JP7208044B2 - Seismic ceiling structure - Google Patents

Seismic ceiling structure Download PDF

Info

Publication number
JP7208044B2
JP7208044B2 JP2019019032A JP2019019032A JP7208044B2 JP 7208044 B2 JP7208044 B2 JP 7208044B2 JP 2019019032 A JP2019019032 A JP 2019019032A JP 2019019032 A JP2019019032 A JP 2019019032A JP 7208044 B2 JP7208044 B2 JP 7208044B2
Authority
JP
Japan
Prior art keywords
ceiling
force transmission
transmission member
horizontal force
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019032A
Other languages
Japanese (ja)
Other versions
JP2020125639A (en
Inventor
和久 山里
記彦 櫻庭
玲子 諸星
賢 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2019019032A priority Critical patent/JP7208044B2/en
Publication of JP2020125639A publication Critical patent/JP2020125639A/en
Application granted granted Critical
Publication of JP7208044B2 publication Critical patent/JP7208044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、耐震天井構造に関する。 The present invention relates to an earthquake resistant ceiling structure.

従来、例えば学校、病院、生産施設、体育館、プール、空港ターミナルビル、オフィスビル、劇場、シネコン等の建物の天井として、吊り天井が多用されている。このような吊り天井は、水平の一方向に所定の間隔をあけて並設される複数の野縁と、野縁に直交し、水平の他方向に所定の間隔をあけて並設され、複数の野縁に一体に接続して設けられる複数の野縁受けと、下端を野縁受けに接続し、上端を上階の床材等の上部構造(建物躯体)に固着して配設される複数の吊りボルト(吊り部材)と、野縁の下面にビス留めなどによって一体に取り付けられ、下階の天井面を形成する天井パネルと、を備えて構成されている。 2. Description of the Related Art Conventionally, suspended ceilings have been widely used as ceilings of buildings such as schools, hospitals, production facilities, gymnasiums, swimming pools, airport terminal buildings, office buildings, theaters, and cinema complexes. Such a suspended ceiling includes a plurality of ceiling joists arranged side by side with a predetermined interval in one horizontal direction, and a plurality of ceiling joists perpendicular to the ceiling joists and arranged side by side with a predetermined interval in the other horizontal direction. A plurality of joist receivers that are integrally connected to the joist, the lower end is connected to the joist receiver, and the upper end is fixed to the upper structure (building frame) such as the floor material on the upper floor It is composed of a plurality of suspension bolts (suspension members) and a ceiling panel that is integrally attached to the lower surface of the ceiling joist with screws or the like to form the ceiling surface of the lower floor.

一方、このように野縁及び野縁受けの天井下地と天井パネルを吊り部材で吊り下げ支持してなる吊り天井は、地震時に作用する水平方向の加速度を受けて横揺れが発生する。天井パネルは、建物躯体と構造上別々の挙動となり、横揺れが増幅する傾向にあるため、天井パネルが壁や、柱、梁などの建物躯体に衝突して破損し、脱落が生じるおそれがあった。 On the other hand, the suspended ceiling, in which the ceiling base of the ceiling joists and ceiling joist receivers and the ceiling panel are suspended and supported by suspension members, is subject to horizontal acceleration during an earthquake and causes lateral vibration. Since the ceiling panel behaves structurally separately from the building frame and tends to amplify rolling, there is a risk that the ceiling panel will collide with the building frame, such as walls, pillars, and beams, and be damaged and fall off. rice field.

このような吊り天井の脱落を防止するために、耐震部材として斜め部材を設置する方法や国土交通省告示第791号に記載される天井周囲に地震力を負担する壁等を配置する方法が知られている。
その他の例として、例えば特許文献1に示すような、天井パネルの下方に且つ天井パネルに沿って横方向に配設された略棒状の引張材を備え、この引張材を、両端部をそれぞれ建物躯体に接続して配設するとともに、両端部の間の中間部を天井パネルの下方から天井パネル及び/又は野縁に接続固定手段で接続固定して配設することで天井パネルと建物躯体を同調させて、天井パネルの耐震性能を高めた耐震天井構造や吊り天井ではないが支柱と梁で構成されたぶどう棚に直接天井を留め付ける直天井が知られている。
In order to prevent such a suspended ceiling from falling off, it is known to install diagonal members as earthquake-resistant members or to place walls, etc. that bear the seismic force around the ceiling as described in Notification No. 791 of the Ministry of Land, Infrastructure, Transport and Tourism. It is
As another example, for example, as shown in Patent Document 1, a substantially bar-shaped tension member is provided below the ceiling panel and in the lateral direction along the ceiling panel, and this tension member is attached to both ends of the building. The ceiling panel and the building frame are connected by connecting and arranging to the building frame, and by connecting and fixing the intermediate portion between both ends to the ceiling panel and/or the ceiling panel and/or the ceiling panel from below the ceiling panel and/or the ceiling panel by connecting and fixing means. There are also known earthquake-resistant ceiling structures in which the ceiling panels have improved earthquake-resistant performance, and straight ceilings in which the ceiling is directly attached to a trellis composed of columns and beams, although they are not suspended ceilings.

特開2013-177801号公報JP 2013-177801 A

空気中の粉塵量の制御が要求されるクリーンルームは、気密性を確保するために天井周囲の壁や柱、梁等と天井を構成する部材とのクリアランス(以後、天井クリアランスと呼ぶ)が無いものが好ましい。また、クリーンルームでは、天井裏に多くの設備を有するために耐震部材との干渉が課題となる。 A clean room that requires control of the amount of dust in the air has no clearance (hereinafter referred to as ceiling clearance) between walls, columns, beams, etc. around the ceiling and the members that make up the ceiling in order to ensure airtightness. is preferred. In addition, in clean rooms, interference with earthquake-resistant members is a problem because there are many facilities behind the ceiling.

耐震部材として斜め部材を設置する方法は、天井パネルが吊元の上部構造と同調して動き天井周囲の柱や壁と異なる動きをするために、天井周囲に気密性の保持が困難なクリアランスが必要であり、天井周囲に地震力を負担する壁等を配置する方法の場合は、日常的には天井周囲にクリアランスは無いが、地震時には天井パネルと地震力を負担する壁等が衝突して隙間ができるためクリーンルームの気密性が失われてしまう。 In the method of installing diagonal members as earthquake-resistant members, the ceiling panel moves in sync with the upper structure from which it is suspended, and moves differently from the pillars and walls around the ceiling, creating a clearance around the ceiling that makes it difficult to maintain airtightness. In the case of the method of arranging walls, etc. that bear the seismic force around the ceiling, there is no clearance around the ceiling in daily life, but during an earthquake, the ceiling panel and the wall, etc. that bear the seismic force collide. The airtightness of the clean room is lost due to the presence of gaps.

ぶどう棚に直接天井を留め付ける直天井や天井パネルの下面に引張材を配置して耐震性をもたせた特許文献1のような構造にすると、地震時にも気密性を保持し易くなる。ところが、ぶどう棚を用いた直天井の場合には、コスト高や荷重増の課題に加えて、天井内設備との干渉調整等による天井懐高さの増加により、天井面の高さが低くなってしまうという問題があった。 If the ceiling is directly attached to the grape trellis or the tension member is placed on the lower surface of the ceiling panel to provide earthquake resistance, such as in Patent Document 1, airtightness can be easily maintained even in the event of an earthquake. However, in the case of a direct ceiling using a grape trellis, in addition to the problems of high cost and increased load, the height of the ceiling surface is lowered due to an increase in the ceiling height due to interference adjustment with the equipment in the ceiling. I had a problem with it.

また、特許文献1のように天井パネルの下面に引張材を配置して耐震性をもたせた構造にすると、粉塵の付着防止の観点から天井面の凹凸を好まないクリーンルームの要求性能に対して問題があり、引張材を用いるため支持点間を直線で結ぶ鋼材配置が必須の構成となる制限を受けることから、その点で改善の余地があった。 In addition, if a tensile member is placed on the lower surface of the ceiling panel to provide earthquake resistance as in Patent Document 1, there is a problem with the required performance of a clean room that does not like unevenness of the ceiling surface from the viewpoint of dust adhesion prevention. However, due to the use of tension members, the arrangement of steel materials that connect the support points with straight lines is an essential configuration, and there is room for improvement in this respect.

本発明は、上述する問題点に鑑みてなされたもので、斜め部材や引張材の耐震部材を設置することなく、天井クリアランスを不要として気密性を確保することができる耐震天井構造を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an earthquake-resistant ceiling structure that can secure airtightness without installing diagonal members or tension members, eliminating the need for a ceiling clearance, and ensuring airtightness. With the goal.

上記目的を達成するため、本発明に係る耐震天井構造は、吊り部材を介して建物躯体の上部構造に吊り下げ支持され、斜め部材や引張材からなる耐震部材が設置されない吊り天井をなす天井パネルと、前記天井パネルの端部の上面に連結された水平力伝搬部材と、を備え、前記天井パネルの端部は、前記水平力伝搬部材を介して前記建物躯体又は前記建物躯体の支持構造部に接合されており、前記水平力伝搬部材は、下記式(1)より算出される最大張力を基に設計される、
maxH=maxK×maxW×maxb×maxl・・・(1)
なお、maxH:水平力伝搬部材の最大張力(N)
maxK:最大設計用水平震度
maxW:天井の最大設計用荷重(N/m
maxb:水平力伝搬部材の最大設置間隔(m)
maxl:水平力伝搬部材の最大支点間距離(m)
ことを特徴としている。
In order to achieve the above object, the earthquake-resistant ceiling structure according to the present invention is a ceiling panel that is suspended and supported by the upper structure of a building frame via suspension members, and that forms a suspended ceiling without installing an earthquake-resistant member composed of diagonal members or tensile members. and a horizontal force transmission member connected to an upper surface of an end portion of the ceiling panel, wherein the end portion of the ceiling panel is connected to the building frame or a support structure portion of the building frame via the horizontal force transmission member. and the horizontal force transmission member is designed based on the maximum tension calculated from the following formula (1),
maxH=maxK×maxW×maxb×maxl (1)
Note that maxH is the maximum tension (N) of the horizontal force transmission member
maxK: Maximum design horizontal seismic coefficient
maxW: maximum design load of the ceiling (N/m 2 )
maxb: Maximum installation interval of horizontal force transmission members (m)
maxl: Maximum distance between fulcrums of horizontal force transmission member (m)
It is characterized by

本発明では、天井パネルの端部を水平力伝搬部材を介して天井面高さ付近の建物躯体、又は建物躯体に設けられた支持構造部に接合することで、面内剛性の高い天井パネルの特性を用いて地震時に作用する天井部の水平慣性力を確実に建物躯体に伝搬させ、又は支持構造部を介して建物躯体に伝搬させることができ、天井部が建物躯体と一体に水平方向に挙動する。すなわち、天井部の揺れの増幅を抑制し、従来のように天井部が建物の壁、柱、梁などの躯体に衝突することを防止できる。 In the present invention, by joining the ends of the ceiling panel to the building frame near the height of the ceiling surface or the support structure provided on the building frame through the horizontal force transmission member, the ceiling panel with high in-plane rigidity can be manufactured. Using this characteristic, the horizontal inertial force of the ceiling that acts during an earthquake can be reliably transmitted to the building frame, or transmitted to the building frame via the support structure, and the ceiling can be integrated horizontally with the building frame. behave. That is, it is possible to suppress the amplification of the vibration of the ceiling and prevent the ceiling from colliding with the walls, pillars, beams, and other structures of the building as in the past.

また、本発明では、上述したように天井部が層間変位の影響を受けにくい天井面高さ付近の建物躯体又は支持構造部と一体に水平方向に挙動するため、天井面と建物躯体との間の気密性を確保することができる。そのため、天井面と建物躯体との間に水平方向のクリアランスを設ける必要がなくなり、クリーンルーム等の平常時、地震時ともに気密性が要求される建物に適用することができる。
さらに、本発明では、天井パネルの端部に水平力伝搬部材が設けられる以外に耐震部材が配置されることがないので、設備配置等の自由度が確保され、意匠性が低下することもない。
In addition, in the present invention, as described above, since the ceiling part behaves in the horizontal direction integrally with the building frame or support structure near the height of the ceiling surface, which is less susceptible to inter-story displacement, airtightness can be ensured. Therefore, it is not necessary to provide a horizontal clearance between the ceiling surface and the building frame, and it can be applied to buildings such as clean rooms that require airtightness both in normal times and during earthquakes.
Furthermore, in the present invention, since no earthquake-resistant member is arranged other than the horizontal force transmission member provided at the end of the ceiling panel, the degree of freedom in facility arrangement is secured, and the design is not degraded. .

また、本発明に係る耐震天井構造は、前記支持構造部は、前記建物躯体の柱間に架設された受梁であって、前記水平力伝搬部材と前記受梁との間には、前記水平力伝搬部材と前記受梁との上下方向の間隔を調整して固定可能な高さ調整部材が設けられていることを特徴としてもよい。 Further, in the earthquake-resistant ceiling structure according to the present invention, the support structure section is a support beam installed between columns of the building frame, and the horizontal force transmission member and the support beam are provided between the horizontal force transmission member and the support beam. A height adjustment member that can be fixed by adjusting a vertical interval between the force transmission member and the support beam may be provided.

この場合には、天井パネルと受梁との間の上下方向の間隔に合わせた寸法の高さ調整部材を配置することができ、天井パネルと受梁との接合を容易に行うことができる。 In this case, it is possible to dispose the height adjusting member having a dimension that matches the vertical gap between the ceiling panel and the beam, thereby facilitating the joining of the ceiling panel and the beam.

本発明の耐震天井構造によれば、斜め部材や引張材の耐震部材を設置することなく、天井クリアランスを不要として気密性を確保することができる。 According to the earthquake-resistant ceiling structure of the present invention, it is possible to secure airtightness without installing diagonal members or tensile members, eliminating the need for a ceiling clearance.

本発明の実施形態による耐震天井構造を示す斜視図である。1 is a perspective view showing a seismic ceiling structure according to an embodiment of the present invention; FIG. 図1に示す耐震天井構造を第2横方向から見た側断面図である。FIG. 2 is a side cross-sectional view of the earthquake-resistant ceiling structure shown in FIG. 1 viewed from a second lateral direction; 図2に示す耐震天井構造において、天井パネルと、水平力伝搬部材を介した受梁との接合部分の要部を示す側断面図である。FIG. 3 is a side cross-sectional view showing a main part of a joint portion between a ceiling panel and a support beam via a horizontal force transmission member in the earthquake-resistant ceiling structure shown in FIG. 2 ; 図1に示す耐震天井構造の1区間を上方から見た平面図である。FIG. 2 is a top plan view of one section of the earthquake-resistant ceiling structure shown in FIG. 1 ;

以下、本発明の実施形態による耐震天井構造について、図面に基づいて説明する。 Hereinafter, an earthquake-resistant ceiling structure according to an embodiment of the present invention will be described based on the drawings.

本実施形態による耐震天井構造1は、図1及び図2に示すように、例えば天井の密閉性が要求されるクリーンルーム、生産工場、研究施設等の建物の天井に採用されている。この耐震天井構造1は、新設の建物は勿論、既設の建物を耐震化する改修工事にも適用される。 As shown in FIGS. 1 and 2, the earthquake-resistant ceiling structure 1 according to the present embodiment is used in the ceilings of buildings such as clean rooms, production factories, research facilities, etc., where the ceiling must be airtight. This earthquake-resistant ceiling structure 1 is applied not only to new buildings but also to repair work for making existing buildings earthquake-resistant.

耐震天井構造1は、吊り部材6を介して建物躯体のスラブ等の上部構造11に吊り下げ支持される野縁受け2と、野縁受け2に取り付けられる野縁3と、野縁3の下面3aに取り付けられた天井パネル4と、天井パネル4の端部4cにおける上面4b、及び建物躯体に設けられる支持構造部(後述する受梁13)を接合する水平力伝搬部材5と、を備えている。 The earthquake-resistant ceiling structure 1 includes a joist receiver 2 that is suspended and supported by a superstructure 11 such as a slab of a building frame via a suspension member 6, a joist 3 attached to the joist receiver 2, and a lower surface of the joist 3. A horizontal force transmission member 5 that joins the ceiling panel 4 attached to the ceiling panel 4, the upper surface 4b at the end 4c of the ceiling panel 4, and the support structure (beam 13 described later) provided in the building frame. there is

野縁3は、例えばJIS A 6517に規定される薄板鋼材であり、水平に延設され、且つ水平の一方向(図1及び図2で紙面左右方向)の第1横方向X1に所定の間隔をあけて平行に複数配設されている。 The joist 3 is, for example, a thin sheet steel specified in JIS A 6517, is horizontally extended, and is positioned at a predetermined interval in the first horizontal direction X1 in one horizontal direction (horizontal direction of the paper surface in FIGS. 1 and 2) are arranged in parallel with a space between them.

野縁受け2は、例えばJIS A 6517に規定される薄板鋼材であり、第1横方向X1に沿って水平に延設され、且つ水平の他方向で第1横方向X1に直交する第2横方向X2(図2で紙面に直交する方向)に所定の間隔をあけて平行に複数配設されている。野縁受け2は、野縁3と交差するように配設されるとともに、複数の野縁3上に載置した状態で配設される。そして、各野縁受け2は、野縁3と交差する部分で、野縁接続用金具(以下、クリップ22という)を使用することにより野縁3に接続されている。 The joist receiver 2 is, for example, a thin plate steel specified in JIS A 6517, extends horizontally along the first horizontal direction X1, and extends in the other horizontal direction at right angles to the first horizontal direction X1. A plurality of them are arranged in parallel with a predetermined interval in the direction X2 (the direction perpendicular to the plane of FIG. 2). The joist receiver 2 is arranged so as to intersect with the joists 3 and is arranged in a state of being placed on the plurality of joists 3. - 特許庁Each joist receiver 2 is connected to the joist 3 by using a joist connection fitting (hereinafter referred to as a clip 22) at a portion where it intersects with the joist 3.

吊り部材6は、円柱棒状に形成されるとともに外周面に雄ねじの螺刻を有する吊りボルトであり、上端を上階の床材等の上部構造11に固着、または鋼製の根太等に緊結して垂下され、下端側を、吊り部材接続用金具であるハンガー60を用いることにより野縁受け2に接続して複数配設されている。また、複数の吊り部材6は、所定の間隔をあけて分散配置されている。 The suspending member 6 is a suspending bolt formed in the shape of a cylindrical bar and having a male screw thread on the outer peripheral surface, and the upper end is fixed to the upper structure 11 such as the floor material of the upper floor, or is tightly connected to a steel joist or the like. The lower end side is connected to the joist receiver 2 by using a hanger 60 which is a fitting for connecting a hanging member, and a plurality of them are arranged. Also, the plurality of hanging members 6 are distributed at predetermined intervals.

天井パネル4は、図3に示すように、例えば2枚のボードを貼り付けて一体に積層形成したものであり、例えば天井付帯設備等の重量と併せて、例えば1mあたり30kg以下の重量で形成されている。天井パネル4は、複数の野縁3の下面3aにビス41によってビス留めされることで設置されている(図2参照)。なお、天井パネル4は、1枚および3枚以上のボードで構成されていてもよい。 As shown in FIG. 3, the ceiling panel 4 is formed by laminating two boards, for example, together. formed. The ceiling panel 4 is installed by being screwed to the lower surfaces 3a of the plurality of joists 3 with screws 41 (see FIG. 2). The ceiling panel 4 may be composed of one board or three or more boards.

このように耐震天井構造1では、吊り部材6を介して上部構造11に、野縁3と野縁受け2と天井パネル4とが吊り下げ支持されている。また、野縁3と野縁受け2によって天井下地が形成され、この天井下地に取り付けた天井パネル4によって天井部が形成される。そして、この天井部によって天井面4aが形成されている。 Thus, in the earthquake-resistant ceiling structure 1 , the ceiling joist 3 , the ceiling joist receiver 2 , and the ceiling panel 4 are suspended from the upper structure 11 via the hanging members 6 . A ceiling base is formed by the joist 3 and the joist receiver 2, and a ceiling part is formed by the ceiling panel 4 attached to the ceiling base. A ceiling surface 4a is formed by the ceiling portion.

天井パネル4は、図3及び図4に示すように、後述する受梁13の下方に延在するとともに、水平力伝搬部材5を介して受梁13(支持構造部)の下端13aに接合されている。 As shown in FIGS. 3 and 4 , the ceiling panel 4 extends below a support beam 13 to be described later, and is joined to the lower end 13 a of the support beam 13 (support structure) via a horizontal force transmission member 5 . ing.

このように構成される天井パネル4は、地震時に天井面構成部材(野縁受け2、野縁3、天井パネル4)に働く水平方向の慣性力を支持構造体(受梁13)に伝搬させる部材として機能している。 The ceiling panel 4 configured in this way propagates the horizontal inertial force acting on the ceiling surface constituent members (the ceiling joists 2, the joists 3, and the ceiling panel 4) to the support structure (the beams 13) during an earthquake. functioning as components.

建物躯体10は、図1及び図2に示すように、壁、柱、梁、床等の建物の主要構造部である。建物躯体10に設けられる支持構造部としては、隣り合う柱12、12同士を水平方向に架設するように一体に接合されて所定の高さに配置された受梁13を有している。 As shown in FIGS. 1 and 2, the building skeleton 10 is a main structural part of a building such as walls, pillars, beams, and floors. As a support structure provided in the building frame 10, there are supporting beams 13 which are integrally joined so as to extend adjacent columns 12, 12 in the horizontal direction and arranged at a predetermined height.

柱12は、第1横方向X1及び第2横方向X2に所定の間隔をあけて複数設けられていてもよい。例えば、柱12のスパンとして、10m以上×10m以上に設定することができる。 A plurality of columns 12 may be provided at predetermined intervals in the first horizontal direction X1 and the second horizontal direction X2. For example, the span of the pillar 12 can be set to 10 m or more×10 m or more.

受梁13は、図2に示すように、地震時に天井面構成部材(野縁受け2、野縁3、天井パネル4)に発生する水平慣性力を支持し、柱12、12間に水平に配置される。受梁13は、野縁3及び野縁受け2と平行な第1横方向X1と第2横方向X2に沿って延在するように複数設けられている(図4参照)。受梁13のウェブ13Aの両面には、梁長方向に直交する方向に平面を向けた補強リブ131が長さ方向に間隔をあけて接合されている。
また、受梁13には、梁長方向に所定の間隔をあけて上部構造から支持された吊材132によって吊り支持されている。吊材132を設けることで、受梁13の自重による撓みを防止できる。
As shown in FIG. 2, the support beams 13 support the horizontal inertial force generated in the ceiling surface constituent members (roofing receivers 2, 3, ceiling panel 4) during an earthquake, and horizontally between the columns 12, 12. placed. A plurality of receiving beams 13 are provided so as to extend along the first lateral direction X1 and the second lateral direction X2 parallel to the joist 3 and the joist receiver 2 (see FIG. 4). On both sides of the web 13A of the receiving beam 13, reinforcing ribs 131 whose plane faces the direction orthogonal to the beam length direction are joined at intervals in the length direction.
Further, the receiving beam 13 is suspended and supported by hanging members 132 supported from the upper structure at predetermined intervals in the beam length direction. By providing the suspending member 132, it is possible to prevent the support beam 13 from bending due to its own weight.

柱12及び受梁13として、例えばH形鋼、I形鋼、溝形鋼などの形鋼や角鋼管などの管材や鉄筋コンクリート造のものを採用できる。本実施形態の受梁13では、H形鋼が採用されており、例えばH-500×200×10×16を横向き(ウェブ13Aを横向き)に配置されている。 As the columns 12 and the support beams 13, for example, shaped steel such as H-shaped steel, I-shaped steel, and channel steel, tubular materials such as square steel pipes, and reinforced concrete structures can be used. H-shaped steel is adopted for the support beam 13 of the present embodiment, and for example, H-500×200×10×16 are arranged sideways (web 13A is sideways).

水平力伝搬部材5は、図3に示すように、断面L字形の鋼材であって、一片の横板51が複数のビス41によって天井パネル4に固定され、横板51に直交する他片の縦板52が複数のねじ71によって高さ調整部材7に固定されている。 As shown in FIG. 3, the horizontal force transmission member 5 is a steel material having an L-shaped cross section. A vertical plate 52 is fixed to the height adjusting member 7 with a plurality of screws 71 .

高さ調整部材7は、水平力伝搬部材5と受梁13との間において、水平力伝搬部材5と受梁13との上下方向の間隔を調整して固定可能に設けられている。高さ調整部材7は、矩形状の鋼板であって、上部にボルト穴が形成され、このボルト穴を使用してボルト72の締結により受梁13の下側の補強リブ131に固定されている。高さ調整部材7の下部は、複数のねじ71により水平力伝搬部材5の縦板52に固定されている。 The height adjustment member 7 is provided between the horizontal force transmission member 5 and the support beam 13 so as to be fixed by adjusting the vertical interval between the horizontal force transmission member 5 and the support beam 13 . The height adjustment member 7 is a rectangular steel plate, and has a bolt hole formed in the upper portion thereof, and is fixed to the lower reinforcing rib 131 of the support beam 13 by fastening a bolt 72 using the bolt hole. . A lower portion of the height adjustment member 7 is fixed to the vertical plate 52 of the horizontal force transmission member 5 with a plurality of screws 71 .

このように構成される高さ調整部材7では、天井パネル4と受梁13との上下方向の間隔に合わせた位置で、天井パネル4と受梁13との各々にねじ71やボルト72によって固定することで、天井パネル4と受梁13とを所定の高さで接合する。 The height adjustment member 7 configured in this manner is fixed to the ceiling panel 4 and the beams 13 by screws 71 and bolts 72 at positions corresponding to the vertical spacing between the ceiling panel 4 and the beams 13 . By doing so, the ceiling panel 4 and the support beam 13 are joined at a predetermined height.

ここで、本実施形態の水平力伝搬部材5の設計例について説明する。
先ず、1箇所の水平力伝搬部材5が負担する天井面4aにおける地震時の水平慣性力は、(1)式により安全側の数値を算定する。なお、水平力伝搬部材5は、高さ調整部材7を含んだものとする。
例えば、最大設計用水平震度(maxK)を2.2、天井の最大設計用荷重(maxW)を30kg/m×9.8N/kg、水平力伝搬部材の最大設置間隔(支配幅)(maxb)を10m(ここでは10m/2とする)、水平力伝搬部材の最大支点間距離(maxl)を2.5mとしたとき、(1)式より水平力伝搬部材の最大張力(maxH)は8085Nとなる。
Here, a design example of the horizontal force transmission member 5 of this embodiment will be described.
First, for the horizontal inertial force at the time of an earthquake on the ceiling surface 4a that is borne by the horizontal force transmission member 5 at one location, a numerical value on the safe side is calculated using equation (1). In addition, the horizontal force transmission member 5 shall include the height adjustment member 7. As shown in FIG.
For example, the maximum design horizontal seismic coefficient (maxK) is 2.2, the ceiling maximum design load (maxW) is 30kg/m 2 × 9.8N/kg, the maximum installation interval (ruling width) (maxb ) is 10 m (here, 10 m/2), and the maximum fulcrum distance (maxl) of the horizontal force transmission member is 2.5 m, the maximum tension (maxH) of the horizontal force transmission member is 8085 N from equation (1). becomes.

Figure 0007208044000001
Figure 0007208044000001

次に、上述した耐震天井構造の作用について、図面に基づいて詳細に説明する。
本実施形態では、図3に示すように、天井パネル4の端部4cを水平力伝搬部材5を介して天井面高さ付近の受梁13に接合することで、面内剛性の高い天井パネル4の特性を用いて地震時に作用する天井部の水平慣性力を確実に建物躯体に伝搬させ、又は受梁13を介して建物躯体に伝搬させることができ、天井部が建物躯体と一体に水平方向に挙動する。すなわち、天井部の揺れの増幅を抑制し、従来のように天井部が建物の壁、柱、梁などの躯体に衝突することを防止できる。
Next, the operation of the earthquake-resistant ceiling structure described above will be described in detail based on the drawings.
In this embodiment, as shown in FIG. 3, by joining the end portion 4c of the ceiling panel 4 to the support beam 13 near the height of the ceiling surface via the horizontal force transmission member 5, the ceiling panel with high in-plane rigidity Using the characteristics of 4, the horizontal inertial force of the ceiling that acts during an earthquake can be reliably transmitted to the building frame, or can be transmitted to the building frame through the support beams 13, and the ceiling can be integrated horizontally with the building frame. behave in the direction That is, it is possible to suppress the amplification of the vibration of the ceiling and prevent the ceiling from colliding with the walls, pillars, beams, and other structures of the building as in the past.

また、本実施形態では、上述したように天井部が層間変位の影響を受けにくい天井面高さ付近に設置された受梁13と一体に水平方向に挙動するため、天井面4aと建物躯体との間に水平方向のクリアランスを設ける必要がなくなり、クリーンルーム等の平常時、地震時ともに気密性が要求される建物に適用することができる。
さらに、本実施形態では、天井パネル4の端部4cに水平力伝搬部材5が設けられる以外に耐震部材が配置されることがないので、設備配置等の自由度が確保され、意匠性が低下することもない。
In addition, in the present embodiment, as described above, the ceiling portion behaves in the horizontal direction integrally with the support beams 13 installed near the height of the ceiling surface, which is less susceptible to inter-story displacement. This eliminates the need to provide a horizontal clearance between them, and can be applied to buildings such as clean rooms that require airtightness both in normal times and during earthquakes.
Furthermore, in the present embodiment, since no seismic member is arranged other than the horizontal force transmission member 5 provided at the end 4c of the ceiling panel 4, the degree of freedom in facility arrangement is ensured, and designability is reduced. I don't even have to.

また、本実施形態では、天井パネル4と受梁13との間の上下方向の間隔に合わせた寸法の高さ調整部材7を配置することができ、天井パネル4と受梁13との接合を容易に行うことができる。 In addition, in this embodiment, the height adjustment member 7 can be arranged to match the vertical gap between the ceiling panel 4 and the beams 13, so that the ceiling panel 4 and the beams 13 can be joined together. can be easily done.

上述のように本実施形態による耐震天井構造1では、斜め部材や引張材の耐震部材を設置することなく、天井クリアランスを不要として気密性を確保することができる。 As described above, in the earthquake-resistant ceiling structure 1 according to the present embodiment, airtightness can be ensured without installing diagonal members or tensile members, and without ceiling clearance.

以上、本発明による耐震天井構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although the embodiments of the earthquake-resistant ceiling structure according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be appropriately modified without departing from the scope of the present invention.

例えば、本実施形態では、高さ調整部材7を使用して天井パネル4に固定された水平力伝搬部材5と受梁13とを接合する構成としているが、高さ調整部材7を省略することも可能である。 For example, in the present embodiment, the horizontal force transmission member 5 fixed to the ceiling panel 4 and the support beam 13 are joined using the height adjustment member 7, but the height adjustment member 7 may be omitted. is also possible.

また、本実施形態では、天井パネル4を支持構造部であるH形鋼の受梁13に接合する構成としているが、この受梁13であることに制限されるものではない。例えば、支持構造部として角型鋼管の受梁であってもよいし、鉄筋コンクリート造の受梁であってもかまわない。さらに、天井パネル4の接合部として梁材であることに限定されず、例えば天井パネル4を建物躯体である柱12に対して水平力伝搬部材を介して接合される構成としてもよい。 In this embodiment, the ceiling panel 4 is joined to the support beams 13 of H-shaped steel, which are the support structure, but the support structure is not limited to the support beams 13 . For example, the support structure may be a rectangular steel pipe support beam or a reinforced concrete support beam. Furthermore, the joint portion of the ceiling panel 4 is not limited to the beam material, and for example, the ceiling panel 4 may be joined to the pillar 12, which is the building skeleton, via a horizontal force transmission member.

また、本実施形態では、野縁受け2と野縁3を用いた吊り天井としているが、このような構成に限定されることはない。例えば、野縁受け2と野縁3を用いることなく、Tバーを用いた吊り天井の構造でもよい。 Further, in this embodiment, the suspended ceiling using the ceiling joists 2 and the joists 3 is used, but the structure is not limited to this. For example, a structure of a suspended ceiling using a T-bar may be used without using the ceiling joists 2 and 3.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components without departing from the scope of the present invention.

1 耐震天井構造
2 野縁受け
3 野縁
4 天井パネル
4a 天井面
4b 上面
4c 端部
5 水平力伝搬部材
6 吊り部材
7 高さ調整部材
10 建物躯体
11 上部構造
12 柱
13 受梁(支持構造部)
X1 第1横方向
X2 第2横方向
1 earthquake-resistant ceiling structure 2 joist receiver 3 joist 4 ceiling panel 4a ceiling surface 4b upper surface 4c end 5 horizontal force transmission member 6 suspension member 7 height adjustment member 10 building skeleton 11 superstructure 12 pillar 13 support beam (support structure )
X1 First horizontal direction X2 Second horizontal direction

Claims (2)

吊り部材を介して建物躯体の上部構造に吊り下げ支持され、斜め部材や引張材からなる耐震部材が設置されない吊り天井をなす天井パネルと、
前記天井パネルの端部の上面に連結された水平力伝搬部材と、を備え、
前記天井パネルの端部は、前記水平力伝搬部材を介して前記建物躯体又は前記建物躯体の支持構造部に接合されており、
前記水平力伝搬部材は、下記式(1)より算出される最大張力を基に設計される、
maxH=maxK×maxW×maxb×maxl・・・(1)
なお、maxH:水平力伝搬部材の最大張力(N)
maxK:最大設計用水平震度
maxW:天井の最大設計用荷重(N/m
maxb:水平力伝搬部材の最大設置間隔(m)
maxl:水平力伝搬部材の最大支点間距離(m)
ことを特徴とする耐震天井構造。
a ceiling panel that is suspended and supported by the upper structure of the building frame via suspension members and that forms a suspended ceiling without installing any earthquake-resistant members made of diagonal members or tensile members;
a horizontal force transmission member coupled to an upper surface of an edge of the ceiling panel;
An end portion of the ceiling panel is joined to the building frame or a support structure portion of the building frame via the horizontal force transmission member ,
The horizontal force transmission member is designed based on the maximum tension calculated from the following formula (1),
maxH=maxK×maxW×maxb×maxl (1)
Note that maxH is the maximum tension (N) of the horizontal force transmission member
maxK: Maximum design horizontal seismic coefficient
maxW: maximum design load of the ceiling (N/m 2 )
maxb: Maximum installation interval of horizontal force transmission members (m)
maxl: Maximum distance between fulcrums of horizontal force transmission member (m)
An earthquake-resistant ceiling structure characterized by:
前記支持構造部は、前記建物躯体の柱間に架設された受梁であって、
前記水平力伝搬部材と前記受梁との間には、前記水平力伝搬部材と前記受梁との上下方向の間隔を調整して固定可能な高さ調整部材が設けられていることを特徴とする請求項1に記載の耐震天井構造。
The support structure is a support beam installed between columns of the building skeleton,
A height adjustment member is provided between the horizontal force transmission member and the support beam, and is capable of adjusting and fixing a vertical gap between the horizontal force transmission member and the support beam. The earthquake-resistant ceiling structure according to claim 1.
JP2019019032A 2019-02-05 2019-02-05 Seismic ceiling structure Active JP7208044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019019032A JP7208044B2 (en) 2019-02-05 2019-02-05 Seismic ceiling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019032A JP7208044B2 (en) 2019-02-05 2019-02-05 Seismic ceiling structure

Publications (2)

Publication Number Publication Date
JP2020125639A JP2020125639A (en) 2020-08-20
JP7208044B2 true JP7208044B2 (en) 2023-01-18

Family

ID=72083668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019032A Active JP7208044B2 (en) 2019-02-05 2019-02-05 Seismic ceiling structure

Country Status (1)

Country Link
JP (1) JP7208044B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232391A (en) * 1995-02-24 1996-09-10 Taisei Denki Kogyo:Kk Execution method for ceiling
JP3032728B2 (en) * 1997-04-17 2000-04-17 ナショナル住宅産業株式会社 Ceiling support structure

Also Published As

Publication number Publication date
JP2020125639A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP2013155580A (en) Suspended ceiling structure and seismic retrofit method for suspended ceiling structure
JP6349207B2 (en) Fireproof structure of balcony
JP4467592B2 (en) Seismic reinforcement device for ceiling suspension bolts
JP7208044B2 (en) Seismic ceiling structure
JP7257844B2 (en) Seismic ceiling structure
JP6145380B2 (en) Ceiling structure
JP7272800B2 (en) Seismic ceiling structure
JP7208028B2 (en) Construction method of earthquake-resistant ceiling structure
JP6226173B2 (en) Suspended ceiling structure
CN108316538B (en) Ceiling system
JP6226172B2 (en) Suspended ceiling structure
JP7546505B2 (en) Row building
JP2010159602A (en) Floor structure for bath unit installation and building
JP2018178708A (en) Suspended ceiling structure
JP2015190300A (en) Earthquake-proof structure of ceiling
JP2010001657A (en) Ceiling furring material support structure
JP6124071B2 (en) Suspended ceiling structure
WO2018011955A1 (en) Elevator and method for renewing elevator
JP7303712B2 (en) unit building
JP5693867B2 (en) building
JP2011144529A (en) Substrate structure of sound insulating partition
WO2023054015A1 (en) Panel installation structure
JP2016056662A (en) Reinforcement brace connecting metal fitting of suspended ceiling
JP2019183517A (en) Partition board installation structure
JP2022157404A (en) Ceiling joist attachment member and suspended ceiling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7208044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150