JP2020161726A - Composite magnetic material for high frequency - Google Patents

Composite magnetic material for high frequency Download PDF

Info

Publication number
JP2020161726A
JP2020161726A JP2019061749A JP2019061749A JP2020161726A JP 2020161726 A JP2020161726 A JP 2020161726A JP 2019061749 A JP2019061749 A JP 2019061749A JP 2019061749 A JP2019061749 A JP 2019061749A JP 2020161726 A JP2020161726 A JP 2020161726A
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
iron
nitrogen
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019061749A
Other languages
Japanese (ja)
Inventor
今岡 伸嘉
Nobuyoshi Imaoka
伸嘉 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2019061749A priority Critical patent/JP2020161726A/en
Publication of JP2020161726A publication Critical patent/JP2020161726A/en
Pending legal-status Critical Current

Links

Abstract

To provide a novel composite magnetic material for high frequency and manufacturing method therefor, capable of solving problems such as eddy current loss because the material has higher permeability than ferrite-based magnetic material and higher electrical resistivity than metal-based magnetic material.SOLUTION: The material is formed by blending high-circularity iron powder and/or nano ceramic particle in nitride-based magnetic material with grain shape coordinated (rare earth-iron-nitrogen-based magnetic material) and using resin with high segment of solubility parameter.SELECTED DRAWING: None

Description

本発明は、超高周波領域を含む高周波領域で使用される複合磁性材料に関する。具体的には、超高周波領域を含む高周波領域で使用される動力機器や情報通信関連機器用の複合磁性材料や、超高周波領域を含む高周波領域での不要な電磁波干渉による障害抑制用の複合磁性材料に関する。
上記動力機器や情報通信関連機器用の複合磁性材料としては、例えば、トランス用、ヘッド用、インダクタ用、リアクトル用、ヨーク用、コア(磁芯)用などの複合磁性材料や、アンテナ用、マイクロ波素子用、磁歪素子用、磁気音響素子用及び磁気記録素子用などの複合磁性材料や、ホールセンサ(ホール素子)用、磁気センサ用、電流センサ用、回転センサ用、電子コンパスなどの磁場を介したセンサ類用などの複合磁性材料に関するもので、特に無線給電(ワイヤレス電力伝送、非接触電力伝送とも呼ばれる)システムに使用されるコイルのコアやアンテナのコア用などの複合磁性材料がある。
上記不要な電磁波干渉による障害抑制用の複合磁性材料としては、例えば、電磁ノイズ吸収用、電磁波吸収用、磁気シールド用などの複合磁性材料や、ノイズ除去用インダクタなどのインダクタ素子用複合磁性材料や、RFID(Radio Frequency Identification)タグ用複合磁性材料や、高周波で信号からノイズを除去するノイズフィルタ用複合磁性材料がある。
The present invention relates to a composite magnetic material used in a high frequency region including an ultrahigh frequency region. Specifically, composite magnetic materials for power equipment and information and communication related equipment used in the high frequency region including the ultra high frequency region, and composite magnetism for suppressing obstacles due to unnecessary electromagnetic interference in the high frequency region including the ultrahigh frequency region. Regarding materials.
Examples of the composite magnetic material for the above-mentioned power equipment and information and communication related equipment include composite magnetic materials for transformers, heads, inductors, reactors, yokes, cores (magnetic cores), antennas, and micros. Composite magnetic materials for wave elements, magnetic distortion elements, magnetic acoustic elements, magnetic recording elements, etc., and magnetic fields for Hall sensors (Hall elements), magnetic sensors, current sensors, rotation sensors, electronic compasses, etc. It relates to a composite magnetic material for sensors and the like, and in particular, there is a composite magnetic material for a coil core and an antenna core used in a wireless power feeding (also called wireless power transmission or non-contact power transmission) system.
Examples of the composite magnetic material for suppressing obstacles due to unnecessary electromagnetic interference include composite magnetic materials for electromagnetic noise absorption, electromagnetic wave absorption, magnetic shield, etc., composite magnetic materials for inductor elements such as noise removal inductors, and the like. , RFID (Radio Frequency Identification) tag composite magnetic material and noise filter composite magnetic material that removes noise from signals at high frequencies.

本願における「高周波用複合磁性材料」とは、異なる2種類以上の磁性材料、又は1種以上の磁性材料と非磁性材料(例えば、非磁性のセラミックス材料及び/又は樹脂)が複合することによって、高周波領域で使用される磁性材料(いわゆる、高周波用磁性材料)として機能する磁性材料のことである。本願において「複合」とは、磁性材料が占める領域を非磁性材料で分断、或いは被覆している状態を言う。
本願では、0.005GHz以上100GHz以下の周波数の電磁波を「高周波」と呼び、その中で「超高周波」とは1GHz以上の高周波を言う。本願では特に断らない限り、「超高周波」も「高周波」に含む。よって、本願で言う「高周波領域」とは、0.005GHz以上100GHz以下の周波数の電磁波領域を指し、その中の1GHz以上の周波数の電磁波領域を「超高周波領域」を指す。
また、本願では特に断らない限り、上記「高周波」より低い周波数を有する電磁波を「低周波」と言う。
本願における「高周波用磁性材樹脂複合材料」とは、高周波用複合磁性材料のうち樹脂を含むものである。さらに本願における「高周波用磁性材料」とは、0.005GHz〜100GHz以下の周波数範囲の電場、磁場または電磁場に作用して「目的の機能」を奏する磁性材料であり、「高周波用複合磁性材料」はこれに含まれる。本願では、「高周波用複合磁性材料」を単に「複合磁性材料」、「高周波用磁性材樹脂複合磁性材料」を単に「磁性材樹脂複合磁性材料」という場合がある。ここで「目的の機能」とは、磁性材料の電磁誘導、自己誘導、高透磁率、高周波損失、磁歪、磁区形成、半硬磁性などの磁気的機能のことであり、本発明の「高周波用複合磁性材料」は、これらの機能を利用した素子、部品、または機器などに使用される。この中で高透磁率を目的の機能とする磁性材料を「高周波増幅材料」、高い高周波損失を目的の機能とする磁性材料を「高周波吸収材料」と言う。
The "composite magnetic material for high frequency" in the present application is defined by combining two or more different magnetic materials, or one or more magnetic materials and a non-magnetic material (for example, a non-magnetic ceramic material and / or resin). It is a magnetic material that functions as a magnetic material used in the high frequency region (so-called magnetic material for high frequency). In the present application, the term "composite" refers to a state in which a region occupied by a magnetic material is divided or covered with a non-magnetic material.
In the present application, an electromagnetic wave having a frequency of 0.005 GHz or more and 100 GHz or less is referred to as "high frequency", and among them, "ultra high frequency" means a high frequency of 1 GHz or more. Unless otherwise specified in the present application, "ultra-high frequency" is also included in "high frequency". Therefore, the "high frequency region" referred to in the present application refers to an electromagnetic wave region having a frequency of 0.005 GHz or more and 100 GHz or less, and an electromagnetic wave region having a frequency of 1 GHz or more in the electromagnetic wave region refers to an "ultra high frequency region".
Further, in the present application, unless otherwise specified, an electromagnetic wave having a frequency lower than the above-mentioned "high frequency" is referred to as "low frequency".
The "high-frequency magnetic material resin composite material" in the present application includes a resin among the high-frequency composite magnetic materials. Further, the "magnetic material for high frequency" in the present application is a magnetic material that acts on an electric field, a magnetic field or an electromagnetic field in the frequency range of 0.005 GHz to 100 GHz or less to perform a "target function", and is a "composite magnetic material for high frequency". Is included in this. In the present application, the "high frequency composite magnetic material" may be simply referred to as "composite magnetic material", and the "high frequency magnetic material resin composite magnetic material" may be simply referred to as "magnetic material resin composite magnetic material". Here, the "target function" refers to a magnetic function such as electromagnetic induction, self-induction, high magnetic permeability, high frequency loss, magnetostriction, magnetic domain formation, and semi-hard magnetism of a magnetic material, and is used in the present invention for "high frequency". The "composite magnetic material" is used for elements, parts, devices, etc. that utilize these functions. Among these, a magnetic material whose purpose is high magnetic permeability is called a "high frequency amplification material", and a magnetic material whose purpose is high high frequency loss is called a "high frequency absorption material".

最近、モバイル型情報通信機器であるパーソナルコンピュータや携帯電話、デジタルカメラなどの各種情報通信機器の小型多機能化や演算処理速度の高速化に伴って駆動周波数の高周波化が急速に進展しており、高周波、中でも超高周波を利用した機器の普及は拡大の一途を辿っている。マイクロ波帯域の電磁波を利用する衛星通信、移動体通信、カーナビゲーションなどの機器は近年大幅に需要を伸ばし、例えば、自動車料金収集システム(ETC)、無線LANなどの近距離無線通信、衝突防止レーダなどの車載用ミリ波レーダなどの技術の普及も始まっている。また、無線給電システム分野においても高周波化が進んでいる。携帯電話や自動掃除機など家電用低周波充電が普及し、さらに停車中の電気自動車などの低周波での充電も実用化されたが、最近移動中の次世代自動車などに対する高周波給電などの実証試験もなされ、さらにマイクロ波による発電所からの大電力無線給電などが検討されている。以上のような高周波、特に超高周波の利用の流れが進む中、高い周波数の電磁場変化にも損失無く対応できる磁性材料が強く求められている。
その一方で、これらの高周波機器が外界に放出する電磁波による電磁環境の悪化(具体的には、他の機器や生体への電磁障害)が問題視されており、現在、公的機関や国際機関による法規制、自主規制の動きが活発化している。このように、個々の機器においては有用な信号(電磁波)が、他の機器や生体にとっては障害になることがあるため、この問題への対応が非常に難しい。この問題を解決するためには、機器の特性として、不要な電磁波(電磁ノイズ)を放出せず、外来ノイズに対して強い耐性を持つこと、すなわち、電磁波障害(EMI:Electro−Magnetic Interference)と被害(EMS:Electro−Magnetic Susceptibility)の両面を視野に入れた電磁両立性(EMC:Electro−Magnetic Compatibility)の確立が重要になる。
Recently, as mobile information and communication devices such as personal computers, mobile phones, and digital cameras have become smaller and more multifunctional and the calculation processing speed has increased, the drive frequency has rapidly increased. , High frequencies, especially ultra-high frequencies, are becoming more widespread. Demand for devices such as satellite communications, mobile communications, and car navigation systems that use electromagnetic waves in the microwave band has increased significantly in recent years. For example, short-range wireless communications such as automobile toll collection systems (ETCs) and wireless LANs, and collision prevention radars. Technologies such as in-vehicle millimeter-wave radar have also begun to spread. In addition, the frequency is increasing in the field of wireless power supply systems. Low-frequency charging for home appliances such as mobile phones and automatic vacuum cleaners has become widespread, and low-frequency charging for stopped electric vehicles has also been put into practical use, but demonstration of high-frequency power supply for next-generation vehicles that are moving recently. Tests have also been conducted, and high-power wireless power supply from power plants using microwaves is being considered. With the progress of the use of high frequencies, especially ultra-high frequencies, as described above, there is a strong demand for magnetic materials that can cope with changes in electromagnetic fields at high frequencies without loss.
On the other hand, the deterioration of the electromagnetic environment due to the electromagnetic waves emitted by these high-frequency devices to the outside world (specifically, electromagnetic interference to other devices and living organisms) has been regarded as a problem, and currently public institutions and international organizations The movement of legal regulation and self-regulation is becoming active. As described above, it is very difficult to deal with this problem because a signal (electromagnetic wave) useful in each device may be an obstacle to other devices or a living body. In order to solve this problem, as a characteristic of the equipment, it does not emit unnecessary electromagnetic waves (electromagnetic noise) and has strong resistance to external noise, that is, electromagnetic interference (EMI: Electro-Magnetic Interference). It is important to establish electromagnetic compatibility (EMC: Electro-Magnetic Compatibility) with a view to both sides of damage (EMS: Electro-Magnetic Susceptibility).

上記EMC対策の一例として、以下に最近電子機器でよく用いられている電磁ノイズ吸収材料を中心に述べる。
電磁ノイズ吸収材料は、電磁ノイズ発生源の近傍において、電磁波を外界に放出するのを抑制する働きをもつ材料である。数百MHz以上の高周波数領域では、Ni−Znフェライトなどの自然共鳴を利用して線路を伝わる高調波などの高周波の電磁ノイズを吸収し、熱エネルギーに変換してノイズを抑制するシート状の電磁ノイズ吸収材料がよく用いられている。要求される磁気特性としては、磁性材料の比透磁率が高いことと、自然共鳴周波数が高いことの2点である。酸化物磁性材料のフェライトは電気抵抗率が高いため、渦電流損失による性能劣化が小さく、高周波領域で使用するには好ましい材料とされてきた。
As an example of the above EMC countermeasures, the electromagnetic noise absorbing materials that are often used in electronic devices these days will be mainly described below.
The electromagnetic noise absorbing material is a material having a function of suppressing the emission of electromagnetic waves to the outside world in the vicinity of the electromagnetic noise generation source. In the high frequency region of several hundred MHz or more, a sheet-like sheet that absorbs high-frequency electromagnetic noise such as harmonics transmitted through the line using natural resonance such as Ni-Zn ferrite and converts it into thermal energy to suppress the noise. Electromagnetic noise absorbing materials are often used. The required magnetic properties are two points: a high relative permeability of the magnetic material and a high natural resonance frequency. Since ferrite, an oxide magnetic material, has a high electrical resistivity, performance deterioration due to eddy current loss is small, and it has been regarded as a preferable material for use in a high frequency region.

他方、特許文献1にも述べられているように、超高周波領域でのフェライトの透磁率の虚数項の値は1〜2程度かそれより小さいため、フェライト系の酸化物磁性材料は、GHz帯(領域)の電磁ノイズ吸収材料に適用するのは困難である。このため、近年では、フェライト系の酸化物磁性材料よりも飽和磁化値の大きいFeやFe−Ni系合金、Fe−Ni−Si系合金、センダスト、Fe−Cu−Nb−Si系合金、アモルファス合金などの金属系磁性材料の利用が活発となり、磁性金属微粒子を絶縁性の樹脂などに分散させた磁性材樹脂複合材料が、電磁ノイズ吸収材料として開発されてきた。 On the other hand, as described in Patent Document 1, since the value of the imaginary term of the magnetic permeability of ferritic in the ultra-high frequency region is about 1 to 2 or less, the ferrite-based oxide magnetic material is in the GHz band. It is difficult to apply to electromagnetic noise absorbing materials in (region). For this reason, in recent years, Fe and Fe-Ni alloys, Fe-Ni-Si alloys, Sendust, Fe-Cu-Nb-Si alloys and amorphous alloys, which have a higher saturation magnetization value than ferrite-based oxide magnetic materials. The use of metal-based magnetic materials such as these has become active, and magnetic material resin composite materials in which magnetic metal fine particles are dispersed in an insulating resin or the like have been developed as electromagnetic noise absorbing materials.

しかし、金属系磁性材料の電気抵抗率は、10〜140μΩcmであり、フェライトの電気抵抗率4000〜1018μΩcmと比較してかなり低い。このため、高い周波数まで高透磁率を実現することができず、高周波領域で使用することは難しい。何故なら、渦電流損失によって低い周波数領域から透磁率が低下し始めるのを防ぐために絶縁層を必要とするため、その絶縁層による非磁性の部分が本来有している磁性材樹脂複合材料の高周波領域の複素比透磁率を低めてしまうことになるからである。さらに、1GHzを超える超高周波数領域になると、このような複合材料であっても、渦電流損失の影響による透磁率の低下は避けられない。 However, the electrical resistivity of the metallic magnetic material is 10 to 140 μΩcm, which is considerably lower than the electrical resistivity of ferrite 4000 to 10 18 μΩcm. Therefore, it is not possible to realize high magnetic permeability up to a high frequency, and it is difficult to use it in a high frequency region. This is because an insulating layer is required to prevent the magnetic permeability from starting to decrease from a low frequency region due to eddy current loss, so that the high frequency of the magnetic material resin composite material originally possessed by the non-magnetic part of the insulating layer. This is because the complex relative magnetic permeability of the region will be lowered. Further, in the ultra-high frequency region exceeding 1 GHz, even with such a composite material, a decrease in magnetic permeability due to the influence of eddy current loss is unavoidable.

また、形状異方性を付与した金属系磁性体も開発されているが、基本的に特許文献1と同様な考察により、金属系磁性体フィラーの厚みを0.2μm未満にする必要があり、ある程度充填率を稼ぎ透磁率を大きくしても超高周波用途への適用には限度がある。
このため高周波領域(特に超高周波領域)で、透磁率がより高く、電磁ノイズの抑制性能により優れた電磁ノイズ吸収材料用の磁性材料、更には量産容易で、可撓性が求められる用途にも適応できる適応範囲の広い電磁ノイズ吸収材料(例えば、樹脂の中に分散させてシートにすることができる磁性材料)の開発が強く望まれてきた。
Further, although a metal-based magnetic material having shape anisotropy has been developed, it is necessary to make the thickness of the metal-based magnetic material filler less than 0.2 μm based on the same consideration as in Patent Document 1. Even if the filling rate is increased to some extent and the magnetic permeability is increased, there is a limit to its application to ultra-high frequency applications.
Therefore, in the high frequency region (especially in the ultra high frequency region), the magnetic material for electromagnetic noise absorbing material, which has higher magnetic permeability and excellent electromagnetic noise suppression performance, and also for applications where mass production is easy and flexibility is required. The development of an electromagnetic noise absorbing material having a wide applicable range (for example, a magnetic material that can be dispersed in a resin to form a sheet) has been strongly desired.

このような理由から、優れた高周波用磁性材料としては、例えば電磁ノイズ吸収材料におけるスプリアスや電磁ノイズを抑制・吸収するための高周波吸収材料として使用しても、また高周波用コア(磁芯)やRFIDタグ用材料や無線給電システム用のコイルのコアのように使用周波数の磁場や電磁波に比例して増幅した磁場や電磁場を発生させるための高周波増幅材料として使用しても、高周波領域(必要に応じて超高周波領域)まで複素比透磁率の実数項の値が低下せず虚数項の値が増加しないことが重要である。
加えて、高周波吸収材料として使用する場合は、高周波領域(必要に応じて超高周波領域)で複素比透磁率の虚数項の値が、低周波領域では0に近くても、周波数とともに増加して不要輻射や高調波などが存在する所望の周波数で十分大きいことが重要である。
For this reason, as an excellent high-frequency magnetic material, for example, even if it is used as a high-frequency absorbing material for suppressing / absorbing spurious or electromagnetic noise in an electromagnetic noise absorbing material, a high-frequency core (magnetic core) or Even if it is used as a material for RFID tags or a high-frequency amplification material for generating a magnetic field or electromagnetic field amplified in proportion to the magnetic field or electromagnetic wave of the frequency used, such as the core of a coil for a wireless power supply system, it is in the high-frequency region (necessarily Therefore, it is important that the value of the real term of the complex ratio magnetic permeability does not decrease and the value of the imaginary term does not increase up to the ultra-high frequency region).
In addition, when used as a high frequency absorbing material, the value of the imaginary term of complex relative permeability increases with frequency in the high frequency region (ultra high frequency region if necessary) even if it is close to 0 in the low frequency region. It is important that it is large enough at the desired frequency where unwanted radiation, harmonics, etc. are present.

さらに、高周波信号用のRFIDタグや無線給電システム用のコイルのコアなどにおける信号の大きさを増幅させるため、信号が存在する周波数領域で高い透磁率の実数項を実現させることが重要であるが、用途によっては、同時に、ある周波数より低い周波数側の信号を吸収せず、高周波から超高周波領域にある高調波のようなノイズを吸収して取り去ることも必要になることがある。特に、1GHzを境としてそれよりも低い周波数領域では複素比透磁率の虚数項(μ”)の値が0に近く、高い周波数領域(即ち、超高周波領域)では大きな虚数項(μ”)の値を有する材料が求められることがある(なお、後述で定義する「1GHz以上の選択吸収比」が大きい材料ほど上記目的により適合する材料である)。
しかし、従来では、高周波用途の磁性材料としては、本発明者らが知る限り、上述の酸化物磁性材料や金属系磁性材料しか用いられていない。そして、上述のとおり、酸化物磁性材料(特に、電気抵抗率の高いフェライト系酸化物磁性材料)を使用しても、渦電流損失による問題は小さくても十分な透磁率が得られないという問題があり、金属系磁性材料を使用しても、透磁率は高いが電気抵抗率が小さいために低い周波数領域で渦電流損失が起こるという問題があり、どちらも高周波用途の磁性材料としては適さないという問題点があった。特許文献1ではこの問題点を、窒化物材料を用いて解決しようとしているが、当該特許文献に開示されている材料では、例えば10GHzを超える高周波領域で使用される電磁波吸収材料や5〜100MHzの高周波領域で使用される電磁波増幅材料として十分な性能を発揮できない。
Furthermore, in order to amplify the signal magnitude in the RFID tag for high frequency signals and the core of the coil for wireless power feeding systems, it is important to realize a real number term with high magnetic permeability in the frequency domain where the signal exists. Depending on the application, at the same time, it may be necessary to absorb and remove noise such as harmonics in the high frequency to ultra high frequency region without absorbing the signal on the frequency side lower than a certain frequency. In particular, the value of the imaginary term (μ ") of the complex relative permeability is close to 0 in the frequency region lower than 1 GHz, and the large imaginary term (μ") in the high frequency region (that is, the ultrahigh frequency region) A material having a value may be required (note that a material having a larger "selective absorption ratio of 1 GHz or more" defined later is a material more suitable for the above purpose).
However, conventionally, as far as the present inventors know, only the above-mentioned oxide magnetic materials and metal-based magnetic materials have been used as magnetic materials for high-frequency applications. As described above, even if an oxide magnetic material (particularly, a ferrite-based oxide magnetic material having a high electric resistance) is used, even if the problem due to eddy current loss is small, sufficient magnetic permeability cannot be obtained. Even if a metallic magnetic material is used, there is a problem that eddy current loss occurs in a low frequency region due to high magnetic permeability but low electrical resistance, and neither is suitable as a magnetic material for high frequency applications. There was a problem. Patent Document 1 attempts to solve this problem by using a nitride material, but the materials disclosed in the patent document include, for example, an electromagnetic wave absorbing material used in a high frequency region exceeding 10 GHz and 5 to 100 MHz. It cannot exhibit sufficient performance as an electromagnetic wave amplification material used in the high frequency region.

特許第5669389号公報Japanese Patent No. 5669389

本発明は、上記課題に鑑みてなされたものであって、窒化物系の磁性材料を用いた新しい高周波用複合磁性材料、具体的には、円形度や粒径を制御した希土類−鉄−窒素系磁性材料を高周波用途の磁性材料として用いることで、酸化物磁性材料よりも磁化が高いために高い透磁率を実現することが可能で、且つ金属材料よりも電気抵抗率が高いために前述の渦電流損失などの問題点を解決することも可能な新しい高周波用複合磁性材料を提供することを目的とする。
さらに、本発明は、円形度や粒径を制御した上記希土類−鉄−窒素系磁性材料にセラミックス材料を複合することで、希土類−鉄−窒素系磁性材料の電気抵抗率をさらに高くすることができ、前述の渦電流損失などの問題点をより効果的に解決することが可能な新しい窒化物系磁性材料であって、高性能(具体的には、高い透磁率)を有する窒化物系磁性材料を高周波用複合磁性材料として提供することを目的とする。
さらに、本発明は、円形度や粒径を制御した上記希土類−鉄−窒素系磁性材料を異種の溶解性パラメータを有するセグメントの共重合体である樹脂に分散させた新しい高周波用複合磁性材料を提供することを目的とする。
The present invention has been made in view of the above problems, and is a new composite magnetic material for high frequency using a nitride-based magnetic material, specifically, rare earth-iron-nitrogen having controlled circularity and particle size. By using a based magnetic material as a magnetic material for high-frequency applications, it is possible to realize a high magnetic permeability because it has a higher magnetization than an oxide magnetic material, and because it has a higher electrical resistance than a metal material, as described above. It is an object of the present invention to provide a new composite magnetic material for high frequency that can solve problems such as eddy current loss.
Further, according to the present invention, the electric resistance of the rare earth-iron-nitrogen magnetic material can be further increased by combining the rare earth-iron-nitrogen magnetic material with the ceramic material in which the circularity and the particle size are controlled. It is a new nitride-based magnetic material that can more effectively solve the above-mentioned problems such as eddy current loss, and has high performance (specifically, high magnetic permeability). It is an object of the present invention to provide a material as a composite magnetic material for high frequency.
Furthermore, the present invention provides a new high-frequency composite magnetic material in which the rare earth-iron-nitrogen magnetic material whose circularity and particle size are controlled is dispersed in a resin which is a copolymer of segments having different solubility parameters. The purpose is to provide.

本発明者らは、従来の磁性材料における背反する特性を併せ持った電磁気特性の優れた高周波用磁性材料(具体的には、透磁率が高く、且つ電気抵抗率が高くて前述の渦電流損失の問題点を解決しうる、金属系磁性材料と酸化物磁性材料双方の利点を併せ持った電磁気特性の優れた高周波用磁性材料)を鋭意検討したところ、希土類−鉄−窒素系磁性材料を配合した複合磁性材料及び樹脂複合材料において、希土類−鉄−窒素系磁性材料の円形度や粒径を調整したり、それと一緒に混合して複合化させる材料(例えば、セラミックス材料や樹脂)を適切に選択したりすることによって極めて高い電磁特性を有した高周波用複合磁性材料が得られることを見出し、さらに、その製造法を確立することにより、本発明を完成するに至った。 The present inventors have a high-frequency magnetic material having excellent electromagnetic characteristics, which has contradictory characteristics of conventional magnetic materials (specifically, high magnetic permeability and high electrical resistance, and the above-mentioned eddy current loss. After diligently studying a high-frequency magnetic material with excellent electromagnetic characteristics that has the advantages of both metallic and oxide magnetic materials that can solve the problem, a composite containing rare earth-iron-nitrogen magnetic materials In magnetic materials and resin composite materials, the circularity and particle size of rare earth-iron-nitrogen magnetic materials are adjusted, and materials (for example, ceramic materials and resins) to be mixed and composited with them are appropriately selected. It has been found that a composite magnetic material for high frequency having extremely high electromagnetic characteristics can be obtained by the above, and further, the present invention has been completed by establishing a manufacturing method thereof.

即ち、本発明は、以下のとおりである。
(1) 主相の結晶構造が、六方晶、菱面体晶、及び正方晶の中から選択される少なくとも1種である希土類−鉄−窒素系磁性材料を含み、0.1〜2000μmの平均粒径を有する粉体である、高周波用複合磁性材料。
(2) 前記希土類−鉄−窒素系磁性材料が下記の一般式で表される、上記(1)に記載の高周波用複合磁性材料。
Fe(100−x−y) (1)
(但し式中、x、yは原子%で、3≦x≦30、1≦y≦30であり、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、Smの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である。)
(3) 前記希土類−鉄−窒素系磁性材料を構成する鉄の0.01〜50原子%が、Co、Ni、B、Al、Ti、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、In、Hf、Ta、W、Ru、Pd、Re、Os、Ir、Ag、Ptの中から選択される少なくとも1種で置き換えられている、上記(1)又は(2)に記載の高周波用複合磁性材料。
(4) 前記希土類−鉄−窒素系磁性材料を構成する窒素の50原子%未満が、H、C、P,Si,Sから選択される少なくとも1種で置き換えられている、上記(1)〜(3)のいずれかに記載の高周波用複合磁性材料。
(5) 前記希土類−鉄−窒素系磁性材料の結晶磁気異方性が面内磁気異方性である、上記(1)〜(4)のいずれかに記載の高周波用複合磁性材料。
(6) 前記希土類−鉄−窒素系磁性材料の円形度が、0.6〜1である、上記(1)〜(5)のいずれかに記載の高周波用複合磁性材料。
(7) 前記希土類−鉄−窒素系磁性材料を1〜99.999質量%で、セラミックス材料を0.001〜99質量%で含む、上記(1)〜(6)のいずれかに記載の高周波用複合磁性材料。
(8) 前記セラミックス材料が、1nm以上1000nm未満の平均粒径を有する粉体である、上記(7)に記載の高周波用複合磁性材料。
(9) 前記希土類−鉄−窒素系磁性材料を1〜99.999質量%で、Fe、Ni、Co、Fe−Ni系合金、Fe−Ni−Si系合金、センダスト、Fe−Si−Al系合金、Fe−Cu−Nb−Si系合金、モルファス合金、マグネタイト、Ni−フェライト、Zn−フェライト、Mn−Znフェライト、Ni−Znフェライトの中から選択される少なくとも1種を0.001〜99質量%で含む、上記(1)〜(6)のいずれかに記載の高周波用複合磁性材料。
(10) 前記Feがカルボニル鉄粉である、上記(9)に記載の高周波用複合磁性材料。
(11) 磁場配向している、上記(1)〜(10)のいずれかに記載の高周波用複合磁性材料。
(12) 上記(1)〜(11)のいずれかに記載の高周波用複合磁性材料を5〜99.9質量%で、樹脂を0.1〜95質量%で含有する、高周波用磁性材樹脂複合材料。
(13) 前記樹脂が、溶解性パラメータ10〜15のセグメントを含む、上記(12)の高周波用磁性材樹脂複合材料。
(14) 前記樹脂が、ポリアミドエステルエーテル樹脂である、上記(12)又は(13)に記載の高周波用磁性材樹脂複合材料。
(15) 上記(1)〜(11)のいずれかに記載の高周波用磁性材料を含む、電磁波吸収材料。
(16) 上記(1)〜(11)のいずれかに記載の高周波用磁性材料を含む、電磁ノイズ吸収材料。
(17) 上記(1)〜(11)のいずれかに記載の高周波用磁性材料を含む、RFIDタグ用材料。
(18) 上記(1)〜(11)のいずれかに記載の高周波用磁性材料を含む、無線給電システム用のコイルのコア。
(19) R成分及びFe成分を主成分とする合金を、アンモニアガス又は窒素ガスを含む窒化雰囲気下で、200〜650℃の範囲で熱処理することによって前記希土類−鉄−窒素系磁性材料を得る、上記(1)記載の高周波用複合磁性材料の製造方法。
(20) 上記(19)に記載の製造方法で得られる前記希土類−鉄−窒素系磁性材料、又はこの希土類−鉄−窒素系磁性材料をさらに微粉砕工程を経て得られる希土類−鉄−窒素系磁性材料と、1nm以上1000nm未満の平均粒径を有する粉体のセラミックス材料とを混合することにより製造される、上記(8)に記載の高周波用複合磁性材料の製造方法。
(21) 上記(19)又は(20)に記載の製造方法で得られる希土類−鉄−窒素系磁性材料又は上記(19)又は(20)に記載の製造方法で製造される高周波用複合磁性材料を、溶解性パラメータ10〜15のセグメントを含む樹脂と混錬して、圧縮成形、射出成形、及びカレンダー成形の中から選択される少なくとも1種により製造される、上記(12)に記載の高周波用磁性材樹脂複合材料の製造法。
That is, the present invention is as follows.
(1) The crystal structure of the main phase contains at least one rare earth-iron-nitrogen magnetic material selected from hexagonal, rhombohedral, and tetragonal, and has an average grain size of 0.1 to 2000 μm. A composite magnetic material for high frequencies, which is a powder having a diameter.
(2) The composite magnetic material for high frequencies according to (1) above, wherein the rare earth-iron-nitrogen magnetic material is represented by the following general formula.
R x Fe (100-xy) N y (1)
(However, in the formula, x and y are atomic%, 3 ≦ x ≦ 30, 1 ≦ y ≦ 30, and R is Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu. , At least one selected from Sm, and when Sm is contained, Sm is less than 50 atomic% with respect to the entire R component.)
(3) 0.01 to 50 atomic% of iron constituting the rare earth-iron-nitrogen magnetic material is Co, Ni, B, Al, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, The above (1) or (2), wherein it is replaced with at least one selected from Nb, Mo, In, Hf, Ta, W, Ru, Pd, Re, Os, Ir, Ag, and Pt. Composite magnetic material for high frequency.
(4) From (1) to the above, less than 50 atomic% of nitrogen constituting the rare earth-iron-nitrogen magnetic material is replaced with at least one selected from H, C, P, Si and S. The composite magnetic material for high frequencies according to any one of (3).
(5) The composite magnetic material for high frequency according to any one of (1) to (4) above, wherein the magnetocrystalline anisotropy of the rare earth-iron-nitrogen magnetic material is in-plane magnetic anisotropy.
(6) The composite magnetic material for high frequency according to any one of (1) to (5) above, wherein the rare earth-iron-nitrogen magnetic material has a circularity of 0.6 to 1.
(7) The high frequency according to any one of (1) to (6) above, which contains the rare earth-iron-nitrogen magnetic material in an amount of 1 to 99.999% by mass and the ceramic material in an amount of 0.001 to 99% by mass. For composite magnetic materials.
(8) The composite magnetic material for high frequencies according to (7) above, wherein the ceramic material is a powder having an average particle size of 1 nm or more and less than 1000 nm.
(9) Fe, Ni, Co, Fe-Ni alloy, Fe-Ni-Si alloy, Sendust, Fe-Si-Al based on the rare earth-iron-nitrogen magnetic material in an amount of 1 to 99.999% by mass. 0.001 to 99 mass of at least one selected from alloys, Fe-Cu-Nb-Si alloys, morphus alloys, magnetite, Ni-ferrite, Zn-ferrite, Mn-Zn ferrite, and Ni-Zn ferrite. The composite magnetic material for high frequency according to any one of (1) to (6) above, which is contained in%.
(10) The composite magnetic material for high frequency according to (9) above, wherein Fe is carbonyl iron powder.
(11) The composite magnetic material for high frequencies according to any one of (1) to (10) above, which is magnetically oriented.
(12) A high-frequency magnetic material resin containing the high-frequency composite magnetic material according to any one of (1) to (11) in an amount of 5 to 99.9% by mass and a resin of 0.1 to 95% by mass. Composite material.
(13) The high-frequency magnetic material resin composite material according to (12) above, wherein the resin contains a segment having a solubility parameter of 10 to 15.
(14) The high-frequency magnetic material resin composite material according to (12) or (13) above, wherein the resin is a polyamide ester ether resin.
(15) An electromagnetic wave absorbing material containing the high-frequency magnetic material according to any one of (1) to (11) above.
(16) An electromagnetic noise absorbing material containing the high-frequency magnetic material according to any one of (1) to (11) above.
(17) A material for RFID tags, which comprises the magnetic material for high frequencies according to any one of (1) to (11) above.
(18) A coil core for a wireless power feeding system, which comprises the high-frequency magnetic material according to any one of (1) to (11) above.
(19) The rare earth-iron-nitrogen magnetic material is obtained by heat-treating an alloy containing R component and Fe component as main components in a nitrided atmosphere containing ammonia gas or nitrogen gas in the range of 200 to 650 ° C. , The method for producing a high-frequency composite magnetic material according to (1) above.
(20) The rare earth-iron-nitrogen-based magnetic material obtained by the production method according to (19) above, or the rare earth-iron-nitrogen-based magnetic material obtained by further pulverizing the rare earth-iron-nitrogen-based magnetic material. The method for producing a composite magnetic material for high frequency according to (8) above, which is produced by mixing a magnetic material and a powdered ceramic material having an average particle size of 1 nm or more and less than 1000 nm.
(21) A rare earth-iron-nitrogen magnetic material obtained by the production method according to (19) or (20) above, or a composite magnetic material for high frequency produced by the production method according to (19) or (20) above. The high frequency according to (12) above, which is produced by kneading with a resin containing segments having solubility parameters 10 to 15 and being produced by at least one selected from compression molding, injection molding, and calendar molding. Magnetic material for resin Composite material manufacturing method.

本発明によれば、透磁率が高く、渦電流損失の小さな高周波用複合磁性材料、特に超高周波領域(特に10GHz以上の超高周波領域)で電磁波吸収材として機能したり、或いは高周波領域(特に100MHz以下の高周波領域)で電磁波増幅材料として機能したりする高周波用複合磁性材料などにも好適に利用される高周波用磁性材料を提供することができる。 According to the present invention, a composite magnetic material for high frequencies having high magnetic permeability and small eddy current loss, particularly functioning as an electromagnetic wave absorber in an ultrahigh frequency region (particularly in an ultrahigh frequency region of 10 GHz or more), or in a high frequency region (particularly 100 MHz). It is possible to provide a high frequency magnetic material that is suitably used for a high frequency composite magnetic material that functions as an electromagnetic wave amplification material in the following high frequency region).

以下、本発明について詳細に説明する。
本発明の「希土類−鉄−窒素系磁性材料を含有する高周波用複合磁性材料」の主な形態は粉体であり、本願では、これを「高周波用複合磁性材料粉体」とも言う。この高周波用複合磁性材料粉体は、その組成、粒径、及び円形度を調整し、必要に応じてセラミックスや樹脂などの成分を加えて成形した後、高周波用複合磁性材料として各種用途に用いられる。高周波用複合磁性材料においては、強磁性は主に希土類−鉄−窒素系磁性材料成分が担うが、その材料粉体間にセラミックス材料や樹脂が共存すると大幅な電気抵抗率の向上が達成される。また、ナノセラミックス材料や溶解性パラメータが10〜15の極性を有する樹脂を導入して調整することによって、希土類−鉄−窒素系磁性材料粉体の孤立分散を進めることにより、大幅な電気抵抗率の向上が達成される。なお、本願において「ナノ」とは、特に断らない限り、1nm以上1000nm未満のスケールを言う。
これらの高周波用複合磁性材料を用いれば、渦電流損失を大幅に低減した、0.005〜100GHzの高周波領域で使用する電磁波吸収材料や5〜100MHzの高周波領域で使用される電磁波増幅材料が得られる。
Hereinafter, the present invention will be described in detail.
The main form of the "high-frequency composite magnetic material containing a rare earth-iron-nitrogen magnetic material" of the present invention is powder, and in the present application, this is also referred to as "high-frequency composite magnetic material powder". This high-frequency composite magnetic material powder is used for various purposes as a high-frequency composite magnetic material after adjusting its composition, particle size, and circularity, and adding components such as ceramics and resin as necessary. Be done. In composite magnetic materials for high frequencies, ferromagnetism is mainly carried out by rare earth-iron-nitrogen magnetic material components, but when ceramic materials and resins coexist between the material powders, a significant improvement in electrical resistivity is achieved. .. In addition, by introducing and adjusting nanoceramic materials and resins having a solubility parameter of 10 to 15, the isolated dispersion of rare earth-iron-nitrogen magnetic material powder is promoted, resulting in a large electrical resistivity. Improvement is achieved. In the present application, "nano" refers to a scale of 1 nm or more and less than 1000 nm unless otherwise specified.
By using these composite magnetic materials for high frequencies, an electromagnetic wave absorbing material used in a high frequency region of 0.005 to 100 GHz and an electromagnetic wave amplifying material used in a high frequency region of 5 to 100 MHz can be obtained with significantly reduced eddy current loss. Be done.

以下、希土類−鉄−窒素系磁性材料の組成、その結晶構造・形態・磁気異方性、それにセラミックス材料を加えた高周波複合磁性材料、さらに高周波用磁性材樹脂複合材料の成分について説明する。また、それら材料の製造方法(特に、希土類−鉄−窒素系磁性材料を得るため希土類−鉄系原料合金を窒化する方法、セラミックス材料の添加法と磁場配向の方法、樹脂を配合して成形する方法)についても説明する。
上記(2)の本発明に記載の一般式(1)における希土類元素(R)としては、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuのうちの少なくとも1種を含めばよい。従って、ミッシュメタルやジジム等の二種以上の希土類元素を混合した原料を用いてもよいが、好ましい希土類としては、Y、La、Ce、Pr、Nd、Gd、Dy、Er、Ybである。さらに好ましくは、Y、Ce、Pr、Nd、Gd、Dyである。
Nd又はPrをR成分全体の50原子%以上含むことは、透磁率や後述で定義される「最大吸収エネルギー係数」が際立って高い材料が得られるので特に好ましく、さらに、耐酸化性能やコストのバランスから、Nd又はPrを70原子%以上含むことが好ましい。
Hereinafter, the composition of the rare earth-iron-nitrogen magnetic material, its crystal structure, morphology, and magnetic anisotropy, the high-frequency composite magnetic material to which the ceramic material is added, and the components of the high-frequency magnetic material resin composite material will be described. In addition, methods for manufacturing these materials (particularly, a method for nitriding a rare earth-iron-based raw material alloy to obtain a rare earth-iron-nitrogen-based magnetic material, a method for adding a ceramic material and a method for magnetic field orientation, and a method for blending and molding a resin Method) will also be described.
Examples of the rare earth element (R) in the general formula (1) described in the above (2) of the present invention include Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er. At least one of Tm, Yb and Lu may be included. Therefore, a raw material in which two or more rare earth elements such as mischmetal and didymium are mixed may be used, but preferable rare earths are Y, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb. More preferably, it is Y, Ce, Pr, Nd, Gd, Dy.
It is particularly preferable to contain Nd or Pr in an amount of 50 atomic% or more of the entire R component because a material having a significantly high magnetic permeability and the "maximum absorption energy coefficient" defined later can be obtained, and further, the oxidation resistance and cost are increased. From the balance, it is preferable to contain Nd or Pr in an amount of 70 atomic% or more.

六方晶、菱面体晶、及び正方晶の中から選択される少なくとも1種(特に、菱面体晶或いは六方晶)の結晶構造を有する希土類−鉄−窒素系磁性材料(以下、この材料を「R−Fe−N系磁性材料」ともいい、この「R」を「希土類成分」又は「R成分」とも言う)において、希土類成分としてSmを希土類成分全体に対して50原子%以上含むと、高周波領域の比透磁率(複素比透磁率の虚数項及び実数項)の値は0.3未満と極めて低くなる場合があり、窒化物の自然共鳴を用いた吸収を利用しようとすると、100GHzを超える超高周波用途で使用される場合に限定されることもある。そのため、積極的に面内磁気異方性を利用しようとする本発明の目的に鑑みて、好ましくない場合がある。このような観点から見ると、希土類成分中のSmの含有量は希土類成分中50原子%を超えないことが好ましい。これは、六方晶、菱面体晶、及び正方晶の中から選択される少なくとも1種(特に、菱面体晶或いは六方晶)の結晶構造を有する希土類−鉄−窒素系磁性材料では、希土類成分をSmとすると、室温以上で一軸異方性定数Kが正になるため、その結晶磁気異方性が一軸の材料となり、その他のY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Luなどでは、室温以上で一軸異方性定数Kが負になるため、これらの結晶磁気異方性が面内の材料となる傾向があるためである。
ここで用いる希土類元素は、工業的生産により入手可能な純度でよく、製造上混入が避けられない不純物、例えば、O、H、C、Al、Si、F、Na、Mg、Ca、Liなどが存在していても差し支えない。
A rare earth-iron-nitrogen magnetic material having a crystal structure of at least one selected from hexagonal crystals, rhombohedral crystals, and square crystals (particularly rhombic crystals or hexagonal crystals) (hereinafter, this material is referred to as "R". -Fe-N-based magnetic material ", and this" R "is also called" rare earth component "or" R component "), when Sm is contained as a rare earth component in an amount of 50 atomic% or more with respect to the entire rare earth component, a high frequency region The value of the relative permeability (imaginary and real terms of complex relative permeability) can be extremely low, less than 0.3, and when trying to utilize absorption using the natural resonance of nitrides, it exceeds 100 GHz. It may be limited to use in high frequency applications. Therefore, in view of the object of the present invention that positively utilizes in-plane magnetic anisotropy, it may not be preferable. From this point of view, it is preferable that the content of Sm in the rare earth component does not exceed 50 atomic% in the rare earth component. This is a rare earth-iron-nitrogen magnetic material having a crystal structure of at least one selected from hexagonal, rhombohedral, and square (particularly rhombohedral or hexagonal), which contains rare earth components. When sm, since the uniaxial anisotropy constant K u is positive at or above room temperature, the crystal magnetic anisotropy is uniaxial material thereof, other Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, This is because in Er, Tm, Lu and the like, the uniaxial anisotropy constant Ku becomes negative above room temperature, and these crystal magnetic anisotropies tend to be in-plane materials.
The rare earth element used here may have a purity that can be obtained by industrial production, and impurities that are unavoidably mixed in production, such as O, H, C, Al, Si, F, Na, Mg, Ca, Li, etc. It does not matter if it exists.

本発明における「希土類−鉄−窒素系磁性材料(R−Fe−N系磁性材料)」中の希土類成分(R成分)含有量は、当該磁性材料組成中3〜30原子%とするのが好ましい。R成分を3原子%以上とすることは、その含有量未満になると、鉄成分を多く含む軟磁性金属相が母合金鋳造・焼鈍後も許容量を超えて分離し、このような種類の軟磁性金属相は後述で定義する「最大吸収周波数」を低い周波数領域に持ち、透磁率を低下させ、本発明の目的のひとつである高周波領域(特に、超高周波領域)での高周波用磁性材料としての機能を阻害させてしまうという問題が生じるのを回避するうえで好ましい。
またR成分含有量を30原子%以下とすることは、その含有量を超えると透磁率や磁化が低下してしまうという問題が生じるのを回避するうえで好ましい。さらに好ましいR成分の組成範囲は5〜20原子%である。
鉄(Fe)は、本発明において強磁性を担う「希土類−鉄−窒素系磁性材料(R−Fe−N系磁性材料)」の基本成分であり、その含有量は、当該磁性材料組成中40原子%以上とするのが好ましい。鉄成分(Fe成分)含有量を40原子%以上とすることは、その含有量未満になると透磁率や磁化が小さくなってしまうという問題が生じるのを回避するうえで好ましい。また、鉄成分(Fe成分)含有量を当該磁性材料組成中96原子%以下とすることは、その含有量を超えると、Feを多く含む軟磁性金属相が分離し、上記R成分が不足する場合(即ち、R成分含有量が3原子%未満の場合)と同様な問題を生じるのを回避する点で好ましい。鉄成分(Fe成分)の組成範囲を50〜85原子%とすると、透磁率が高く、自然共鳴周波数又は最大吸収周波数がより好ましい範囲にあるバランスの取れた材料となるので、当該組成範囲が特に好ましい。
The content of the rare earth component (R component) in the "rare earth-iron-nitrogen-based magnetic material (R-Fe-N-based magnetic material)" in the present invention is preferably 3 to 30 atomic% in the magnetic material composition. .. When the R component is 3 atomic% or more, when the content is less than that, the soft magnetic metal phase containing a large amount of iron component is separated beyond the permissible amount even after casting and annealing of the mother alloy, and this kind of soft The magnetic metal phase has a "maximum absorption frequency" defined later in a low frequency region, reduces magnetic permeability, and is used as a magnetic material for high frequencies in a high frequency region (particularly, an ultrahigh frequency region), which is one of the objects of the present invention. It is preferable in order to avoid the problem of impairing the function of.
Further, it is preferable that the R component content is 30 atomic% or less in order to avoid the problem that the magnetic permeability and the magnetization decrease when the content is exceeded. A more preferable composition range of the R component is 5 to 20 atomic%.
Iron (Fe) is a basic component of the "rare earth-iron-nitrogen-based magnetic material (R-Fe-N-based magnetic material)" responsible for ferromagnetism in the present invention, and its content is 40 in the magnetic material composition. It is preferably atomic% or more. It is preferable that the iron component (Fe component) content is 40 atomic% or more in order to avoid the problem that the magnetic permeability and the magnetization become small when the content is less than that. Further, when the iron component (Fe component) content is 96 atomic% or less in the magnetic material composition, when the content is exceeded, the soft magnetic metal phase containing a large amount of Fe is separated, and the R component is insufficient. It is preferable in that it avoids the same problem as in the case (that is, when the R component content is less than 3 atomic%). When the composition range of the iron component (Fe component) is 50 to 85 atomic%, the material has a high magnetic permeability and is a well-balanced material in which the natural resonance frequency or the maximum absorption frequency is in a more preferable range. preferable.

本発明における「希土類−鉄−窒素系磁性材料(R−Fe−N系磁性材料)」では、その鉄成分(Fe成分)中の0.01〜50原子%を以下の成分(以下、「M成分」とも言う)で置き換えた組成とすることができる。「M成分」は、Co、Ni、B、Al、Ti、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Hf、Ta、W、Ru、Re、Os、Ir、Pt、Pb、Bi、アルカリ金属、アルカリ土類金属の中から選択される少なくとも1種である。M成分の導入により、必ずしもその全てがFeと置換して結晶構造に取り込まれるわけではないが、キュリー点、透磁率、共鳴周波数を上昇させるとともに、耐酸化性能を向上させることができる。
本願中の本発明に関する記述において、「鉄成分」或いは「Fe成分」と表記した場合、又は「R−Fe−N系」などの式中や磁性材料組成を論ずる文脈の中で「Fe」或いは「鉄」と表記した場合、特に断らない限り、本発明の高周波用複合磁性材料における「希土類−鉄−窒素系磁性材料」の基本成分である鉄(Fe)の0.01〜50原子%をM成分で置き換えた組成も含む。鉄成分(Fe成分)の0.01〜50原子%をM成分で置き換えるのが好ましいが、鉄成分(Fe成分)の1〜50原子%をM成分で置き換えるのが特に好ましい。
M成分の置換量を鉄成分(Fe成分)の50原子%以下とすることは、その置換量を超えると、製造コストの上昇に対する上記の効果が小さくコストパフォーマンスで利得が得られないばかりか、磁気特性が不安定となるという問題が生じるのを回避するうえで好ましい。また、M成分の置換量を鉄成分(Fe成分)の0.01原子%以上とすることは、その置換量未満であると、置き換えの効果がほとんど見られないという問題が生じるのを回避するうえで好ましい。
また、CoやNiは耐酸化性能に対する効果が高く、Coは加えてキュリー点を大きく向上させることができるので、CoやNiは、M成分として好ましい成分となり得る。この場合、鉄成分(Fe成分)の2〜20原子%をこれらの成分で置き換えるのが特に好ましい。
In the "rare earth-iron-nitrogen-based magnetic material (R-Fe-N-based magnetic material)" in the present invention, 0.01 to 50 atomic% of the iron component (Fe component) is the following component (hereinafter, "M"). The composition can be replaced with "ingredients"). "M component" includes Co, Ni, B, Al, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Hf, Ta, W, It is at least one selected from Ru, Re, Os, Ir, Pt, Pb, Bi, alkali metals, and alkaline earth metals. By introducing the M component, not all of it is necessarily replaced with Fe and incorporated into the crystal structure, but the Curie point, magnetic permeability, and resonance frequency can be increased, and the oxidation resistance performance can be improved.
In the description of the present invention in the present application, when it is described as "iron component" or "Fe component", or in a formula such as "R-Fe-N system" or in the context of discussing the composition of magnetic material, "Fe" or When described as "iron", unless otherwise specified, 0.01 to 50 atomic% of iron (Fe), which is a basic component of "rare earth-iron-nitrogen-based magnetic material" in the high-frequency composite magnetic material of the present invention, is used. The composition replaced with the M component is also included. It is preferable to replace 0.01 to 50 atomic% of the iron component (Fe component) with the M component, but it is particularly preferable to replace 1 to 50 atomic% of the iron component (Fe component) with the M component.
When the substitution amount of the M component is 50 atomic% or less of the iron component (Fe component), if the substitution amount is exceeded, the above-mentioned effect on the increase in manufacturing cost is small and a gain cannot be obtained in terms of cost performance. This is preferable in order to avoid the problem that the magnetic characteristics become unstable. Further, setting the substitution amount of the M component to 0.01 atomic% or more of the iron component (Fe component) avoids the problem that the replacement effect is hardly observed when the substitution amount is less than the substitution amount. It is preferable to the above.
Further, since Co and Ni have a high effect on the oxidation resistance performance and Co can greatly improve the Curie point in addition, Co and Ni can be preferable components as the M component. In this case, it is particularly preferable to replace 2 to 20 atomic% of the iron component (Fe component) with these components.

本発明は、高周波用複合磁性材料として「希土類−鉄−窒素系磁性材料」を使用することを特徴とし、酸化物磁性材料や金属系磁性材料を利用した場合には難しい高周波領域での使用を可能にする磁性材料である。そして、特に優れた「目的の機能」を発現させるためには、本発明で使用する「希土類−鉄−窒素系磁性材料」の基本成分である窒素(N)の含有量を、当該磁性材料組成中1〜30原子%の範囲とするのが望ましい。窒素(N)成分の含有量を30原子%以下とすることは、その含有量を超えると透磁率が全般に低くなるという問題が生じるのを回避するうえで好ましい。また、窒素(N)成分を1原子%以上とすることは、その含有量未満では高周波領域、或いは超高周波領域での透磁率があまり向上しないという問題が生じるのを回避するうえで好ましい。
本発明の高周波用複合磁性材料として使用される磁性材料に窒素が含有されることが、本発明の高周波用複合磁性材料における組成上の重要な特徴のひとつであるが、それによる主な効果のひとつは電気抵抗率の増大である。これにより、渦電流損失が顕著になると、複素比透磁率の実数項が低下して、高周波領域或いは超高周波領域での自然共鳴による大きな電磁波吸収が妨げられるという問題を解消できるからである。
The present invention is characterized by using a "rare earth-iron-nitrogen-based magnetic material" as a high-frequency composite magnetic material, and can be used in a high-frequency region, which is difficult when an oxide magnetic material or a metal-based magnetic material is used. It is a magnetic material that makes it possible. Then, in order to exhibit a particularly excellent "target function", the content of nitrogen (N), which is a basic component of the "rare earth-iron-nitrogen-based magnetic material" used in the present invention, is set to the magnetic material composition. It is desirable that the range is 1 to 30 atomic%. It is preferable that the content of the nitrogen (N) component is 30 atomic% or less in order to avoid the problem that the magnetic permeability is generally lowered when the content exceeds the content. Further, it is preferable to set the nitrogen (N) component to 1 atomic% or more in order to avoid the problem that the magnetic permeability in the high frequency region or the ultrahigh frequency region does not improve so much if the content is less than that.
The inclusion of nitrogen in the magnetic material used as the high-frequency composite magnetic material of the present invention is one of the important compositional features of the high-frequency composite magnetic material of the present invention, and the main effect of this is One is the increase in electrical resistivity. This is because when the eddy current loss becomes remarkable, the real number term of the complex relative permeability decreases, and the problem that large electromagnetic wave absorption due to natural resonance in the high frequency region or the ultrahigh frequency region is hindered can be solved.

透磁率が同程度である材料においては、電気抵抗率が大きくなるほど、渦電流が生じる臨界周波数が高くなる。従って、本発明の高周波複合磁性材料においては、所定量の窒素が磁性材料に含まれることにより電気抵抗率が増大し、R−Fe−N系磁性材料が元来有する高い自然共鳴周波数に見合うだけの高い周波数領域に達するまで渦電流損失が顕著にならない。このため、超高周波領域を含む高周波領域まで高い複素比透磁率実数項を維持することができ、さらに高い周波数領域で自然共鳴の効果を十分に発揮することができるので、超高周波領域を含む高周波領域で高い複素比透磁率虚数項を実現することができる。
また、5〜100MHzにおける高周波増幅材料として使用する場合、その周波数領域で渦電流損失が生じると、材料の温度が上昇したり、透磁率の実数項が小さくなったりして、効率が悪くなり好ましくない。このような観点から、希土類−鉄−窒素系磁性材料の電気抵抗率をさらに向上させ、超高周波領域に加え、10GHz以上の周波数領域でも好適に使用可能な高周波磁性材料とするためには、本発明で使用する「希土類−鉄−窒素系磁性材料」の基本成分である窒素(N)の含有量を、12〜30原子%の「高窒化」範囲に制御するのがさらに望ましい。工程の簡便化の観点からは、窒化工程後の焼鈍処理が必須ではない16〜25原子%の範囲がさらに好ましく、窒素量がこの範囲に調製された希土類−鉄−窒素系磁性材料は自然共鳴周波数と電気抵抗率が特に高い。
In materials with similar magnetic permeability, the higher the electrical resistivity, the higher the critical frequency at which eddy currents are generated. Therefore, in the high-frequency composite magnetic material of the present invention, the electrical resistivity increases due to the inclusion of a predetermined amount of nitrogen in the magnetic material, which is only commensurate with the high natural resonance frequency originally possessed by the R-Fe-N-based magnetic material. The eddy current loss is not noticeable until it reaches the high frequency region of. Therefore, a high complex relative permeability real number term can be maintained up to the high frequency region including the ultrahigh frequency region, and the effect of natural resonance can be sufficiently exerted in the higher frequency region, so that the high frequency including the ultrahigh frequency region can be sufficiently exhibited. A high complex relative permeability imaginary term can be realized in the region.
Further, when used as a high-frequency amplification material at 5 to 100 MHz, if an eddy current loss occurs in that frequency region, the temperature of the material rises and the real number term of magnetic permeability becomes small, resulting in poor efficiency, which is preferable. Absent. From this point of view, in order to further improve the electrical resistance of the rare earth-iron-nitrogen magnetic material and to make it a high-frequency magnetic material that can be suitably used in the frequency region of 10 GHz or higher in addition to the ultra-high frequency region, It is more desirable to control the content of nitrogen (N), which is a basic component of the "rare earth-iron-nitrogen-based magnetic material" used in the present invention, in the "high nitride" range of 12 to 30 atomic%. From the viewpoint of simplification of the process, an annealing treatment after the nitriding process is not essential in the range of 16 to 25 atomic%, and the rare earth-iron-nitrogen magnetic material prepared in this range has a natural resonance. Especially high frequency and electrical resistivity.

窒素量の好ましい範囲は、目的とする用途、R−Fe−N系磁性材料のR−Fe組成比、副相の量比、さらに結晶構造などによって、最適な窒素量は異なる。例えば菱面体構造を有するNd10.5Fe76.1Ni12.4を原料合金として選ぶと、最適な窒素量は、10〜22原子%付近に存在する。このときの最適な窒素量とは、目的に応じて異なるが材料の耐酸化性能及び、磁気特性又は電気特性のうち少なくとも一特性が最適となる窒素量のことである。 The optimum nitrogen content varies depending on the intended use, the R—Fe composition ratio of the R—Fe—N magnetic material, the amount ratio of the subphase, the crystal structure, and the like. For example, when Nd 10.5 Fe 76.1 Ni 12.4 having a rhombohedral structure is selected as the raw material alloy, the optimum amount of nitrogen exists in the vicinity of 10 to 22 atomic%. The optimum amount of nitrogen at this time is the amount of nitrogen for which at least one of the oxidation resistance performance and the magnetic property or the electrical property of the material is optimum, although it differs depending on the purpose.

なお、ここに言う「磁気特性」とは、材料の透磁率(μμ)、比透磁率(μ)、複素透磁率(μμ)、複素比透磁率(μ)、その実数項(μ’)、虚数項(μ”)及び絶対値(|μ|)、複素比透磁率虚数項の周波数依存性における任意の周波数領域でのμ”の最大値(μ”max)とそのときの周波数(f:この周波数を「最大吸収周波数」と呼ぶ)、複素比透磁率実数項の周波数依存性における任意の周波数領域でのμ’の最大値(μ’max)とそのときの周波数(f)、ある周波数(f)のときの複素比透磁率虚数項(μ”)の値とその周波数(f)の積(fμ”)を「吸収エネルギー係数」と呼ぶときのその最大値である最大吸収エネルギー係数(fμ”max)、磁化(I)、一軸磁気異方性磁場又は面内磁気異方性磁場(H、Ha1、Ha2)、磁気異方性エネルギー(E)の絶対値、磁気異方性比(p/q:配向磁場1.2MA/mにおいて磁性材料を一軸磁場配向したとき、印加した配向磁場方向の外部磁場1.0MA/mにおける磁化をq、それと垂直方向の外部磁場1.0MA/mにおける磁化をpとする)、透磁率の温度変化率、電磁波などに起因する外界の交流磁場との自然共鳴周波数(f)のうちの少なくとも一つを言う。 The "magnetic properties" referred to here are the magnetic permeability (μμ 0 ), specific magnetic permeability (μ), complex magnetic permeability (μ r μ 0 ), complex relative magnetic permeability (μ r ), and their real terms. (Μ'), imaginary term (μ ”) and absolute value (| μ r |), complex relative permeability The maximum value (μ” max ) of μ ”in any frequency region in the frequency dependence of the imaginary term and its frequency when (f a: this frequency is referred to as "maximum absorption frequency"), 'the maximum value of (mu' mu at a given frequency domain in the frequency dependence of the complex relative magnetic permeability real term max) and at that time its maximum when the frequency (f t), the "product of a value and its frequency (f) (Fmyu certain frequency (f) the complex relative magnetic permeability imaginary term (mu)" when the) is referred to as "absorption energy coefficient" maximum energy absorption coefficient is a value (fμ "max), the magnetization (I s), the uniaxial magnetic anisotropy field or plane magnetic anisotropy field (H a, H a1, H a2), magnetic anisotropy energy ( Absolute value of E a ), magnetic anisotropy ratio (p / q: when a magnetic material is uniaxially magnetically oriented at an orientation magnetic field of 1.2 MA / m, the magnetization at an external magnetic field of 1.0 MA / m in the applied orientation magnetic field direction q, therewith the magnetization in the external magnetic field 1.0 MA / m in the vertical direction and p), the temperature change rate of the magnetic permeability, at least one of the natural resonant frequency of the external alternating magnetic field caused by such electromagnetic waves (f r) Say one.

「電気特性」とは、材料の電気抵抗率(=体積抵抗率ρ)、電気伝導率(σ)、インピーダンス(Z)、インダクタンス(L)、容量(C)、リアクタンス(R)、誘電率(εε)、比誘電率(ε)、複素誘電率(εε)、複素比誘電率(ε)、その実数項(ε’)、虚数項(ε”)及び絶対値(|ε|)、誘電損失と導電損失の結合である複素比誘電率における損失項(ε=ε”+σ/ω、このεを電気的損失項と呼ぶ。ωは角周波数)を言う。
上記「磁気特性」と「電気特性」を合わせて「電磁気特性」と言う。一般に比透磁率、比誘電率を表す「μ」、「ε」の記号の上に横棒線(−)を加える表記法を取る場合があるが、本願では、比透磁率を「μ」、比誘電率を「ε」と表すこととする。上記の透磁率はf→0のときの複素透磁率絶対値、誘電率はf→0のときの複素誘電率絶対値と見なすことができる。
The "electrical characteristics" are the electric resistance (= volumetric resistance ρ), electric conductivity (σ), impedance (Z), inductance (L), capacitance (C), reactivity (R), permittivity ( ε ε 0 ), relative permittivity (ε), complex permittivity (ε r ε 0 ), complex relative permittivity (ε r ), its real term (ε'), imaginary term (ε ”) and absolute value (| ε” r |), the loss term (ε t = ε ”+ σ / ω in the complex relative permittivity, which is the combination of the dielectric loss and the conductivity loss, and this ε t is called the electrical loss term. Ω is the angular frequency).
The above "magnetic characteristics" and "electrical characteristics" are collectively referred to as "electromagnetic characteristics". In general, a horizontal bar line (-) may be added above the symbols "μ" and "ε" that represent relative permeability and relative permittivity, but in the present application, the relative permeability is set to "μ" and The relative permittivity is expressed as "ε". The above magnetic permeability can be regarded as the absolute value of the complex magnetic permeability when f → 0, and the dielectric constant can be regarded as the absolute value of the complex permittivity when f → 0.

また、「透磁率」或いは「誘電率」は、比透磁率或いは比誘電率に真空の透磁率或いは真空の誘電率を掛け合わせたものである。
本願中の本発明に関する記述の中で、例えば「透磁率が高い」或いはそれと同意の「比透磁率が高い」と表現した場合は、静磁場中での材料の透磁率或いは比透磁率が高いだけでなく、電磁波が作用しているなどの交流磁場中にあっては複素透磁率或いは複素比透磁率の絶対値が高いこと、複素比透磁率虚数項の値が0に近ければ複素比透磁率実数項の値が高いこと、また逆に複素比透磁率実数項の値が0に近ければ複素比透磁率虚数項の値が高いことを意味する。以上の関係は、「誘電率」や「比誘電率」においても同様であるから、上記述中の「透磁率」と「比透磁率」をそれぞれ「誘電率」と「比誘電率」と読み替えればそのまま理解できる。
Further, the "permeability" or "dielectric constant" is obtained by multiplying the relative magnetic permeability or the relative permittivity by the magnetic permeability of the vacuum or the dielectric constant of the vacuum.
In the description of the present invention in the present application, for example, when the expression "high magnetic permeability" or "high relative magnetic permeability" agreeing with it, the magnetic permeability or specific magnetic permeability of the material in a static magnetic field is high. Not only that, the absolute value of complex magnetic permeability or complex relative permeability is high in an AC magnetic field such as when an electromagnetic wave is acting, and if the value of the complex relative permeability imaginary term is close to 0, the complex relative permeability is high. If the value of the magnetic permeability real number term is high, and conversely, if the value of the complex relative permeability real number term is close to 0, it means that the value of the complex relative permeability imaginary number term is high. Since the above relationship is the same for "dielectric constant" and "relative permittivity", "permittivity" and "relative permittivity" in the above description should be read as "permittivity" and "relative permittivity", respectively. If you do, you can understand it as it is.

次に、磁気特性又は電気特性が最適である状態について説明する。
磁気特性又は電気特性が最適である状態とは、透磁率、複素比透磁率の高周波領域における実数項又は虚数項、磁化、キュリー点、電気抵抗率、誘電率、複素比誘電率の実数項、虚数項又は損失項などの値が極大となり、透磁率・磁化の温度変化率の絶対値、電気伝導度などが極小となることである。自然共鳴周波数と密接な関係がある磁気異方性比、磁気異方性磁場、磁気異方性エネルギーなどは、所望の周波数に自然共鳴が生じ、或いは電磁波の吸収が極大となるような値に設定された状態を最適であると言う。
本発明におけるR−Fe−N系磁性材料の各組成は、R成分(希土類成分)を3〜30原子%、Fe成分(鉄成分)を40〜96原子%、N成分を1〜30原子%の範囲とするものであり、これらを同時に満たすものである。さらに、本発明で得られるR−Fe−N系磁性材料には、当該磁性材料組成中に水素(H)が0.01〜10原子%含まれてもよい。
Next, a state in which the magnetic characteristics or the electrical characteristics are optimal will be described.
The optimum magnetic or electrical properties are the real or imaginary terms of magnetic permeability and complex relative permeability in the high frequency region, magnetization, curry point, electrical resistance, permittivity, and real number terms of complex relative permittivity. Values such as the imaginary term or loss term are maximized, and the absolute values of the temperature change rate of magnetic permeability and magnetization, electrical conductivity, etc. are minimized. The magnetic anisotropy ratio, magnetic anisotropy magnetic field, magnetic anisotropy energy, etc., which are closely related to the natural resonance frequency, have values that cause natural resonance at a desired frequency or maximize the absorption of electromagnetic waves. The set state is called optimal.
Each composition of the R-Fe-N-based magnetic material in the present invention contains 3 to 30 atomic% of the R component (rare earth component), 40 to 96 atomic% of the Fe component (iron component), and 1 to 30 atomic% of the N component. It is the range of, and these are satisfied at the same time. Further, the R—Fe—N-based magnetic material obtained in the present invention may contain 0.01 to 10 atomic% of hydrogen (H) in the magnetic material composition.

Hが上記の組成範囲で含まれると耐酸化性能と透磁率の向上がもたらされる。特に好ましい本発明のR−Fe−N系磁性材料の組成は、一般式RFe(100−x−y−z)で表わしたときに、x、y、zは原子%で、3≦x/(1−z/100)≦30、1≦y/(1−z/100)≦30、0.01≦z≦10の範囲であり、これら3つの式が同時に成り立つようにx、y、zが選ばれる。
さらに製造法によっては、酸素(O)が0.1〜20原子%含まれることがあり、この場合、磁気特性の安定性が向上し、電気抵抗率の高い磁性材料とすることができる。従って、さらに好ましい本発明のR−Fe−N系磁性材料の組成は、一般式RFe(100−x−y−z−w)で表わしたとき、x、y、z、wは原子%で、3≦x/{(1−z/100)(1−w/100)}≦30、1≦y/{(1−z/100)(1−w/100)}≦30、0.01≦z/(1−w/100)≦10、0.1≦w≦20の範囲であって、これら4つの式が同時に成り立つようにx、y、z、wが選ばれる。この酸素成分は磁性粉体表面に局在していると電気抵抗率向上の効果が高く、この目的では、粉体表面を窒化前後、微粉体調整前後に、酸処理、アルカリ処理、加熱処理、カップリング処理などを含む各種表面酸化処理を付加する方法も効果がある。
When H is included in the above composition range, the oxidation resistance performance and the magnetic permeability are improved. A particularly preferable composition of the R-Fe-N-based magnetic material of the present invention is expressed by the general formula R x Fe (100-x-y-z) N y H z , where x, y, z are atomic%. , 3 ≦ x / (1-z / 100) ≦ 30, 1 ≦ y / (1-z / 100) ≦ 30, 0.01 ≦ z ≦ 10, so that these three equations hold at the same time. x, y, z are selected.
Further, depending on the production method, oxygen (O) may be contained in an amount of 0.1 to 20 atomic%. In this case, the stability of magnetic properties is improved, and a magnetic material having a high electrical resistivity can be obtained. Accordingly, further preferred compositions of the R-Fe-N based magnetic material of the present invention have the general formula R x Fe (100-x- y-z-w) when expressed in N y H z O w, x , y, z and w are atomic%, 3 ≦ x / {(1-z / 100) (1-w / 100)} ≦ 30, 1 ≦ y / {(1-z / 100) (1-w / 100) } ≤30, 0.01≤z / (1-w / 100) ≤10, 0.1≤w≤20, and x, y, z, w so that these four equations hold at the same time. To be elected. When this oxygen component is localized on the surface of the magnetic powder, the effect of improving the electrical resistivity is high. For this purpose, the powder surface is subjected to acid treatment, alkali treatment, heat treatment before and after nitriding and before and after fine powder adjustment. A method of adding various surface oxidation treatments including a coupling treatment is also effective.

本発明において、希土類−鉄−窒素系磁性材料(R−Fe−N系磁性材料)の窒素(N)成分中の0.01原子%以上50原子%未満をH、C、P、Si、Sの各元素の少なくとも1種で置き換えてもよい。これら元素の少なくとも1種で窒素(N)成分を置換する場合、置換する元素の種類と量によってはその全てがN成分と置換されるわけではないし、1対1に置換されるとも限らない。しかし、置換された元素の種類と量に起因して、耐酸化性能や透磁率、誘電率などの電磁気特性の向上をもたらすことがあり、また、高周波用磁性材樹脂複合材料に使用した場合には、樹脂成分との親和性が良くなり、機械的な性質の改善が期待されることもある。
窒素(N)成分中の0.01原子%以上を上記元素の少なくとも1種で置換することは、その置換量未満では、上記の置き換えの効果がほとんどなくなるという問題が生じるのを回避するうえで好ましい。また、窒素(N)成分中の50原子%未満を上記元素の少なくとも1種で置換することは、その置換量を超えると、電気抵抗率の向上や共鳴周波数の最適化に関する窒素の効果を阻害するという問題が生じるのを回避するうえで好ましい。
In the present invention, 0.01 atomic% or more and less than 50 atomic% of the nitrogen (N) component of the rare earth-iron-nitrogen magnetic material (R-Fe-N magnetic material) is H, C, P, Si, S. It may be replaced with at least one of each element of. When the nitrogen (N) component is replaced by at least one of these elements, not all of them are replaced with the N component, and not all of them are replaced with the N component, depending on the type and amount of the element to be replaced. However, depending on the type and amount of substituted elements, it may bring about improvements in electromagnetic properties such as oxidation resistance, magnetic permeability, and dielectric constant, and when used in high-frequency magnetic resin composite materials. Has a better affinity with the resin component, and may be expected to improve its mechanical properties.
Substituting 0.01 atomic% or more of the nitrogen (N) component with at least one of the above elements avoids the problem that the above replacement effect is almost eliminated if the amount is less than the replacement amount. preferable. Further, substituting less than 50 atomic% in the nitrogen (N) component with at least one of the above elements hinders the effect of nitrogen on the improvement of electrical resistivity and the optimization of resonance frequency when the substitution amount is exceeded. It is preferable to avoid the problem of

本願中の本発明に関する記述において、「窒素成分」或いは「N成分」と表記した場合、又は「希土類−鉄−窒素系磁性材料」、「R−Fe−N系」などの式中や磁性材料組成を論ずる文脈の中で、「N」、「窒素」と表記した場合、特に断らない限り、本発明の高周波用複合磁性材料における「希土類−鉄−窒素系磁性材料」の基本成分である窒素(N)の0.01原子%以上50原子%未満をH、C、P、Si、Sで置き換えた組成も含む。
本発明で使用する「希土類−鉄−窒素系磁性材料」としては、菱面体晶、六方晶及び正方晶(特に、菱面体晶や六方晶)の結晶構造を有する相を含有することが好ましい。本発明ではこれらの結晶構造を作り、少なくともR(希土類)、Fe(鉄)、N(窒素)を含む相を主相と呼び、当該結晶構造を作らない、または他の結晶構造を作るような組成を有する相を副相と呼ぶ。副相は、希土類−鉄原料から希土類−鉄−窒素(−水素−酸素)系磁性材料を製造する過程で意図的に、或いは無為に生じる主相でない相である。主相の成分にはR(希土類)、Fe(鉄)、N(窒素)に加え、O(酸素)及び/又はH(水素)を含むことがある。
好ましい主相の結晶構造の例としては、ThZn17などと同様な結晶構造を有する菱面体晶、または、ThNi17、TbCu、CaZnなどと同様な結晶構造を有する六方晶のうち少なくとも1種を含むことが必要である。
この中でThZn17などと同様な結晶構造を有する菱面体晶相及びThNi17などと同様な結晶構造を有する六方晶相を主相として含むことが、良好な電磁気特性及びその安定性を確保するうえで特に好ましい。
In the description of the present invention in the present application, when it is described as "nitrogen component" or "N component", or in a formula such as "rare earth-iron-nitrogen-based magnetic material" or "R-Fe-N-based" or magnetic material. In the context of discussing composition, when "N" and "nitrogen" are used, nitrogen, which is the basic component of "rare earth-iron-nitrogen-based magnetic material" in the high-frequency composite magnetic material of the present invention, unless otherwise specified. It also includes a composition in which 0.01 atomic% or more and less than 50 atomic% of (N) is replaced with H, C, P, Si, and S.
The "rare earth-iron-nitrogen magnetic material" used in the present invention preferably contains a phase having a rhombic crystal, hexagonal crystal and tetragonal crystal (particularly rhombic crystal or hexagonal crystal) crystal structure. In the present invention, these crystal structures are formed, and a phase containing at least R (rare earth), Fe (iron), and N (nitrogen) is called a main phase, and the crystal structure is not formed or another crystal structure is formed. A phase having a composition is called a subphase. The subphase is a non-main phase that is intentionally or unintentionally generated in the process of producing a rare earth-iron-nitrogen (-hydrogen-oxygen) magnetic material from a rare earth-iron raw material. The components of the main phase may include O (oxygen) and / or H (hydrogen) in addition to R (rare earths), Fe (iron), and N (nitrogen).
As an example of a preferable main phase crystal structure, a rhombohedral crystal having a crystal structure similar to Th 2 Zn 17 or the like, or a hexagonal crystal having a crystal structure similar to Th 2 Ni 17 , TbCu 7 , Ca Zn 5 or the like. It is necessary to include at least one of them.
Among them, it is good electromagnetic characteristics and its stability to include a rhombohedral crystal phase having a crystal structure similar to Th 2 Zn 17 and a hexagonal crystal phase having a crystal structure similar to Th 2 Ni 17 as the main phase. It is particularly preferable to ensure the sex.

R−Fe−N系磁性材料中に副相として、R−Fe合金原料相、水素化物相、Feナノ結晶を含む分解相や酸化アモルファス相などを含んでもよいが、本発明の効果を充分に発揮させるためには、その副相の体積分率は主相の含有量より低く押さえる必要があり、そのため、主相の含有量がR−Fe−N系磁性材料全体に対して75体積%を超えることが、実用上極めて好ましい。R−Fe−N系磁性材料の主相は、多くの場合、主原料相であるR−Fe合金の格子間に窒素が侵入し、結晶格子が膨張することによって得られるが、その結晶構造は、主原料相とほぼ同じ対称性を有する。
ここで言う「体積分率」とは、磁性材料の空隙を含めた全体の体積に対してある成分が占有する体積の割合のことである。
ここで言う「主原料相」とは、少なくともR(希土類)、Feを含み且つNを含まず、更に、六方晶、菱面体晶、及び正方晶の中から選択される少なくとも1種(特に、菱面体晶或いは六方晶)の結晶構造を有する相のことである(なお、それ以外の組成または結晶構造を有し、かつNの含まない相を、本願では「副原料相」と呼ぶ。)。
The R—Fe—N-based magnetic material may contain an R—Fe alloy raw material phase, a hydride phase, a decomposition phase containing Fe nanocrystals, an amorphous oxide phase, and the like as subphases, but the effects of the present invention are sufficiently sufficient. In order to exert the effect, the body integration rate of the subphase must be kept lower than the content of the main phase, so that the content of the main phase is 75% by volume with respect to the entire R-Fe-N magnetic material. It is extremely preferable to exceed it in practical use. In many cases, the main phase of an R-Fe-N-based magnetic material is obtained by invading nitrogen between the lattices of the R-Fe alloy, which is the main raw material phase, and expanding the crystal lattice, but the crystal structure is , Has almost the same symmetry as the main raw material phase.
The "volume fraction" referred to here is the ratio of the volume occupied by a certain component to the total volume including the voids of the magnetic material.
The "main raw material phase" referred to here is at least one kind (particularly,) selected from hexagonal crystals, rhombohedral crystals, and tetragonal crystals, which contains at least R (rare earth) and Fe and does not contain N. A phase having a crystal structure of rhombic crystal or hexagonal crystal) (Note that a phase having a composition or crystal structure other than that and containing no N is referred to as an "auxiliary raw material phase" in the present application). ..

窒素の侵入による結晶格子の膨張に伴い、耐酸化性能または磁気特性・電気特性の上記各項目のうち一項目以上が向上し、実用上好適なR−Fe−N系磁性材料となる。この窒素導入後に初めて好適な高周波用磁性材料になり、従来の窒素を含まないR−Fe合金やFeとは全く異なった電磁気特性を発現する。
例えば、R−Fe成分の母合金の主原料相として、菱面体構造を有するPr10.5Fe89.5を選んだ場合、窒素を導入することによって、電気抵抗率が増加し、キュリー点、透磁率や磁気異方性エネルギーの絶対値を初めとする磁気特性と耐酸化性能が向上する。
With the expansion of the crystal lattice due to the intrusion of nitrogen, one or more of the above items of oxidation resistance or magnetic properties / electrical properties are improved, and the R-Fe-N-based magnetic material is practically suitable. Only after the introduction of nitrogen, it becomes a suitable magnetic material for high frequency, and exhibits electromagnetic characteristics completely different from those of conventional nitrogen-free R-Fe alloys and Fe.
For example, when Pr 10.5 Fe 89.5 having a rhombic structure is selected as the main raw material phase of the mother alloy of the R—Fe component, the electrical resistivity increases by introducing nitrogen, and the Curie point, Magnetic properties such as absolute values of magnetic permeability and magnetic anisotropy energy and oxidation resistance are improved.

本発明で使用する希土類−鉄−窒素系磁性材料は、その面内磁気異方性を利用した材料であることが望ましい。面内磁気異方性材料とは、c軸に磁気モーメントが存在することにより、c面上に磁気モーメントが存在する方がエネルギー的に安定となる材料である。
菱面体晶又は六方晶の結晶構造を有するSm−Fe−N系磁性材料は面内磁気異方性材料ではなく一軸磁気異方性材料であり、磁石材料として広く実用されている。しかしながら、このような面内磁気異方性材料ではない一軸磁気異方性材料の磁石材料を高周波用途の磁性材料として使用しようとすると、前述のように100GHzを超える高い超高周波領域でしか機能しない場合が多いうえに、超高周波領域での透磁率が小さい。このような問題を回避するため、当該Sm−Fe−N系磁性材料の含有量は、全磁性材料の50体積%未満とするのが好ましい。
The rare earth-iron-nitrogen magnetic material used in the present invention is preferably a material utilizing its in-plane magnetic anisotropy. The in-plane magnetic anisotropy material is a material that is energetically more stable when the magnetic moment is present on the c-plane due to the presence of the magnetic moment on the c-axis.
The Sm-Fe-N-based magnetic material having a rhombohedral crystal or hexagonal crystal structure is not an in-plane magnetic anisotropy material but a uniaxial magnetic anisotropy material, and is widely used as a magnet material. However, when an attempt is made to use a magnetic material of a uniaxial magnetic anisotropy material other than such an in-plane magnetic anisotropy material as a magnetic material for high frequency applications, it functions only in a high ultrahigh frequency region exceeding 100 GHz as described above. In many cases, the magnetic permeability in the ultra-high frequency region is small. In order to avoid such a problem, the content of the Sm-Fe-N-based magnetic material is preferably less than 50% by volume of the total magnetic material.

また、Sm−Fe−N系磁性材料同様、面内磁気異方性ではなく一軸磁気異方性である、Nd−Fe−B系やSm−Co系などの公知の希土類系磁石材料も、高周波用磁性材料として好適であるとは言えない。その理由は、Nd−Fe−B系やSm−Co系磁石用磁性材料は、結晶磁気異方性が一軸異方性であることに加え、金属系磁性材料でもあるため電気抵抗率が低く、渦電流損失による高周波領域での透磁率の低下が見られるからである。 Also, like the Sm-Fe-N magnetic materials, known rare earth magnet materials such as Nd-Fe-B and Sm-Co, which are uniaxial magnetic anisotropy rather than in-plane magnetic anisotropy, also have high frequencies. It cannot be said that it is suitable as a magnetic material for use. The reason is that Nd-Fe-B-based and Sm-Co-based magnetic materials for magnets have low electrical resistance because they are metal-based magnetic materials in addition to having uniaxial magnetic anisotropy. This is because the magnetic permeability decreases in the high frequency region due to the eddy current loss.

本発明が粉体の高周波用複合磁性材料である場合には、その粉体の平均粒径は0.1〜2000μmであり、0.2〜200μmであることが好ましい。ここで「平均粒径」とは、一般的に用いられる粒径分布測定装置で得られた体積相当径分布曲線をもとにして求めたメジアン径のことを言う。
平均粒径0.1μm未満であると、発火性も生じ、粉体の取り扱いを低酸化雰囲気で行うなど製造工程が複雑になる。また、2000μmを超えると均質な窒化物を製造することが難しくなるうえ、5MHz以上での電磁波の吸収に劣る材料となる。
そのため、本発明が粉体の高周波用複合磁性材料である場合には、その粉体の平均粒径を0.1〜2000μmとする。
また、平均粒径0.2μm未満とすると、透磁率の低下や磁性粉の凝集が著しくなり、本来材料が持っている磁気特性を十分に発揮し得ず、一般的な工業生産にも適合しない領域なので、非常に適切な粒径範囲であるとは言えない一方で、0.2μm未満であっても、窒素非含有金属系高周波用磁性材料に比べると耐酸化性能が圧倒的に優れるため肉薄や超小型な特殊用途の高周波用磁性材料に好適であるという利点がある。このような観点からも、本発明の高周波用複合磁性材料では、平均粒径の下限値を0.2μm未満の0.1μmとするのが好ましい。
但し、上述のとおり、平均粒径を0.2μm以上とすることは、この平均粒径未満の場合に生じる上記問題が生じるのを回避するうえで、より好ましい。
また、平均粒径が200μm以下とすることは、この平均粒径を超えると高周波領域での透磁率が低下するという問題が生じるのを回避するうえで、より好ましい。
さらに平均粒径が0.5〜10μmの範囲であれば、fが高周波領域にあって透磁率が高い材料になり、0.1GHz以上での選択吸収比が高い材料となるので好ましい。
また、平均粒径が10〜200μmの範囲であれば、高透磁率かつ透磁率の虚数項の値が低くなるため、5〜100MHzでの電磁波増幅材料となるので好ましい。
When the present invention is a composite magnetic material for high frequency powder, the average particle size of the powder is 0.1 to 2000 μm, preferably 0.2 to 200 μm. Here, the "average particle size" refers to the median diameter obtained based on the volume equivalent diameter distribution curve obtained by a commonly used particle size distribution measuring device.
If the average particle size is less than 0.1 μm, ignitability also occurs, and the manufacturing process becomes complicated, such as handling the powder in a low oxidation atmosphere. Further, if it exceeds 2000 μm, it becomes difficult to produce a homogeneous nitride, and the material is inferior in absorption of electromagnetic waves at 5 MHz or higher.
Therefore, when the present invention is a composite magnetic material for high frequency powder, the average particle size of the powder is 0.1 to 2000 μm.
Further, if the average particle size is less than 0.2 μm, the magnetic permeability is significantly lowered and the magnetic powder is agglomerated significantly, and the magnetic characteristics originally possessed by the material cannot be sufficiently exhibited, which is not suitable for general industrial production. Since it is a region, it cannot be said that the particle size range is very appropriate, but even if it is less than 0.2 μm, it is thin because its oxidation resistance is overwhelmingly superior to that of a nitrogen-free metal-based high-frequency magnetic material. It has the advantage of being suitable for ultra-small special-purpose high-frequency magnetic materials. From this point of view, in the high-frequency composite magnetic material of the present invention, the lower limit of the average particle size is preferably 0.1 μm, which is less than 0.2 μm.
However, as described above, it is more preferable that the average particle size is 0.2 μm or more in order to avoid the above-mentioned problems that occur when the average particle size is less than this.
Further, it is more preferable that the average particle size is 200 μm or less in order to avoid the problem that the magnetic permeability in the high frequency region decreases when the average particle size is exceeded.
So long as more average particle size of 0.5 to 10 [mu] m, f a is the material high magnetic permeability be in a high frequency region, the selective absorption ratio at least 0.1GHz is higher material preferable.
Further, when the average particle size is in the range of 10 to 200 μm, the value of the imaginary term of high magnetic permeability and magnetic permeability is low, so that it is preferable because it is an electromagnetic wave amplification material at 5 to 100 MHz.

本発明の高周波用複合磁性材料を構成する希土類−鉄−窒素系磁性材料は、粉体の場合、その平均粒径は、本発明が粉体の高周波用複合磁性材料である場合の当該粉体の平均粒径よりも少し小さい程度(具体的には、10nmほど小さい程度)であることが多く、さらにその下限値は磁気特性の安定性の観点から0.1μm以上であるため、上記本発明の粉体である高周波用複合磁性材料の場合と上限値、下限値ともにほぼ同じと見做せる。そのため、上記希土類−鉄−窒素系磁性材料が粉体の場合も、その平均粒径は、上記本発明の粉体である高周波用複合磁性材料の場合と同様、0.1〜2000μmであり、好ましくは0.2〜200μmであると見做してよい。その理由も、上記本発明の高周波用複合材料の粒径範囲に述べたとおりである。
本発明における上記希土類−鉄−窒素系磁性材料の円形度(ここで、円形度を「φ」とも表記する)は、0.6〜1であることが好ましい。
ここで、本発明における上記希土類−鉄−窒素系磁性材料の円形度(φ)は、その材料粉体の断面(例えば、SEM撮影した材料粉体の切断研磨面)或いは1平面への射影面(例えば、材料粉体のSEM像)の面積をS、その周囲長をLとしたとき、φ=4πS/Lで定義される。断面に閉曲線で囲まれた孔部があった場合、その部分の面積を含めてSを求める。材料断面の形状が円であった場合、φは1となる。
円形度を0.6以上とすることは、それよりも低いと電気絶縁性が低くなり、渦電流による損失が大きくなり、透磁率が低下するという問題が生じるのを回避するうえで好ましい。特に超高周波領域で使用を容易にするうえで重要である。また、円形度が高いと粉体断面は円となり、粉体は球に近い確率が高い。その場合、例えば平面部分の多い薄体や曲率の低い部分が多い円形度の低い粉体材料では、粉体同士の接触面積が大きくなり、電気的絶縁がなされにくいのに対し、円形度が高い粉体では、たとえ孤立分散度が低いとしても、点接触となるため電気的絶縁性が高くなる。従って、円形度は0.6〜1が好ましい領域になる。さらに好ましくは、0.7〜1であり、この場合は10GHzのような超高周波領域でも透磁率が向上し、例えば複素比透磁率の虚数項の値が1を超える。
When the rare earth-iron-nitrogen magnetic material constituting the high-frequency composite magnetic material of the present invention is a powder, the average particle size thereof is the powder when the present invention is a powder high-frequency composite magnetic material. In many cases, the particle size is slightly smaller than the average particle size (specifically, about 10 nm), and the lower limit thereof is 0.1 μm or more from the viewpoint of stability of magnetic properties. It can be considered that the upper limit value and the lower limit value are almost the same as the case of the high-frequency composite magnetic material which is the powder of. Therefore, even when the rare earth-iron-nitrogen magnetic material is a powder, the average particle size is 0.1 to 2000 μm as in the case of the high-frequency composite magnetic material which is the powder of the present invention. It may be considered that it is preferably 0.2 to 200 μm. The reason is also as described in the particle size range of the high frequency composite material of the present invention.
The circularity (here, the circularity is also referred to as “φ”) of the rare earth-iron-nitrogen magnetic material in the present invention is preferably 0.6 to 1.
Here, the circularity (φ) of the rare earth-iron-nitrogen magnetic material in the present invention is the cross section of the material powder (for example, the cut and polished surface of the material powder photographed by SEM) or the projection surface on one plane. When the area (for example, SEM image of the material powder) is S and the peripheral length thereof is L, it is defined as φ = 4πS / L 2 . If there is a hole surrounded by a closed curve in the cross section, S is calculated including the area of that part. If the shape of the material cross section is circular, φ is 1.
If the circularity is 0.6 or more, the electrical insulation property is low, the loss due to the eddy current is large, and the problem of low magnetic permeability is avoided. This is especially important for ease of use in the ultra-high frequency region. Further, when the circularity is high, the cross section of the powder becomes a circle, and the probability that the powder is close to a sphere is high. In that case, for example, in a thin body having many flat parts or a powder material having a low circularity having many low curvature parts, the contact area between the powders becomes large and it is difficult to perform electrical insulation, whereas the circularity is high. In the case of powder, even if the degree of isolation and dispersion is low, the electrical insulation is high because of point contact. Therefore, the circularity is preferably 0.6 to 1. More preferably, it is 0.7 to 1, and in this case, the magnetic permeability is improved even in an ultra-high frequency region such as 10 GHz, and the value of the imaginary term of the complex relative magnetic permeability exceeds 1, for example.

本発明の高周波用複合磁性材料には、Fe、Ni、Co、Fe−Ni系合金、Fe−Ni−Si系合金、センダスト、Fe−Si−Al系合金、Fe−Cu−Nb−Si系合金、モルファス合金などの金属系磁性材料や、マグネタイト、Ni−フェライト、Zn−フェライト、Mn−Znフェライト、Ni−Znフェライトなどのガーネット型フェライトや、軟磁性六方晶マグネトプランバイト系フェライトなどの酸化物系磁性材料を混合することができる。
この混合材料を電磁波吸収材料に応用すると、電磁波を吸収する周波数帯を高周波領域から低周波領域まで広げることができたり、高周波領域でもブロードな吸収特性を付与して広いバンドにおけるノイズを吸収したりすることができる。特に上記混合材料のFeとして、0.1〜100μmの粒径を有するカルボニル鉄を使用すると、1GHz未満の透磁率と1GHz以上の透磁率のバランスの良い高周波用複合磁性材料となる。カルボニル鉄が希土類−鉄−窒素系材料に混合されると高い特性が得られる理由としては、[1]カルボニル鉄の円形度が0.7〜1と非常に高く、電気的絶縁性に優れること、[2]希土類−鉄−窒素系磁性材料と粉体混合した場合、金属粉体であるカルボニル鉄と窒化物粉体である希土類−鉄−窒素材料の表面の帯電性の符号が異なるため、均質混合がし易いことが挙げられる。
超高周波で使用する本発明の高周波用複合磁性材料において、希土類−鉄−窒素系磁性材料に混合する磁性材料(混合材料)としてカルボニル鉄を使用する場合、そのカルボニル鉄粉の好ましい平均粒径の範囲は1〜10μmである。
The composite magnetic material for high frequency of the present invention includes Fe, Ni, Co, Fe—Ni alloy, Fe—Ni—Si alloy, Sendust, Fe—Si—Al alloy, Fe—Cu—Nb—Si alloy. , Metallic magnetic materials such as morphas alloys, garnet-type ferrites such as magnetite, Ni-ferrite, Zn-ferrite, Mn-Zn ferrite, and Ni-Zn ferrite, and oxides such as soft magnetic hexagonal magnetoplumbite ferrite. Based magnetic materials can be mixed.
When this mixed material is applied to an electromagnetic wave absorbing material, the frequency band that absorbs electromagnetic waves can be expanded from the high frequency region to the low frequency region, and even in the high frequency region, broad absorption characteristics can be imparted to absorb noise in a wide band. can do. In particular, when carbonyl iron having a particle size of 0.1 to 100 μm is used as Fe of the mixed material, a composite magnetic material for high frequencies having a good balance between a magnetic permeability of less than 1 GHz and a magnetic permeability of 1 GHz or more can be obtained. The reason why high properties can be obtained when carbonyl iron is mixed with rare earth-iron-nitrogen materials is that [1] carbonyl iron has a very high circularity of 0.7 to 1 and is excellent in electrical insulation. , [2] When powder is mixed with a rare earth-iron-nitrogen magnetic material, the sign of chargeability on the surface of the metal powder carbonyl iron and the nitride powder rare earth-iron-nitrogen material are different. It is easy to mix homogeneously.
When carbonyl iron is used as the magnetic material (mixing material) to be mixed with the rare earth-iron-nitrogen magnetic material in the high-frequency composite magnetic material of the present invention used at ultra-high frequency, the preferable average particle size of the carbonyl iron powder is used. The range is 1-10 μm.

本発明の高周波用複合磁性材料において、希土類−鉄−窒素系磁性材料と複合化させるために混合する材料(即ち、希土類−鉄−窒素系磁性材料とは異なる磁性材料、又は非磁性材料(例えば、非磁性のセラミックス材料及び/又は樹脂))の量は、本発明の高周波用複合磁性材料中の全磁性材料のうち、0.001〜99質量%までとするのが好ましい。0.001質量%以上とするのは、混合材料として使用する金属系磁性材料や酸化物系磁性材料を添加した効果を得るうえで好ましいためであり、99質量%以下とするのは、本発明の希土類−鉄−窒素系磁性材料の各種電磁気特性に与える効果を得るうえで好ましいためである。そのため、例えば、本発明の高周波用複合磁性材料において、上記混合材料としてセラミックス材料を使用する場合、希土類−鉄−窒素系磁性材料の量は、1〜99.999質量%で、セラミックス材料の量は、0.001〜99質量%とするのが好ましいということになる。
希土類−鉄−窒素系磁性材料の超高周波領域における吸収などの特徴を十分に生かすためには、希土類−鉄−窒素系磁性材料以外の金属系磁性材料や酸化物系磁性材料の量の全磁性材料に対する質量分率を0.05〜75質量%とするのが好ましく、希土類−鉄−窒素系磁性材料の電気特性の特徴を活かすためには、0.01〜50質量%とすることがさらに好ましい。このため、両特徴を活かすためには、0.05〜50質量%とすることが好ましい。
In the high-frequency composite magnetic material of the present invention, a material to be mixed to be composited with a rare earth-iron-nitrogen magnetic material (that is, a magnetic material different from the rare earth-iron-nitrogen magnetic material, or a non-magnetic material (for example) , Non-magnetic ceramic material and / or resin))) is preferably 0.001 to 99% by mass based on the total magnetic material in the high-frequency composite magnetic material of the present invention. The ratio of 0.001% by mass or more is preferable in order to obtain the effect of adding the metal-based magnetic material or the oxide-based magnetic material used as the mixed material, and the content of 99% by mass or less is 99% by mass or less in the present invention. This is because it is preferable to obtain the effect on various electromagnetic properties of the rare earth-iron-nitrogen magnetic material. Therefore, for example, when a ceramic material is used as the mixed material in the high-frequency composite magnetic material of the present invention, the amount of the rare earth-iron-nitrogen-based magnetic material is 1 to 99.999% by mass, and the amount of the ceramic material. Is preferably 0.001 to 99% by mass.
In order to fully utilize the characteristics such as absorption of rare earth-iron-nitrogen magnetic materials in the ultra-high frequency region, the total magnetic amount of metal-based magnetic materials and oxide-based magnetic materials other than rare earth-iron-nitrogen magnetic materials The mass fraction with respect to the material is preferably 0.05 to 75% by mass, and in order to take advantage of the characteristics of the electrical characteristics of the rare earth-iron-nitrogen magnetic material, it is further set to 0.01 to 50% by mass. preferable. Therefore, in order to utilize both characteristics, it is preferably 0.05 to 50% by mass.

本発明の希土類−鉄−窒素系磁性材料を含む高周波用複合磁性材料又はその磁性材樹脂複合材料の中には、1GHz以上で複素比誘電率の虚数項の値、即ち電気的損失項の値が10を超える材料やさらに50を超える高い値を持った材料があって、希土類−鉄−窒素系磁性材料自身の電気抵抗率の代表的な値も200〜8000μΩcmと窒素非含有金属系磁性材料や酸化物磁性材料の中間に位置する適当な大きさを有している。電子回路を電磁波発生源としたとき、遠方界(電磁波発生源から、波長の1/2πを超える距離にある区画を言う。遠方界でない区画を近傍界と言う)における電磁波は磁場Hと同等に電場Eも十分大きい電磁波であるため、10GHzを超えるノイズの吸収など超高周波数領域における用途や電波暗室などに用いる遠方界用電磁波吸収体などの用途でも、本発明の希土類−鉄−窒素系複合磁性材料は、誘電率も高い磁性材料であるために非常に好適に利用される。前述の金属系磁性材料や酸化物系磁性材料を配合する場合も、この特徴を十分に活かすことが好ましい。 In the composite magnetic material for high frequency including the rare earth-iron-nitrogen magnetic material of the present invention or the magnetic material resin composite material thereof, the value of the imaginary term of the complex relative permittivity at 1 GHz or more, that is, the value of the electrical loss term. There are materials with a value of more than 10 and materials with a high value of more than 50, and the typical value of the electrical resistance of the rare earth-iron-nitrogen-based magnetic material itself is 200 to 8000 μΩcm, which is a nitrogen-free metal-based magnetic material. It has an appropriate size located in the middle of the oxide magnetic material. When an electronic circuit is used as an electromagnetic wave source, electromagnetic waves in the distant field (a section at a distance exceeding 1 / 2π of the wavelength from the electromagnetic wave source. A section that is not a distant field is called a near field) are equivalent to the magnetic wave H. Since the electric field E is also a sufficiently large electromagnetic wave, the rare earth-iron-nitrogen system composite of the present invention is also used in applications in an ultra-high frequency region such as absorption of noise exceeding 10 GHz and in applications such as an electromagnetic wave absorber for distant fields used in an anechoic chamber. The magnetic material is very preferably used because it is a magnetic material having a high dielectric constant. It is preferable to make full use of this feature even when the above-mentioned metal-based magnetic material or oxide-based magnetic material is blended.

ここで、本発明の希土類−鉄−窒素系磁性材料、及び/又は、後述するフェライト系磁性材料で被覆されている希土類−鉄−窒素系磁性材料を含む高周波用複合磁性材料をRFIDタグ用材料や、無線給電システム用のコイルのコア等の高周波増幅材料等に適用する場合について述べる。
この中でRFIDタグ用材料用途においては、RFIDタグやリーダ上のアンテナが送受信する信号強度を向上させるために効果的な部分(例えばアンテナの裏全面)に本発明の高周波用複合磁性材料を位置させることが重要である。磁気特性としては、信号感度向上のため、信号が存在する周波数領域(例えば13.56MHz近辺や、0.85〜1GHzなど)で透磁率が1より高く、さらに好ましくは2より高いことが要求される。それと同時に信号を吸収しないように、複素比透磁率の虚数項の値、複素比誘電率の虚数項の値がともにほぼ0であることも重要である。無線給電システム用のコイルのコアの高周波増幅材料では、5〜100MHzの周波数領域において、透磁率が1より高く、さらに好ましくは2より高いことが要求される。このような特性を有する本発明の高周波用磁性材樹脂複合材料が、本願実施例において、本発明の具体的な一実施態様として開示されている。
Here, the rare earth-iron-nitrogen magnetic material of the present invention and / or the composite magnetic material for high frequency including the rare earth-iron-nitrogen magnetic material coated with the ferrite-based magnetic material described later is used as the material for the RFID tag. The case where it is applied to a high-frequency amplification material such as a coil core for a wireless power feeding system will be described.
Among these, in the use of RFID tag materials, the high-frequency composite magnetic material of the present invention is positioned in an effective portion (for example, the entire back surface of the antenna) for improving the signal strength transmitted and received by the RFID tag and the antenna on the reader. It is important to let them do it. As for the magnetic characteristics, in order to improve the signal sensitivity, the magnetic permeability is required to be higher than 1, more preferably higher than 2, in the frequency region in which the signal exists (for example, around 13.56 MHz, 0.85 to 1 GHz, etc.). To. At the same time, it is also important that both the value of the imaginary term of the complex relative permeability and the value of the imaginary term of the complex relative permittivity are almost 0 so as not to absorb the signal. The high frequency amplification material of the coil core for a wireless power supply system is required to have a magnetic permeability of more than 1, more preferably more than 2, in the frequency range of 5 to 100 MHz. The high-frequency magnetic material resin composite material of the present invention having such characteristics is disclosed as a specific embodiment of the present invention in the examples of the present application.

次に、本発明の複合磁性材料に用いるセラミックス材料について述べる。
希土類−鉄−窒素系磁性材料の電気的磁気的性質は、上述のように金属材料と酸化物材料の中間の性質を持つが、当該磁性材料表面の化学的性質も両者の中間的な性質を持つので、当該希土類−鉄−窒素系磁性材料を粉体形状で混合する場合、容器に入れて振り混ぜる(以下、「シェイキング」とも言う)操作を行うと、希土類−鉄−窒素系磁性材料と金属材料、或いは希土類−鉄−窒素系磁性材料と酸化物材料の粉体表面の帯電状態が正負に分かれ、容易に均質状態で混合することができる。
従って、希土類−鉄−窒素系磁性材料粉体間にあって、電気的絶縁をし、渦電流損失を低下させる目的には、酸化物系セラミックス材料を用いるのが好適である。
特に、酸化物系セラミックス材料が1μm未満のナノ粉体であれば、高充填率で高抵抗の高周波用複合磁性材料が実現できる。特に、希土類−鉄−窒素系磁性材料とナノ酸化物系セラミックス材料は、シェイキングのような簡単な操作によっても短時間に均質混合できるし、また均質混合の後に、後述する各種磁場成形を行えば、高周波用樹脂複合磁性材料同様磁場配向することが可能になる利点がある。
酸化物系材料の代表としては、シリカ、アルミナ、酸化クロム、ジルコニア、マグネシア、酸化希土類などがあり、希土類−鉄−窒素系磁性材料の基本成分である希土類やFeを含め、Co、Ni、B、Al、Ti、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、In、Hf、Ta、W、Ag、Mg、Siの中から選択される少なくとも1種を含む酸化物或いは複合酸化物が好適である。Fe酸化物も希土類−鉄−窒素系磁性材料表面を完全に被覆していなければ、本発明に使用可能なセラミックス材料である。
本発明の複合磁性材料に用いるセラミックス材料は、上述のとおり、希土類−鉄−窒素系磁性材料粉体の孤立分散性の観点からナノセラミックス材料を用いるのが好ましく、そのため、1nm以上1000nm未満の平均粒径を有する粉体であることが好ましい。本発明では、ナノセラミックス材料について述べる際、1nm以上1000nm以下のシリカの場合を「ナノシリカ」というように材料名の前にナノを付して記載する場合がある。
Next, the ceramic material used for the composite magnetic material of the present invention will be described.
As mentioned above, the electrical and magnetic properties of rare earth-iron-nitrogen magnetic materials are intermediate between those of metal materials and oxide materials, but the chemical properties of the surface of the magnetic materials are also intermediate between the two. Therefore, when the rare earth-iron-nitrogen magnetic material is mixed in powder form, it can be mixed with the rare earth-iron-nitrogen magnetic material by putting it in a container and shaking it (hereinafter, also referred to as "shaking"). The charged state of the powder surface of the metal material or the rare earth-iron-nitrogen magnetic material and the oxide material is divided into positive and negative, and can be easily mixed in a homogeneous state.
Therefore, it is preferable to use an oxide-based ceramic material for the purpose of electrically insulating the rare earth-iron-nitrogen magnetic material powder and reducing the eddy current loss.
In particular, if the oxide-based ceramic material is a nanopowder of less than 1 μm, a high-frequency composite magnetic material having a high filling rate and high resistance can be realized. In particular, rare earth-iron-nitrogen magnetic materials and nanooxide ceramic materials can be homogeneously mixed in a short time by a simple operation such as shaking, and after homogeneous mixing, various magnetic field moldings described later can be performed. As with the high-frequency resin composite magnetic material, there is an advantage that magnetic field orientation can be performed.
Typical oxide-based materials include silica, alumina, chromium oxide, zirconia, magnesia, and rare earth oxides, including rare earths and Fe, which are the basic components of rare earth-iron-nitrogen magnetic materials, as well as Co, Ni, and B. , Al, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, In, Hf, Ta, W, Ag, Mg, Si or an oxide containing at least one selected from Composite oxides are preferred. Fe oxide is also a ceramic material that can be used in the present invention unless the surface of the rare earth-iron-nitrogen magnetic material is completely covered.
As described above, as the ceramic material used for the composite magnetic material of the present invention, it is preferable to use a nanoceramic material from the viewpoint of the isolated dispersibility of the rare earth-iron-nitrogen magnetic material powder, and therefore, the average of 1 nm or more and less than 1000 nm. It is preferably a powder having a particle size. In the present invention, when describing a nanoceramic material, the case of silica having a diameter of 1 nm or more and 1000 nm or less may be described by adding nano in front of the material name such as “nanosilica”.

次に、本発明の「高周波用磁性材樹脂複合材料」について述べる。 Next, the "high-frequency magnetic material resin composite material" of the present invention will be described.

高周波用磁性材樹脂複合材料の樹脂成分として使用できるものを以下に例示する。
例えば、12−ナイロン、6−ナイロン、6、6−ナイロン、4、6−ナイロン、6、12−ナイロン、非晶性ポリアミド、半芳香族ポリアミドのようなポリアミド系樹脂;ポリエチレン、ポリプロピレン、塩素化ポリエチレン等のポリオレフィン系樹脂;ポリ塩化ビニル、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン−酢酸ビニル共重合体等のポリビニル系樹脂;エチレン−エチルアクリレート共重合体、ポリメタクリル酸メチル等のアクリル系樹脂。ポリアクリルニトリル、アクリルニトリル/ブタジエン/スチレン共重合体等のアクリロニトリル系樹脂;各種ポリウレタン系樹脂。ポリテトラフルオロエチレン等の弗素系樹脂;ポリアセタール、ポリカーボネート、ポリイミド、ポリスルホン、ポリブチレンテレフタレート、ポリアリレート、ポリフェニレンオキシド、ポリエーテルスルホン、ポリフェニルスルフィド、ポリアミドイミド、ポリオキシベンジレン、ポリエーテルケトン等のエンジニアリングプラスチックと呼称される合成樹脂;全芳香族ポリエステル等の液晶樹脂を含む熱可塑性樹脂;ポリアセチレン等の導電性ポリマー;エポキシ樹脂、フェノール樹脂、エポキシ変性ポリエステル樹脂、シリコーン樹脂、熱硬化アクリル樹脂等の熱硬化性樹脂;ニトリルゴム、ブタジエン−スチレンゴム、ブチルゴム、ニトリルゴム、ウレタンゴム、アクリルゴム、ポリアミドエラストマー等のエラストマーが挙げられる。
Examples of materials that can be used as resin components of high-frequency magnetic material resin composite materials are shown below.
For example, polyamide resins such as 12-nylon, 6-nylon, 6,6-nylon, 4,6-nylon, 6,12-nylon, amorphous polyamide, semi-aromatic polyamide; polyethylene, polypropylene, chlorinated Polyethylene-based resins such as polyethylene; polyvinyl chloride-based resins such as polyvinyl chloride, polyvinylacetate, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer; acrylics such as ethylene-ethylacrylate copolymer and polymethyl methacrylate. Polyamide. Acrylonitrile-based resins such as polyacrylic nitrile and acrylic nitrile / butadiene / styrene copolymer; various polyurethane-based resins. Phosphor-based resins such as polytetrafluoroethylene; engineering of polyacetal, polycarbonate, polyimide, polysulfone, polybutylene terephthalate, polyarylate, polyphenylene oxide, polyether sulfone, polyphenylsulfide, polyamideimide, polyoxybenzylene, polyether ketone, etc. Synthetic resin called plastic; thermoplastic resin containing liquid crystal resin such as all aromatic polyester; conductive polymer such as polyacetylene; heat of epoxy resin, phenol resin, epoxy-modified polyester resin, silicone resin, thermosetting acrylic resin, etc. Curable resin; examples thereof include elastomers such as nitrile rubber, butadiene-styrene rubber, butyl rubber, nitrile rubber, urethane rubber, acrylic rubber, and polyamide elastomer.

本発明の高周波用磁性材樹脂複合材料の樹脂成分としては、上記の例示した樹脂だけに限られるものではないが、上記に例示した樹脂のうち少なくとも1種が含まれると、電気抵抗率が高く、耐衝撃性、可撓性や成形加工性に優れた磁性材樹脂複合材料とすることができる。樹脂成分の含有量としては、0.1〜95質量%の範囲とすることが好ましい。樹脂成分の含有量を0.1質量%以上とすることは、その含有量未満であると耐衝撃性などの樹脂の効果がほとんど発揮されないという問題が生じるのを回避するうえで好ましく、95質量%以下とすることは、その含有量を超えると透磁率や磁化が極端に落ちて、高周波用磁性材樹脂複合材料としての実用性が乏しくなるという問題が生じるのを回避する上で好ましい。
特に樹脂材料成分以外の成分が希土類−鉄−窒素系磁性材料のみである場合には、セラミックス材料部の電気絶縁性の効果がないために樹脂成分の含有量を更に1〜95質量%とすることが好ましい場合がある。
さらに、磁性材成分が希土類−鉄−窒素系磁性材料のみである場合で、高透磁率とともに耐衝撃性が特に要求される用途においては、上記と同様な理由で、2〜90質量%の範囲がさらに好ましく、最も好ましくは3〜80質量%の範囲である。
また、本発明の高周波用磁性材樹脂複合材料における磁性材成分の好ましい含有量は5〜99.9質量%であり、さらに好ましくは5〜99質量%であり、さらに好ましくは10〜98質量%、最も好ましくは20〜97質量%である。磁性材成分の含有量を5質量%以上とすることは、その含有量未満であると透磁率や磁化が極端に落ちて、高周波用磁性材料としての実用性が乏しくなるという問題が生じるのを回避するうえで好ましく、99.9質量%以下とすることは、その含有量を超えると耐衝撃性などの樹脂の効果がほとんど発揮されないという問題が生じるのを回避するうえで好ましい。
なお、本発明の高周波用磁性材樹脂複合材料においては、電磁気特性の多くの部分は、使用する高周波用複合磁性材料を構成する希土類−鉄−窒素系磁性材料が担うものであり、本発明の高周波用磁性材樹脂複合材料は、高周波用磁性材料、電磁ノイズ吸収材料、電磁波吸収材料、RFIDタグ用材料、無線給電システム用のコイルのコアなどに応用する際、耐衝撃性、可撓性、成型加工性、高電気抵抗率などの樹脂の特徴を生かした性能を当該高周波用複合磁性材料に付与して、実用性を向上させるものである。従って、本発明で使用する高周波用複合磁性材料の性能を阻害せず、「樹脂本来の何らかの特徴」を付与する樹脂成分であれば、非常に好適な本発明の高周波用磁性材樹脂複合材料の成分であるといえる。
上記の「樹脂本来の何らかの特徴」は、上記に例示した樹脂の特徴に限定されず、公知のあらゆる樹脂の特徴・性能を含む。
また、本発明で使用される希土類−鉄−窒素系磁性材料を樹脂成分で電気的に絶縁することによって、高周波用磁性材料以外の用途に応用することも可能である。特に、本発明で使用される希土類−鉄−窒素系磁性材料の希土類成分としてSmを50原子%未満に限定した場合には、例えば、
i)小さな粒径と大きな粒径を有した当該希土類−鉄−窒素系磁性材料を混合して充填率を上げ、且つ樹脂により電気的絶縁を維持することにより、優れた透磁率を発現した低周波用材料としての用途や、
ii)形状磁気異方性を有した当該希土類−鉄−窒素系磁性材料を用いて、かつ樹脂により電気的絶縁を維持することにより、磁化を大きくした磁気記録用材料としての用途
に展開できる。
The resin component of the high-frequency magnetic material resin composite material of the present invention is not limited to the above-exemplified resin, but when at least one of the above-exemplified resins is contained, the electric resistance is high. It can be a magnetic resin composite material having excellent impact resistance, flexibility and molding processability. The content of the resin component is preferably in the range of 0.1 to 95% by mass. It is preferable that the content of the resin component is 0.1% by mass or more in order to avoid the problem that the effect of the resin such as impact resistance is hardly exhibited if the content is less than the content, and 95% by mass. It is preferable that the content is less than% in order to avoid the problem that the magnetic permeability and the magnetization are extremely lowered when the content is exceeded, and the practicality as a magnetic material resin composite material for high frequency is poor.
In particular, when the components other than the resin material component are only rare earth-iron-nitrogen magnetic materials, the content of the resin component is further increased to 1 to 95% by mass because there is no effect of electrical insulation of the ceramic material part. May be preferable.
Further, in the case where the magnetic material component is only a rare earth-iron-nitrogen magnetic material, and in applications where high magnetic permeability and impact resistance are particularly required, the range is 2 to 90% by mass for the same reason as described above. Is more preferable, and most preferably in the range of 3 to 80% by mass.
Further, the content of the magnetic material component in the high-frequency magnetic material resin composite material of the present invention is preferably 5 to 99.9% by mass, more preferably 5 to 99% by mass, still more preferably 10 to 98% by mass. Most preferably, it is 20 to 97% by mass. If the content of the magnetic material component is 5% by mass or more, if it is less than that content, the magnetic permeability and magnetization will drop extremely, and there will be a problem that the practicality as a high-frequency magnetic material will be poor. It is preferable to avoid it, and it is preferable that the content is 99.9% by mass or less in order to avoid the problem that the effect of the resin such as impact resistance is hardly exhibited when the content is exceeded.
In the high-frequency magnetic material resin composite material of the present invention, most of the electromagnetic characteristics are borne by the rare earth-iron-nitrogen magnetic material constituting the high-frequency composite magnetic material used, and the present invention. High-frequency magnetic material Resin composite material has impact resistance, flexibility, and impact resistance when applied to high-frequency magnetic materials, electromagnetic noise absorbing materials, electromagnetic wave absorbing materials, RFID tag materials, coil cores for wireless power feeding systems, etc. It is intended to improve the practicality by imparting the performance utilizing the characteristics of the resin such as moldability and high electric resistance to the high-frequency composite magnetic material. Therefore, the high-frequency magnetic material resin composite material of the present invention is very suitable as long as it is a resin component that does not impair the performance of the high-frequency composite magnetic material used in the present invention and imparts "some original characteristics of the resin". It can be said that it is an ingredient.
The above-mentioned "some original characteristics of the resin" is not limited to the characteristics of the resin exemplified above, and includes the characteristics and performance of all known resins.
Further, by electrically insulating the rare earth-iron-nitrogen magnetic material used in the present invention with a resin component, it can be applied to applications other than the high frequency magnetic material. In particular, when Sm is limited to less than 50 atomic% as the rare earth component of the rare earth-iron-nitrogen magnetic material used in the present invention, for example,
i) A low magnetic permeability that is achieved by mixing the rare earth-iron-nitrogen magnetic material having a small particle size and a large particle size to increase the filling rate and maintaining electrical insulation with a resin. Use as a material for frequency,
ii) By using the rare earth-iron-nitrogen magnetic material having shape magnetic anisotropy and maintaining electrical insulation with a resin, it can be applied as a material for magnetic recording with increased magnetization.

なお、本発明の高周波用磁性材樹脂複合材料には、チタン系やシリコン系カップリング剤を添加することができる。
一般にチタン系カップリング剤を多く加えると流れ性、成形加工性が向上し、その結果磁性粉体の配合量を増やすことが可能となり、磁場配向を行う際、配向性が向上して、磁気特性の優れた材料になる。一方、シリコン系カップリング剤を使用すると、機械的強度を増す効果が得られるが、一般に流れ性が悪化する。
チタン系カップリング剤とシリコン系カップリング剤の両者の長所を活かすために混合添加することが可能である。
また、チタン系やシリコン系に加えてアルミニウム系、ジルコニウム系、クロム系、又は鉄系のカップリング剤を添加することも可能である。
さらに本発明の高周波用磁性材樹脂複合材料には、滑剤、耐熱性老化防止剤、酸化防止剤を各種配合することも可能である。
本発明の粉体である高周波用磁性材樹脂複合材料をそのまま、或いは他の材料(滑剤、耐熱性老化防止剤、酸化防止剤など)と混合させてコンパウンド(複数の材料からなる混合物)状の粉体にする場合、その粒径はカレンダー加工用、射出成形加工用等、それぞれの成形工程で扱いやすい領域であればよいが、本発明においては、粉体の耐酸化性や磁気特性の安定性の観点で0.1μm以上、さらに流れ性を有する粉体とするために0.2μm以上の粒径下限値が好ましく、さらに流れ性の優れた粉体とするために10μm以上とするのがより好ましい。粒径上限については特に規定はないが、あまり大きいと成形体の磁気特性にムラが生じるので、5cm以下にするのが好ましい。特に磁性材樹脂複合材料を20mm以下とするとより成形後の磁気特性のばらつきが減少するのでより好ましく、2mm以下にすると優れた流れ性も付与されるので、更に好ましい。
A titanium-based or silicon-based coupling agent can be added to the high-frequency magnetic material resin composite material of the present invention.
Generally, when a large amount of titanium-based coupling agent is added, the flowability and molding processability are improved, and as a result, the blending amount of the magnetic powder can be increased, and when the magnetic field is oriented, the orientation is improved and the magnetic characteristics are improved. It will be an excellent material for. On the other hand, when a silicon-based coupling agent is used, the effect of increasing the mechanical strength can be obtained, but the flowability is generally deteriorated.
It is possible to mix and add in order to take advantage of both the titanium-based coupling agent and the silicon-based coupling agent.
It is also possible to add an aluminum-based, zirconium-based, chromium-based, or iron-based coupling agent in addition to the titanium-based or silicon-based coupling agent.
Further, the high-frequency magnetic material resin composite material of the present invention can be further blended with various lubricants, heat-resistant antiaging agents, and antioxidants.
The powder of the present invention, a magnetic resin composite material for high frequency, can be used as it is or mixed with other materials (lubricant, heat resistant antiaging agent, antioxidant, etc.) in the form of a compound (mixture consisting of a plurality of materials). In the case of powder, the particle size may be in a range that is easy to handle in each molding process, such as for calendar processing and injection molding processing, but in the present invention, the oxidation resistance and magnetic properties of the powder are stable. From the viewpoint of property, the lower limit of the particle size is preferably 0.1 μm or more, 0.2 μm or more in order to obtain a powder having more flowability, and 10 μm or more in order to obtain a powder having more excellent flowability. More preferred. The upper limit of the particle size is not particularly specified, but if it is too large, the magnetic properties of the molded product will be uneven, so it is preferably 5 cm or less. In particular, when the magnetic material resin composite material is 20 mm or less, the variation in magnetic characteristics after molding is further reduced, which is more preferable, and when it is 2 mm or less, excellent flowability is also imparted, which is further preferable.

本発明の高周波用磁性材樹脂複合磁性材料では、マトリックスとなる樹脂に磁性を持たせることが困難なので、特許文献1に記載のフェライト被覆希土類−鉄−窒素系材料のように「電気的絶縁・磁気的連結」により透磁率を上昇させると同時に渦電流損失を抑制する機能は有しない。
しかし、樹脂の中に溶解性パラメータ(SP値とも言う)が10〜15のセグメントを含む場合、本発明の高周波用磁性材樹脂複合磁性材料を構成する、粉体として存在する高周波用複合磁性材料(以下、「磁性粉体」と呼ぶ)が孤立分散し、磁性粉体同士の連結が絶縁体である樹脂によって解かれるため、極端に高い透磁率の実数項は実現しにくいものの、高周波領域(その中でも特に超高周波領域)の周波数にわたり渦電流損失を抑制することができる。そのため、例えば5〜100MHzの無線給電システム用のコイルのコア等の電磁波増幅材料として本発明の高周波用磁性材樹脂複合磁性材料を適用すると、渦電流損失を極めて小さくすることができるし、さらに10GHzを超える超高周波領域において使用する電磁波吸収材料や電磁ノイズ吸収材料として本発明の高周波用磁性材樹脂複合磁性材料を適用すると、最大吸収周波数(f)を大きくして最大吸収エネルギー係数(fμ”max)を渦電流により低減させないようにすることができる。この理由としては、溶解性パラメータの高い樹脂のセグメントが希土類−鉄−窒素系粉体との親和性が高いため、界面に強く結合し、磁性粉体同士を引き離して孤立分散させているからであると予想している。
ここで、「溶解性パラメータ」とは分子間力を表す尺度であり、二つの物質のSP(Solubility Parameter)値が近いほど親和性があるとされる。理論的には、単位体積の液体の蒸発熱から算出されるので融点を持つ溶媒でしか定義されないが、樹脂の溶解性パラメータもSP値が既知な溶媒への溶解度を元に決定されている。文献値のない樹脂でも構造が既知なら、Fedorsの推定法を元にSP値を求めることができ、小数点第1位を四捨五入することにより本発明に効果のある樹脂か否かを判断することができる。
In the high-frequency magnetic material resin composite magnetic material of the present invention, it is difficult to give magnetism to the resin serving as a matrix. Therefore, as in the ferrite-coated rare earth-iron-nitrogen material described in Patent Document 1, "electrical insulation / It does not have the function of increasing the magnetic permeability by "magnetic connection" and at the same time suppressing the eddy current loss.
However, when the resin contains segments having a solubility parameter (also referred to as SP value) of 10 to 15, the high-frequency magnetic material resin composite magnetic material of the present invention constitutes the high-frequency magnetic material composite magnetic material existing as a powder. (Hereinafter referred to as "magnetic powder") is isolated and dispersed, and the connection between the magnetic powders is broken by the resin that is the insulator. Among them, eddy current loss can be suppressed over frequencies in the ultra-high frequency region). Therefore, when the high-frequency magnetic material resin composite magnetic material of the present invention is applied as an electromagnetic wave amplification material such as a coil core for a wireless power feeding system of 5 to 100 MHz, the eddy current loss can be extremely reduced, and further, 10 GHz can be obtained. applying high-frequency magnetic material-resin composite magnetic material of the present invention as an electromagnetic absorbing material or an electromagnetic noise absorber material used in the ultra high frequency region exceeding the maximum absorption energy coefficient by increasing the maximum absorption frequency (f a) (fμ " It is possible to prevent max ) from being reduced by eddy currents. The reason is that the resin segment with high solubility parameters has a high affinity for rare earth-iron-nitrogen powder, so it is strongly bonded to the interface. It is expected that this is because the magnetic powders are separated from each other and isolated and dispersed.
Here, the "solubility parameter" is a measure of intermolecular force, and it is said that the closer the SP (Solubility Parameter) values of the two substances are, the more compatible they are. Theoretically, since it is calculated from the heat of vaporization of a unit volume of liquid, it is defined only by a solvent having a melting point, but the solubility parameter of the resin is also determined based on the solubility in a solvent having a known SP value. If the structure is known even for a resin having no literature value, the SP value can be obtained based on the Fedors estimation method, and it is possible to determine whether or not the resin is effective for the present invention by rounding off to the first decimal place. it can.

溶解性パラメータ(SP)が10〜15の樹脂のセグメントとしては、ポリアミド(SP値が13〜14)、エステル(SP値が10〜11)、ポリウレタン(SP値が10)などが挙げられる。SP値が低い、ポリエーテル(SP値が9)、シリコンゴム(SP値が7〜8)、弗素ゴム(SP値が7〜8)などのようなセグメントが共重合などで含有されていてもよく、この場合、磁性材樹脂複合材料の可撓性が付与され、エラストマーとして機能が求められる電磁ノイズ吸収材料用途などに好適である。中でも、SP値が13.6のポリアミドと9.0のポリエーテルを共重合したポリアミドエステルエーテルエラストマーを樹脂成分に用いると表面平滑性に優れ、孤立分散が達成され、超高周波領域で透磁率の虚数項の値が高く、かつ可撓性、耐衝撃性に優れた磁性材樹脂複合材料となる。これはポリアミドとポリエーテルの他にエステル結合が含まれ、多様な相溶性パラメータを有するセグメントが含まれていることに起因していると予測している。希土類−鉄−窒素系磁性材料表面に結合するポリアミド成分と粉体間にあって可撓性などを付与するポリエーテル成分を無理なく繋ぐ役目をエステル結合が担っていると考えられるからである。
なお、セグメントの溶解性パラメータ(SP)を13〜14とすると、さらに透磁率の向上が見られ、希土類−鉄−窒素系磁性粉体の体積分率が30〜80体積%の広い範囲内で、超高周波領域での複素比透磁率の虚数項の値が実用領域に入るので好ましい。
以上のように、本発明の高周波用磁性材樹脂複合磁性材料において、溶解性パラメータ(SP)を調節した樹脂を使用する場合、表面の化学的性質が作用するので、このような観点から見れば、特許文献1に開示されているようにフェライト材料で完全に被覆されていない方がよい。
Examples of the resin segment having a solubility parameter (SP) of 10 to 15 include polyamide (SP value 13 to 14), ester (SP value 10 to 11), polyurethane (SP value 10) and the like. Even if segments such as low SP value, polyether (SP value 9), silicone rubber (SP value 7 to 8), and fluororubber (SP value 7 to 8) are contained by copolymerization or the like. Often, in this case, the flexibility of the magnetic resin composite material is imparted, and it is suitable for electromagnetic noise absorbing material applications where the function as an elastomer is required. Among them, when a polyamide ester ether elastomer obtained by copolymerizing a polyamide having an SP value of 13.6 and a polyether of 9.0 is used as a resin component, surface smoothness is excellent, isolated dispersion is achieved, and magnetic permeability is high in the ultrahigh frequency region. It is a magnetic resin composite material having a high imaginary term value and excellent flexibility and impact resistance. It is predicted that this is due to the fact that it contains ester bonds in addition to polyamide and polyether, and contains segments with various compatibility parameters. This is because it is considered that the ester bond plays a role of reasonably connecting the polyamide component bonded to the surface of the rare earth-iron-nitrogen magnetic material and the polyether component that is between the powders and imparts flexibility and the like.
When the solubility parameter (SP) of the segment is set to 13 to 14, the magnetic permeability is further improved, and the volume fraction of the rare earth-iron-nitrogen-based magnetic powder is within a wide range of 30 to 80% by volume. , The value of the imaginary term of the complex relative permeability in the ultra-high frequency region falls within the practical region, which is preferable.
As described above, in the high-frequency magnetic material resin composite magnetic material of the present invention, when a resin having an adjusted solubility parameter (SP) is used, the chemical properties of the surface act, so from this point of view, , As disclosed in Patent Document 1, it is better not to be completely coated with the ferrite material.

次に本発明の磁性材料並びに磁性材樹脂複合材料の製造方法について記載するが、特にこれらに限定されるものではない。
また、製造方法については、特に本発明の「高周波用複合磁性材料」を得る方法を具体的に例示する。
本願における本発明に関する記述において、「実質的にR成分、Fe成分からなる合金」とは、R成分及びFe成分を主成分とする合金をいうが、このFe成分のFeは、他の原子(具体的には、Co、Ni、B、Al、Ti、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、In、Hf、Ta、W、Ru、Pd、Re、Os、Ir、Ag、Ptの中から選択される少なくとも1種)で置き換えられていてもよい。この合金を、本願では、「希土類−鉄(R−Fe)系合金」、「原料合金」、或いは「母合金」とも言う。
Next, the method for producing the magnetic material and the magnetic material resin composite material of the present invention will be described, but the present invention is not particularly limited thereto.
Further, as for the manufacturing method, a method for obtaining the "composite magnetic material for high frequency" of the present invention will be specifically exemplified.
In the description of the present invention in the present application, the "alloy consisting substantially of R component and Fe component" means an alloy containing R component and Fe component as main components, and Fe of this Fe component is another atom (Fe. Specifically, Co, Ni, B, Al, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, In, Hf, Ta, W, Ru, Pd, Re, Os, Ir. , Ag, Pt may be replaced with at least one selected from). In this application, this alloy is also referred to as "rare earth-iron (R-Fe) based alloy", "raw material alloy", or "matrix alloy".

(1)母合金の調製工程
R−Fe系合金の製造法としては、(I)R、Fe成分の各金属成分を高周波により溶解し、鋳型などに鋳込む高周波溶解法、(II)銅などのボートに金属成分を仕込み、アーク放電により溶し込むアーク溶解法、(III)アーク溶解した溶湯を水冷した鋳型に一気に落とし込んで急冷するドロップキャスト法、(IV)高周波溶解した溶湯を、回転させた銅ロール上に落しリボン状の合金を得る超急冷法、(V)高周波溶解した溶湯をガスで噴霧して合金粉体を得るガスアトマイズ法、(VI)Fe成分及び/又はM成分の粉体またはFe−M合金粉体、R及び/又はM成分の酸化物粉体、及び還元剤を高温下で反応させ、RまたはR及びM成分を還元しながら、RまたはR及びM成分を、Fe成分及び/又はFe−M合金粉体中に拡散させるR/D法、(VII)各金属成分単体及び/又は合金をボールミルなどで微粉砕しながら反応させるメカニカルアロイング法、(VIII)上記何れかの方法で得た合金を水素雰囲気下で加熱し、一旦R及び/又はMの水素化物と、Fe成分及び/又はM成分またはFe−M合金に分解し、この後、高温下で低圧として水素を追い出しながら再結合させ合金化するHDDR(Hydrogenation Decomposition Desorption Recombination)法のいずれを用いてもよい。
(1) Preparation process of mother alloy As a method for producing an R-Fe-based alloy, (I) a high-frequency melting method in which each metal component of the R and Fe components is melted at a high frequency and cast into a mold or the like, (II) copper, etc. The arc melting method in which metal components are charged into the boat and melted by arc discharge, (III) the drop casting method in which the arc-melted molten metal is dropped into a water-cooled mold at once and rapidly cooled, and (IV) the high-frequency melted molten metal is rotated. Ultra-quenching method to obtain a ribbon-shaped alloy by dropping it on a copper roll, (V) Gas atomization method to obtain alloy powder by spraying molten metal melted at high frequency with gas, (VI) Powder of Fe component and / or M component Alternatively, the Fe-M alloy powder, the oxide powder of the R and / or M components, and the reducing agent are reacted at a high temperature to reduce the R or R and M components while adding the R or R and M components to Fe. R / D method of diffusing components and / or Fe-M alloy powder, (VII) Mechanical allowing method of reacting each metal component alone and / or alloy while finely pulverizing with a ball mill or the like, (VIII) Any of the above The alloy obtained by the above method is heated in a hydrogen atmosphere and once decomposed into an R and / or M hydride and an Fe component and / or an M component or an Fe-M alloy, and then as a low pressure at a high temperature. Any of the HDDR (Hydrogenesis Decomposition Decomposition) methods for recoupling and alloying while expelling hydrogen may be used.

高周波溶解法、アーク溶解法を用いた場合、溶融状態から、合金が凝固する際にFe主体の成分が析出し易く、特に窒化工程を経た後も低周波領域に最大吸収周波数を有する成分の体積分率が増え、高周波数さらに超高周波領域での吸収の低下を引き起こす。そこで、このFe主体の成分を消失させたり、菱面体晶や六方晶や正方晶(特に、菱面体晶や六方晶)の結晶構造を増大させたりする目的で、アルゴン、ヘリウムなどの不活性ガス、水素ガスのうち少なくとも1種を含むガス中もしくは真空中、200〜1300℃の温度範囲で、好ましくは600〜1185℃の範囲内で焼鈍を行うことが有効である。この方法で作製した合金は、超急冷法などを用いた場合に比べ、結晶粒径が大きく結晶性が良好であり、高い透磁率を有している。従って、この合金は均質な主原料相を多量に含んでおり、本発明の磁性材料を得る母合金として好ましい。 When the high-frequency melting method and the arc melting method are used, the Fe-based component tends to precipitate when the alloy solidifies from the molten state, and the volume of the component having the maximum absorption frequency in the low frequency region even after the nitriding step is particularly performed. The fraction increases, causing a decrease in absorption in the high frequency and ultra high frequency regions. Therefore, an inert gas such as argon or helium is used for the purpose of eliminating the Fe-based component or increasing the crystal structure of rhombohedral, hexagonal or square crystals (particularly rhombic or hexagonal). It is effective to perform annealing in a gas containing at least one of hydrogen gases or in a vacuum in a temperature range of 200 to 1300 ° C., preferably in a range of 600 to 1185 ° C. The alloy produced by this method has a large crystal grain size, good crystallinity, and high magnetic permeability as compared with the case of using an ultra-quenching method or the like. Therefore, this alloy contains a large amount of a homogeneous main raw material phase, and is preferable as a mother alloy for obtaining the magnetic material of the present invention.

(2)粗粉砕及び分級工程
上記方法で作製した合金インゴット、R/D法又はHDDR法合金粉体を直接窒化することも可能であるが、結晶粒径が2000μmより大きいと窒化処理時間が長くなり、粗粉砕を行ってから窒化する方が効率的である。200μm以下に粗粉砕すれば、窒化効率がさらに向上するため、特に好ましい。
粗粉砕はジョークラッシャー、ハンマー、スタンプミル、ローターミル、ピンミル、コーヒーミルなどを用いて行う。また、ボールミルやジェットミルなどのような粉砕機を用いても、条件次第では窒化に適当な合金粉体の調製が可能である。母合金に水素を吸蔵させたのち上記粉砕機で粉砕する方法、水素の吸蔵・放出を繰り返し粉化する方法を用いてもよい。
さらに、粗粉砕の後、ふるい、振動式あるいは音波式分級機、サイクロンなどの分級機を用いて粒度調整を行うことも、より均質な窒化を行うために有効である。粗粉砕、分級の後、不活性ガスや水素中で焼鈍を行うと構造の欠陥を除去することができ、場合によっては効果がある。以上で、本発明の製造法におけるR−Fe系合金の粉体原料またはインゴット原料の調製法を例示したが、これらの原料の結晶粒径、粉砕粒径、表面状態などにより、以下に示す窒化の最適条件に違いが見られる。
(2) Coarse pulverization and classification step It is also possible to directly nitrid the alloy ingot, R / D method or HDDR method alloy powder produced by the above method, but if the crystal particle size is larger than 2000 μm, the nitriding treatment time is long. Therefore, it is more efficient to perform coarse pulverization and then nitriding. Rough pulverization to 200 μm or less is particularly preferable because the nitriding efficiency is further improved.
Rough crushing is performed using a jaw crusher, a hammer, a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a crusher such as a ball mill or a jet mill is used, it is possible to prepare an alloy powder suitable for nitriding depending on the conditions. A method of occluding hydrogen in the mother alloy and then crushing it with the above crusher, or a method of repeatedly occluding and releasing hydrogen may be used.
Further, after coarse pulverization, it is also effective to adjust the particle size using a classifier such as a sieve, a vibration type or a sound wave type classifier, or a cyclone for more uniform nitriding. After coarse pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects, which is effective in some cases. In the above, the preparation method of the powder raw material or the ingot raw material of the R—Fe based alloy in the production method of the present invention has been exemplified, but the nitriding shown below depends on the crystal particle size, the crushed particle size, the surface condition, etc. of these raw materials. There is a difference in the optimum conditions of.

(3)窒化・焼鈍工程
窒化はアンモニアガス、窒素ガスなどの窒素源を含むガスを、上記(1)の工程または、(1)及び(2)の工程で得たR−Fe系合金粉体またはインゴットに接触させて、結晶構造内に窒素を導入する工程である。
このとき、窒化雰囲気ガス中に水素を共存させると、窒化効率が高いうえに結晶構造が安定なまま窒化できる点で好ましい。また反応を制御するために、アルゴン、ヘリウム、ネオンなどの不活性ガスなどを共存させる場合もある。最も好ましい窒化雰囲気としては、アンモニアと水素の混合ガスであり、特にアンモニア分圧を0.1〜0.7の範囲に制御すれば、窒化効率が高い上に本発明で使用される希土類−鉄−窒素系磁性材料(具体的には、RFe(100−x−y)の一般式で表され、式中、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、Smの中から選ばれる少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満であって、x、yは原子%で、3≦x≦30、1≦y≦30である。)の窒素量範囲全域をカバーする磁性材料を作製することができる。
窒化反応は、ガス組成、加熱温度、加熱処理時間、加圧力で制御し得る。このうち加熱温度は、母合金組成、窒化雰囲気によって異なるが、200〜650℃の範囲で選ばれるのが望ましい。200℃以上にすることは、その温度未満であると窒化速度が非常に遅いという問題が生じるのを回避するうえで、また、650℃以下とすることは、その温度を超えると主原料相が分解して、菱面体晶、六方晶、及び/又は正方晶(特に、菱面体晶又は六方晶)の結晶構造を保ったまま窒化することができないという問題を回避するうえで好ましい。窒化効率と主相の含有率を高くするために、さらに好ましい温度範囲は250〜600℃である。
また窒化を行った後、不活性ガス及び/又は水素ガス中で焼鈍することは磁気特性を向上させる点で好ましい。特に、窒素量が16〜25原子%の高窒化領域にあるR−Fe−N系磁性材料を製造し、その後、水素ガスを含む雰囲気下で焼鈍することは、透磁率や磁化を向上させる点で非常に好ましい方法である。
窒化・焼鈍装置としては、横型、縦型の管状炉、回転式反応炉、密閉式反応炉などが挙げられる。何れの装置においても、本発明の磁性材料を調整することが可能であるが、特に窒素組成分布の揃った粉体を得るためには回転式反応炉を用いるのが好ましい。
反応に用いるガスは、ガス組成を一定に保ちながら1気圧以上の気流を反応炉の送り込む気流方式、ガスを容器に加圧力0.01〜70気圧の領域で封入する封入方式、或いはそれらの組合せなどで供給する。
以上窒化・焼鈍工程までを経て、初めてR−Fe−N系磁性材料が作製される。なお、水素源となるガスを使用して、この工程を実施すれば、R−Fe−N−H系磁性材料を調製することも可能である。
(3) Nitrating / annealing step Nitrating is an R-Fe-based alloy powder obtained by using a gas containing a nitrogen source such as ammonia gas or nitrogen gas in the above steps (1) or (1) and (2). Alternatively, it is a step of bringing nitrogen into the crystal structure by contacting it with an ingot.
At this time, it is preferable to coexist hydrogen in the nitriding atmosphere gas because the nitriding efficiency is high and the nitriding can be performed while the crystal structure is stable. In addition, in order to control the reaction, an inert gas such as argon, helium, or neon may coexist. The most preferable nitriding atmosphere is a mixed gas of ammonia and hydrogen. In particular, if the partial pressure of ammonia is controlled in the range of 0.1 to 0.7, the nitriding efficiency is high and the rare earth-iron used in the present invention is used. -Nitrogen-based magnetic material (specifically, expressed by the general formula of R x Fe (100-xy) N y , in which R is Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho. , Er, Tm, Lu, and Sm, and when Sm is contained, Sm is less than 50 atomic% and x and y are atomic% with respect to the entire R component. , 3 ≦ x ≦ 30, 1 ≦ y ≦ 30) can be produced as a magnetic material covering the entire nitrogen content range.
The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and pressing force. Of these, the heating temperature varies depending on the composition of the mother alloy and the nitriding atmosphere, but is preferably selected in the range of 200 to 650 ° C. If the temperature is 200 ° C. or higher, the problem that the crystallization rate is very slow occurs if the temperature is lower than that temperature, and if the temperature is lower than 650 ° C., the main raw material phase is increased. It is preferable in order to avoid the problem that it cannot be decomposed and nitrided while maintaining the crystal structure of rhombohedral, hexagonal, and / or tetragonal (particularly rhombic or tetragonal). In order to increase the nitriding efficiency and the content of the main phase, a more preferable temperature range is 250 to 600 ° C.
Further, after nitriding, annealing in an inert gas and / or hydrogen gas is preferable in terms of improving magnetic properties. In particular, producing an R-Fe-N-based magnetic material in a highly nitrided region having a nitrogen content of 16 to 25 atomic% and then annealing in an atmosphere containing hydrogen gas improves magnetic permeability and magnetization. This is a very preferable method.
Examples of the nitriding / annealing apparatus include horizontal and vertical tube furnaces, rotary reactors, and closed reactors. Although the magnetic material of the present invention can be prepared in any of the devices, it is particularly preferable to use a rotary reactor in order to obtain a powder having a uniform nitrogen composition distribution.
The gas used for the reaction is an air flow method in which an air flow of 1 atm or more is sent to the reactor while keeping the gas composition constant, a filling method in which the gas is sealed in a container in a pressure range of 0.01 to 70 atm, or a combination thereof. Supply by etc.
The R-Fe-N magnetic material is produced for the first time through the above steps of nitriding and annealing. If this step is carried out using a gas that serves as a hydrogen source, it is possible to prepare an R-Fe-NH-based magnetic material.

(4)微粉砕工程
微粉砕工程は、上記のR−Fe−N系磁性材料やR−Fe−N−H系磁性材料を、より細かい微粉体まで粉砕する場合や、R−Fe−N−H−O系磁性材料を得るために、上述のR−Fe−N系磁性材料にO成分及びH成分を導入する目的で行われる工程である。
微粉砕の方法としては上記(2)の工程で挙げた方法のほか、回転ボールミル、振動ボールミル、遊星ボールミル、ウエットミル、ジェットミル、カッターミル、ピンミル、自動乳鉢などの乾式・湿式の微粉砕装置及びそれらの組合せなどが用いられる。O成分やH成分を導入する際、その導入量を本発明の範囲に調整する方法としては、微粉砕雰囲気中の水分量や酸素濃度を制御する方法が挙げられる。
本発明の希土類−鉄−窒素系磁性材料の製造方法としては、(1)の工程、又は(1)及び(2)の工程に例示した方法でR−Fe成分組成の母合金を調製してから、(3)の工程で示した方法で窒化し、(4)の工程で示した微粉砕する工程を用いるのが好ましい。特に、(1)の工程で得られた原料合金又はこれを(2)の工程で示した方法で粉砕、分級した原料合金を、不活性ガス及び水素ガスのうち少なくとも1種を含む雰囲気下で、600〜1300℃で熱処理したのち、アンモニアガスを含む雰囲気下で、200〜650℃の範囲で熱処理することによる、焼鈍処理を行ったのち窒化を行うと、粉体内部酸化による磁気特性の劣化が極めて小さい磁性材料を得ることができる。
(4) Fine pulverization step In the fine pulverization step, the above-mentioned R-Fe-N-based magnetic material or R-Fe-N-H-based magnetic material is pulverized to finer fine powder, or R-Fe-N- This is a step performed for the purpose of introducing the O component and the H component into the above-mentioned R—Fe—N magnetic material in order to obtain the HO magnetic material.
As a method of pulverization, in addition to the method mentioned in the above step (2), a dry / wet pulverizer such as a rotary ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, or an automatic mortar. And combinations thereof and the like are used. When introducing the O component or the H component, as a method of adjusting the introduction amount within the range of the present invention, a method of controlling the water content and the oxygen concentration in the finely pulverized atmosphere can be mentioned.
As a method for producing the rare earth-iron-nitrogen magnetic material of the present invention, a mother alloy having an R-Fe component composition is prepared by the method exemplified in the steps (1) or (1) and (2). Therefore, it is preferable to use the step of nitriding by the method shown in the step (3) and pulverizing shown in the step (4). In particular, the raw material alloy obtained in the step (1) or the raw material alloy obtained by crushing and classifying the raw material alloy by the method shown in the step (2) is subjected to an atmosphere containing at least one of an inert gas and a hydrogen gas. After heat treatment at 600 to 1300 ° C., nitriding is performed by heat treatment in the range of 200 to 650 ° C. in an atmosphere containing ammonia gas, and then nitriding results in deterioration of magnetic properties due to internal oxidation of the powder. A very small magnetic material can be obtained.

(5)セラミックス材料混合工程
本工程は、(3)又は(4)で得た希土類−鉄−窒素系磁性材料にセラミックス材料を混合する工程である。V型混合機、タンブラー、振動混合機、振とう機、ドラムミキサー、ロッキングミキサー、シェイカー、ロータリーミキサーなどの通常の混合機や上記粉砕機や分級機などを使用することができる。また、本工程を(1)〜(3)の工程と同時に行うことも可能である。セラミックス材料として、ナノセラミックス粉体を用いると、混合が効率的になるだけでなく、電磁気特性の向上に繋がることが、本発明の大きな特徴である。
(5) Ceramic Material Mixing Step This step is a step of mixing the ceramic material with the rare earth-iron-nitrogen magnetic material obtained in (3) or (4). Ordinary mixers such as V-type mixers, tumblers, vibration mixers, shakers, drum mixers, locking mixers, shakers, rotary mixers, and the above-mentioned crushers and classifiers can be used. It is also possible to perform this step at the same time as the steps (1) to (3). A major feature of the present invention is that when nanoceramic powder is used as the ceramic material, not only the mixing becomes efficient but also the electromagnetic characteristics are improved.

(6)配向・成形工程
本発明の高周波用複合磁性材料は、希土類−鉄−窒素系磁性材料を他の磁性材料やセラミックス材料、樹脂を添加して成形するなどして、各種用途に用いられる。中でも上記で述べた樹脂を配合すると、本発明の高周波用磁性材樹脂複合材料となる。また、本発明の磁性材料が異方性材料であった場合、この成形工程で少なくとも1回、磁場配向操作を行うと高磁気特性の磁性材料または磁性材樹脂複合材料となるので特に推奨される。
希土類−鉄−窒素系磁性材料に他の磁性材料やセラミックス材料、樹脂を添加して成形するなどして得られる複合磁性材料を固化する方法としては、型に入れ冷間で圧粉成形して、そのまま使用したり、或いは続いて、冷間で圧延、鍛造、衝撃波圧縮成形などを行って成形したりする方法もあるが、多くの場合、50℃以上の温度で熱処理しながら焼結して成形を行う。熱処理雰囲気は非酸化性雰囲気であることが好ましく、アルゴン、ヘリウムなどの希ガスや窒素ガス中などの不活性ガス中で、或いは水素ガスを含む還元ガス中で熱処理を行うと良い。500℃以下の温度条件なら大気中でも可能である。また、常圧や加圧下の焼結でも、さらには真空中の焼結であってもよい。
(6) Orientation / Molding Process The high-frequency composite magnetic material of the present invention is used for various purposes such as molding a rare earth-iron-nitrogen magnetic material by adding other magnetic materials, ceramic materials, and resins. .. Above all, when the resin described above is blended, the magnetic material resin composite material for high frequency of the present invention is obtained. Further, when the magnetic material of the present invention is an anisotropic material, it is particularly recommended because a magnetic material having high magnetic properties or a magnetic material resin composite material is obtained by performing a magnetic field orientation operation at least once in this molding step. ..
As a method of solidifying a composite magnetic material obtained by adding other magnetic materials, ceramic materials, and resins to a rare earth-iron-nitrogen magnetic material and molding it, it is placed in a mold and cold-rolled. , It can be used as it is, or it can be subsequently formed by cold rolling, forging, shock wave compression molding, etc., but in most cases, it is sintered while being heat-treated at a temperature of 50 ° C. or higher. Perform molding. The heat treatment atmosphere is preferably a non-oxidizing atmosphere, and the heat treatment is preferably performed in a rare gas such as argon or helium, an inert gas such as nitrogen gas, or a reducing gas containing hydrogen gas. It is possible even in the atmosphere under the temperature condition of 500 ° C. or less. Further, it may be sintered under normal pressure or pressure, or may be sintered in vacuum.

この熱処理は圧粉成形と同時に行うこともでき、ホットプレス法やHIP(ホットアイソスタティックプレス)法、さらにはSPS(放電プラズマ焼結)法などのような加圧焼結法でも、本発明の磁性材料を成形することが可能である。なお、本発明に対する加圧効果を顕著とするためには、加熱焼結工程における加圧力を0.0001〜10GPaの範囲内とするのが好ましい。0.0001GPa以上とすることは、その加圧力未満であると、加圧の効果が乏しく常圧焼結と電磁気特性に変わりがないため、加圧焼結すると生産性が落ちる分不利となる問題が生じるのを回避するうえで好ましい。また、10GPa以下とすることは、その加圧力を超えると加圧効果が飽和してそれ以上に加圧しても生産性が落ちるだけであるという問題が生じるのを回避するうえで好ましい。
また、大きな加圧は磁性材料に誘導磁気異方性を付与し、本来有する高い透磁率などの磁気特性が悪化したり、最大吸収周波数が好ましい範囲から外れたりする可能性もある。従って、加圧力の好ましい範囲は0.001〜1GPa、さらに好ましくは0.01〜0.1GPaである。
This heat treatment can be performed at the same time as the compaction molding, and the pressure sintering method such as the hot press method, the HIP (hot isostatic press) method, and the SPS (discharge plasma sintering) method of the present invention can also be used. It is possible to mold magnetic materials. In order to make the pressurizing effect on the present invention remarkable, it is preferable that the pressing force in the heat sintering step is in the range of 0.0001 to 10 GPa. If the pressure is less than 0.0001 GPa, the effect of pressurization is poor and there is no difference between normal pressure sintering and electromagnetic characteristics. Therefore, pressure sintering reduces productivity, which is disadvantageous. Is preferable in avoiding the occurrence of. Further, it is preferable that the pressure is 10 GPa or less in order to avoid the problem that the pressurizing effect is saturated when the pressing force is exceeded and the productivity is only lowered even if the pressurizing effect is further increased.
In addition, a large pressurization imparts induced magnetic anisotropy to the magnetic material, which may deteriorate the inherent magnetic properties such as high magnetic permeability, or cause the maximum absorption frequency to deviate from the preferable range. Therefore, the preferred range of pressing force is 0.001 to 1 GPa, more preferably 0.01 to 0.1 GPa.

さらに以上の方法の多くの場合は、若干磁性材料表面の分解を伴い固化されることがあるが、衝撃波圧縮法の中で、公知の水中衝撃波圧縮法は、磁性材料の分解を伴わずに成形できる方法として有利である。 Furthermore, in many of the above methods, the surface of the magnetic material may be slightly decomposed and solidified. However, among the shock wave compression methods, the known underwater shock wave compression method is formed without decomposing the magnetic material. It is advantageous as a possible method.

上記(3)の工程、または(3)の工程→(4)の工程、または(3)の工程→(5)の工程、または(3)の工程→(4)の工程→(5)の工程で得た希土類−鉄−窒素系磁性材料の粉体及び/又は複合磁性材料の粉体を、高周波用磁性材樹脂複合材料に応用する場合、熱硬化性樹脂や熱可塑性樹脂と混合したのちに圧縮成形したり、熱可塑性樹脂と共に混練したのちに射出成形を行ったり、必要に応じてさらに押出成形、ロール成形、及び/又はカレンダー成形などを行ったりすることによって成形する。上記混合に際しては、溶媒に溶かした樹脂を磁性粉体に配合して、その後溶媒を気化などで除去するキャスト法も有効である。上記混錬に関してはニーダーや一軸又は二軸の押出機を用いることも有効である。 The above step (3) or (3) → (4) or (3) → (5) or (3) → (4) → (5) When the rare earth-iron-nitrogen magnetic material powder and / or composite magnetic material powder obtained in the process is applied to a high-frequency magnetic material resin composite material, it is mixed with a thermosetting resin or a thermoplastic resin. It is molded by compression molding, kneading with a thermoplastic resin and then injection molding, and if necessary, further extrusion molding, roll molding, and / or calendar molding. At the time of the above mixing, a casting method in which a resin dissolved in a solvent is mixed with a magnetic powder and then the solvent is removed by vaporization or the like is also effective. For the above kneading, it is also effective to use a kneader or a single-screw or twin-screw extruder.

シートの形状の種類としては、例えば電磁ノイズ吸収シートに応用する場合、厚み5〜10000μm、幅5〜5000mm、長さは0.005〜1000mの圧縮成形によるバッチ型シート、ロール成形やカレンダー成形などによるロール状シートが挙げられる。
上記の方法で成形する際、その工程の一部又は全部を磁場中で行うと、磁性粒子が磁場配向して磁気特性が向上することがある。この磁場配向の方法には大きく、一軸磁場配向、回転磁場配向、対向磁極配向の3種類が挙げられる。
As for the type of sheet shape, for example, when applied to an electromagnetic noise absorbing sheet, a batch type sheet by compression molding having a thickness of 5 to 10000 μm, a width of 5 to 5000 mm, and a length of 0.005 to 1000 m, roll molding, calendar molding, etc. Roll-shaped sheet by.
When molding by the above method, if part or all of the steps are performed in a magnetic field, the magnetic particles may be magnetically oriented and the magnetic characteristics may be improved. There are three major methods of magnetic field orientation: uniaxial magnetic field orientation, rotating magnetic field orientation, and opposed magnetic field orientation.

一軸磁場配向とは、運動が可能な状態にある磁性材料又は磁性材樹脂複合材料に、通常外部から任意の方向に静磁場を掛けて、磁性材料の容易磁化方向を外部静磁場方向に揃えることを言う。この後通常、圧を掛けたり、樹脂成分を固めたりして、一軸磁場配向成形体を作製する。
回転磁場配向とは、運動が可能な状態にある複合磁性材料又は磁性材樹脂複合材料を、通常一つの平面内で回転する外部磁場の中におき、磁性材料の磁化困難方向を一方向に揃える方法である。回転する方法は、外部磁場を回転させる方法、静磁場中で磁性材料を回転させる方法、外部磁場も磁性材料も回転させないが、複数の磁極の強さを同調させて変化させ、あたかも磁場が回転しているがごとく磁性材料が感じるようなシークエンスを組んで磁場を随時印加する方法、さらには上記の方法の組み合わせなどがある。押出成形やロール成形などでは、押出方向に磁極を2以上並べ、磁場の強さ或いは極性を変化させて、複合磁性材料又は磁性材樹脂複合材料が通過するときに回転する磁場を感じるように配置し配向させる方法も、広義の回転磁場配向である。
Uniaxial magnetic field orientation means that a magnetic material or a magnetic material resin composite material that is in a movable state is usually subjected to a static magnetic field from the outside in an arbitrary direction to align the easy magnetization direction of the magnetic material with the external static magnetic field direction. Say. After that, usually, pressure is applied or the resin component is hardened to prepare a uniaxial magnetic field oriented molded product.
Rotating magnetic field orientation means that a composite magnetic material or magnetic material resin composite material that is in a movable state is placed in an external magnetic field that normally rotates in one plane, and the direction in which the magnetic material is difficult to magnetize is aligned in one direction. The method. The method of rotation is a method of rotating an external magnetic field, a method of rotating a magnetic material in a static magnetic field, a method of rotating neither an external magnetic field nor a magnetic material, but the strengths of a plurality of magnetic poles are synchronized and changed to make the magnetic field rotate. There is a method of forming a sequence that makes the magnetic material feel as if it were, and applying a magnetic field at any time, and a combination of the above methods. In extrusion molding and roll molding, two or more magnetic poles are arranged in the extrusion direction, and the strength or polarity of the magnetic field is changed so that the magnetic field that rotates when the composite magnetic material or magnetic material resin composite material passes is felt. The method of orientation is also broadly defined as rotational magnetic field orientation.

対向磁極配向は、同極の磁極を向かい合わせた環境に、複合磁性材料又は磁性材樹脂複合材料を静置するか、回転又は並進運動、或いはそれらの組み合わせで運動させて、磁化困難方向を一方向に揃える方法である。
面内磁気異方性を有する高周波用材料や高周波用磁性材樹脂複合材料を一軸磁場配向すれば、透磁率が1〜50%向上し、回転磁場配向や対向磁極配向を行うと1〜200%向上する。
磁場成形は、磁性材料を充分に磁場配向せしめるため、好ましくは8kA/m以上、さらに好ましくは80kA/m以上、最も好ましくは400kA/m以上の磁場中で行う。磁場配向に必要な磁場の強さと時間は、磁性材料粉体の形状、磁性材樹脂複合材料の場合マトリックスの粘度や磁性材料粉体との親和性により決まる。
In the opposite magnetic pole orientation, the composite magnetic material or the magnetic material resin composite material is allowed to stand in an environment where the magnetic poles of the same poles face each other, or is moved by rotational or translational motion, or a combination thereof, so that the direction in which the magnetization is difficult is set. It is a method of aligning in the direction.
Uniaxial magnetic field orientation of high-frequency materials and high-frequency magnetic material resin composite materials with in-plane magnetic anisotropy improves magnetic permeability by 1 to 50%, and rotational magnetic field orientation and counter-magnetic field orientation of 1 to 200%. improves.
The magnetic field forming is preferably performed in a magnetic field of 8 kA / m or more, more preferably 80 kA / m or more, and most preferably 400 kA / m or more in order to sufficiently align the magnetic material with the magnetic field. The strength and time of the magnetic field required for magnetic field orientation are determined by the shape of the magnetic material powder, the viscosity of the matrix in the case of the magnetic material resin composite material, and the affinity with the magnetic material powder.

一般に強い磁場を用いるほど配向時間が短くなるので、成形時間が短くマトリックス樹脂の粘度の大きいロール成形やカレンダー成形における磁場配向には、400kA/m以上の磁場を用いた方が望ましい。 In general, the stronger the magnetic field is used, the shorter the orientation time is. Therefore, it is desirable to use a magnetic field of 400 kA / m or more for magnetic field orientation in roll molding or calendar molding in which the molding time is short and the viscosity of the matrix resin is high.

以下、実施例などにより本発明を更に具体的に説明するが、本発明はこれらの実施例などにより何ら限定されるものではない。例えば、本発明は、実施例により0.005〜50GHzの範囲における電磁気特性を詳細に開示して、本発明の磁性材料が優れた「目的の機能」を有することを実証しているが、本発明の材料はこの範囲に限定して使用されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the present invention is not limited to these Examples and the like. For example, the present invention discloses in detail the electromagnetic characteristics in the range of 0.005 to 50 GHz according to Examples, and demonstrates that the magnetic material of the present invention has an excellent "function of interest". The materials of the invention are not limited to this range.

[実施例1]
高周波溶解法で作製したインゴットを焼鈍することにより、Nd10.5Fe89.5組成の原料合金を調製した。
この原料合金をジョークラッシャーにより粉砕し、次いでアルゴン雰囲気中カッターミルでさらに粉砕した後、平均粒径約60μmの粉体を得た。このNd−Fe原料合金粉体を横型管状炉に仕込み、420℃において、アンモニア分圧0.35atm、水素ガス分圧0.65atmの混合気流中で1時間加熱処理し、平均粒径約30μmのNd9.1Fe77.313.2組成に調整した。この希土類−鉄−窒素系磁性材料の磁化の値は150emu/g、磁気異方性比は0.86であった。また、この磁性材料は面内磁気異方性の材料であった。
続いて、上記で得られた希土類−鉄−窒素系磁性材料をアルゴン雰囲気中にてジェットミル粉砕して、平均粒径約2μmのNd−Fe−N系磁性材料を作製した。これに溶解性パラメータの値が13.6のポリアミドセグメントを有するポリアミドエステルエーテル樹脂を9.9質量%配合し、150℃でニーダー混錬し、さらに粉砕・分級して10μm以上2mm以下の粉体状の磁性材樹脂複合材料としたのち、カレンダー成形することにより、厚さ1mmの磁性材樹脂複合材料を作製した。作製された磁性材樹脂複合材料の密度は4.6で磁性材料の体積分率は55体積%であった。
本実施例で得られた希土類−鉄−窒素系磁性材樹脂複合材料の0.005〜100MHzにおける比透磁率の実数項の値はほぼ3.4〜3.5で一定であり、複素比透磁率の虚数項の値は0〜0.7と小さく、この領域の高周波増幅材料として使用できる。10GHzにおける複素比透磁率の実数項と虚数項の値はそれぞれ、1.7と0.6であり、50GHzにおける複素比透磁率の虚数項の値は1.2、その周波数における最大吸収エネルギー係数は15GHzに達した。よって、10〜50GHzの領域で電磁ノイズ吸収材料として好適な高周波用複合磁性材料であることがわかった。また、10GHzでの複素比誘電率の実数項と虚数項の値はそれぞれ、25と4であり、遠方界からの電磁波の吸収にも効果を発揮する電磁波吸収材料でもあることがわかった。
また、三端子法で測定した、このシートの体積抵抗率は9×10Ωcmであり、極めて絶縁性が良好で孤立分散性に優れた磁性材樹脂複合材料であり、好適な高周波用磁性材樹脂複合材料であることがわかった。本磁性材樹脂複合材料をX線回折法により解析した結果、主に菱面体晶を示す回折線が認められた。
[Example 1]
A raw material alloy having an Nd 10.5 Fe 89.5 composition was prepared by annealing the ingot produced by the high-frequency melting method.
This raw material alloy was pulverized by a jaw crusher and then further pulverized by a cutter mill in an argon atmosphere to obtain a powder having an average particle size of about 60 μm. This Nd—Fe raw material alloy powder was charged into a horizontal tube furnace and heat-treated at 420 ° C. in a mixed air stream having a partial pressure of ammonia of 0.35 atm and a partial pressure of hydrogen gas of 0.65 atm for 1 hour to obtain an average particle size of about 30 μm. The composition was adjusted to Nd 9.1 Fe 77.3 N 13.2 . The magnetization value of this rare earth-iron-nitrogen magnetic material was 150 emu / g, and the magnetic anisotropy ratio was 0.86. Moreover, this magnetic material was a material of in-plane magnetic anisotropy.
Subsequently, the rare earth-iron-nitrogen-based magnetic material obtained above was jet-milled in an argon atmosphere to prepare an Nd-Fe-N-based magnetic material having an average particle size of about 2 μm. A polyamide ester ether resin having a polyamide segment having a solubility parameter value of 13.6 was blended therein in an amount of 9.9% by mass, kneaded at 150 ° C., further pulverized and classified to form a powder of 10 μm or more and 2 mm or less. A magnetic material resin composite material having a thickness of 1 mm was produced by forming the shape of the magnetic material resin composite material and then performing calendar molding. The density of the produced magnetic material resin composite material was 4.6, and the volume fraction of the magnetic material was 55% by volume.
The value of the real number term of the relative magnetic permeability at 0.005 to 100 MHz of the rare earth-iron-nitrogen magnetic material resin composite material obtained in this example is almost constant at 3.4 to 3.5, and is a complex relative permeability. The value of the imaginary term of magnetic permeability is as small as 0 to 0.7, and it can be used as a high-frequency amplification material in this region. The values of the real and imaginary terms of complex relative permeability at 10 GHz are 1.7 and 0.6, respectively, the value of the imaginary term of complex relative permeability at 50 GHz is 1.2, and the maximum absorption energy coefficient at that frequency. Reached 15 GHz. Therefore, it was found that the composite magnetic material for high frequency is suitable as an electromagnetic noise absorbing material in the region of 10 to 50 GHz. Further, the values of the real number term and the imaginary number term of the complex relative permittivity at 10 GHz are 25 and 4, respectively, and it was found that the material is also an electromagnetic wave absorbing material that is effective in absorbing electromagnetic waves from a distant field.
Was also measured in the three-terminal method, the volume resistivity of this sheet was 9 × 10 7 Ωcm, quite magnetic material-resin composite material insulation was excellent good isolated dispersible, suitable high frequency magnetic material It turned out to be a resin composite material. As a result of analyzing this magnetic material resin composite material by an X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were observed.

[実施例2]
実施例1と同様な方法で、平均粒径約2μmのNd9.1Fe77.313.2系磁性材料を作製した。
本実施例で得られたNd−Fe−N系磁性材料50質量%と、平均粒径3.5μmのカルボニル鉄粉50質量%を混合した高周波用複合磁性材料を用いること以外、実施例1と同様にして、厚さ1mmの磁性材樹脂複合材料を作製した。作製された磁性材樹脂複合材料の密度は4.6で磁性材料の体積分率は55体積%であった。
本実施例で得られた希土類−鉄−窒素系磁性材樹脂複合材料の10GHzにおける複素比透磁率の実数項と虚数項の値はそれぞれ、1.8と1.3であり、50GHzにおける複素比透磁率の虚数項の値は0.3であった。実施例1に比べて、50GHzの複素比透磁率の虚数項の値に劣るものの、10GHzの値は非常に優れていた。また、10GHzでの複素比誘電率の実数項と虚数項の値はそれぞれ、25と7であり、遠方界からの電磁波の吸収にも効果を発揮する電磁波吸収材料であることもわかった。
また、三端子法で測定した、このシートの体積抵抗率は4×10Ωcmであり、極めて絶縁性が良好で孤立分散性に優れた磁性材樹脂複合材料であり、好適な高周波用磁性材樹脂複合材料であることがわかった。
[Example 2]
An Nd 9.1 Fe 77.3 N 13.2 series magnetic material having an average particle size of about 2 μm was prepared in the same manner as in Example 1.
Except for using a high-frequency composite magnetic material obtained by mixing 50% by mass of the Nd-Fe-N-based magnetic material obtained in this example and 50% by mass of carbonyl iron powder having an average particle size of 3.5 μm, the same as in Example 1. In the same manner, a magnetic material resin composite material having a thickness of 1 mm was produced. The density of the produced magnetic material resin composite material was 4.6, and the volume fraction of the magnetic material was 55% by volume.
The values of the real and imaginary terms of the complex relative magnetic permeability of the rare earth-iron-nitrogen magnetic material resin composite material obtained in this example at 10 GHz are 1.8 and 1.3, respectively, and the complex ratio at 50 GHz. The value of the imaginary term of magnetic permeability was 0.3. Compared with Example 1, the value of 10 GHz was very excellent, although it was inferior to the value of the imaginary term of the complex relative permeability of 50 GHz. Further, the values of the real number term and the imaginary number term of the complex relative permittivity at 10 GHz are 25 and 7, respectively, and it was found that the electromagnetic wave absorbing material is also effective in absorbing electromagnetic waves from a distant field.
Further, the volume resistivity of this sheet measured by the three-terminal method is 4 × 10 9 Ωcm, which is a magnetic material resin composite material having extremely good insulation and excellent isolation and dispersibility, and is a suitable magnetic material for high frequency. It turned out to be a resin composite material.

[比較例1]
実施例1で希土類−鉄−窒素系磁性材料の代わりに、一般に高周波用磁性材料として好適と言われる軟磁性フェライト粉体を用いた厚さ1mmのシートを作製した。10GHzでの複素比透磁率の実数項と虚数項の値はそれぞれ、0.5と0.4でいずれも実施例1や2に及ばなかった。50GHzでの複素比透磁率の虚数項の値はほぼ0〜0.1であり、超高周波領域で使用できるものでは無いことがわかった。10GHzでの複素比誘電率の実数項と虚数項の値はそれぞれ、2と15であった。
比較例1の酸化物磁性材料の透磁率と誘電率はともに、超高周波領域で渦電流が顕著な金属材料と比べると、高周波用磁性材料として使用可能な値を示してはいるが、本発明の実施例1や2に及ばないことがわかった。
[Comparative Example 1]
In Example 1, a sheet having a thickness of 1 mm was produced using soft magnetic ferrite powder, which is generally said to be suitable as a magnetic material for high frequencies, instead of the rare earth-iron-nitrogen magnetic material. The values of the real and imaginary terms of the complex relative permeability at 10 GHz were 0.5 and 0.4, respectively, which did not reach those of Examples 1 and 2, respectively. The value of the imaginary term of the complex relative permeability at 50 GHz was approximately 0 to 0.1, and it was found that the value could not be used in the ultra-high frequency region. The values of the real and imaginary terms of the complex relative permittivity at 10 GHz were 2 and 15, respectively.
Although both the magnetic permeability and the dielectric constant of the oxide magnetic material of Comparative Example 1 show values that can be used as a high-frequency magnetic material as compared with a metal material having a remarkable eddy current in the ultra-high frequency region, the present invention It was found that it was not as good as Examples 1 and 2.

[実施例3〜5]
実施例1とジェットミル条件(粉砕圧と給粉量)を変える以外は全て同様にして、様々な円形度の3〜4μmの平均粒径を有するNd−Fe−N粉体を作製した。
各実施例における粉砕圧及び給粉量はそれぞれ、実施例3では1.0MPa及び300g/h、実施例4では1.2MPa及び300g/h、実施例5では1.5MPa及び100g/hであった。得られた粉体の円形度は、実施例3では0.587、実施例4では0.761、実施例5では0.737であった。
これらの磁性粉体にエポキシ樹脂を配合し、150℃でキュア処理して約54体積%の磁性材樹脂複合材料を作製した。
これら実施例の原料粉体の円形度(φ)と10GHzでの複素比透磁率の虚数項(μ”)の値は以下のとおりである。
実施例3 φ=0.587、μ”=0.78
実施例4 φ=0.737、μ”=1.37
実施例5 φ=0.761、μ”=1.54
円形度が0.6より低いと複素比透磁率の虚数項(μ”)の値は1を下回り、0.7より高いと1を上回ることがわかった。
[Examples 3 to 5]
Nd-Fe-N powders having an average particle size of 3 to 4 μm with various circularities were prepared in the same manner as in Example 1 except that the jet mill conditions (crushing pressure and amount of powder supplied) were changed.
The crushing pressure and the amount of powder supplied in each example were 1.0 MPa and 300 g / h in Example 3, 1.2 MPa and 300 g / h in Example 4, and 1.5 MPa and 100 g / h in Example 5, respectively. It was. The circularity of the obtained powder was 0.587 in Example 3, 0.761 in Example 4, and 0.737 in Example 5.
An epoxy resin was blended with these magnetic powders and cured at 150 ° C. to prepare a magnetic resin composite material of about 54% by volume.
The values of the circularity (φ) of the raw material powders of these examples and the imaginary term (μ ″) of the complex relative magnetic permeability at 10 GHz are as follows.
Example 3 φ = 0.587, μ ”= 0.78
Example 4 φ = 0.737, μ ”= 1.37
Example 5 φ = 0.761, μ ”= 1.54
It was found that when the circularity was lower than 0.6, the value of the imaginary term (μ ”) of the complex relative permeability was less than 1, and when it was higher than 0.7, it was higher than 1.

[実施例6〜9]
各種エラストマー樹脂を溶媒に溶かした溶液と、実施例1で作製した希土類−鉄−窒素系磁性材料を混合し、溶媒をキャストした後、熱プレスで圧縮成形し、磁性材樹脂複合材料を作製した。この時の磁性粉体の体積分率は約30体積%となるように調整した。
各種樹脂のセグメントで溶解性パラメータが高い方の溶解性パラメータとともに10GHzでの複素比透磁率の虚数項(μ”)の値の測定結果を示すと以下のとおりとなる。なお、溶媒名に付された括弧書きが溶解性パラメータ(SP値)である。
実施例6 ポリアミド(13.6)−ポリエーテル共重合体 μ”=0.72
実施例7 ポリエステル(10.7)−ポリエーテル共重合体 μ”=0.41
実施例8 ポリウレタン(10.0)−ポリエーテル共重合体 μ”=0.38
実施例9 シリコンゴム(7.6) μ”=0.12
各種樹脂において、溶解性パラメータが大きいセグメントを有する樹脂ほど、10GHzでの複素比透磁率の虚数項(μ”)の値が大きく、溶解性パラメータが10以上であると0.3を超えた。
[Examples 6 to 9]
A solution prepared by dissolving various elastomer resins in a solvent was mixed with the rare earth-iron-nitrogen magnetic material prepared in Example 1, the solvent was cast, and then compression molding was performed by a hot press to prepare a magnetic resin composite material. .. The volume fraction of the magnetic powder at this time was adjusted to be about 30% by volume.
The measurement results of the imaginary term (μ ”) of the complex relative magnetic permeability at 10 GHz are shown below together with the solubility parameter with the higher solubility parameter in the various resin segments. The brackets shown are the solubility parameters (SP values).
Example 6 Polyamide (13.6) -polyether copolymer μ "= 0.72
Example 7 Polyester (10.7) -polyether copolymer μ "= 0.41
Example 8 Polyurethane (10.0) -polyether copolymer μ "= 0.38
Example 9 Silicon rubber (7.6) μ "= 0.12
Among various resins, the resin having a segment having a larger solubility parameter had a larger imaginary term (μ ”) of complex relative permeability at 10 GHz, and when the solubility parameter was 10 or more, it exceeded 0.3.

[実施例10〜12、比較例2]
実施例1で作製した希土類−鉄−窒素系磁性材料に、以下に挙げるナノ粉体をそれぞれ添加し、それらを仕込んだパイレックスガラス容器(パイレックスは登録商標)を100回シェイキングすることにより、希土類−鉄−窒素系磁性材料の体積分率が70体積%である複合磁性材料を作製した。
続いて、この複合磁性材料を1GPaの加圧力で圧縮成形した高周波用複合磁性材料の、10GHzでの複素比透磁率の虚数項(μ”)の値を以下に示した。
実施例10 ナノフェライト粉体(粒径5〜50nm) μ”=0.91
実施例11 ナノシリカ粉体(平均粒径約10nm) μ”=1.73
実施例12 ナノアルミナ粉体(平均粒径約50nm) μ”=1.58
何も添加せずに、圧縮成形した希土類−鉄−窒素磁性材料(比較例2)の10GHzでの複素比透磁率の虚数項(μ”)の値は0.2であった。
これらの結果から、比較例2のように希土類−鉄−窒素系磁性材料のみを固化しても、超高周波領域では、渦電流損失により複素比透磁率の絶対値自体が低下してしまうため、本発明の具体的な一実施態様である実施例10〜12に記載の複合磁性材料のような優れた効果は得られず、透磁率が消失するような金属系磁性材料よりは良い結果を示すとしても、本発明のような優れた高周波用磁性材料にはならないことがわかった。
[Examples 10 to 12, Comparative Example 2]
The rare earth-iron-nitrogen-based magnetic material prepared in Example 1 was added with the nanopowder listed below, and the Pyrex glass container (Pyrex is a registered trademark) containing them was shaken 100 times to obtain the rare earth-. A composite magnetic material having a volume fraction of 70% by volume of the iron-nitrogen magnetic material was produced.
Subsequently, the value of the imaginary term (μ ") of the complex relative magnetic permeability at 10 GHz of the high frequency composite magnetic material obtained by compression molding this composite magnetic material with a pressing force of 1 GPa is shown below.
Example 10 Nanoferrite powder (particle size 5 to 50 nm) μ ”= 0.91
Example 11 Nanosilica powder (average particle size about 10 nm) μ ”= 1.73
Example 12 Nanoalumina powder (average particle size about 50 nm) μ ”= 1.58
The value of the imaginary term (μ ”) of the complex relative permeability at 10 GHz of the rare earth-iron-nitrogen magnetic material (Comparative Example 2) that was compression-molded without adding anything was 0.2.
From these results, even if only the rare earth-iron-nitrogen magnetic material is solidified as in Comparative Example 2, the absolute value of the complex relative permeability itself decreases due to the eddy current loss in the ultra-high frequency region. It does not have the excellent effect of the composite magnetic material according to Examples 10 to 12, which is a specific embodiment of the present invention, and shows better results than the metal-based magnetic material in which the magnetic permeability disappears. Even so, it was found that it does not become an excellent magnetic material for high frequency as in the present invention.

本発明は、主として動力機器や情報通信関連機器に用いられる、高周波領域で使用されるトランス、ヘッド、インダクタ、リアクトル、ヨーク、コア(磁芯)など、アンテナ、マイクロ波素子、磁歪素子、磁気音響素子及び磁気記録素子など、ホール素子、磁気センサ、電流センサ、回転センサ、電子コンパスなどの磁場を介したセンサ類に用いられる磁性材料、中でも無線給電(ワイヤレス電力伝送、非接触電力伝送とも呼ばれる)システムに使用されるコイルのコア、アンテナのコアなど、さらに電磁ノイズ吸収材料、電磁波吸収材料や磁気シールド用材料などの不要な電磁波干渉による障害を抑制する磁性材料、ノイズ除去用インダクタなどのインダクタ素子用材料、RFID(Radio Frequency Identification)タグ用材料やノイズフィルタ用材料などの高周波領域で信号からノイズを除去する磁性材料などの高周波用複合磁性材料に関する。 The present invention relates to transformers, heads, inductors, reactors, yokes, cores (magnetic cores), antennas, microwave elements, magnetic distortion elements, magnetic acoustics, etc. used in the high frequency region, which are mainly used in power equipment and information and communication related equipment. Magnetic materials used for magnetic materials such as Hall elements, magnetic sensors, current sensors, rotation sensors, electronic compasses, etc., such as elements and magnetic recording elements, especially wireless power supply (also called wireless power transmission or non-contact power transmission) Coil cores and antenna cores used in systems, as well as electromagnetic noise absorbing materials, magnetic materials such as electromagnetic wave absorbing materials and magnetic shielding materials that suppress obstacles due to unnecessary electromagnetic interference, and inductor elements such as noise removing inductors. The present invention relates to a composite magnetic material for high frequency, such as a material for use, a material for RFID (Radio Frequency Identification) tags, a material for noise filter, and a magnetic material for removing noise from a signal in a high frequency region.

Claims (21)

主相の結晶構造が、六方晶、菱面体晶、及び正方晶の中から選択される少なくとも1種である希土類−鉄−窒素系磁性材料を含み、0.1〜2000μmの平均粒径を有する粉体である、高周波用複合磁性材料。 The crystal structure of the main phase contains at least one rare earth-iron-nitrogen magnetic material selected from hexagonal, rhombohedral, and tetragonal, and has an average particle size of 0.1 to 2000 μm. A composite magnetic material for high frequencies that is a powder. 前記希土類−鉄−窒素系磁性材料が下記の一般式で表される、請求項1に記載の高周波用複合磁性材料。
RxFe(100−x−y) (1)
(但し式中、x、yは原子%で、3≦x≦30、1≦y≦30であり、RはY、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Tm、Lu、Smの中から選択される少なくとも1種であって、Smを含む場合は、R成分全体に対して、Smが50原子%未満である。)
The composite magnetic material for high frequencies according to claim 1, wherein the rare earth-iron-nitrogen magnetic material is represented by the following general formula.
RxFe (100-x-y) N y (1)
(However, in the formula, x and y are atomic%, 3 ≦ x ≦ 30, 1 ≦ y ≦ 30, and R is Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu. , At least one selected from Sm, and when Sm is contained, Sm is less than 50 atomic% with respect to the entire R component.)
前記希土類−鉄−窒素系磁性材料を構成する鉄の0.01〜50原子%が、Co、Ni、B、Al、Ti、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、In、Hf、Ta、W、Ru、Pd、Re、Os、Ir、Ag、Ptの中から選択される少なくとも1種で置き換えられている、請求項1又は2のいずれかに記載の高周波用複合磁性材料。 0.01 to 50 atomic% of iron constituting the rare earth-iron-nitrogen magnetic material is Co, Ni, B, Al, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo. , In, Hf, Ta, W, Ru, Pd, Re, Os, Ir, Ag, Pt, which is replaced by at least one selected from, according to any one of claims 1 or 2. Composite magnetic material. 前記希土類−鉄−窒素系磁性材料を構成する窒素の50原子%未満が、H、C、P,Si,Sから選択される少なくとも1種で置き換えられている、請求項1〜3のいずれかに記載の高周波用複合磁性材料。 Any of claims 1 to 3, wherein less than 50 atomic% of the nitrogen constituting the rare earth-iron-nitrogen magnetic material is replaced with at least one selected from H, C, P, Si, and S. The composite magnetic material for high frequency described in. 前記希土類−鉄−窒素系磁性材料の結晶磁気異方性が面内磁気異方性である、請求項1〜4のいずれかに記載の高周波用複合磁性材料。 The composite magnetic material for high frequency according to any one of claims 1 to 4, wherein the magnetocrystalline anisotropy of the rare earth-iron-nitrogen magnetic material is in-plane magnetic anisotropy. 前記希土類−鉄−窒素系磁性材料の円形度が、0.6〜1である、請求項1〜5のいずれかに記載の高周波用複合磁性材料。 The composite magnetic material for high frequencies according to any one of claims 1 to 5, wherein the rare earth-iron-nitrogen magnetic material has a circularity of 0.6 to 1. 前記希土類−鉄−窒素系磁性材料を1〜99.999質量%で、セラミックス材料を0.001〜99質量%で含む、請求項1〜6のいずれかに記載の高周波用複合磁性材料。 The composite magnetic material for high frequency according to any one of claims 1 to 6, wherein the rare earth-iron-nitrogen-based magnetic material is contained in an amount of 1 to 99.999% by mass and a ceramic material is contained in an amount of 0.001 to 99% by mass. 前記セラミックス材料が、1nm以上1000nm未満の平均粒径を有する粉体である、請求項7に記載の高周波用複合磁性材料。 The composite magnetic material for high frequencies according to claim 7, wherein the ceramic material is a powder having an average particle size of 1 nm or more and less than 1000 nm. 前記希土類−鉄−窒素系磁性材料を1〜99.999質量%で、Fe、Ni、Co、Fe−Ni系合金、Fe−Ni−Si系合金、センダスト、Fe−Si−Al系合金、Fe−Cu−Nb−Si系合金、モルファス合金、マグネタイト、Ni−フェライト、Zn−フェライト、Mn−Znフェライト、Ni−Znフェライトの中から選択される少なくとも1種を0.001〜99質量%で含む、請求項1〜6のいずれかに記載の高周波用複合磁性材料。 Fe, Ni, Co, Fe-Ni alloy, Fe-Ni-Si alloy, Sendust, Fe-Si-Al alloy, Fe in 1 to 99.999% by mass of the rare earth-iron-nitrogen magnetic material. Containing at least one selected from −Cu—Nb—Si based alloy, morphus alloy, magnetite, Ni—ferrite, Zn-ferrite, Mn—Zn ferrite, and Ni—Zn ferrite in 0.001 to 99% by mass. , The composite magnetic material for high frequency according to any one of claims 1 to 6. 前記Feがカルボニル鉄粉である、請求項9に記載の高周波用複合磁性材料。 The composite magnetic material for high frequencies according to claim 9, wherein Fe is a carbonyl iron powder. 磁場配向している、請求項1〜10のいずれかに記載の高周波用複合材料。 The composite material for high frequencies according to any one of claims 1 to 10, which is magnetically oriented. 請求項1〜11のいずれかに記載の高周波用複合磁性材料を5〜99.9質量%で、樹脂を0.1〜95質量%で含有する、高周波用磁性材樹脂複合材料。 A high-frequency magnetic material resin composite material containing the high-frequency composite magnetic material according to any one of claims 1 to 11 in an amount of 5 to 99.9% by mass and a resin in an amount of 0.1 to 95% by mass. 前記樹脂が、溶解性パラメータ10〜15のセグメントを含む、請求項12に記載の高周波用磁性材樹脂複合材料。 The high-frequency magnetic material resin composite material according to claim 12, wherein the resin contains a segment having a solubility parameter of 10 to 15. 前記樹脂が、ポリアミドエステルエーテル樹脂である請求項12又は13に記載の高周波用磁性材樹脂複合材料。 The high-frequency magnetic material resin composite material according to claim 12 or 13, wherein the resin is a polyamide ester ether resin. 請求項1〜11のいずれかに記載の高周波用複合磁性材料を含む、電磁波吸収材料。 An electromagnetic wave absorbing material including the high-frequency composite magnetic material according to any one of claims 1 to 11. 請求項1〜11のいずれかに記載の高周波用複合磁性材料を含む、電磁ノイズ吸収材料。 An electromagnetic noise absorbing material including the high frequency composite magnetic material according to any one of claims 1 to 11. 請求項1〜11のいずれかに記載の高周波用複合磁性材料を含む、RFIDタグ用材料。 A material for RFID tags, which comprises the composite magnetic material for high frequencies according to any one of claims 1 to 11. 請求項1〜11のいずれかに記載の高周波用複合磁性材料を含む、無線給電システム用のコイルのコア。 A coil core for a wireless power supply system, comprising the composite magnetic material for high frequencies according to any one of claims 1-11. R成分及びFe成分を主成分とする合金を、アンモニアガス又は窒素ガスを含む窒化雰囲気下で、200〜650℃の範囲で熱処理することによって前記希土類−鉄−窒素系磁性材料を得る、請求項1に記載の高周波用複合磁性材料の製造方法。 The rare earth-iron-nitrogen-based magnetic material is obtained by heat-treating an alloy containing R component and Fe component as main components in a nitrided atmosphere containing ammonia gas or nitrogen gas in the range of 200 to 650 ° C. The method for producing a composite magnetic material for high frequency according to 1. 請求項19に記載の製造方法で得られる前記希土類−鉄−窒素系磁性材料、又はこの希土類−鉄−窒素系磁性材料をさらに微粉砕工程を経て得られる希土類−鉄−窒素系磁性材料と、1nm以上1000nm未満の平均粒径を有する粉体のセラミックス材料とを混合することにより製造される、請求項8に記載の高周波用複合磁性材料の製造方法。 The rare earth-iron-nitrogen magnetic material obtained by the production method according to claim 19, or the rare earth-iron-nitrogen magnetic material obtained by further finely pulverizing the rare earth-iron-nitrogen magnetic material. The method for producing a high-frequency composite magnetic material according to claim 8, which is produced by mixing a powdered ceramic material having an average particle size of 1 nm or more and less than 1000 nm. 請求項19又は20に記載の製造方法で得られる希土類−鉄−窒素系磁性材料又は請求項19又は20に記載の製造方法で製造される高周波用複合磁性材料を、溶解性パラメータ10〜15のセグメントを含む樹脂と混錬して、圧縮成形、射出成形、及びカレンダー成形の中から選択される少なくとも1種により製造される、請求項12に記載の高周波用磁性材樹脂複合材料の製造法。 The rare earth-iron-nitrogen-based magnetic material obtained by the production method according to claim 19 or 20 or the high-frequency composite magnetic material produced by the production method according to claim 19 or 20 is subjected to solubility parameters 10 to 15. The method for producing a magnetic material resin composite material for high frequency according to claim 12, which is produced by kneading with a resin containing segments and by at least one selected from compression molding, injection molding, and calendar molding.
JP2019061749A 2019-03-27 2019-03-27 Composite magnetic material for high frequency Pending JP2020161726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061749A JP2020161726A (en) 2019-03-27 2019-03-27 Composite magnetic material for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061749A JP2020161726A (en) 2019-03-27 2019-03-27 Composite magnetic material for high frequency

Publications (1)

Publication Number Publication Date
JP2020161726A true JP2020161726A (en) 2020-10-01

Family

ID=72639933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061749A Pending JP2020161726A (en) 2019-03-27 2019-03-27 Composite magnetic material for high frequency

Country Status (1)

Country Link
JP (1) JP2020161726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363987A (en) * 2020-03-26 2020-07-03 西安工业大学 Amorphous alloy with ultrahigh initial crystallization temperature and preparation method thereof
WO2022009956A1 (en) * 2020-07-10 2022-01-13 東洋インキScホールディングス株式会社 Magnetic resin composition for injection molding, and injection molded body for magnetic shields
WO2022075191A1 (en) * 2020-10-05 2022-04-14 住友ベークライト株式会社 Resin molding material, molded body and method for producing said molded body
WO2023071226A1 (en) * 2021-10-26 2023-05-04 横店集团东磁股份有限公司 Rare earth ion doped soft magnetic alloy, soft magnetic composite material and preparation method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363987A (en) * 2020-03-26 2020-07-03 西安工业大学 Amorphous alloy with ultrahigh initial crystallization temperature and preparation method thereof
CN111363987B (en) * 2020-03-26 2021-06-25 西安工业大学 Amorphous alloy with ultrahigh initial crystallization temperature and preparation method thereof
WO2022009956A1 (en) * 2020-07-10 2022-01-13 東洋インキScホールディングス株式会社 Magnetic resin composition for injection molding, and injection molded body for magnetic shields
JP2022016388A (en) * 2020-07-10 2022-01-21 東洋インキScホールディングス株式会社 Magnetic resin composition for injection molding and injection molded product for magnetic shield
WO2022075191A1 (en) * 2020-10-05 2022-04-14 住友ベークライト株式会社 Resin molding material, molded body and method for producing said molded body
CN116348516A (en) * 2020-10-05 2023-06-27 住友电木株式会社 Resin molding material, molded article, and method for producing the molded article
WO2023071226A1 (en) * 2021-10-26 2023-05-04 横店集团东磁股份有限公司 Rare earth ion doped soft magnetic alloy, soft magnetic composite material and preparation method therefor

Similar Documents

Publication Publication Date Title
JP5669389B2 (en) Magnetic material for high frequency and its manufacturing method
JP2020161726A (en) Composite magnetic material for high frequency
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
JP5831866B2 (en) Ferromagnetic particle powder and method for producing the same, anisotropic magnet, bonded magnet, and compacted magnet
CN101669180A (en) Magnetic material for high frequency wave and manufacture method thereof
CN108695033B (en) R-T-B sintered magnet
JPS6063304A (en) Production of alloy powder for rare earth-boron-iron permanent magnet
JP2000114017A (en) Permanent magnet and material thereof
JP2004253697A (en) Permanent magnet and material thereof
JP2003193208A (en) Magnet material and production method therefor
JP3560387B2 (en) Magnetic material and its manufacturing method
WO2022202760A1 (en) Magnetic material for high frequency use, and method for producing same
JPWO2022202760A5 (en)
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2007077488A (en) Amorphous soft magnetic alloy powder
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH08144024A (en) Magnetic material having stable coercive force and its production
JP2001313206A (en) R-t-n anisotropic magnetic powder, its manufacturing method, and r-t-n anisotropic bonded magnet
Jang et al. Fabrication of ultrafine Nd-Fe-B powder by a modified reduction-diffusion process
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material
JP3157302B2 (en) Nitride magnetic materials
JPH03160705A (en) Bonded magnet