構成部材に働く水平方向の慣性力を天井面4aのレベル付近に耐力及び剛性に有効な支持構造体である建物躯体10に伝搬させる部材である。水平力伝搬材5は、天井パネル4の上方で第1横方向X1及び第2横方向X2に延在するように配設される略棒状の引張材からなる。水平力伝搬材5における第1横方向X1と第2横方向X2に配置される間隔は、例えば2500mmピッチの格子状に配設される。 The horizontal force propagating material 5 is a member for propagating the horizontal inertial force acting on the ceiling surface constituent member at the time of an earthquake to the vicinity of the level of the ceiling surface 4a to the building skeleton 10 which is a support structure effective in yield strength and rigidity. The horizontal force transmission member 5 is made of a substantially rod-shaped tension member arranged above the ceiling panel 4 so as to extend in the first lateral direction X1 and the second lateral direction X2. The horizontal force propagating material 5 is arranged in a grid pattern with a pitch of 2500 mm, for example, in the first lateral direction X1 and the second lateral direction X2.
水平力伝搬材5としては、例えばアルミ押出形材、スチール部材、あるいは野縁受け材と野縁材などを採用することができる。図1乃至図4に示す水平力伝搬材5として、野縁受け材を採用しており、上述した天井下地2Aの野縁3と野縁受け2とは別で設けられている。この野縁受け材からなる水平力伝搬材5は、リップ溝形鋼もしくは軽溝形鋼で例えば幅38mm、高さ12mm、厚さ1.2mmの寸法のものが使用される。水平力伝搬材5、5同士は、不図示の接合板を使用してビス止めにより連結される。
なお、図4は、第1水平力伝搬材5Aと受梁13との接合状態を示しているが、第2水平力伝搬材5Bにおける受梁13との接合状態も同じ構造である。
As the horizontal force transmitting material 5, for example, an aluminum extruded shape material, a steel member, or a field edge receiving material and a field edge material can be adopted. A field edge receiving material is adopted as the horizontal force transmitting material 5 shown in FIGS. 1 to 4, and the field edge 3 and the field edge receiving member 2 of the ceiling base 2A described above are provided separately. As the horizontal force transmitting material 5 made of the field edge receiving material, lip channel steel or light channel steel having a size of, for example, 38 mm in width, 12 mm in height and 1.2 mm in thickness is used. The horizontal force propagating members 5 and 5 are connected by screws using a joining plate (not shown).
Note that, although FIG. 4 shows the joining state of the first horizontal force propagating material 5A and the receiving beam 13, the joining state of the second horizontal force propagating material 5B with the receiving beam 13 has the same structure.
水平力伝搬材5は、連結材7を介して受梁13の下端13aに接続されている。連結材7は、図4に示すように、矩形状の鋼板であって、上部にボルト穴が形成され、このボルト穴を使用してボルト71の締結により受梁13の補強リブ131に固定されている。連結材7の下部には、複数のボルト、ねじ等の固定部材72により水平力伝搬材5に固定されている。 The horizontal force transmitting material 5 is connected to the lower end 13 a of the receiving beam 13 via the connecting material 7. As shown in FIG. 4, the connecting member 7 is a rectangular steel plate having a bolt hole formed in the upper portion, and is fastened to the reinforcing rib 131 of the receiving beam 13 by fastening the bolt 71 using the bolt hole. ing. The horizontal force transmitting member 5 is fixed to the lower portion of the connecting member 7 by fixing members 72 such as a plurality of bolts and screws.
図5は、水平力伝搬材5として野縁材を使用した構造を示している。水平力伝搬材5には、水平力伝搬材5の長手方向に沿って延びる帯状の接合板73がねじで固定されている。そして、この接合板73と、受梁13に固定された連結材7とが連結片74によって固定されている。連結片74は、下端が溶接部75を介して接合板73の上端に固定され、上部でボルト76によって連結材7の下部に固定されている。
なお、図5は、第1水平力伝搬材5Aと受梁13との接合状態を示しているが、第2水平力伝搬材5Bにおける受梁13との接合状態も同じ構造である。
FIG. 5 shows a structure using a field edge material as the horizontal force transmitting material 5. A band-shaped joining plate 73 extending along the longitudinal direction of the horizontal force propagating material 5 is fixed to the horizontal force propagating material 5 with screws. The joining plate 73 and the connecting member 7 fixed to the receiving beam 13 are fixed by a connecting piece 74. The lower end of the connecting piece 74 is fixed to the upper end of the joining plate 73 via the welded portion 75, and the upper part is fixed to the lower part of the connecting member 7 by the bolt 76.
Note that, although FIG. 5 shows the joining state of the first horizontal force propagating material 5A and the receiving beam 13, the joining state of the second horizontal force propagating material 5B with the receiving beam 13 has the same structure.
また、水平力伝搬材5として、図6(a)〜(c)、及び図7(a)〜(c)に示すように、アルミ押出形材を用いたものであってもよい。ここで、図6及び図7では、アルミ押出形材に対して符号51で示している。
アルミ押出形材51は、図6(a)〜(c)に示すように、溝部511と、溝部511の内側で高さ方向の中央部に配置された補強片512と、を有する長尺なアルミ合金の押出成型材である。
Further, as the horizontal force transmitting material 5, as shown in FIGS. 6A to 6C and FIGS. 7A to 7C, an aluminum extruded shape material may be used. Here, in FIGS. 6 and 7, the aluminum extruded profile is indicated by reference numeral 51.
As shown in FIGS. 6A to 6C, the extruded aluminum shape member 51 has a long shape having a groove portion 511 and a reinforcing piece 512 arranged inside the groove portion 511 at a central portion in the height direction. It is an extruded material of aluminum alloy.
アルミ押出形材51の延在方向の中間部で分割された接続部は、その分割端部51a、51a同士を突き合わせた状態で接続金物52により連結されている。アルミ押出形材51の端部51a側の両側壁513、513には、それぞれに対向するボルト穴が延在方向に沿って複数形成されている。 The connecting portion divided at the intermediate portion in the extending direction of the extruded aluminum material 51 is connected by the connecting metal piece 52 in a state where the divided end portions 51a, 51a are butted against each other. A plurality of bolt holes facing each other are formed in both side walls 513, 513 on the end portion 51a side of the extruded aluminum shape member 51 along the extending direction.
接続金物52は、下側に開口する溝部材であって、アルミ押出形材51の溝開口側から外嵌可能に設けられている。接続金物52の両側壁521、521には、それぞれに対向するボルト穴が延在方向に沿って複数形成されている。アルミ押出形材51と接続金物52のそれぞれのボルト穴は、接続金物52を分割されたアルミ押出形材51に外嵌させた状態で一致する位置に配置されている。そして、アルミ押出形材51と接続金物52のそれぞれのボルト穴にボルト53を挿通させてナット54で締め付けることで、分割されたアルミ押出形材51、51が延在方向に接続される。 The connecting metal piece 52 is a groove member that opens downward, and is provided so as to be externally fitted from the groove opening side of the aluminum extruded shape member 51. On both side walls 521, 521 of the connecting hardware 52, a plurality of bolt holes facing each other are formed along the extending direction. The respective bolt holes of the aluminum extruded shape member 51 and the connection metal piece 52 are arranged at positions that coincide with each other when the connection metal piece 52 is fitted onto the divided aluminum extrusion shape material 51. Then, the bolts 53 are inserted into the respective bolt holes of the aluminum extruded shape member 51 and the connection metal piece 52 and tightened with the nut 54, whereby the divided aluminum extruded shape members 51, 51 are connected in the extending direction.
図7(a)〜(c)に示すように、アルミ押出形材51における第1横方向X1と第2横方向X2との交差部は、互いに干渉しないように構成されている。一方の第1アルミ押出形材51A(5A)には下端51bから上方に凹む下側切欠部55が形成され、他方の第2水平力伝搬材51B(5B)には上端51cから下方に凹む上側切欠部56が形成されている。 As shown in FIGS. 7A to 7C, the intersections of the first lateral direction X1 and the second lateral direction X2 in the aluminum extruded shape member 51 are configured so as not to interfere with each other. One first aluminum extruded shape member 51A (5A) is formed with a lower cutout portion 55 recessed upward from a lower end 51b, and the other second horizontal force transmission member 51B (5B) is recessed downward from an upper end 51c. A cutout portion 56 is formed.
このように形成した互いに直交するアルミ押出形材51A、51Bは、双方の交差部において、第1アルミ押出形材51Aの下側切欠部55と、第2アルミ押出形材51Bの上側切欠部56とを上下に嵌合させることで、それぞれが同じ高さレベルで格子状に配設されている。なお、交差部で嵌合されたアルミ押出形材51A、51B同士は、接合されていないので、それぞれの軸方向(延在方向)の引張力は各アルミ押出形材51A、51Bの両端部を介して建物躯体10の受梁13(図1及び図2参照)に伝達されるようになっている。 The aluminum extruded shape members 51A and 51B formed in this way and orthogonal to each other have a lower cutout portion 55 of the first aluminum extruded shape member 51A and an upper cutout portion 56 of the second aluminum extruded shape member 51B at both intersections. By vertically fitting and, they are arranged in a grid pattern at the same height level. Since the aluminum extruded shape members 51A and 51B fitted at the intersecting portions are not joined to each other, the tensile force in each axial direction (extending direction) of the aluminum extruded shape members 51A and 51B is at both ends. It is adapted to be transmitted to the receiving beam 13 (see FIGS. 1 and 2) of the building frame 10 via the.
ここで、本実施形態の水平力伝搬材5の設計例について説明する。この設計例では、上述したアルミ押出形材51を設計対象とする。
先ず、水平力伝搬材1本が負担する天井面における地震時の水平慣性力は、(1)式により安全側の数値を算定する。
例えば、最大設計用水平震度(maxK)を2.2、天井の最大設計用荷重(maxW)を30kg/m×9.8N/kg、水平力伝搬材の最大設置間隔(支配幅)(maxb)を10m、水平力伝搬材の最大支点間距離(maxl)を2.5mとしたとき、(1)式より水平力伝搬材の最大張力(maxH)は16170Nとなる。
Here, a design example of the horizontal force transmitting material 5 of the present embodiment will be described. In this design example, the aluminum extruded shape member 51 described above is a design target.
First, the horizontal inertial force at the time of an earthquake on the ceiling surface, which is carried by one horizontal force propagating material, is calculated by the formula (1) on the safe side.
For example, the maximum design horizontal seismic intensity (maxK) is 2.2, the maximum design load of the ceiling (maxW) is 30 kg/m 2 ×9.8 N/kg, the maximum installation interval (dominated width) (maxb) of the horizontal force transmission material ) Is 10 m and the maximum fulcrum distance (maxl) of the horizontal force propagating material is 2.5 m, the maximum tension (maxH) of the horizontal force propagating material is 16170 N from the equation (1).
そして、一例として、アルミ合金A5083−H112のF値(基準強度)は110N/mmであるので、上記(1)式の結果より設計上必要な有効断面積(mm)は以下の通りとなる。
アルミ合金A5083−H112:16170N/110N/mm=147mm
軽量形鋼を用いた場合には、材料となるメッキ薄板鋼板SPCCのF値は205N/mmであるので、上記(1)式の結果より設計上必要な有効断面積(mm)は以下の通りとなる。
メッキ薄板鋼板SPCC:16170N/205N/mm=79mm
Then, as an example, since the F value (reference strength) of the aluminum alloy A5083-H112 is 110 N/mm 2 , the effective cross-sectional area (mm 2 ) required for design is as follows from the result of the above formula (1). Become.
Aluminum alloy A5083-H112: 16170N / 110N / mm 2 = 147mm 2
When light-weight shaped steel is used, the F value of the plated thin steel plate SPCC used as the material is 205 N/mm 2 , so the effective cross-sectional area (mm 2 ) required for design is as follows from the result of equation (1) above. It becomes the street.
Plated thin steel plate SPCC: 16170 N/205 N/mm 2 =79 mm 2
また、天井面構成部材の地震時水平慣性力を水平力伝搬材に直接伝達させるため、天井板に直接接合する場合は、ボードビス接合可能なアルミ合金もしくは厚1.2mm以下の鋼板、野縁を介して接合する場合は野縁材および接合金物が耐力上負担可能なものを条件とする。
アルミ押出型材での計画の場合に25mmせいで設計することで、水平力伝搬部材以外の天井下地材を一般的に流通している在来工法の野縁や野縁受を利用しての設計が可能となる。また、水平力伝搬部材を野縁受に市販のクリップで取り付け可能な形状、かつ吊りボルトでの直接支持が可能な形状とすることで、施工中の仮支持を可能とし、施工を容易にすることができる。
Also, in order to directly transmit the horizontal inertial force of the structural members of the ceiling surface to the horizontal force propagating material, when directly joining to the ceiling board, an aluminum alloy or a steel plate with a thickness of 1.2 mm or less that can be joined by board screws, When joining through, the condition is that the edge material and the metal fitting can bear the load.
In the case of planning with aluminum extruded mold material, by designing with a thickness of 25 mm, it is designed using the conventional construction method field edge and field edge bridge that generally distributes ceiling base materials other than horizontal force transmitting members Is possible. In addition, the horizontal force transmitting member can be attached to the field bridge with a commercially available clip and can be directly supported by hanging bolts, which enables temporary support during construction and facilitates construction. be able to.
次に、水平力伝搬材5の施工方法について、図8及び図9等に基づいて詳細に説明する。
ここでは、水平力伝搬材5として、アルミ押出形材51(51A、51B)を使用して説明する。
Next, a method of applying the horizontal force transmitting material 5 will be described in detail with reference to FIGS. 8 and 9.
Here, as the horizontal force transmitting material 5, aluminum extruded shape members 51 (51A, 51B) are used for description.
先ず、図8に示すように、野縁受け2は吊り部材6に耐震ハンガー60によって支持され、野縁3が野縁受け2の下面2aに第2耐震クリップ21によって支持されている。
次に、この状態において、野縁受け2の下側において、野縁受け2と直交する第2横方向X2(野縁3と平行な方向)に延在するように第2アルミ押出形材51Bを仮受けした状態とする。具体的には、野縁受け2の下面2aに第1耐震クリップ21を使用して第2アルミ押出形材51Bを支持する。
なお、第1耐震クリップ21は、例えば爪折クリップ等であって、第2アルミ押出形材51Bに対して着脱可能なクリップを用いてもよい。これにより、野縁受け2に対して第2アルミ押出形材51Bの仮受け状態が解除しやすくなる。
First, as shown in FIG. 8, the field rim receiver 2 is supported by the suspension member 6 by the earthquake-resistant hanger 60, and the field edge 3 is supported by the second earthquake-proof clip 21 on the lower surface 2 a of the field edge receiver 2.
Next, in this state, the second aluminum extruded shape member 51B is arranged to extend in the second lateral direction X2 (direction parallel to the field edge 3), which is orthogonal to the field edge receiver 2, below the field edge receiver 2. Is temporarily received. Specifically, the first seismic clip 21 is used on the lower surface 2a of the field edge receiver 2 to support the second aluminum extruded shape member 51B.
The first seismic resistant clip 21 is, for example, a claw folding clip or the like, and a clip attachable to and detachable from the second aluminum extruded shape member 51B may be used. Thereby, the temporary receiving state of the second aluminum extruded shape member 51B with respect to the field edge receiver 2 is easily released.
また、図9に示すように、上述した野縁受け2で仮受けした第2アルミ押出形材51B(図8参照)と同じ高さの位置において、野縁受け2の延在方向(第1横方向X1)に沿って延在するように第1アルミ押出形材51Aを仮設の吊りボルト61で吊り下げて仮受けする。具体的には、第1アルミ押出形材51Aと、吊りボルト61の下端61aにそれぞれボルト63、63が設けられ、その上下のボルト63、63との間にターンバックル62が連結されている。ターンバックル62を回転させることで、第1アルミ押出形材51Aの高さを調整することができる。
ここで、第1アルミ押出形材51Aと干渉する第2横方向X2に延在する野縁3は、その干渉部分を切断しておく。
In addition, as shown in FIG. 9, at the same height as the second aluminum extruded profile 51B (see FIG. 8) temporarily received by the above-mentioned field edge receiver 2, the extending direction of the field edge receiver 2 (first The first aluminum extruded shape member 51A is suspended and temporarily received by a temporary suspension bolt 61 so as to extend along the lateral direction X1). Specifically, bolts 63 and 63 are provided on the first aluminum extruded shape member 51A and the lower end 61a of the suspension bolt 61, respectively, and a turnbuckle 62 is connected between the upper and lower bolts 63 and 63. By rotating the turnbuckle 62, the height of the first aluminum extruded shape member 51A can be adjusted.
Here, the interfering portion of the field edge 3 extending in the second lateral direction X2 that interferes with the first aluminum extruded profile 51A is cut off.
なお、第1アルミ押出形材51Aと第2アルミ押出形材51Bとは、どちらを先に仮受けしてもよいし、同時に仮受けするようにしてもよい。ただし、図7(a)〜(c)に示すように双方が同じ高さで仮受けする場合には、交差部が生じるので、第1横方向X1と第2横方向X2のいずれか一方向に配列されるアルミ押出形材51のみを先行させて仮受けしてから、他方向に配列されるアルミ押出形材51を仮受けさせることが好ましい。 Either the first aluminum extruded shape member 51A or the second aluminum extruded shape member 51B may be temporarily received first or may be temporarily received at the same time. However, as shown in FIGS. 7A to 7C, when both are temporarily received at the same height, an intersecting portion occurs, and therefore one of the first lateral direction X1 and the second lateral direction X2 is generated. It is preferable that only the aluminum extruded shape members 51 arranged in the first direction be preceded and temporarily received, and then the aluminum extruded shape members 51 arranged in the other direction be temporarily received.
次に、図1に示すように、仮受けした状態の第1アルミ押出形材51Aと第2アルミ押出形材51Bのそれぞれの両端部を建物躯体の受梁13の下面13aに接合する(図1及び図2参照)。 Next, as shown in FIG. 1, both ends of each of the first aluminum extruded profile 51A and the second aluminum extruded profile 51B in the temporarily received state are joined to the lower surface 13a of the beam girder 13 of the building frame (see FIG. 1 and FIG. 2).
そして、第1アルミ押出形材51Aと第2アルミ押出形材51Bを受梁13に固定した後、天井板の留め付けを行う。第1アルミ押出形材51Aと第2アルミ押出形材51Bはともに、呼び径3.5mm以上のビスを用いて天井板と100mmピッチ以下で接合する。その際、第1アルミ押出形材51Aを第1耐震クリップ21から取り外して野縁受け2との仮受けを解除する。なお、第1アルミ押出形材51Aと野縁受け2との仮受けが緊結状態にない場合は解除しない状態であってもかまわない。 Then, after fixing the first aluminum extruded profile 51A and the second aluminum extruded profile 51B to the receiving beam 13, the ceiling plate is fastened. Both the first aluminum extruded shape member 51A and the second aluminum extruded shape member 51B are joined to the ceiling plate at a pitch of 100 mm or less using screws having a nominal diameter of 3.5 mm or more. At that time, the first aluminum extruded shape member 51A is removed from the first earthquake-proof clip 21 to release the temporary support with the field edge receiver 2. If the temporary support between the first aluminum extruded shape member 51A and the field edge receiver 2 is not in the tightly connected state, the state may not be released.
次に、上述した耐震天井構造の作用について、図面に基づいて詳細に説明する。
本実施形態では、図1及び図2に示すように、天井パネル4の上面側に配置される水平力伝搬材5を水平方向に延在させて配置するとともに、その水平力伝搬材5の両端部が建物躯体10と一体で挙動する支持構造部である受梁13に接合された耐力剛性が高い天井構造を実現することができる。そのため、地震時において、水平力伝搬材5の下面側に固定される天井パネル4を有する天井部が建物躯体10と一体に水平方向に挙動することとなり、天井部が建物の壁、柱、梁などの躯体に衝突することを防止できる。
Next, the operation of the above-described earthquake-resistant ceiling structure will be described in detail with reference to the drawings.
In the present embodiment, as shown in FIGS. 1 and 2, the horizontal force propagating material 5 arranged on the upper surface side of the ceiling panel 4 is arranged so as to extend in the horizontal direction, and both ends of the horizontal force propagating material 5 are arranged. It is possible to realize a ceiling structure in which a portion is joined to the receiving beam 13, which is a support structure portion that behaves integrally with the building skeleton 10, and which has high yield strength. Therefore, at the time of an earthquake, the ceiling part having the ceiling panel 4 fixed to the lower surface side of the horizontal force propagating material 5 behaves in the horizontal direction integrally with the building skeleton 10, and the ceiling part forms walls, columns, and beams of the building. It is possible to prevent the collision with the body such as.
また、本実施形態では、上述したように天井部が建物躯体10と一体に水平方向に挙動するため、天井面4aと建物躯体10との間に水平方向のクリアランスを設ける必要がなくなる。そのため、クリーンルーム、屋内プール、温浴施設等の気密性が要求される建物に適用することができる。
さらに、本実施形態では、水平力伝搬材5が天井パネル4よりも上方で天井裏に配置され、天井面4a(天井パネルの下面)に耐震部材が配置されることがないので、天井面に凹凸を有する形状の耐震部材が露出することがなく、意匠性が低下することもない。
In addition, in the present embodiment, as described above, the ceiling portion integrally behaves in the horizontal direction together with the building frame 10, so that it is not necessary to provide a horizontal clearance between the ceiling surface 4a and the building frame 10. Therefore, it can be applied to a building requiring air tightness such as a clean room, an indoor pool, and a hot bath facility.
Further, in the present embodiment, the horizontal force transmitting material 5 is arranged above the ceiling panel 4 in the back of the ceiling, and the seismic resistant member is not arranged on the ceiling surface 4a (the lower surface of the ceiling panel). The seismic resistant member having the uneven shape is not exposed, and the designability is not deteriorated.
また、本実施形態では、地震時において、天井部に作用する水平力を格子状に配置される二方向の第1水平力伝搬材5Aと第2水平力伝搬材5Bおよび受梁13により建物躯体10に伝搬させることができる。そのため、天井部が建物躯体10とより確実に一体に水平方向に挙動することとなり、天井部の揺れの増幅を抑制することができる。 Further, in the present embodiment, in the event of an earthquake, the horizontal horizontal force acting on the ceiling is arranged in a grid pattern in the two directions of the first horizontal force propagating material 5A, the second horizontal force propagating material 5B, and the receiving beam 13 to construct the building frame. Can be propagated to 10. Therefore, the ceiling portion behaves more reliably and integrally with the building frame 10 in the horizontal direction, and the amplification of shaking of the ceiling portion can be suppressed.
また、本実施形態では、第1水平力伝搬材5Aと第2水平力伝搬材5Bのうち一方の切欠凹部に他方の水平力伝搬材5が嵌合することで、第1水平力伝搬材5Aと第2水平力伝搬材5Bとを同一の高さの位置で交差させることができる。
そのため、格子状に配置される水平力伝搬材5の高さを一般的に流通している在来工法の25mmせいの野縁材の高さに抑えることができ、天井裏の高さ寸法の増大を抑制できる。
Further, in the present embodiment, the first horizontal force propagating material 5A and the second horizontal force propagating material 5B are fitted into the notch recesses of the other horizontal force propagating material 5A to thereby cause the first horizontal force propagating material 5A. And the second horizontal force transmitting material 5B can be crossed at the same height position.
Therefore, the height of the horizontal force-transmitting material 5 arranged in a lattice can be suppressed to the height of the field edge material of 25 mm due to the conventional method which is generally used. The increase can be suppressed.
また、本実施形態では、接続金物によって水平力伝搬材5の端部同士を突き合わせた状態で延長方向に同軸に連結することができる。これにより、複数の水平力伝搬材5を一体的に設けることができ、受梁13の水平方向のスパンが大きな場合でも、複数の水平力伝搬材5により天井部に作用する水平力を効率よく受梁13に伝搬させることができる。 Further, in the present embodiment, it is possible to coaxially connect in the extension direction in a state where the end portions of the horizontal force propagating material 5 are abutted with each other by the connection hardware. Thereby, a plurality of horizontal force propagating members 5 can be integrally provided, and even if the horizontal span of the receiving beam 13 is large, the horizontal force acting on the ceiling portion by the plurality of horizontal force propagating members 5 can be efficiently provided. It can be propagated to the receiving beam 13.
上述のように本実施形態による耐震天井構造では、耐力剛性の高い天井構造を実現できるうえ、建物躯体の変形に追従するため天井クリアランスが不要とすることができる。
また、本実施形態では、在来工法を用いた天井下地材に加え、野縁材と同じ高さレベルに野縁材と同じ高さの小断面な耐震材を水平方向に設置する構造であるため、天井裏に多くの設備を有する部位でも干渉を避けられ、大きな耐震部材を設置するために階高さを大きくしたり、天井面を低くする必要がない。
As described above, in the earthquake-resistant ceiling structure according to the present embodiment, a ceiling structure having high yield strength and rigidity can be realized, and since the deformation of the building frame is followed, a ceiling clearance can be eliminated.
Further, in the present embodiment, in addition to the ceiling base material using the conventional construction method, a small cross-section seismic resistant material having the same height level as the wild edge material is installed in the horizontal direction. Therefore, interference can be avoided even in a portion having many facilities behind the ceiling, and it is not necessary to increase the floor height or lower the ceiling surface in order to install a large seismic resistant member.
以上、本発明による耐震天井構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiments of the earthquake-resistant ceiling structure according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be appropriately modified without departing from the spirit thereof.
例えば、本実施形態では、水平力伝搬材5A、5Bの延在方向が互いに直交する二方向で、格子状に配置されているが、このように二方向に直交した格子状に配置されていることに限定されることはない。要は、水平力伝搬材5は天井パネル4に沿って水平方向に延在する長尺の部材であればよいのである。 For example, in the present embodiment, the horizontal force transmission members 5A and 5B are arranged in a grid pattern in two directions in which the extending directions are orthogonal to each other, but in this manner, the horizontal force propagation members 5A, 5B are arranged in a grid pattern orthogonal to the two directions. It is not limited to this. The point is that the horizontal force transmission member 5 may be a long member that extends in the horizontal direction along the ceiling panel 4.
また、本実施形態では、二方向に延在する第1水平力伝搬材5Aと第2水平力伝搬材5Bとが同一の高さに配置されているが、双方の水平力伝搬材5A、5Bが同じ高さレベルであることに制限されることはなく、上下にずれた位置に配置されていてもよい。
例えば、図1乃至図5に示すように、水平力伝搬材5Aを野縁受けの高さに、水平力伝搬材5Bを野縁の高さに配置しても良い。この場合は、上下にずれた位置に配置されているので、交差部に切欠凹部を形成させて嵌合する必要はない。
Further, in the present embodiment, the first horizontal force propagating material 5A and the second horizontal force propagating material 5B extending in two directions are arranged at the same height, but both horizontal force propagating materials 5A and 5B are arranged. Are not limited to being at the same height level, and may be arranged at vertically displaced positions.
For example, as shown in FIGS. 1 to 5, the horizontal force transmitting material 5A may be arranged at the height of the field edge receiver, and the horizontal force transmitting material 5B may be arranged at the height of the field edge. In this case, since they are arranged at vertically displaced positions, it is not necessary to form a notched concave portion at the intersection and fit them.
さらに、第1水平力伝搬材5Aと第2水平力伝搬材5Bとが同一の高さに配置される場合における互いの交差部分の構造として、上述した少なくとも一方の水平力伝搬材5に直交方向に開口する切欠凹部が形成され、切欠凹部に他方の水平力伝搬材5が延在方向に移動可能に嵌合することで交差部分が形成された構成としているが、このような構成に限定されることはない。 Furthermore, when the first horizontal force propagating material 5A and the second horizontal force propagating material 5B are arranged at the same height, as a structure of the intersecting portions thereof, a direction orthogonal to at least one horizontal force propagating material 5 described above is used. The notch recessed portion is formed in the opening, and the other horizontal force transmitting member 5 is movably fitted in the notch recess to form the intersecting portion. However, the configuration is not limited to this. There is no such thing.
また、水平力伝搬材5における延在方向の中間部の分割端部同士を突き合わせた状態で接続金物52により連結された構成としているが、これに限定されることはなく、接続金物52を使用しない接続構造を採用することも可能である。 Further, although the configuration is such that the divided end portions of the intermediate portion in the extending direction of the horizontal force propagating material 5 are connected to each other by the connecting metal piece 52, the connecting metal piece 52 is not limited to this. It is also possible to adopt a connection structure that does not.
また、本実施形態では、水平力伝搬材5をH形鋼の受梁13に接合する構成としているが、受梁13であることに制限されるものではない。例えば、支持構造部として角型鋼管の受梁であってもよいし、鉄筋コンクリート造の受梁であってもかまわない。さらに、水平力伝搬材5の接合部として梁材であることに限定されず、例えば水平力伝搬材5を建物躯体である柱材12に対して接合される構成としてもよい。 Further, in the present embodiment, the horizontal force transmitting material 5 is joined to the H-shaped steel receiving beam 13, but the present invention is not limited to the receiving beam 13. For example, the support structure may be a square steel pipe receiving beam or a reinforced concrete receiving beam. Further, the joint portion of the horizontal force propagating material 5 is not limited to the beam material, and for example, the horizontal force propagating material 5 may be joined to the pillar material 12 which is the building frame.
その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.
1 耐震天井構造
2 野縁受け
2A 天井下地
3 野縁
4 天井パネル
4a 天井面
5 水平力伝搬材
5A 第1水平力伝搬材
5B 第2水平力伝搬材
6 吊り部材
7 連結材
10 建物躯体
11 上部構造
12 柱材
13 受梁(支持構造部)
51、51A、51B アルミ押出形材
52 接続金物
X1 第1横方向
X2 第2横方向
1 Earthquake-Resistant Ceiling Structure 2 Field Edge 2A Ceiling Base 3 Field Edge 4 Ceiling Panel 4a Ceiling Surface 5 Horizontal Force Propagation Material 5A 1st Horizontal Force Propagation Material 5B 2nd Horizontal Force Propagation Material 6 Hanging Material 7 Connecting Material 10 Building Frame 11 Top Structure 12 Pillars 13 Beams (support structure)
51, 51A, 51B Aluminum extruded profile 52 Connection hardware X1 1st lateral direction X2 2nd lateral direction

Claims (7)

  1. 吊り部材を介して建物躯体の上部構造に吊り下げ支持される野縁受けと、
    前記野縁受けに取り付けられる野縁と、
    前記野縁の下面に取り付けられた天井パネルと、を備えた耐震天井構造であって、
    前記天井パネルの上面に直接又は前記野縁を介して固定され、前記天井パネルに沿って水平方向に延在する長尺の水平力伝搬材が設けられ、
    前記水平力伝搬材の両端部は、前記建物躯体、又は該建物躯体の支持構造部に接合されていることを特徴とする耐震天井構造。
    A field rim receiver that is hung and supported by a superstructure of a building body via a hanging member,
    A field edge attached to the field edge receiver,
    A seismic resistant ceiling structure comprising: a ceiling panel attached to the lower surface of the field edge;
    Fixed on the upper surface of the ceiling panel directly or via the field edge, a long horizontal force transmitting material extending in the horizontal direction along the ceiling panel is provided,
    Both ends of the horizontal force transmitting material are joined to the building frame or a supporting structure part of the building frame, and an earthquake-resistant ceiling structure is provided.
  2. 前記水平力伝搬材は、互いに直交する二方向に延在方向を向けた格子状に配置されていることを特徴とする請求項1に記載の耐震天井構造。 The earthquake-resistant ceiling structure according to claim 1, wherein the horizontal force propagating members are arranged in a lattice shape having extension directions in two directions orthogonal to each other.
  3. 二方向に延在する第1水平力伝搬材と第2水平力伝搬材とは、交差部分で互いに影響しないように異なる高さで配置されていることを特徴とする請求項1又は2に記載の耐震天井構造。 The first horizontal force propagating material and the second horizontal force propagating material extending in two directions are arranged at different heights so as not to affect each other at the intersecting portion. Earthquake-resistant ceiling structure.
  4. 二方向に延在する第1水平力伝搬材と第2水平力伝搬材とは、同一の高さに配置され、
    前記第1水平力伝搬材と前記第2水平力伝搬材との交差部分は、少なくとも一方の水平力伝搬材に対して上下方向に開口する切欠凹部が形成され、
    該切欠凹部は、他方の水平力伝搬材が当該他方の水平力伝搬材の延在方向に移動可能に嵌合していることを特徴とする請求項1又は2に記載の耐震天井構造。
    The first horizontal force propagating material and the second horizontal force propagating material extending in two directions are arranged at the same height,
    At a crossing portion of the first horizontal force propagating material and the second horizontal force propagating material, a notch concave portion that opens in the vertical direction with respect to at least one horizontal force propagating material is formed,
    The seismic resistant ceiling structure according to claim 1 or 2, wherein the notch recess is fitted to the other horizontal force transmitting material so as to be movable in the extending direction of the other horizontal force transmitting material.
  5. 前記水平力伝搬材は、延在方向の中間部で分割され、その分割端部同士を突き合わせた状態で接続金物により連結されていることを特徴とする請求項1乃至4のいずれか1項に記載の耐震天井構造。 The horizontal force transmitting material is divided at an intermediate portion in the extending direction, and is connected by a connecting metal piece in a state where the divided end portions are abutted to each other. Seismic ceiling structure described.
  6. 前記水平力伝搬材は、野縁受け材と野縁材との組み合わせによって構成されていることを特徴とする請求項1乃至5のいずれか1項に記載の耐震天井構造。 The earthquake-resistant ceiling structure according to any one of claims 1 to 5, wherein the horizontal force transmitting material is configured by a combination of a field edge receiving material and a field edge material.
  7. 前記水平力伝搬材は、アルミ合金の押出成型材であることを特徴とする請求項1乃至5のいずれか1項に記載の耐震天井構造。 The earthquake-resistant ceiling structure according to claim 1, wherein the horizontal force transmitting material is an extruded aluminum alloy material.
JP2019006872A 2019-01-18 2019-01-18 Aseismatic ceiling structure Pending JP2020117855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006872A JP2020117855A (en) 2019-01-18 2019-01-18 Aseismatic ceiling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006872A JP2020117855A (en) 2019-01-18 2019-01-18 Aseismatic ceiling structure

Publications (1)

Publication Number Publication Date
JP2020117855A true JP2020117855A (en) 2020-08-06

Family

ID=71890216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006872A Pending JP2020117855A (en) 2019-01-18 2019-01-18 Aseismatic ceiling structure

Country Status (1)

Country Link
JP (1) JP2020117855A (en)

Similar Documents

Publication Publication Date Title
EP2670925B1 (en) A fire protection system for wide flange steel columns and beams
JP5777064B2 (en) Suspended ceiling structure and seismic retrofitting method for suspended ceiling structure
US9482000B2 (en) Hanger devices for interstital seismic resistant support for an acoustic ceiling grid
JP2020117855A (en) Aseismatic ceiling structure
JP4467592B2 (en) Seismic reinforcement device for ceiling suspension bolts
JP2020117870A (en) Construction method for aseismatic ceiling structure
JP2020125639A (en) Aseismatic ceiling structure
JP2020165110A (en) Aseismatic ceiling structure
JP6226173B2 (en) Suspended ceiling structure
JP6782144B2 (en) Field edge fixing member, suspended ceiling structure and construction method of suspended ceiling structure
JP2018178708A (en) Suspended ceiling structure
JP2010001657A (en) Ceiling furring material support structure
JP6226172B2 (en) Suspended ceiling structure
JP2021025308A (en) Floor structure, building and beam
JP2015190300A (en) Earthquake-proof structure of ceiling
JP2019183517A (en) Partition board installation structure
JP6145380B2 (en) Ceiling structure
JP2021042546A (en) Building unit structure
JP6951700B2 (en) Ceiling hanging brackets and multi-story building skeleton structure
JP2018071137A (en) Hanging ceiling reinforcement structure
JP2020070613A (en) Exterior wall panel joint structure and building
JP6947496B2 (en) Stair damping metal fittings and stair damping structure
JP6696744B2 (en) Suspended ceiling reinforcement structure
JP6327468B2 (en) Suspended ceiling structure
JP5377890B2 (en) Seismic isolation structure