JP2020161271A - Manufacturing method of surge protective element - Google Patents

Manufacturing method of surge protective element Download PDF

Info

Publication number
JP2020161271A
JP2020161271A JP2019057834A JP2019057834A JP2020161271A JP 2020161271 A JP2020161271 A JP 2020161271A JP 2019057834 A JP2019057834 A JP 2019057834A JP 2019057834 A JP2019057834 A JP 2019057834A JP 2020161271 A JP2020161271 A JP 2020161271A
Authority
JP
Japan
Prior art keywords
fuse member
pair
sealing electrodes
manufacturing
protective element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019057834A
Other languages
Japanese (ja)
Inventor
黛 良享
Yoshitaka Mayuzumi
良享 黛
酒井 信智
Nobutomo Sakai
信智 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019057834A priority Critical patent/JP2020161271A/en
Publication of JP2020161271A publication Critical patent/JP2020161271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

To provide a manufacturing method of a surge protective element, which can produce an extremely narrow gap in a low cost.SOLUTION: A manufacturing method of a surge protective element, includes: a fuse member attachment step of connecting a pair of sealing electrodes with a fuse member by fixing both ends of a fuse member 4 to an opposite surface of both of the pair of sealing electrodes 3; an electrode insertion step of inserting the pair of sealing electrodes into an insulation pipe 2 in a state where a tensile force is applied to the fuse member in the pair of sealing electrodes connected with the fuse member; an electrode jointing step of blocking both end open parts of the insulation pipe with the pair of sealing electrodes in the state where it is connected with the fuse member to seal a discharge control gas in an inner part, and jointing the insulation pipe and the pair of sealing electrodes; and a fuse member fusing step of fusing the fuse member by heating the fuse member after the electrode jointing step.SELECTED DRAWING: Figure 1

Description

本発明は、落雷等で発生するサージから様々な機器を保護し、事故を未然に防ぐのに使用するサージ防護素子の製造方法に関する。 The present invention relates to a method for manufacturing a surge protective element used to protect various devices from a surge generated by a lightning strike or the like and prevent an accident.

電話機、ファクシミリ、モデム等の通信機器用の電子機器が通信線との接続する部分、電源線、アンテナ或いはCRT、液晶テレビおよびプラズマテレビ等の画像表示駆動回路等、雷サージや静電気等の異常電圧(サージ電圧)による電撃を受けやすい部分には、異常電圧によって電子機器やこの機器を搭載するプリント基板の熱的損傷又は発火等による破壊を防止するために、サージ防護素子が接続されている。 Abnormal voltage such as lightning surge and static electricity in parts where electronic devices for communication devices such as telephones, facsimiles and modems connect to communication lines, power lines, antennas or CRTs, image display drive circuits such as LCD TVs and plasma TVs, etc. A surge protective element is connected to a portion susceptible to electric shock due to (surge voltage) in order to prevent thermal damage or ignition of an electronic device or a printed substrate on which the device is mounted due to an abnormal voltage.

従来、例えば特許文献1には、ガラス管内で対向する金属部材の間に導電被覆した部材を挟んだマイクロギャップ式サージ防護素子が記載されている。このマイクロギャップ式サージ防護素子では、導電被覆した部材の中央に数μm〜数十μmのスリット(ギャップ)を設け、規定の電圧以下では対向する金属部材間に電流が流れない構造となっている。そして、設定した電圧を超えると、スリット間にアーク放電が発生し、対向する金属部材間に電流が流れるようになっている。 Conventionally, for example, Patent Document 1 describes a microgap type surge protective element in which a conductively coated member is sandwiched between opposing metal members in a glass tube. This microgap type surge protection element has a structure in which a slit (gap) of several μm to several tens of μm is provided in the center of the conductively coated member so that current does not flow between the opposing metal members below a specified voltage. .. When the voltage exceeds the set voltage, an arc discharge is generated between the slits, and a current flows between the opposing metal members.

このサージ防護素子は、ガラス管のガラス軟化による形状変化能と、金属との接合特性とを利用したデバイスであり、量産性にも優れていることから幅広い分野で活用されている。
また、特許文献2には、セラミックス又はガラス等で形成された円筒体と、電気絶縁性のリング状スペーサを介在させることにより所定距離の空間を隔てて対峙する一対の電極とを備えたサージ防護素子が記載されている。このようなサージ防護素子のように、対向電極をアルミナ等のセラミックス製円筒体で封止したサージ防護素子はアレスタと呼ばれている。
This surge protection element is a device that utilizes the shape-changing ability of a glass tube due to glass softening and the bonding characteristics with a metal, and is used in a wide range of fields because of its excellent mass productivity.
Further, Patent Document 2 includes surge protection provided with a cylindrical body made of ceramics, glass, or the like and a pair of electrodes facing each other with a space of a predetermined distance interposed therebetween by interposing an electrically insulating ring-shaped spacer. The elements are described. Like such a surge protective element, a surge protective element in which the counter electrode is sealed with a ceramic cylinder such as alumina is called an arrester.

特公昭63−57918号公報Special Publication No. 63-57918 特開昭63−318085号公報Japanese Unexamined Patent Publication No. 63-318805

上記従来の技術には、以下の課題が残されている。
すなわち、ガラス被覆型マイクロギャップ式サージ防護素子は、ガラスと金属部材との接合性が良好であり、ガスの封止性や、大気や水分の遮断性等の優れた信頼性を有しているが、マイクロギャップを構成するスリット幅が狭いと共に、マイクロギャップ周辺を形成している導電性被覆の厚さが数十μmと薄いため、サージ耐量は1500A程度が限界であった。また、導電性被覆の成膜工程やマイクロギャップを形成するためのレーザ加工工程が必要であり、工程が複雑になると共に作製に時間が掛かり、高コスト化してしまう不都合があった。
The following problems remain in the above-mentioned conventional technique.
That is, the glass-coated microgap type surge protection element has good bondability between glass and a metal member, and has excellent reliability such as gas sealing property and air and moisture blocking property. However, since the width of the slit forming the microgap is narrow and the thickness of the conductive coating forming the periphery of the microgap is as thin as several tens of μm, the surge resistance is limited to about 1500 A. In addition, a film forming process for the conductive coating and a laser processing process for forming a microgap are required, which has the disadvantage that the process becomes complicated, the production takes time, and the cost increases.

一方、アレスタ型サージ防護素子は、直径5mmの製品における耐量が2000Aであり、直径8mmの製品における耐量が5000Aであり、ガラス被覆型マイクロギャップ式サージ防護素子よりも高いサージ耐量特性を有している。このようなアレスタ型サージ防護素子は、高信頼性が要求される大型家電、太陽光発電及び上下水道といったインフラ設備向け等に採用されている。なお、アレスタ型サージ防護素子は、金属とセラミックスとの接合において、高価な接合剤(銀系ロウ材)や、ガラス製円筒部材より高価なアルミナ製円筒部材が必要となる。さらに、セラミックスと金属部との接合には非常に高い技術が必要であると共に、電極内部に電極補助材(グラファイト等)を設けたり、電極保護及び放電助長の目的で対向電極表面に誘電材料を付与したりする必要があり、製造工程が複雑となっている。そのため、製造費用がガラス被覆型マイクロギャップ式サージ防護素子と比べて大幅に上昇する傾向にあった。特に、静電気対策に用いる場合では上記マイクロギャップのような非常に狭い間隔で対向する電極を互いに離間させる必要があり、高精度にギャップを設定することが困難であった。
さらに、アーク放電により電極部を構成する金属が溶融飛散し、金属成分が絶縁性管の内面に付着することで、一対の封止電極間の絶縁性を悪化させてしまう問題があった。特に、大量の金属成分が絶縁性管の内面に付着すると、絶縁性管の内周面に通電回路が形成されてショートしてしまう場合も有り、その場合はサージ防護素子の寿命と判断されてしまう不都合があった。なお、特許文献2に記載のサージ防護素子では、リング状スペーサが介在しているため、絶縁性管の内周面に金属成分が付着しないが、リング状スペーサの内周面に金属成分が付着して、やはりショートが発生するおそれがあった。また、リング状スペーサを別部材として作製し封止電極間に設置しなければならず、非常に狭いギャップを得ることが困難であった。
On the other hand, the arrester type surge protective element has a withstand capacity of 2000 A in a product having a diameter of 5 mm and a withstand capacity of 5000 A in a product having a diameter of 8 mm, and has a surge tolerance characteristic higher than that of a glass-coated microgap type surge protective element. There is. Such arrester-type surge protective elements are used for large household appliances, solar power generation, water and sewage, and other infrastructure equipment that require high reliability. The arrester-type surge protective element requires an expensive bonding agent (silver brazing material) or an alumina cylindrical member, which is more expensive than the glass cylindrical member, in joining the metal and the ceramics. Furthermore, very high technology is required for joining ceramics and metal parts, and an electrode auxiliary material (graphite, etc.) is provided inside the electrode, and a dielectric material is used on the surface of the counter electrode for the purpose of protecting the electrode and promoting discharge. It is necessary to give it, which complicates the manufacturing process. Therefore, the manufacturing cost tends to increase significantly as compared with the glass-coated microgap type surge protective element. In particular, when used as a countermeasure against static electricity, it is necessary to separate the opposing electrodes at very narrow intervals such as the above-mentioned micro gap, and it is difficult to set the gap with high accuracy.
Further, there is a problem that the metal constituting the electrode portion is melted and scattered by the arc discharge, and the metal component adheres to the inner surface of the insulating tube, which deteriorates the insulating property between the pair of sealing electrodes. In particular, if a large amount of metal component adheres to the inner surface of the insulating tube, an energizing circuit may be formed on the inner surface of the insulating tube, resulting in a short circuit. In that case, it is judged that the life of the surge protective element has expired. There was an inconvenience. In the surge protection element described in Patent Document 2, since the ring-shaped spacer is interposed, the metal component does not adhere to the inner peripheral surface of the insulating tube, but the metal component adheres to the inner peripheral surface of the ring-shaped spacer. Then, there was a risk of a short circuit. In addition, a ring-shaped spacer must be manufactured as a separate member and installed between the sealing electrodes, making it difficult to obtain a very narrow gap.

本発明は、前述の課題に鑑みてなされたもので、非常に狭いギャップを低コストで作製可能であるサージ防護素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a surge protective element capable of producing a very narrow gap at low cost.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係るサージ防護素子は、一対の封止電極の互いの対向面にヒューズ部材の両端を固定して前記ヒューズ部材で一対の前記封止電極を繋げるヒューズ部材取付工程と、前記ヒューズ部材で繋がった一対の前記封止電極を、前記ヒューズ部材に張力を加えた状態で一対の前記封止電極を絶縁性管内に挿入する電極挿入工程と、前記ヒューズ部材で繋がった状態の一対の前記封止電極で前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止すると共に前記絶縁性管と一対の前記封止電極とを接合させる電極接合工程と、前記電極接合工程後に前記ヒューズ部材を加熱して前記ヒューズ部材を溶断させるヒューズ部材溶断工程とを有していることを特徴とする。 The present invention has adopted the following configuration in order to solve the above problems. That is, the surge protection element according to the first invention includes a fuse member mounting step of fixing both ends of the fuse member to the facing surfaces of the pair of sealing electrodes and connecting the pair of sealing electrodes with the fuse member. An electrode insertion step of inserting the pair of sealing electrodes connected by the fuse member into an insulating tube with tension applied to the fuse member, and a state of being connected by the fuse member. An electrode joining step of closing both ends of the insulating tube with the pair of sealing electrodes to seal the discharge control gas inside and joining the insulating tube and the pair of sealing electrodes, and the above-mentioned. It is characterized by having a fuse member blowing step of heating the fuse member after the electrode joining step to blow the fuse member.

このサージ防護素子の製造方法では、電極接合工程後にヒューズ部材を加熱してヒューズ部材を溶断させるヒューズ部材溶断工程を有しているので、封止電極固定後にヒューズ部材を溶断させて一対の封止電極を完全に離間させギャップを形成することができると共に、ヒューズ部材の長さに応じて一対の封止電極の間隔を容易にかつ高精度に設定可能である。 This method of manufacturing a surge protective element includes a fuse member blowing step of heating the fuse member after the electrode joining step to blow the fuse member. Therefore, after fixing the sealing electrode, the fuse member is blown to form a pair of seals. The electrodes can be completely separated to form a gap, and the distance between the pair of sealing electrodes can be easily and highly accurately set according to the length of the fuse member.

第2の発明に係るサージ防護素子は、第1の発明において、前記ヒューズ部材が、導電性材料で形成され、前記ヒューズ部材溶断工程が、一対の前記封止電極間に電流を流して前記ヒューズ部材を前記電流による抵抗加熱で溶断させることを特徴とする。
すなわち、このサージ防護素子の製造方法では、ヒューズ部材溶断工程が、一対の封止電極間に電流を流してヒューズ部材を電流による抵抗加熱で溶断させるので、ヒューズ部材の材料と電流値との設定により容易にヒューズ部材を溶断させることが可能になる。そのため、ヒューズ部だけを加熱することが可能になり、外部からレーザ光等を照射して加熱する方法に比べて絶縁性管への影響を抑制することができる。
In the surge protection element according to the second invention, in the first invention, the fuse member is formed of a conductive material, and the fuse member blowing step causes a current to flow between the pair of sealing electrodes to cause the fuse. The member is blown by resistance heating by the electric current.
That is, in this method of manufacturing a surge protective element, in the fuse member blowing step, a current is passed between a pair of sealing electrodes to blow the fuse member by resistance heating by the current, so that the material of the fuse member and the current value are set. This makes it possible to easily blow the fuse member. Therefore, it is possible to heat only the fuse portion, and it is possible to suppress the influence on the insulating tube as compared with the method of irradiating a laser beam or the like from the outside to heat the fuse portion.

第3の発明に係るサージ防護素子は、第1又は第2の発明において、一対の前記封止電極の対向面のうち少なくとも一方に、凹部が形成されていることを特徴とする。
すなわち、このサージ防護素子の製造方法では、一対の封止電極の対向面のうち少なくとも一方に、凹部が形成されているので、溶断したヒューズ部材が凹部内に入ることで、対向面を平坦化し易くなり、安定したサージ特性を得ることができる。
The surge protective element according to the third invention is characterized in that, in the first or second invention, a recess is formed in at least one of the facing surfaces of the pair of sealing electrodes.
That is, in this method of manufacturing a surge protective element, a recess is formed in at least one of the facing surfaces of the pair of sealing electrodes, so that the blown fuse member enters the recess to flatten the facing surface. It becomes easy and stable surge characteristics can be obtained.

第4の発明に係るサージ防護素子は、第1から第3の発明のいずれかにおいて、前記ヒューズ部材が、前記封止電極の材料よりも電子放出能が高いイオン源材料を含有していることを特徴とする。
すなわち、このサージ防護素子の製造方法では、ヒューズ部材が、封止電極の材料よりも電子放出能が高いイオン源材料を含有しているので、ヒューズ部材中のイオン源材料の導電性粒子により、溶けたヒューズ部材(溶融体)自体がアーク放電のトリガとしての放電補助機能等を有することとなる。
In the surge protective element according to the fourth invention, in any one of the first to third inventions, the fuse member contains an ion source material having a higher electron emitting ability than the material of the sealing electrode. It is characterized by.
That is, in this method of manufacturing the surge protection element, since the fuse member contains an ion source material having a higher electron discharging ability than the material of the sealing electrode, the conductive particles of the ion source material in the fuse member are used. The melted fuse member (molten body) itself has a discharge assist function as a trigger for arc discharge.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサージ防護素子の製造方法によれば、ヒューズ部材を加熱してヒューズ部材を溶断させるヒューズ部材溶断工程を有しているので、一対の封止電極の間隔を容易にかつ高精度に設定可能であると共に、ヒューズ部材の長さに応じて一対の封止電極の間隔を容易にかつ高精度に設定可能である。
したがって、本発明に係るサージ防護素子は、小型かつ安価で高信頼性の製品が要求される電気機器の電源回路部や通信回路部用などに好適である。特に、本発明のサージ防護素子は、基板実装用として静電気対策を含む幅広い用途に好適である。
According to the present invention, the following effects are obtained.
That is, according to the method for manufacturing a surge protective element according to the present invention, since the fuse member has a fuse member blowing step of heating the fuse member to blow the fuse member, the distance between the pair of sealing electrodes is easily and high. The distance between the pair of sealing electrodes can be easily and highly accurately set according to the length of the fuse member.
Therefore, the surge protection element according to the present invention is suitable for a power supply circuit section or a communication circuit section of an electric device that requires a compact, inexpensive, and highly reliable product. In particular, the surge protection element of the present invention is suitable for a wide range of applications including measures against static electricity for mounting on a substrate.

本発明に係るサージ防護素子の製造方法の第1実施形態において、ヒューズ部材溶断工程前のサージ防護素子を示す軸線方向の断面図である。It is sectional drawing in the axial direction which shows the surge protection element before the fuse member blowing process in 1st Embodiment of the manufacturing method of the surge protection element which concerns on this invention. 第1実施形態において、ヒューズ部材溶断工程前のサージ防護素子を示す分解斜視図である。In the first embodiment, it is an exploded perspective view which shows the surge protection element before the fuse member blowing process. 第1実施形態において、溶融したヒューズ部材(溶融体)が一対の封止電極の対向面両方に付着したサージ防護素子を示す軸線方向の断面図である。In the first embodiment, it is sectional drawing in the axial direction which shows the surge protection element which the molten fuse member (molten body) adhered to both facing surfaces of a pair of sealing electrodes. 本発明に係るサージ防護素子の製造方法の第2実施形態において、ヒューズ部材溶断工程前のサージ防護素子を示す軸線方向の断面図である。It is sectional drawing in the axial direction which shows the surge protection element before the fuse member blowing process in 2nd Embodiment of the manufacturing method of the surge protection element which concerns on this invention. 第2実施形態において、封止電極を示す斜視図である。It is a perspective view which shows the sealing electrode in 2nd Embodiment. 第2実施形態において、溶融したヒューズ部材(溶融体)が一対の封止電極の対向面両方に付着したサージ防護素子を示す軸線方向の断面図である。In the second embodiment, it is sectional drawing in the axial direction which shows the surge protection element which the molten fuse member (molten body) adhered to both facing surfaces of a pair of sealing electrodes.

以下、本発明に係るサージ防護素子の製造方法の第1実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。 Hereinafter, the first embodiment of the method for manufacturing a surge protective element according to the present invention will be described with reference to FIGS. 1 to 3. In each drawing used in the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態のサージ防護素子1は、図3に示すように、絶縁性管2と、絶縁性管2の両端開口部を閉塞して内部に放電制御ガスを封止する一対の封止電極3とを備えている。
一対の封止電極3の対向面の少なくとも一方には、後述するヒューズ部材4の溶融体14が付着している。
なお、本実施形態のサージ防護素子1は、図3に示すように、一対の封止電極3の対向面の両方に溶融体14が付着しているが、一対の封止電極3の対向面の一方だけに溶融体14が付着しても構わない。
As shown in FIG. 3, the surge protection element 1 of the present embodiment is a pair of sealing electrodes 3 that close the insulating tube 2 and the openings at both ends of the insulating tube 2 to seal the discharge control gas inside. And have.
A melt 14 of a fuse member 4, which will be described later, is attached to at least one of the facing surfaces of the pair of sealing electrodes 3.
In the surge protection element 1 of the present embodiment, as shown in FIG. 3, the molten body 14 is attached to both of the facing surfaces of the pair of sealing electrodes 3, but the facing surfaces of the pair of sealing electrodes 3 The melt 14 may adhere to only one of them.

上記絶縁性管2は、例えば円筒状であり、鉛ガラス等のガラス管で形成されている。なお、絶縁性管2は、安価で封止性等に優れたガラス管で形成することが好ましいが、アルミナなどの結晶性セラミックス材で形成しても構わない。
上記絶縁性管2内に封入される放電制御ガスは、不活性ガス等であって、例えばHe,Ar,Ne,Xe,Kr,SF,CO,C,C,CF,H,大気等及びこれらの混合ガスが採用される。
The insulating tube 2 is, for example, cylindrical and is made of a glass tube such as lead glass. The insulating tube 2 is preferably formed of a glass tube that is inexpensive and has excellent sealing properties, but may be formed of a crystalline ceramic material such as alumina.
The discharge control gas sealed in the insulating tube 2 is an inert gas or the like, for example, He, Ar, Ne, Xe, Kr, SF 6 , CO 2 , C 3 F 8 , C 2 F 6 , CF 4 , H 2 , air, etc. and a mixed gas thereof are adopted.

上記封止電極3は、例えばジュメット線,42アロイ(Fe:58wt%、Ni:42wt%),Cu等で円柱状に形成されている。
なお、本実施形態では、一対の封止電極3が絶縁性管2の内側に入り込んで両端開口部を閉塞している。
各封止電極3には、外側に突出したリード線5の基端部が埋め込まれている。
上記溶融体14は、例えばNi系,Fe系,Cu系合金等の導電性材料である。
The sealing electrode 3 is formed in a columnar shape with, for example, a jumet wire, 42 alloy (Fe: 58 wt%, Ni: 42 wt%), Cu or the like.
In this embodiment, the pair of sealing electrodes 3 enter the inside of the insulating tube 2 to close the openings at both ends.
A base end portion of a lead wire 5 projecting outward is embedded in each sealing electrode 3.
The melt 14 is a conductive material such as a Ni-based, Fe-based, or Cu-based alloy.

本実施形態のサージ防護素子1の製造方法は、図1及び図2に示すように、一対の封止電極3の互いの対向面にヒューズ部材4の両端を固定してヒューズ部材4で一対の封止電極3を繋げるヒューズ部材取付工程と、ヒューズ部材4で繋がった一対の封止電極3を、ヒューズ部材4に張力を加えた状態で一対の封止電極3を電極挿入工程と、ヒューズ部材4で繋がった状態の一対の封止電極3で絶縁性管2の両端開口部を閉塞して内部に放電制御ガスを封止すると共に絶縁性管2と一対の封止電極3とを接合させる電極接合工程と、図3に示すように、電極接合工程後にヒューズ部材4を加熱してヒューズ部材4を溶断させるヒューズ部材溶断工程とを有している。 In the method of manufacturing the surge protection element 1 of the present embodiment, as shown in FIGS. 1 and 2, both ends of the fuse member 4 are fixed to the facing surfaces of the pair of sealing electrodes 3 and the fuse members 4 form a pair. A fuse member mounting step for connecting the sealing electrodes 3, a pair of sealing electrodes 3 connected by the fuse member 4, a pair of sealing electrodes 3 in a state where tension is applied to the fuse member 4, and an electrode insertion step for the fuse member. The openings at both ends of the insulating tube 2 are closed by the pair of sealing electrodes 3 connected by 4, the discharge control gas is sealed inside, and the insulating tube 2 and the pair of sealing electrodes 3 are joined. As shown in FIG. 3, it has an electrode joining step and a fuse member blowing step of heating the fuse member 4 to blow the fuse member 4 after the electrode joining step.

上記ヒューズ部材4は、導電性材料で形成されている。
また、上記ヒューズ部材溶断工程では、一対の封止電極3間に電流を流してヒューズ部材4を前記電流による抵抗加熱で溶断させる。
The fuse member 4 is made of a conductive material.
Further, in the fuse member blowing step, a current is passed between the pair of sealing electrodes 3 to blow the fuse member 4 by resistance heating by the current.

上記ヒューズ部材取付工程では、ヒューズ部材4は、線状又はブロック状であり、封止電極3の対向面に溶接等により端部を接着させる。本実施形態では、導線状のヒューズ部材4を採用している。
上記電極挿入工程では、例えば一対の封止電極3の一方を上方にして他方を吊り下げ状態としてヒューズ部材4に張力を加え、絶縁性管2内に挿入する。
この場合、下方の封止電極3がヒューズ部材4を介して上方の封止電極3に吊される状態となり、封止後に一対のリード線5及び封止電極3に電流を印加し、ヒューズ部材4をジュール熱により溶断流動させる。
In the fuse member mounting step, the fuse member 4 has a linear or block shape, and the end portion is adhered to the facing surface of the sealing electrode 3 by welding or the like. In this embodiment, the wire-shaped fuse member 4 is adopted.
In the electrode insertion step, for example, one of the pair of sealing electrodes 3 is placed upward and the other is suspended, and tension is applied to the fuse member 4 to insert the fuse member 3 into the insulating tube 2.
In this case, the lower sealing electrode 3 is suspended from the upper sealing electrode 3 via the fuse member 4, and after sealing, a current is applied to the pair of lead wires 5 and the sealing electrode 3 to apply the current to the fuse member. 4 is fused and flowed by Joule heat.

ヒューズ部材4は、絶縁性管2と封止電極3との接合温度より50℃以上高い材質が好ましく、Ni系,Fe系,Cu系合金等が使用可能である。なお、ZnやSn単体では融点が低く、ヒューズ部材4としては不適である。
また、ヒューズ部材4の破断電流を調節するために、ヒューズ部材4の材料にBi,Ag,Sb,In等を添加した合金としてもよい。
上記ヒューズ部材4は、ジュール熱で加熱され溶融すると封止電極3の対向面上に膜状に拡がり、加熱終了後に冷えて固化され上記溶融体14となる。
The fuse member 4 is preferably made of a material having a temperature higher than the bonding temperature between the insulating tube 2 and the sealing electrode 3 by 50 ° C. or more, and Ni-based, Fe-based, Cu-based alloys and the like can be used. It should be noted that Zn and Sn alone have a low melting point and are not suitable as the fuse member 4.
Further, in order to adjust the breaking current of the fuse member 4, an alloy may be obtained by adding Bi, Ag, Sb, In or the like to the material of the fuse member 4.
When the fuse member 4 is heated by Joule heat and melted, it spreads like a film on the facing surface of the sealing electrode 3, and after the heating is completed, it cools and solidifies to become the molten body 14.

このように本実施形態のサージ防護素子1の製造方法では、電極接合工程後にヒューズ部材4を加熱してヒューズ部材4を溶断させるヒューズ部材溶断工程を有しているので、封止電極3固定後にヒューズ部材4を溶断させて一対の封止電極3を完全に離間させギャップを形成することができると共に、ヒューズ部材4の長さに応じて一対の封止電極3の間隔を容易にかつ高精度に設定可能である。 As described above, the method for manufacturing the surge protection element 1 of the present embodiment includes a fuse member blowing step of heating the fuse member 4 to blow the fuse member 4 after the electrode joining step, and therefore, after fixing the sealing electrode 3. The fuse member 4 can be blown to completely separate the pair of sealing electrodes 3 to form a gap, and the distance between the pair of sealing electrodes 3 can be easily and accurately adjusted according to the length of the fuse member 4. Can be set to.

また、ヒューズ部材溶断工程が、一対の封止電極3間に電流を流してヒューズ部材4を電流による抵抗加熱で溶断させるので、ヒューズ部材4の材料と電流値との設定により容易にヒューズ部材4を溶断させることが可能になる。そのため、ヒューズ部材4だけを加熱することが可能になり、外部からレーザ光等を照射して加熱する方法に比べて絶縁性管2への影響を抑制することができる。 Further, in the fuse member blowing step, a current is passed between the pair of sealing electrodes 3 to blow the fuse member 4 by resistance heating by the current, so that the fuse member 4 can be easily set by setting the material and the current value of the fuse member 4. Can be blown. Therefore, it is possible to heat only the fuse member 4, and it is possible to suppress the influence on the insulating tube 2 as compared with the method of irradiating and heating the fuse member 4 from the outside.

次に、本発明に係るサージ防護素子の製造方法の第2実施形態について、図4から図6を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。 Next, a second embodiment of the method for manufacturing a surge protective element according to the present invention will be described below with reference to FIGS. 4 to 6. In the following description of the embodiment, the same components described in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、封止電極3の対向面が平坦であるのに対し、第2実施形態のサージ防護素子21の製造方法では、図4から図6に示すように、一対の封止電極23の対向面のうち少なくとも一方に、凹部23aが形成されている。
なお、第2実施形態では、一対の封止電極23の対向面の両方に凹部23aが円環状に形成されている。
The difference between the second embodiment and the first embodiment is that in the first embodiment, the facing surface of the sealing electrode 3 is flat, whereas in the method for manufacturing the surge protection element 21 of the second embodiment, the facing surface is flat. As shown in FIGS. 4 to 6, a recess 23a is formed on at least one of the facing surfaces of the pair of sealing electrodes 23.
In the second embodiment, the recesses 23a are formed in an annular shape on both of the facing surfaces of the pair of sealing electrodes 23.

また、第2実施形態では、ヒューズ部材4及び溶融体14が、封止電極23の材料よりも電子放出能が高いイオン源材料を含有している。
例えば、ヒューズ部材4及び溶融体14には、イオン源材料として炭素粉等の電子放出能が封止電極23よりも高い材料が含有されている。
上記凹部23aは、断面半円状に形成されているが、断面V字状等の凹部であっても構わない。また、円環状の1つの凹部23aが形成されているが、複数の凹部23aを形成しても構わない。
Further, in the second embodiment, the fuse member 4 and the melt 14 contain an ion source material having a higher electron emitting ability than the material of the sealing electrode 23.
For example, the fuse member 4 and the melt 14 contain a material such as carbon powder having a higher electron emitting ability than the sealing electrode 23 as an ion source material.
The recess 23a is formed in a semicircular cross section, but may be a recess having a V-shaped cross section. Further, although one annular recess 23a is formed, a plurality of recesses 23a may be formed.

上記ヒューズ部材4は、円環状の凹部23aの中央に設置され、溶融時に溶融体14が対向面上を拡がって周りの凹部23a内に入り易くなっている。また、円環状の凹部23aにより、凹部23aよりも半径方向外方に溶融体14が拡がることを抑制可能である。 The fuse member 4 is installed in the center of the annular recess 23a, and when melted, the molten body 14 expands on the facing surface and easily enters the surrounding recess 23a. Further, the annular recess 23a can prevent the molten body 14 from spreading outward in the radial direction with respect to the recess 23a.

本実施形態では、一対の封止電極23の両方の対向面に凹部23aを形成したが、一方の対向面だけに凹部23aを形成しても構わない。
なお、接合時に一対の封止電極23を水平に保持する場合は、一対の封止電極23の両方の対向面に凹部23aを形成することが好ましい。
一対の封止電極23を垂直に保持する場合でも、上方の対向面にも凹部23aを形成し、ヒューズ部材4の粘性や凹部23aの大きさにより溶融体14の表面張力により上方の対向面の凹部23a内に溶融体14が入り込むことができる。また、両方の対向面に凹部23aを形成しておくことで、一方の対向面を覆う溶融体14の面積が少なくなり、より放電面積の減少を抑制して高サージ大量化を図ることが可能になる。
In the present embodiment, the recess 23a is formed on both facing surfaces of the pair of sealing electrodes 23, but the recess 23a may be formed only on one facing surface.
When holding the pair of sealing electrodes 23 horizontally at the time of joining, it is preferable to form recesses 23a on both facing surfaces of the pair of sealing electrodes 23.
Even when the pair of sealing electrodes 23 are held vertically, a recess 23a is also formed on the upper facing surface, and depending on the viscosity of the fuse member 4 and the size of the recess 23a, the surface tension of the melt 14 causes the upper facing surface. The molten body 14 can enter the recess 23a. Further, by forming the recesses 23a on both facing surfaces, the area of the molten body 14 covering one facing surface is reduced, and it is possible to further suppress the decrease in the discharge area and increase the amount of surge. become.

このように第2実施形態のサージ防護素子21の製造方法では、一対の封止電極23の対向面のうち少なくとも一方に、凹部23aが形成されているので、溶けたヒューズ部材4の溶融体14が凹部23a内に入ることで、対向面を平坦化し易くなり、安定したサージ特性を得ることができる。また、凹部23a内に溶融体14が入り込み、少なくとも一部が収納されることで、対向面を覆う溶融体14の面積が少なくでき、放電面積の減少を抑制して高サージ大量化を図ることが可能になる。
また、ヒューズ部材4が、封止電極3の材料よりも電子放出能が高いイオン源材料を含有しているので、溶融体14がアーク放電のトリガとしての放電補助機能を有することができる。
As described above, in the method of manufacturing the surge protection element 21 of the second embodiment, since the recess 23a is formed on at least one of the facing surfaces of the pair of sealing electrodes 23, the molten body 14 of the melted fuse member 4 is formed. By entering the recess 23a, the facing surface can be easily flattened, and stable surge characteristics can be obtained. Further, since the melt 14 enters the recess 23a and at least a part of the melt 14 is housed, the area of the melt 14 covering the facing surface can be reduced, and the decrease in the discharge area is suppressed to increase the amount of surge. Becomes possible.
Further, since the fuse member 4 contains an ion source material having a higher electron emission ability than the material of the sealing electrode 3, the molten body 14 can have a discharge assisting function as a trigger for arc discharge.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記第1実施形態では、溶融体14は膜状に拡がっているが、封止電極3の一対の対向面を多孔質状にすることで、溶融体14を封止電極3内に染み込ませてもよい。また、膜状に拡がった溶融体14が封止電極3と合金化してもよい。
The technical scope of the present invention is not limited to each of the above embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in the first embodiment, the melt 14 spreads like a film, but the melt 14 is impregnated into the sealing electrode 3 by making the pair of facing surfaces of the sealing electrodes 3 porous. You may let me. Further, the melt 14 spread in a film shape may be alloyed with the sealing electrode 3.

1,21…サージ防護素子、2…絶縁性管、3,23…封止電極、4…ヒューズ部材、14…溶融体、23a…凹部 1,21 ... Surge protection element, 2 ... Insulating tube, 3,23 ... Sealing electrode, 4 ... Fuse member, 14 ... Melt, 23a ... Recess

Claims (4)

一対の封止電極の互いの対向面にヒューズ部材の両端を固定して前記ヒューズ部材で一対の前記封止電極を繋げるヒューズ部材取付工程と、
前記ヒューズ部材で繋がった一対の前記封止電極を、前記ヒューズ部材に張力を加えた状態で一対の前記封止電極を絶縁性管内に挿入する電極挿入工程と、
前記ヒューズ部材で繋がった状態の一対の前記封止電極で前記絶縁性管の両端開口部を閉塞して内部に放電制御ガスを封止すると共に前記絶縁性管と一対の前記封止電極とを接合させる電極接合工程と、
前記電極接合工程後に前記ヒューズ部材を加熱して前記ヒューズ部材を溶断させるヒューズ部材溶断工程とを有していることを特徴とするサージ防護素子の製造方法。
A fuse member mounting process in which both ends of the fuse member are fixed to the facing surfaces of the pair of sealing electrodes and the pair of sealing electrodes are connected by the fuse member.
An electrode insertion step of inserting the pair of sealing electrodes connected by the fuse member into an insulating tube with tension applied to the fuse member.
The pair of sealing electrodes connected by the fuse member closes the openings at both ends of the insulating tube to seal the discharge control gas inside, and the insulating tube and the pair of sealing electrodes are connected to each other. The electrode joining process to join and
A method for manufacturing a surge protective element, which comprises a fuse member blowing step of heating the fuse member after the electrode joining step to blow the fuse member.
請求項1に記載のサージ防護素子の製造方法において、
前記ヒューズ部材が、導電性材料で形成され、
前記ヒューズ部材溶断工程が、一対の前記封止電極間に電流を流して前記ヒューズ部材を前記電流による抵抗加熱で溶断させることを特徴とするサージ防護素子の製造方法。
In the method for manufacturing a surge protective element according to claim 1,
The fuse member is made of a conductive material and
A method for manufacturing a surge protective element, wherein the fuse member blowing step causes a current to flow between the pair of sealing electrodes to blow the fuse member by resistance heating by the current.
請求項1又は2に記載のサージ防護素子の製造方法において、
一対の前記封止電極の対向面のうち少なくとも一方に、凹部が形成されていることを特徴とするサージ防護素子の製造方法。
In the method for manufacturing a surge protective element according to claim 1 or 2.
A method for manufacturing a surge protective element, characterized in that a recess is formed on at least one of the facing surfaces of the pair of sealing electrodes.
請求項1から3のいずれか一項に記載のサージ防護素子の製造方法において、
前記ヒューズ部材が、前記封止電極の材料よりも電子放出能が高いイオン源材料を含有していることを特徴とするサージ防護素子の製造方法。
In the method for manufacturing a surge protective element according to any one of claims 1 to 3,
A method for manufacturing a surge protective element, wherein the fuse member contains an ion source material having a higher electron emitting ability than the material of the sealing electrode.
JP2019057834A 2019-03-26 2019-03-26 Manufacturing method of surge protective element Pending JP2020161271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057834A JP2020161271A (en) 2019-03-26 2019-03-26 Manufacturing method of surge protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057834A JP2020161271A (en) 2019-03-26 2019-03-26 Manufacturing method of surge protective element

Publications (1)

Publication Number Publication Date
JP2020161271A true JP2020161271A (en) 2020-10-01

Family

ID=72643639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057834A Pending JP2020161271A (en) 2019-03-26 2019-03-26 Manufacturing method of surge protective element

Country Status (1)

Country Link
JP (1) JP2020161271A (en)

Similar Documents

Publication Publication Date Title
US9508519B2 (en) Fuse and manufacturing method thereof
US9589711B2 (en) Resistor and manufacturing method thereof
JP2005038869A (en) Lightning arrester
KR20180135888A (en) Surge protection device
JP2020161271A (en) Manufacturing method of surge protective element
JPS6337471B2 (en)
JP2007317541A (en) Surge suppressor
JP2020161270A (en) Manufacturing method of surge protective element
JP2020181721A (en) Manufacturing method of surge protective element
JP7022390B2 (en) Surge protection element and its manufacturing method
US3733572A (en) Current limiting fuse
JP7459767B2 (en) surge protection element
JP2020181722A (en) Surge protection element
JP2020155296A (en) Surge protective element and manufacturing method therefor
JP2006286251A (en) Surge absorber
JP2020181719A (en) Surge protective element and manufacturing method thereof
JP2020181720A (en) Surge protective element and manufacturing method thereof
JP2023119198A (en) surge protective element
JPH117876A (en) Circuit board type temperature fuse
CN108231506B (en) Small fuse and manufacturing method thereof
JP2020087715A (en) Surge protective element and method of manufacturing the same
JP2020004577A (en) Surge protection element
JP2005116192A (en) Chip type surge absorber and its manufacturing method
JP4983448B2 (en) Surge absorber and surge absorber mounting structure
JP2023117903A (en) surge protective element