JP2020158598A - Electro-viscous fluid - Google Patents

Electro-viscous fluid Download PDF

Info

Publication number
JP2020158598A
JP2020158598A JP2019058193A JP2019058193A JP2020158598A JP 2020158598 A JP2020158598 A JP 2020158598A JP 2019058193 A JP2019058193 A JP 2019058193A JP 2019058193 A JP2019058193 A JP 2019058193A JP 2020158598 A JP2020158598 A JP 2020158598A
Authority
JP
Japan
Prior art keywords
particles
stirring
electrolyte
fluid
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2019058193A
Other languages
Japanese (ja)
Inventor
安藤 和彦
Kazuhiko Ando
和彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2019058193A priority Critical patent/JP2020158598A/en
Publication of JP2020158598A publication Critical patent/JP2020158598A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

To provide an electro-viscous fluid.SOLUTION: The electro-viscous fluid having polarized particles dispersed in an electrically insulating medium comprises at least one electrolyte dissolved or dispersed in the electrically insulating medium, wherein the polarized particles contain the electrolyte in particles, the polarized particles contain two or more particles having different concentrations of the electrolyte contained in the particles, and the polarized particles are composed of one or more particles having different average particle diameters represented by the following A to C (A: 0.50 to 2.50 μm, B: 3.00 to 5.00 μm, C: 5.50 to 15.00 μm).SELECTED DRAWING: Figure 2

Description

本発明は、電気粘性流体に関するものである。 The present invention relates to electrorheological fluids.

電気粘性流体は、印加した電場の存在下にて、その見かけの粘度が急速かつ可逆的に変わる流体である。電気粘性流体は、一般に、疎水性で電気非導電性のオイルに細かく分割された固体の分散体である。これらは、電場に晒されると、それが固体になる時点までも、その流動特性が変わる能力を有する。電場が取り除かれると、流体は通常の液体状態に戻る。電気粘性流体は、低電力レベルにより力の伝達を制御するのが望ましいダンパー等の用途において有利に使用され得る。 An electrorheological fluid is a fluid whose apparent viscosity changes rapidly and reversibly in the presence of an applied electric field. Electrorheological fluids are generally solid dispersions that are finely divided into hydrophobic, electrically non-conductive oils. They have the ability to change their flow properties when exposed to an electric field, even when they become solid. When the electric field is removed, the fluid returns to its normal liquid state. Electrorheological fluids can be advantageously used in applications such as dampers where it is desirable to control the transmission of force by low power levels.

電気粘性流体に要求される特性としては、主に、減衰力及び応答性が挙げられるが、これに加えて、耐熱性、電流密度、減衰力揺らぎ特性等を含む複数項目が挙げられ、それぞれの特性許容範囲内でバランスが取れた「総合効果」に優れる電気粘性流体が望まれており、特に、高い最大せん断応力と低い電流密度を併せ持つ電気粘性流体が望まれている。 The characteristics required for the electrorheological fluid are mainly damping force and responsiveness, but in addition to these, there are a plurality of items including heat resistance, current density, damping force fluctuation characteristics, etc. An electrorheological fluid that is well-balanced within the permissible range of characteristics and has an excellent "total effect" is desired, and in particular, an electrorheological fluid that has both a high maximum shear stress and a low current density is desired.

特表2015−511643号公報(特許文献1)は、添加剤を添加することで、広い温度範囲で使用可能な、秀でた電気粘性特性を有するERF(電気粘性流体)が提供できることを記載する。 Japanese Patent Application Laid-Open No. 2015-511634 (Patent Document 1) describes that an ERF (electrorheological fluid) having excellent electrorheological properties that can be used in a wide temperature range can be provided by adding an additive. ..

特表2015−511643号公報Japanese Patent Publication No. 2015-511634

特許文献1に記載される電気粘性組成物では、高い最大せん断応力と低い電流密度を併せ持つ電気粘性流体を得ることは困難であった。 With the electrorheological composition described in Patent Document 1, it has been difficult to obtain an electrorheological fluid having both a high maximum shear stress and a low current density.

従って、本発明は、上記の問題を解決し得る電気粘性流体、即ち、高い最大せん断応力と低い電流密度を併せ持つ電気粘性流体の提供を課題とする。 Therefore, an object of the present invention is to provide an electrorheological fluid that can solve the above problems, that is, an electrorheological fluid having both a high maximum shear stress and a low current density.

本発明者等は、上記課題を解決するために鋭意検討した結果、電気絶縁媒質中に分極粒子を分散した電気粘性流体において、分極粒子として、該粒子中に含有される電解質の濃度が異なる2種以上の粒子を用い、更に、特定の平均粒子径を有する3種の粒子の1種又は2種以上から構成させることで、高い最大せん断応力と低い電流密度を併せ持つ電気粘性流体が提供できることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have different concentrations of electrolytes contained in the polarized particles as the polarized particles in the electrorheological fluid in which the polarized particles are dispersed in the electrically insulating medium. It is possible to provide an electrorheological fluid having both high maximum shear stress and low current density by using more than one kind of particles and further forming one or more kinds of three kinds of particles having a specific average particle size. Find out and complete the invention.

即ち、本発明は、
[1]電気絶縁媒質中に分極粒子を分散した電気粘性流体であって、前記電気絶縁媒質中には溶解又は分散された少なくとも1種類の電解質が含有され、前記分極粒子は、前記電解質を粒子中に含有し、前記分極粒子には、粒子中に含有される前記電解質の濃度が異なる2種以上の粒子が含まれ、そして、前記分極粒子は、以下のA乃至Cで示される異なる平均粒子径を有する粒子の1種又は2種以上からなる電気粘性流体、
A:0.50〜2.50μm
B:3.00〜5.00μm
C:5.50〜15.00μm
[2]前記分極粒子は、前記のA乃至Cで示される異なる平均粒子径を有する粒子の2種以上からなり、該2種以上の異なる平均粒子径を有する粒子は、その平均粒子径の差異により、粒子中に含有される前記電解質の濃度が互いに異なるものとなる、前記[1]に記載の電気粘性流体、
[3]前記分極粒子は、前記Cで示される平均粒子径を有する粒子を含み、該Cで示される平均粒子径を有する粒子中に含有される前記電解質の濃度が、他の平均粒子径を有する粒子よりも高くなる、前記[1]又は[2]に記載の電気粘性流体。
[4]前記[1]乃至[3]の何れか1つに記載の電気粘性流体の2種以上の混合物である電気粘性流体、
に関するものである。
That is, the present invention
[1] An electroviscous fluid in which polarization particles are dispersed in an electrically insulating medium, wherein the electrically insulating medium contains at least one kind of electrolyte dissolved or dispersed, and the polarization particles contain the electrolyte. The polarized particles contained therein include two or more kinds of particles having different concentrations of the electrolyte contained in the particles, and the polarized particles are different average particles represented by the following A to C. Electrolyte viscous fluid consisting of one or more particles with a diameter,
A: 0.50 to 2.50 μm
B: 3.00 to 5.00 μm
C: 5.50-15.00 μm
[2] The polarized particles are composed of two or more kinds of particles having different average particle diameters represented by the above A to C, and the two or more kinds of particles having different average particle diameters are different in the average particle diameter. The electrorheological fluid according to the above [1], wherein the concentrations of the electrolytes contained in the particles are different from each other.
[3] The polarized particles include particles having the average particle size indicated by C, and the concentration of the electrolyte contained in the particles having the average particle size indicated by C is the other average particle size. The electrorheological fluid according to the above [1] or [2], which is higher than the particles having.
[4] An electrorheological fluid that is a mixture of two or more of the electrorheological fluids according to any one of the above [1] to [3].
It is about.

本発明により、高い最大せん断応力と低い電流密度を併せ持つ電気粘性流体を提供することができる。
本発明の電気粘性流体は、自動車用のセミアクティブダンパを制御するための電気粘性流体として有利に使用することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an electrorheological fluid having both a high maximum shear stress and a low current density.
The electrorheological fluid of the present invention can be advantageously used as an electrorheological fluid for controlling a semi-active damper for an automobile.

分極粒子としてポリウレタン粒子を含む流体の製造方法を示す製造フローチャートである。It is a manufacturing flowchart which shows the manufacturing method of the fluid containing polyurethane particle as a polarization particle. 実施例に記載の各流体における最大せん断応力及び電流密度を示すグラフである。It is a graph which shows the maximum shear stress and the current density in each fluid described in an Example.

更に詳細に本発明を説明する。
本発明の電気粘性流体は、電気絶縁媒質中に分極粒子を分散した電気粘性流体であって、前記電気絶縁媒質中には溶解又は分散された少なくとも1種類の電解質が含有され、前記分極粒子は、前記電解質を粒子中に含有し、前記分極粒子には、粒子中に含有される前記電解質の濃度が異なる2種以上の粒子が含まれ、そして、前記分極粒子は、以下のA乃至Cで示される異なる平均粒子径を有する粒子の1種又は2種以上からなることを特徴とする。
A:0.50〜2.50μm
B:3.00〜5.00μm
C:5.50〜15.00μm
The present invention will be described in more detail.
The electroviscous fluid of the present invention is an electroviscoud fluid in which polarized particles are dispersed in an electrically insulating medium, and the electrically insulating medium contains at least one kind of electrolyte dissolved or dispersed, and the polarized particles are: , The electrolyte is contained in the particles, and the polarized particles include two or more kinds of particles having different concentrations of the electrolyte contained in the particles, and the polarized particles are the following A to C. It is characterized by consisting of one or more of the particles having different average particle diameters shown.
A: 0.50 to 2.50 μm
B: 3.00 to 5.00 μm
C: 5.50-15.00 μm

本発明に使用し得る電気絶縁媒質としては、例えば、パラフィン(例えばn−ノナン)、オレフィン[例えばl−ノネン、(シス、トランス)−4−ノネン]及び芳香族炭化水素(例えばキシレン)のような液体炭化水素、3から300mPa・sの粘度をもつポリジメチルシロキサン及び液体メチルフェニルシロキサンのようなシリコーン油等が挙げられる。好ましい電気絶縁媒質としては、シリコーン油が挙げられる。電気絶縁媒質はそれ単独でも又はその他の電気絶縁媒質と組み合わせても使用することができる。電気絶縁媒質の凝固点は好ましくは−30℃未満であり、沸点は好ましくは150℃以上である。 Electrically insulating media that can be used in the present invention include, for example, paraffin (eg n-nonene), olefins [eg l-nonene, (cis, trans) -4-nonene] and aromatic hydrocarbons (eg xylene). Liquid hydrocarbons and silicone oils such as polydimethylsiloxane and liquid methylphenylsiloxane having a viscosity of 3 to 300 mPa · s. A preferred electrically insulating medium is silicone oil. The electrically insulating medium can be used alone or in combination with other electrically insulating media. The freezing point of the electrically insulating medium is preferably less than −30 ° C., and the boiling point is preferably 150 ° C. or higher.

本発明に使用し得る電解質としては、リチウム、亜鉛、クロム、銅、ニッケル、コバルト、鉄、マンガン、タングステン等の金属の塩、例えばハロゲン化物が挙げられ、好ましくは、上記金属の塩化物が挙げられる。
特に、塩化リチウム、塩化亜鉛及びこれらの混合物が好ましい。
Examples of the electrolyte that can be used in the present invention include salts of metals such as lithium, zinc, chromium, copper, nickel, cobalt, iron, manganese, and tungsten, such as halides, and preferably chlorides of the above metals. Be done.
In particular, lithium chloride, zinc chloride and mixtures thereof are preferred.

本発明に使用し得る分極粒子としては、有機高分子からなる粒子が挙げられ、有機高分
子としては、ポリウレタン、ポリアミド、ポリイミド、ポリエステル等が挙げられ、ポリウレタンが好ましい。
Examples of the polarized particles that can be used in the present invention include particles made of an organic polymer, and examples of the organic polymer include polyurethane, polyamide, polyimide, polyester, and the like, and polyurethane is preferable.

上記分極粒子として使用し得るポリウレタン粒子につき説明する。
ポリウレタン粒子を得るために使用し得るポリオールとしては、
エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブチレングリコール、ジヒドロキシジフェニルプロパン、グリセリン、ヘキサントリオール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、スクロース、ジプロピレングリコール、ジヒドロキシジフェニルメタン、ジヒドロキシジフェニルエーテル、ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、ナフタレンジオール、アミノフェノール、アミノナフトール、フェノールホルムアルデヒド縮合物、フロログルシン、メチルジエタノールアミン、エチルジイソプロパノールアミン、トリエタノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ビス(p−アミノシクロヘキサン)、トリレンジアミン、ジフェニルメタンジアミン、ナフタレンジアミンなどにエチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシドなどを1種又は2種以上付加させて得られるポリエーテルポリオール、
エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,3−または1,4−ブチレングリコール、ネオペンチルグリコール、1,6−ヘキサメチレングリコール、デカメチレングリコール、ビスフェノールA、ビスフェノールF、p−キシリレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、グリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリットなどのエチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシド付加物などの1種又は2種以上と、マロン酸、マレイン酸、コハク酸、アジピン酸、グルタル酸、ピメリン酸、セバシン酸、シュウ酸、フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロフタル酸などの1種または2種以上とからのポリエステルポリオール、または、プロピオラクトン、ブチロラクトン、カプロラクトンなどの環状エステルを開環重合したポリオール;さらに上記ポリオールと環状エステルとより製造したポリエステルポリオール、及び上記ポリオール、2塩基酸、環状エステル3種より製造したポリエステルポリオール、
1,2−ポリブタジエンポリオール、1,4−ポリブタジエンポリオール、ポリクロロプレンポリオール、ブタジエン−アクリロニトリル共重合体ポリオール、ポリジメチルシロキサンジカルビノール、ポリテトラメチレンエーテルグリコール及びヒマシ油のようなリシノール酸エステル、前記のポリエーテルポリオール、ポリエステルポリオールに、アクリロニトリル、スチレン、メチルメタクリレート等のエチレン性不飽和化合物をグラフト重合させて得たポリマーポリオール、
等が挙げられるが、ポリエーテルポリオールが好ましい。
The polyurethane particles that can be used as the polarization particles will be described.
As a polyol that can be used to obtain polyurethane particles,
Ethylene glycol, diethylene glycol, propylene glycol, 1,4-butylene glycol, dihydroxydiphenylpropane, glycerin, hexanetriol, trimethylpropane, pentaerythritol, sorbitol, sucrose, dipropylene glycol, dihydroxydiphenylmethane, dihydroxydiphenyl ether, dihydroxybiphenyl, hydroquinone, Resolcin, naphthalenediol, aminophenol, aminonaphthol, phenolformaldehyde condensate, fluoroglucolcin, methyldiethanolamine, ethyldiisopropanolamine, triethanolamine, ethylenediamine, hexamethylenediamine, bis (p-aminocyclohexane), tolylene diamine, diphenylmethanediamine Polyether polyol obtained by adding one or more of ethylene oxide, propylene oxide, butylene oxide, styrene oxide, etc. to naphthalenediamine, etc.
Ester glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,3- or 1,4-butylene glycol, neopentyl glycol, 1,6-hexamethylene glycol, decamethylene glycol, bisphenol A, bisphenol F, 1 such as ethylene oxide such as p-xylylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, glycerin, trimethylpropane, hexanetriol, pentaerythlit, propylene oxide, butylene oxide, styrene oxide adduct, etc. Species or two or more and one or two such as malonic acid, maleic acid, succinic acid, adipic acid, glutaric acid, pimeric acid, sebacic acid, oxalic acid, phthalic acid, isophthalic acid, terephthalic acid, hexahydrophthalic acid, etc. Polyol polyols from seeds or more, or polyols obtained by ring-opening polymerization of cyclic esters such as propiolactone, butyrolactone, and caprolactone; further, polyester polyols produced from the above polyols and cyclic esters, and the above polyols, dibasic acids, and cyclics. Polyol polyols made from 3 types of esters,
1,2-Polybutadiene polyols, 1,4-polybutadiene polyols, polychloroprene polyols, butadiene-acrylonitrile copolymer polyols, polydimethylsiloxane dicarbinol, polytetramethylene ether glycols and ricinolic acid esters such as castor oil, said above. A polymer polyol obtained by graft-polymerizing an ethylenically unsaturated compound such as acrylonitrile, styrene, or methyl methacrylate with a polyether polyol or a polyester polyol.
Etc., but a polyether polyol is preferable.

ポリウレタン粒子を得るために使用し得るイソシアネートとしては、トルエンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、イソシアン酸メチル等が挙げられる。 Examples of the isocyanate that can be used to obtain polyurethane particles include toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, and methyl isocyanate.

ポリウレタン粒子は、上記の様なポリオールと上記の様なイソシアネートとを、NCO/OH当量比が0.6〜1.0となるように反応させるのが好ましい。 The polyurethane particles are preferably reacted with the above-mentioned polyol and the above-mentioned isocyanate so that the NCO / OH equivalent ratio is 0.6 to 1.0.

上記分極粒子は、粒子中に電解質を含有し、そして、該分極粒子として、粒子中に含有される電解質の濃度が異なる2種以上の粒子を含む。
上記電解質としては、リチウム、亜鉛、クロム、銅、ニッケル、コバルト、鉄、マンガン、タングステン等の金属の塩、例えばハロゲン化物が挙げられ、好ましくは、上記金属の塩化物が挙げられる。
特に、塩化リチウム、塩化亜鉛及びこれらの混合物が好ましい。
The polarized particles contain an electrolyte in the particles, and the polarized particles include two or more kinds of particles having different concentrations of the electrolyte contained in the particles.
Examples of the electrolyte include salts of metals such as lithium, zinc, chromium, copper, nickel, cobalt, iron, manganese, and tungsten, such as halides, and preferably chlorides of the metals.
In particular, lithium chloride, zinc chloride and mixtures thereof are preferred.

上記電解質の濃度が異なる2種以上の粒子としては、例えば、電解質の濃度が低い粒子(以下、低濃度の粒子とも記載する。)、電解質の濃度が高い粒子(以下、高濃度の粒子とも記載する。)及び電解質を含まない粒子(以下、無濃度の粒子とも記載する。)等が挙げられる。
ここで、電解質の濃度が低い粒子(低濃度の粒子)としては、ICP−MS測定による分極粒子が有する金属イオンの量が0.01ppm以上750.00ppm未満の範囲、好ましくは、10ppm以上750.00ppm未満の範囲となる粒子が挙げられ、電解質の濃度が高い粒子(高濃度の粒子)としては、ICP−MS測定による分極粒子が有する金属イオンの量が750.00ppm以上1500.00ppm以下の範囲、好ましくは、800.00ppm以上1500.00ppm以下の範囲となる粒子が挙げられる。
また、電解質を含まない粒子(無濃度の粒子)における金属イオンの量は、実質的に、0ppmとなる。
Examples of the two or more types of particles having different electrolyte concentrations include particles having a low electrolyte concentration (hereinafter, also referred to as low concentration particles) and particles having a high electrolyte concentration (hereinafter, also referred to as high concentration particles). ) And particles containing no electrolyte (hereinafter, also referred to as non-concentration particles) and the like.
Here, as the particles having a low concentration of electrolyte (particles having a low concentration), the amount of metal ions contained in the polarized particles measured by ICP-MS is in the range of 0.01 ppm or more and less than 750.00 ppm, preferably 10 ppm or more and 750 ppm. Particles in the range of less than 00 ppm can be mentioned, and as particles having a high electrolyte concentration (particles having a high concentration), the amount of metal ions contained in the polarized particles measured by ICP-MS is in the range of 750.00 ppm or more and 1500.00 ppm or less. , Preferably, particles in the range of 800.00 ppm or more and 1500.00 ppm or less can be mentioned.
Further, the amount of metal ions in the particles containing no electrolyte (non-concentration particles) is substantially 0 ppm.

尚、電解質として、2種以上の電解質を混合して用いる場合、上記の金属イオンの量とは、金属イオンの合計量を意味する。
例えば、上記電解質として塩化リチウムと塩化亜鉛の混合物を用いる場合、低濃度の粒子におけるリチウムイオンと亜鉛イオンの合計量は、0.01ppm以上750.00ppm未満の範囲、好ましくは、10ppm以上750.00ppm未満の範囲となり、高濃度の粒子におけるリチウムイオンと亜鉛イオンの合計量は、750.00ppm以上1500.00ppm以下の範囲、好ましくは、800.00ppm以上1500.00ppm以下の範囲となり、無濃度の粒子におけるリチウムイオンと亜鉛イオンの合計量は、実質的に、0ppmとなる。
When two or more kinds of electrolytes are mixed and used as the electrolyte, the above-mentioned amount of metal ions means the total amount of metal ions.
For example, when a mixture of lithium chloride and zinc chloride is used as the electrolyte, the total amount of lithium ions and zinc ions in the low-concentration particles is in the range of 0.01 ppm or more and less than 750.00 ppm, preferably 10 ppm or more and 750.00 ppm. The total amount of lithium ion and zinc ion in the high-concentration particles is in the range of 750.00 ppm or more and 1500.00 ppm or less, preferably in the range of 800.00 ppm or more and 1500.00 ppm or less, and the non-concentration particles. The total amount of lithium ion and zinc ion in the above is substantially 0 ppm.

本発明に使用し得る分極粒子は、以下のA乃至Cで示される異なる平均粒子径を有する粒子の1種又は2種以上からなる。
A:0.50〜2.50μm
B:3.00〜5.00μm
C:5.50〜15.00μm
ここで、上記の平均粒子径は、レーザー回折散乱法によって得られた粒度分布(体積基準)の粒子径D50(メジアン径)の値を示す。
粒子Aにおける平均粒子径は、好ましくは、0.80〜2.40μmの範囲であり、より好ましくは、0.90〜2.30μmの範囲である。
粒子Bにおける平均粒子径は、好ましくは、3.00〜4.50μmの範囲であり、より好ましくは、3.20〜4.00μmの範囲である。
粒子Cにおける平均粒子径は、好ましくは、6.00〜13.00μmの範囲であり、より好ましくは、8.00〜10.00μmの範囲である。
The polarized particles that can be used in the present invention consist of one or more of the particles having different average particle diameters represented by the following A to C.
A: 0.50 to 2.50 μm
B: 3.00 to 5.00 μm
C: 5.50-15.00 μm
Here, the above-mentioned average particle diameter indicates the value of the particle diameter D50 (median diameter) of the particle size distribution (volume basis) obtained by the laser diffraction scattering method.
The average particle size of the particles A is preferably in the range of 0.80 to 2.40 μm, more preferably in the range of 0.99 to 2.30 μm.
The average particle size of the particle B is preferably in the range of 3.00 to 4.50 μm, more preferably in the range of 3.20 to 4.00 μm.
The average particle size of the particles C is preferably in the range of 6.00 to 13.00 μm, more preferably in the range of 8.00 to 10.00 μm.

上記粒子A乃至Cには、それぞれ低濃度の粒子、高濃度の粒子及び無濃度の粒子が存在するため、以下の(I)乃至(IX)で示される9種類の粒子が考えられるが、本発明の電気粘性流体に使用し得る分極粒子は、少なくともこれらの粒子の2種以上から構成されることになる。
(I)電解質の濃度が低い粒子A
(II)電解質の濃度が低い粒子B
(III)電解質の濃度が低い粒子C
(IV)電解質の濃度が高い粒子A
(V)電解質の濃度が高い粒子B
(VI)電解質の濃度が高い粒子C
(VII)電解質を含まない粒子A
(VIII)電解質を含まない粒子B
(IX)電解質を含まない粒子C
Since the particles A to C include low-concentration particles, high-concentration particles, and non-concentration particles, respectively, nine types of particles represented by the following (I) to (IX) can be considered. The polarized particles that can be used in the electrorheological fluid of the present invention will be composed of at least two or more of these particles.
(I) Particle A having a low concentration of electrolyte
(II) Particle B having a low concentration of electrolyte
(III) Particles with low electrolyte concentration C
(IV) Particle A having a high concentration of electrolyte
(V) Particles with a high concentration of electrolyte B
(VI) Particles with a high concentration of electrolyte C
(VII) Electrolyte-free particles A
(VIII) Electrolyte-free particles B
(IX) Electrolyte-free particles C

本発明の電気粘性流体に使用し得る分極粒子の好ましい態様としては、A乃至Cで示される異なる平均粒子径を有する粒子の2種以上からなり、該2種以上の異なる平均粒子径を有する粒子は、その平均粒子径の差異により、粒子中に含有される前記電解質の濃度が互いに異なるものが挙げられる。
また、本発明の電気粘性流体に使用し得る分極粒子の好ましい態様としては、前記Cで示される平均粒子径を有する粒子を含み、該Cで示される平均粒子径を有する粒子中に含有される前記電解質の濃度が、他の平均粒子径を有する粒子よりも高くなるものが挙げられる。
A preferred embodiment of the polarized particles that can be used in the electrorheological fluid of the present invention is a particle composed of two or more kinds of particles having different average particle diameters represented by A to C, and having two or more kinds of different average particle diameters. Examples of the above are those in which the concentrations of the electrolytes contained in the particles differ from each other due to the difference in the average particle size.
Further, as a preferred embodiment of the polarized particles that can be used in the electrorheological fluid of the present invention, the polarized particles include the particles having the average particle diameter indicated by C, and are contained in the particles having the average particle diameter indicated by C. Examples thereof include those in which the concentration of the electrolyte is higher than that of other particles having an average particle size.

本発明に使用し得る具体的な分極粒子としては、分極粒子の総質量に基づいて、電解質の濃度が低い粒子B(II)を70乃至90質量%及び電解質の濃度が高い粒子C(VI)を10乃至20質量%含むものが好ましく、また、電解質の濃度が低い粒子B(II)を85乃至95質量%及び電解質の濃度が高い粒子C(VI)を5乃至15質量%含むものが好ましい。 Specific polarized particles that can be used in the present invention include particles B (II) having a low electrolyte concentration of 70 to 90% by mass and particles C (VI) having a high electrolyte concentration based on the total mass of the polarized particles. Is preferably contained in an amount of 10 to 20% by mass, and particles B (II) having a low concentration of electrolyte are preferably contained in an amount of 85 to 95% by mass and particles C (VI) having a high concentration of electrolyte are preferably contained in an amount of 5 to 15% by mass. ..

本発明の電気粘性流体に含まれる分極粒子の量は、電気絶縁媒質の総質量に基づき、30〜60質量%の範囲であり、40〜60質量%の範囲が好ましい。 The amount of polarized particles contained in the electrorheological fluid of the present invention is in the range of 30 to 60% by mass, preferably in the range of 40 to 60% by mass, based on the total mass of the electrically insulating medium.

本発明の電気粘性流体には、更に乳化剤を添加し得る。
本発明の電気粘性流体に添加し得る乳化剤としては電気絶縁媒質中に可溶性で、そして例えばアミド、イミダゾリン、オキサゾリン、アルコール、グリコール又はソルビトールから誘導される界面活性剤が挙げられる。電気絶縁媒質に可溶性のポリマーもまた使用することができる。適宜なポリマーは例えば、0.1から10重量%のN及び/又はOH並びに25から83重量%のC4−C24−アルキル基を含有し、そして5000から1000000の範囲の重量平均の分子量を有するものである。これらのポリマー中のN及びOH−含有化合物は例えば、アミノ、アミド、イミド、ニトリロ、5−及び/又は6−員のN含有複素環あるいはアルコールであり、そして、アクリル酸もしくはメタクリル酸のC4−C24−アルキルエステルを含有することができる。前記の、N及びOH−含有化合物の例は、メタクリル酸N,N−ジメチルアミノエチル、tert.−ブチルアクリルアミド、マレイン酸イミド、アクリロニトリル、N−ビニルピロリドン、ビニルピリジン及びメタクリル酸2−ヒドロキシエチルである。前記のポリマーは概括的に、低分子量の界面活性剤に比較して、それらを使用して調製された系が沈降動態に関してより安定であるという利点を有する。アミノ変性シリコーンあるいはフッ素変性シリコーンなどの変性シリコーンオイルも使用可能である。
An emulsifier may be further added to the electrorheological fluid of the present invention.
Emulsifiers that can be added to the electrorheological fluids of the present invention include surfactants that are soluble in electrically insulating media and are derived from, for example, amides, imidazolines, oxazolines, alcohols, glycols or sorbitols. Polymers soluble in electrically insulating media can also be used. Suitable polymers are, for example, 0.1 to 10 wt% of N and / or OH and 25 to 83 wt% of C 4 -C 24 - containing alkyl group, and a molecular weight of weight average in the range from 5000 1000000 To have. The N and OH-containing compounds in these polymers are, for example, amino, amide, imide, nitrilo, 5- and / or 6-membered N-containing heterocycles or alcohols, and C 4 of acrylic acid or methacrylic acid. It can contain a −C 24 -alkyl ester. Examples of the N and OH-containing compounds described above include N, N-dimethylaminoethyl methacrylate, tert. -Butylacrylamide, imide maleate, acrylonitrile, N-vinylpyrrolidone, vinylpyridine and 2-hydroxyethyl methacrylate. Overall, the polymers have the advantage that the systems prepared using them are more stable with respect to sedimentation dynamics compared to low molecular weight surfactants. Modified silicone oils such as amino-modified silicone or fluorine-modified silicone can also be used.

本発明の電気粘性流体には、更に潤滑剤を添加し得る。
潤滑剤としては、ポリジメチルシロキサン、ポリトリフルオロプロピルメチルシロキサン又はジメチルシロキサンとトリフルオロプロピルメチルシロキサンとの共重合体のような油性潤滑剤等が挙げられる。
Further, a lubricant may be added to the electrorheological fluid of the present invention.
Examples of the lubricant include polydimethylsiloxane, polytrifluoropropylmethylsiloxane, and oil-based lubricants such as a copolymer of dimethylsiloxane and trifluoropropylmethylsiloxane.

本発明の電気粘性流体としては、上述の電気粘性流体の2種以上の混合物を使用することもできる。 As the electrorheological fluid of the present invention, a mixture of two or more of the above-mentioned electrorheological fluids can also be used.

以下に、本発明の電気粘性流体の調製方法を説明する。
本発明の電気粘性流体は、例えば、特定の電解質濃度及び特定の平均粒子径を有する分極粒子を含む流体を複数種混合することにより調製される。
具体的には、上述の(I)乃至(IX)で示される9種類の分極粒子をそれぞれ含む9種の流体の2種以上(但し、少なくとも2種の流体に含まれる分極粒子は電解質の濃度が
異なる。)を特定の割合で混合することにより調製することができる。
分極粒子としてポリウレタン粒子を用いる際の、各流体の調製は、図1に記載の製造フローチャートに沿って操作を行うことにより達成することができる。
図1における製造フローチャートに記載の各工程につき以下に説明する。
The method for preparing the electrorheological fluid of the present invention will be described below.
The electrorheological fluid of the present invention is prepared, for example, by mixing a plurality of types of fluids containing polarized particles having a specific electrolyte concentration and a specific average particle size.
Specifically, two or more kinds of nine kinds of fluids including each of the nine kinds of polarized particles represented by the above (I) to (IX) (however, the polarized particles contained in at least two kinds of fluids have the concentration of electrolyte. ) Can be prepared by mixing in a specific ratio.
The preparation of each fluid when polyurethane particles are used as the polarization particles can be achieved by performing an operation according to the manufacturing flowchart shown in FIG.
Each process described in the manufacturing flowchart in FIG. 1 will be described below.

1.初期秤量+溶解
この工程は、電気絶縁媒質、乳化剤、潤滑剤等を含む溶液(溶液1とも記載する。)並びにポリオール及び電解質を含む溶液(溶液2とも記載する。)を別途に調製する工程である。
尚、調製した溶液1と溶液2は、個別に常温(20±10℃)で保管し、次工程(初期乳化)にて混合される。
各溶液の調製を以下に記載する。
1. 1. Initial weighing + dissolution This step is a step of separately preparing a solution containing an electrically insulating medium, an emulsifier, a lubricant, etc. (also referred to as solution 1) and a solution containing a polyol and an electrolyte (also referred to as solution 2). is there.
The prepared solution 1 and solution 2 are individually stored at room temperature (20 ± 10 ° C.) and mixed in the next step (initial emulsification).
The preparation of each solution is described below.

(1)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液(溶液1)の調製
電気絶縁媒質、乳化剤、潤滑剤等をそれぞれ秤量し、調合瓶若しくは適量サイズのガラスビーカに添加し、マグネチックスーターラとマグネット撹拌子、若しくはスリーワンモータに最適(調合量に応じた)な撹拌羽根を用いて各材料を常温にて混合溶解する。
ここで、撹拌速度(回転数)は、通常、100rpm/s相当以上であり、撹拌時間は、2時間以上であり、温度は、常温(20±10℃)である。規定の撹拌が完了した後、「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施する。
(1) Preparation of solution (solution 1) containing electrically insulating medium, emulsifier, lubricant, etc. Weigh each of the electrically insulating medium, emulsifier, lubricant, etc., add to a compounding bottle or a glass beaker of an appropriate amount, and magnetize sooter. Each material is mixed and dissolved at room temperature using a glass and a magnet stirrer, or a stirring blade that is optimal for a three-one motor (according to the blending amount).
Here, the stirring speed (rotation speed) is usually equivalent to 100 rpm / s or more, the stirring time is 2 hours or more, and the temperature is normal temperature (20 ± 10 ° C.). After the specified stirring is completed, visually check the appearance that there is no "undissolved substance or precipitate", and if "undissolved or precipitate" is confirmed, additional stirring for 2 hours ( Stirring conditions are the same as above) as one set, and stirring is continued until "undissolved substances and precipitates" disappear (visual confirmation becomes impossible).

(2)ポリオール及び電解質を含む溶液(溶液2)の調製
ここで使用する電解質の量により、分極粒子の電解質濃度が決まる。即ち、使用する電解質の量を多くすることにより、電解質の濃度が高い粒子が形成され、電解質の量を少なくすることにより、電解質の濃度が低い粒子が形成され、電解質を全く添加しない場合に、電解質を含まない粒子が形成されることになる。
ポリオール及び電解質をそれぞれ秤量し、調合瓶若しくは適量サイズのガラスビーカに添加し、マグネチックスーターラとマグネット撹拌子、若しくはスリーワンモータに最適(調合量に応じた)な撹拌羽根を用いて各材料を加温攪拌にて混合溶解する。
ここで、撹拌速度(回転数)は100rpm/s相当以上であり、撹拌時間は、8時間以上であり、加温温度は、50ないし80℃、好ましくは、60ないし70℃、例えば、65℃である。規定の撹拌が完了した後、「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施する。
(2) Preparation of a solution (solution 2) containing a polyol and an electrolyte The electrolyte concentration of the polarized particles is determined by the amount of the electrolyte used here. That is, when the amount of the electrolyte used is increased, particles having a high concentration of electrolyte are formed, and by decreasing the amount of electrolyte, particles having a low concentration of electrolyte are formed, and no electrolyte is added. Particles containing no electrolyte will be formed.
Weigh the polyol and electrolyte, add them to a blending bottle or a glass beaker of an appropriate size, and use a magnetic stirrer and a magnetic stir bar, or a stirring blade that is optimal for the three-one motor (depending on the blending amount) to prepare each material. Mix and dissolve by heating and stirring.
Here, the stirring speed (rotation speed) is equivalent to 100 rpm / s or more, the stirring time is 8 hours or more, and the heating temperature is 50 to 80 ° C., preferably 60 to 70 ° C., for example, 65 ° C. Is. After the specified stirring is completed, visually check that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, at the same temperature as above. With 2 hours of additional stirring (stirring conditions are the same as above) as one set, stirring is continued until "undissolved substances and precipitates" disappear (visual confirmation becomes impossible).

電解質として、2種以上の電解質を組み合わせて使用する際は、段階的に溶解させるのが好ましい。例えば、1種の電解質を添加して完全に溶解させた後に、次の1種の電解質を添加して完全に溶解させる等の操作を行うのが好ましい。
添加する電解質の量は、電解質の濃度が低い粒子を形成する際は、最終的な該粒子が有する金属イオンの量が0.01ppm以上750.00ppm未満の範囲、好ましくは、10ppm以上750.00ppm未満の範囲となる量であり、電解質の濃度が低い粒子を形成する際は、最終的な該粒子が有する金属イオンの量が750.00ppm以上1500.00ppm以下の範囲、好ましくは、800.00ppm以上1500.00ppm以下となる量である。
例えば、上記電解質として塩化リチウムと塩化亜鉛を組み合わせて用いる場合、合計の添加量は、低濃度の粒子におけるリチウムイオンと亜鉛イオンの合計が、0.01ppm以上750.00ppm未満の範囲となる量、好ましくは、10ppm以上750.00
ppm未満の範囲となる量であり、高濃度の粒子におけるリチウムイオンと亜鉛イオンの合計が、750.00ppm以上1500.00ppm以下の範囲となる量、好ましくは、800.00ppm以上1500.00ppm以下の範囲となる量である。
When two or more kinds of electrolytes are used in combination as the electrolyte, it is preferable to dissolve them step by step. For example, it is preferable to add one kind of electrolyte and completely dissolve it, and then add the next one kind of electrolyte to completely dissolve it.
When forming particles having a low concentration of electrolyte, the amount of electrolyte to be added is in the range where the final amount of metal ions contained in the particles is 0.01 ppm or more and less than 750.00 ppm, preferably 10 ppm or more and 750.00 ppm. When forming particles having a low electrolyte concentration, the final amount of metal ions contained in the particles is in the range of 750.00 ppm or more and 1500.00 ppm or less, preferably 800.00 ppm. The amount is 1500.00 ppm or less.
For example, when lithium chloride and zinc chloride are used in combination as the electrolyte, the total amount of addition is such that the total amount of lithium ions and zinc ions in the low-concentration particles is in the range of 0.01 ppm or more and less than 750.00 ppm. Preferably, it is 10 ppm or more and 750.00.
The amount is in the range of less than ppm, and the total amount of lithium ions and zinc ions in the high-concentration particles is in the range of 750.00 ppm or more and 1500.00 ppm or less, preferably 800.00 ppm or more and 1500.00 ppm or less. It is a range amount.

電解質が完全に溶解した後、溶液2には、触媒を添加することもできる。
該触媒としては、アミン系触媒を挙げることができ、具体的には、トリエチルアミン、ベンジルジエチルアミン、1,4−ジアザビシクロ[2,2,2]オクタン、1,8−ジアザビシクロ[5,4,0]ウンデセン、N,N,N’,N’−テトラメチル−1,3−ブタンジアミン、N−エチルモルホリン等が挙げられる。
触媒を添加する場合、触媒添加の際の撹拌速度(回転数)は100rpm/s相当以上であり、撹拌時間は、2時間以上であり、加温温度は、50ないし80℃、好ましくは、60ないし70℃、例えば、65℃である。規定の撹拌が完了した後、「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて1時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施する。
A catalyst can also be added to solution 2 after the electrolyte is completely dissolved.
Examples of the catalyst include amine-based catalysts, and specifically, triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, 1,8-diazabicyclo [5,4,0]. Examples thereof include undecene, N, N, N', N'-tetramethyl-1,3-butanediamine, N-ethylmorpholine and the like.
When the catalyst is added, the stirring speed (rotation speed) at the time of adding the catalyst is equivalent to 100 rpm / s or more, the stirring time is 2 hours or more, and the heating temperature is 50 to 80 ° C., preferably 60. Or 70 ° C, for example 65 ° C. After the specified stirring is completed, visually check that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, at the same temperature as above. With 1 hour of additional stirring (stirring conditions are the same as above) as one set, stirring is continued until "undissolved substances and precipitates" disappear (visual confirmation becomes impossible).

2.初期乳化(せん断・分散I)
上記で調製した溶液1と溶液2とを分散機にて分散(せん断)させながら混合し乳化させる工程であり、該工程における分散機のせん断羽根の回転数(速度)及びその操作の繰り返し回数により、後の工程で形成される粒子の平均粒子径が決定されることになる。
具体的な操作は以下の通りとなる。
2. 2. Initial emulsification (shear / dispersion I)
This is a step of mixing and emulsifying the solution 1 and the solution 2 prepared above while being dispersed (sheared) by a disperser, depending on the rotation speed (speed) of the shear blades of the disperser and the number of repetitions of the operation in the step. , The average particle size of the particles formed in a later step will be determined.
The specific operation is as follows.

(a)溶液1と溶液2をそれぞれ別系統のダイヤフラムポンプ(無脈動定量ポンプ)を介してそれぞれ一定量(比率)/定速(流速)で同時に分散機の供給口へ供給する。
(b)その際、後の工程で粒子A(小粒子)及び粒子B(中粒子)を形成させる場合は、分散機のせん断羽根の回転数(速度)として26000rpm/sを使用し、後の工程で粒子C(大粒子)を形成させる場合は、分散機のせん断羽根の回転数(速度)として5000〜10000rpm/sを使用する。
(c)分散機にて乳化(分散混合)した溶液は、撹拌タンクへ吐出(圧送)保管する。
(d)撹拌タンクにおいて、スリーワンモータを用い、例えば、ディスパTYPE羽根2枚使用し、回転数300〜500rpm/sにて撹拌を行うが、タンク内に供給される溶液量に応じて、最適な回転数となるように微調整する。
(e)上記(a)〜(c)により溶液1及び溶液2の全量の初期乳化が完了したら、撹拌タンクの底面下部よりダイヤフラムポンプを介して、乳化した溶液を再び分散機へ供給し、乳化(分散混合)処理を行う。
(A) Solution 1 and solution 2 are simultaneously supplied to the supply port of the disperser at a constant amount (ratio) / constant speed (flow velocity) via diaphragm pumps (non-pulsating metering pumps) of different systems.
(B) At that time, when particles A (small particles) and particles B (medium particles) are formed in a later step, 26000 rpm / s is used as the rotation speed (speed) of the shear blade of the disperser, and later. When particles C (large particles) are formed in the process, 5000 to 10000 rpm / s is used as the rotation speed (speed) of the shear blades of the disperser.
(C) The solution emulsified (dispersed and mixed) by the disperser is discharged (press-fed) and stored in the stirring tank.
(D) In the stirring tank, a three-one motor is used, for example, two Dispa TYPE blades are used, and stirring is performed at a rotation speed of 300 to 500 rpm / s, which is optimal depending on the amount of solution supplied into the tank. Make fine adjustments to the number of revolutions.
(E) When the initial emulsification of the entire amounts of the solution 1 and the solution 2 is completed according to the above (a) to (c), the emulsified solution is supplied to the disperser again from the lower bottom of the stirring tank via the diaphragm pump and emulsified. Perform (dispersion mixing) processing.

上記(a)〜(e)の操作を繰り返し行うが、該繰り返しの回数は、後の工程で粒子A(小粒子)を形成させる場合は、20回以上であり、後の工程で粒子B(中粒子)を形成させる場合は、10ないし19回、例えば、14回であり、後の工程で粒子C(大粒子)を形成させる場合は、1回である。 The above operations (a) to (e) are repeated, and the number of repetitions is 20 or more when particles A (small particles) are formed in a later step, and particles B (in the later steps). When forming particles (medium particles), it is 10 to 19 times, for example, 14 times, and when forming particles C (large particles) in a later step, it is once.

3.予備硬化(硬化剤添加I+分散II)
この工程は、初期乳化工程における分散工程にて生成した未硬化状態のエマルジョン粒子を硬化させることを目的とし、分極粒子を形成するために用いる硬化剤(イソシアネート)の全量のうちの15%量を使用する。
尚、この工程で実施する分散処理の目的は、「硬化剤添加の偏りや粒子同士の結合(接着)を解す程度の軽度な分散を加える」ことであり、分極粒子の平均粒子径の大きさに対しては、直接的に大きな影響を与えるものではない。
具体的な操作は以下の通りとなる。
3. 3. Pre-curing (hardener addition I + dispersion II)
The purpose of this step is to cure the uncured emulsion particles produced in the dispersion step in the initial emulsification step, and 15% of the total amount of the curing agent (isocyanate) used to form the polarized particles is used. use.
The purpose of the dispersion treatment carried out in this step is to "add a light dispersion that breaks the bias of the addition of the curing agent and the bond (adhesion) between the particles", and the size of the average particle size of the polarized particles. Does not have a direct impact on.
The specific operation is as follows.

撹拌タンク内にて撹拌状態で保管中にある、上記2.初期乳化(せん断・分散I)で調製したエマルジョンに、同一撹拌を継続させながら、総添加量の15%量の硬化剤(イソシアネート)をチューブポンプを用い、滴下添加する。
添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲で調整する。
規定量の硬化剤添加が完了した後、撹拌タンクの底面下部よりダイヤフラムポンプを介して、初期乳化で使用した分散機へ供給し、分散処理を行う。
但し、上記の分散処理における分散機への供給速度は、初期乳化時の50%速度とし、分散条件は、後の工程で粒子A(小粒子)及び粒子B(中粒子)を形成させる場合は、分散機のせん断羽根の回転数(速度)として26000rpm/sを使用し、後の工程で粒子C(大粒子)を形成させる場合は、分散機のせん断羽根の回転数(速度)として5000〜10000rpm/sを使用し、この分散処理における繰り返しの回数は通常1回である。
The above 2. is being stored in a stirring state in a stirring tank. To the emulsion prepared by the initial emulsification (shear / dispersion I), a curing agent (isocyanate) in an amount of 15% of the total addition amount is added dropwise using a tube pump while continuing the same stirring.
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" at the time of addition, the liquid temperature is adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.
After the addition of the specified amount of hardener is completed, it is supplied from the lower bottom of the stirring tank to the disperser used in the initial emulsification via the diaphragm pump to perform the dispersion treatment.
However, the supply rate to the disperser in the above dispersion treatment is 50% of the rate at the time of initial emulsification, and the dispersion condition is when particles A (small particles) and particles B (medium particles) are formed in a later step. When 26000 rpm / s is used as the rotation speed (speed) of the shear blades of the disperser and particles C (large particles) are formed in a later step, 5000 to 5000 as the rotation speed (speed) of the shear blades of the disperser. At 10000 rpm / s, the number of repetitions in this dispersion process is usually one.

4.本硬化(硬化剤添加II+攪拌)
この工程では、上記の3.予備硬化(硬化剤添加I+分散II)により形成された半硬化状態のエマルジョン粒子を更に硬化させることを目的とし、分極粒子を形成するために用いる硬化剤(イソシアネート)の残りの量、即ち、全量の85%量を使用する。
具体的な操作は以下の通りとなる。
4. Main curing (hardener addition II + stirring)
In this step, the above 3. The remaining amount, or total amount, of the curing agent (isocyanate) used to form the polarized particles for the purpose of further curing the semi-cured emulsion particles formed by pre-curing (hardener addition I + dispersion II). Use 85% of the amount.
The specific operation is as follows.

上記の3.予備硬化(硬化剤添加I+分散II)の操作(追加の分散処理を含む)の完了後、撹拌タンク内にて撹拌状態で保管中の半硬化の分極粒子(ポリウレタン粒子)のエマルジョンに対し、撹拌力を上げ、回転数500〜700rpm/sにて撹拌しながら、硬化剤(イソシアネート)の残りの量、即ち、全量の85%量をチューブポンプを用い、滴下添加し、添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、冷却装置にて、液温が50℃を超過しない範囲に調整(冷却)する。 Above 3. After the pre-curing (hardener addition I + dispersion II) operation (including additional dispersion treatment) is completed, the emulsion of semi-cured polarized particles (polyurethane particles) stored in a stirring state in a stirring tank is stirred. While increasing the force and stirring at a rotation speed of 500 to 700 rpm / s, the remaining amount of the curing agent (isocyanate), that is, 85% of the total amount is added dropwise using a tube pump, and at the time of addition, "reaction heat (reaction heat (reaction heat) Since the liquid temperature rises due to "isocyanate reaction)", the liquid temperature is adjusted (cooled) within a range not exceeding 50 ° C. with a cooling device.

5.固定化(加熱加温+攪拌)
上記の4.本硬化(硬化剤添加II+攪拌)における最終的な硬化剤添加が完了した後、「完全な硬化」を行う為に、この工程において加温加熱処理を行う。
具体的な操作は以下の通りとなる。
5. Immobilization (heating + stirring)
4. above. After the final addition of the curing agent in the main curing (hardener addition II + stirring) is completed, a heating heat treatment is performed in this step in order to perform "complete curing".
The specific operation is as follows.

上記の4.本硬化(硬化剤添加II+攪拌)により調製された硬化された分極粒子(ポリウレタン粒子)のエマルジョンを撹拌タンクから初期秤量で使用した調合瓶へ移し換え、加温機能付きの攪拌器を用い、加温攪拌にて混合する。
ここで、撹拌速度(回転数)は100rpm/s相当以上であり、撹拌時間は、8時間以上であり、加温温度は、50ないし80℃、好ましくは、60ないし70℃、例えば、65℃である。加温攪拌の完了後、保温機能を停止し、同回転数のまま、液温が常温(室温(20−30℃))となるまで自然冷却しながら撹拌を継続させる。
4. above. The emulsion of the cured polarized particles (polyurethane particles) prepared by the main curing (hardener addition II + stirring) is transferred from the stirring tank to the compounding bottle used in the initial weighing, and heated using a stirrer with a heating function. Mix with warm stirring.
Here, the stirring speed (rotation speed) is equivalent to 100 rpm / s or more, the stirring time is 8 hours or more, and the heating temperature is 50 to 80 ° C., preferably 60 to 70 ° C., for example, 65 ° C. Is. After the completion of the heating and stirring, the heat retention function is stopped, and the stirring is continued while naturally cooling until the liquid temperature reaches room temperature (room temperature (20-30 ° C.)) at the same rotation speed.

6.濾過(SUSメッシュ#125)
5.固定化(加熱加温+攪拌)の操作が完了した流体をろ過するが、ここで、容器内壁への飛散を防ぎ、乾燥屑や不純物を除去する為、2段階で濾過処理を施す。
即ち、(目の開き)180μm,(線径)125μmの濾過メッシュを用いて、流体を濾過(1回目)し、続いて、(目の開き)180μm,(線径)125μmの濾過メッシュを用いて、流体を濾過(2回目)する。
6. Filtration (SUS mesh # 125)
5. The fluid for which the immobilization (heating + stirring) operation has been completed is filtered. Here, in order to prevent scattering to the inner wall of the container and remove dry debris and impurities, filtration treatment is performed in two steps.
That is, the fluid is filtered (first time) using a filtration mesh of (opening) 180 μm and (wire diameter) 125 μm, and then using a filtering mesh of (opening) 180 μm and (wire diameter) 125 μm. The fluid is filtered (second time).

上記で調製した特定の電解質濃度及び特定の平均粒子径を有する分極粒子を含む流体の2種以上(但し、少なくとも2種の流体に含まれる分極粒子は電解質の濃度が異なる。)を特定の割合で混合することにより本発明の電気粘性流体を製造することができる。
好ましい流体の2種以上の混合の例としては、混合後の流体中の分極粒子が、その総質量に基づいて、電解質の濃度が低い粒子B(II)が70乃至90質量%及び電解質の濃度が高い粒子C(VI)が10乃至20質量%となる混合割合が好ましく、また、電解質の濃度が低い粒子B(II)が85乃至95質量%及び電解質の濃度が高い粒子C(VI)が5乃至15質量%となる混合割合がまた好ましい。
A specific ratio of two or more kinds of fluids containing polarized particles having a specific electrolyte concentration and a specific average particle size prepared above (however, the polarized particles contained in at least two kinds of fluids have different electrolyte concentrations). The electroviscous fluid of the present invention can be produced by mixing with.
As an example of mixing two or more kinds of preferable fluids, the polarized particles in the mixed fluid have a low electrolyte concentration of 70 to 90% by mass and the electrolyte concentration based on the total mass of the polarized particles. It is preferable that the particles C (VI) having a high concentration of 10 to 20% by mass are mixed, and the particles B (II) having a low concentration of electrolyte are 85 to 95% by mass and the particles C (VI) having a high concentration of electrolyte are 85 to 95% by mass. A mixing ratio of 5 to 15% by mass is also preferable.

次に、本発明をさらに詳細に説明するために実施例をあげるが、本発明はこれに限定されるものではない。 Next, examples will be given to explain the present invention in more detail, but the present invention is not limited thereto.

調製例1:流体1(電解質の濃度が低い粒子B(II)を含む流体)の調製
1.初期秤量+溶解
(1)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液の調製
調合瓶に、
・シリコーンオイル(KF96−5cs:信越化学(株)製)489.0g
・乳化剤(OF7747:モーメンティブパフォーマンスマテリアルズ合同会社製)8.8g、及び
・潤滑剤(GPW2233:モーメンティブパフォーマンスマテリアルズ合同会社製)16.1g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、常温(20±10℃)で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施し、電気絶縁媒質、乳化剤、潤滑剤等を含む溶液を調製した。
Preparation Example 1: Preparation of fluid 1 (fluid containing particles B (II) having a low concentration of electrolyte) 1. Initial weighing + dissolution (1) Preparation of solution containing electrically insulating medium, emulsifier, lubricant, etc. In a compounding bottle,
-Silicone oil (KF96-5cs: manufactured by Shin-Etsu Chemical Co., Ltd.) 489.0 g
-Emulsifier (OF7747: manufactured by Momentive Performance Materials GK) 8.8 g, and-Lubricant (GPW2233: manufactured by Momentive Performance Materials GK) 16.1 g
Was weighed and added, and the mixture was stirred at a stirring speed (rotation speed) of 100 rpm / s or more and at room temperature (20 ± 10 ° C.) for 2 hours.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, perform additional stirring for 2 hours (stirring conditions are the same as above). As one set, stirring was continuously carried out until "undissolved substances and precipitates" disappeared (visual confirmation became impossible), and a solution containing an electrically insulating medium, an emulsifier, a lubricant and the like was prepared.

(2)ポリオール及び電解質を含む溶液の調製
別の調合瓶に、
・ポリオール(ポリオール3165:パーストープ社製)400.0g及び
・LiCl(塩化リチウム:和光純薬工業(株)製)0.03g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、8時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施した。
上記溶液に、更に、
・ZnCl2(塩化亜鉛:和光純薬工業(株)製)0.68g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施した。
上記溶液に、更に、
・DABCO(1,4−ジアザビシクロ[2.2.2]オクタン:東京化成工業(株)製)1.11g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」
が確認された場合は、上記と同一温度にて1時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施し、ポリオール及び電解質を含む溶液を調製した。
調製した電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液は、個別に常温(20±10℃)で保管し、次工程(初期乳化)にて混合した。
(2) Preparation of solution containing polyol and electrolyte In another compounding bottle,
400.0 g of polyol (polypoly 3165: manufactured by Perstoop) and 0.03 g of LiCl (lithium chloride: manufactured by Wako Pure Chemical Industries, Ltd.)
Was weighed and added, and the mixture was stirred at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C. for 8 hours.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, additional stirring for 2 hours at the same temperature as above (stirring conditions). The same as above) was used as one set, and stirring was continued until "undissolved substances and precipitates" disappeared (visual confirmation became impossible).
In addition to the above solution
・ ZnCl 2 (Zinc chloride: manufactured by Wako Pure Chemical Industries, Ltd.) 0.68 g
Was weighed and added, and the mixture was stirred for 2 hours at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, additional stirring for 2 hours at the same temperature as above (stirring conditions). The same as above) was used as one set, and stirring was continued until "undissolved substances and precipitates" disappeared (visual confirmation became impossible).
In addition to the above solution
DABCO (1,4-diazabicyclo [2.2.2] octane: manufactured by Tokyo Chemical Industry Co., Ltd.) 1.11 g
Was weighed and added, and the mixture was stirred for 2 hours at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates"
If is confirmed, continue stirring at the same temperature as above for 1 hour with additional stirring (stirring conditions are the same as above) until there are no "undissolved substances or precipitates" (visual confirmation becomes impossible). This was carried out to prepare a solution containing the polyol and electrolyte.
The prepared solution containing the electrically insulating medium, emulsifier, lubricant and the like, and the solution containing the polyol and the electrolyte were individually stored at room temperature (20 ± 10 ° C.) and mixed in the next step (initial emulsification).

2.初期乳化(せん断・分散I)
(a)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液をそれぞれ別系統のダイヤフラムポンプ(無脈動定量ポンプ)を介してそれぞれ一定量(比率)/定速(流速)で同時に分散機(IKAジャパン社製:IKA−5L−magic−Lab)の供給口へ供給した。
(b)その際、分散機のせん断羽根の回転数(速度)を、26000rpm/sとした。(c)分散機で乳化(分散混合)した溶液を、撹拌タンク(自家製SUSタンク:5L)へ吐出(圧送)し保管した。
(d)撹拌タンクでは、スリーワンモータ(Fine社製:FBL−600)を用い、ディスパTYPE羽根2枚使用し、回転数300〜500rpm/sにて撹拌を実施したが、タンク内に供給される溶液量に応じて、最適な回転数になるように微調整した。
(e)上記(a)〜(c)により電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液の全量の初期乳化が完了したら、撹拌タンクの底面下部よりダイヤフラムポンプを介して、乳化した溶液を再び分散機へ供給し、乳化(分散混合)処理を行い、上記(a)〜(e)の操作を14回繰り返し行った。
2. 2. Initial emulsification (shear / dispersion I)
(A) A constant amount (ratio) / constant speed (flow velocity) of a solution containing an electrically insulating medium, an emulsifier, a lubricant, etc., and a solution containing a polyol and an electrolyte via separate diaphragm pumps (pulsation-free metering pumps). At the same time, the solution was supplied to the supply port of the disperser (manufactured by IKA Japan: IKA-5L-magic-Lab).
(B) At that time, the rotation speed (speed) of the shear blade of the disperser was set to 26000 rpm / s. (C) The solution emulsified (dispersed and mixed) by the disperser was discharged (pressure-fed) to a stirring tank (homemade SUS tank: 5 L) and stored.
(D) In the stirring tank, a three-one motor (Fine Co., Ltd .: FBL-600) was used, two dispa TYPE blades were used, and stirring was performed at a rotation speed of 300 to 500 rpm / s, but the mixture was supplied into the tank. The rotation speed was finely adjusted according to the amount of the solution.
(E) When the initial emulsification of the entire amount of the solution containing the electrically insulating medium, the emulsifier, the lubricant and the like and the solution containing the polyol and the electrolyte is completed according to the above (a) to (c), from the lower bottom of the stirring tank via the diaphragm pump. Then, the emulsified solution was supplied to the disperser again, emulsification (dispersion mixing) treatment was performed, and the above operations (a) to (e) were repeated 14 times.

3.予備硬化(硬化剤添加I+分散II)
撹拌タンク内にて撹拌状態で保管中の、上記2.初期乳化(せん断・分散I)の工程で調製したエマルジョンに、撹拌を継続させながら、硬化剤TDI(トリレンジイソシアネート:東京化成工業(株)製/T−80)14.20gをチューブポンプ(ASONE社製:SMP−21AS)を用い、滴下添加した(添加速度:volume3)。
硬化剤TDI添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲に調整した。
規定量の硬化剤添加が完了した後、撹拌タンクの底面下部よりダイヤフラムポンプを介して、初期乳化で使用した分散機へ、初期乳化時の50%の速度で供給し、分散処理を行った。
この時の分散条件は、分散機のせん断羽根の回転数(速度)を、26000rpm/sとし、上記(a)〜(e)と同様の操作を1回行った。
3. 3. Pre-curing (hardener addition I + dispersion II)
2. Stored in a stirring state in a stirring tank. To the emulsion prepared in the initial emulsification (shearing / dispersion I) step, 14.20 g of the curing agent TDI (Torrange isocyanate: manufactured by Tokyo Chemical Industry Co., Ltd./T-80) was added to the tube pump (ASONE) while continuing stirring. (Manufactured by SMP-21AS) was added dropwise (addition rate: volume 3).
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" when the curing agent TDI is added, the liquid temperature was adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.
After the addition of the specified amount of the curing agent was completed, the mixture was supplied from the lower bottom of the stirring tank to the disperser used in the initial emulsification via a diaphragm pump at a rate of 50% of that in the initial emulsification, and the dispersion treatment was performed.
The dispersion condition at this time was that the rotation speed (speed) of the shear blades of the disperser was 26000 rpm / s, and the same operations as in (a) to (e) above were performed once.

4.本硬化(硬化剤添加II+攪拌)
上記3.予備硬化(硬化剤添加I+分散II)の工程の完了後、同じ撹拌タンク内にて撹拌状態で保管中の半硬化状態にあるポリウレタン粒子のエマルジョンにおいて、撹拌力を上げ、回転数500〜700rpm/sにて撹拌しながら、硬化剤TDI(トリレンジイソシアネート:東京化成工業(株)製/T−80)80.40gをチューブポンプ(ASONE社製:SMP−21AS)を用い、滴下添加した(添加速度:volume3−10)。
硬化剤TDI添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲に調整した。
4. Main curing (hardener addition II + stirring)
Above 3. After the pre-curing (hardener addition I + dispersion II) process is completed, the stirring power is increased in the emulsion of the semi-cured polyurethane particles that are being stored in the same stirring tank in the stirring state, and the rotation speed is 500 to 700 rpm / While stirring at s, 80.40 g of the curing agent TDI (Torrange isocyanate: manufactured by Tokyo Kasei Kogyo Co., Ltd./T-80) was added dropwise using a tube pump (manufactured by ASONE: SMP-21AS) (addition). Speed: volume 3-10).
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" when the curing agent TDI is added, the liquid temperature was adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.

5.固定化(加熱加温+攪拌)
上記4.本硬化(硬化剤添加II+攪拌)の工程の完了後、硬化したポリウレタン粒子のエマルジョンを撹拌タンクから初期秤量で使用した調合瓶へ移し換え、撹拌子+加温機能(常温〜250℃範囲)付きマグネッチックスターラ(ホットマグネッチックスターラ)を用いて液温:65℃、撹拌速度(回転数):100rpm/s相当以上、撹拌時間:8
時間以上、加温攪拌した。
加温攪拌完了後、保温機能を停止し、同じ回転数のまま、液温が常温:室温(20−30℃)となるまで自然冷却しながら、撹拌を継続させた。
5. Immobilization (heating + stirring)
Above 4. After the main curing (hardener addition II + stirring) process is completed, the cured polyurethane particle emulsion is transferred from the stirring tank to the compounding bottle used in the initial weighing, with a stirrer + heating function (normal temperature to 250 ° C range). Liquid temperature: 65 ° C., stirring speed (rotation speed): equivalent to 100 rpm / s or more, stirring time: 8 using a magnetic stirrer (hot magnetic stirrer)
It was heated and stirred for more than an hour.
After the completion of the heating and stirring, the heat retention function was stopped, and the stirring was continued while naturally cooling the liquid at room temperature: room temperature (20-30 ° C.) at the same rotation speed.

6.濾過(SUSメッシュ#125)
上記5.固定化(加熱加温+攪拌)の工程の完了後、調製された流体を、(目の開き)180μm,(線径)125μmの濾過メッシュ(東京スクリーン(株)製:TESTING SIEVE)を用いて、流体を濾過(1回目)し、続いて、(目の開き)180μm,(線径)125μmの濾過メッシュ(東京スクリーン(株)製:TESTING SIEVE)を用いて、流体を濾過(2回目)して、流体1(電解質の濃度が低い粒子B(II)を含む流体)を得た。
6. Filtration (SUS mesh # 125)
5. Above. After the immobilization (heating + stirring) process is completed, the prepared fluid is applied to the prepared fluid using a filtration mesh (manufactured by Tokyo Screen Co., Ltd .: TESTING SIEVE) with (opening of eyes) 180 μm and (wire diameter) 125 μm. , The fluid is filtered (first time), and then the fluid is filtered using a filtration mesh (manufactured by Tokyo Screen Co., Ltd .: TESTING SIEVE) with (opening of eyes) 180 μm and (wire diameter) 125 μm (second time). Then, a fluid 1 (a fluid containing particles B (II) having a low concentration of electrolyte) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体1中の粒子の平均粒子径は3.7μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体1中の粒子のイオン量を測定したところ、リチウムイオン量として30ppm及び亜鉛イオンとして680ppm(総計710ppm)であった。 The average particle size of the particles in the fluid 1 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 3.7 μm. Further, when the amount of ions of the particles in the fluid 1 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 30 ppm and the amount of zinc ions was 680 ppm (total 710 ppm).

調製例2:流体2(電解質の濃度が低い粒子A(I)を含む流体)の調製
2.初期乳化(せん断・分散I)における(a)〜(e)の操作の繰り返しを20回以上とした以外は、調製例1と同様の操作を行って、流体2(電解質の濃度が低い粒子A(I)を含む流体)を得た。
Preparation Example 2: Preparation of fluid 2 (fluid containing particles A (I) having a low concentration of electrolyte) 2. The same operation as in Preparation Example 1 was performed except that the operations (a) to (e) in the initial emulsification (shear / dispersion I) were repeated 20 times or more, and the fluid 2 (particle A having a low electrolyte concentration) was subjected to the same operation. A fluid containing (I)) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体2中の粒子の平均粒子径は2.4μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体2中の粒子のイオン量を測定したところ、リチウムイオン量として30ppm及び亜鉛イオンとして680ppm(総計710ppm)であった。 The average particle size of the particles in the fluid 2 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 2.4 μm. Further, when the amount of ions of the particles in the fluid 2 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 30 ppm and the amount of zinc ions was 680 ppm (total 710 ppm).

調製例3:流体3(電解質の濃度が低い粒子C(III)を含む流体)の調製
2.初期乳化(せん断・分散I)の(b)における分散機のせん断羽根の回転数(速度)を、5000〜10000rpm/sとし、(a)〜(e)の操作の繰り返しを1回とし、3.予備硬化(硬化剤添加I+分散II)における分散条件(分散機のせん断羽根の回転数(速度))を、5000〜10000rpm/sとした以外は、調製例1と同様の操作を行って、流体3(電解質の濃度が低い粒子C(III)を含む流体)を得た。
Preparation Example 3: Preparation of fluid 3 (fluid containing particles C (III) having a low concentration of electrolyte) 2. The rotation speed (speed) of the shear blade of the disperser in (b) of the initial emulsification (shearing / dispersion I) is set to 5000 to 10000 rpm / s, and the operations of (a) to (e) are repeated once, and 3 .. The fluid was operated in the same manner as in Preparation Example 1 except that the dispersion conditions (rotation speed (speed) of the shear blades of the disperser) in the pre-curing (hardener addition I + dispersion II) were set to 5000 to 10000 rpm / s. 3 (fluid containing particles C (III) having a low concentration of electrolyte) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体3中の粒子の平均粒子径は6.5μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体3中の粒子のイオン量を測定したところ、リチウムイオン量として30ppm及び亜鉛イオンとして680ppm(総計710ppm)であった。 The average particle size of the particles in the fluid 3 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 6.5 μm. Further, when the amount of ions of the particles in the fluid 3 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 30 ppm and the amount of zinc ions was 680 ppm (total 710 ppm).

調製例4:流体4(電解質の濃度が高い粒子B(V)を含む流体)の調製
1.初期秤量+溶解
(1)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液の調製
調合瓶に、
・シリコーンオイル(KF96−5cs:信越化学(株)製)488.73g
・乳化剤(OF7747:モーメンティブパフォーマンスマテリアルズ合同会社製)8.8g、及び
・潤滑剤(GPW2233:モーメンティブパフォーマンスマテリアルズ合同会社製)1
6.1g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、常温(20±10℃)で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施し、電気絶縁媒質、乳化剤、潤滑剤等を含む溶液を調製した。
Preparation Example 4: Preparation of fluid 4 (fluid containing particles B (V) having a high concentration of electrolyte) 1. Initial weighing + dissolution (1) Preparation of solution containing electrically insulating medium, emulsifier, lubricant, etc. In a compounding bottle,
-Silicone oil (KF96-5cs: manufactured by Shin-Etsu Chemical Co., Ltd.) 488.73 g
-Emulsifier (OF7747: manufactured by Momentive Performance Materials GK) 8.8 g, and-Lubricant (GPW2233: manufactured by Momentive Performance Materials GK) 1
6.1g
Was weighed and added, and the mixture was stirred at a stirring speed (rotation speed) of 100 rpm / s or more and at room temperature (20 ± 10 ° C.) for 2 hours.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, perform additional stirring for 2 hours (stirring conditions are the same as above). As one set, stirring was continuously carried out until "undissolved substances and precipitates" disappeared (visual confirmation became impossible), and a solution containing an electrically insulating medium, an emulsifier, a lubricant and the like was prepared.

(2)ポリオール及び電解質を含む溶液の調製
別の調合瓶に、
・ポリオール(ポリオール3165:パーストープ社製)400.0g及び
・LiCl(塩化リチウム:和光純薬工業(株)製)0.30g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、8時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施した。
上記溶液に、更に、
・ZnCl2(塩化亜鉛:和光純薬工業(株)製)0.68g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施した。
上記溶液に、更に、
・DABCO(1,4−ジアザビシクロ[2.2.2]オクタン:東京化成工業(株)製)1.11g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて1時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施し、ポリオール及び電解質を含む溶液を調製した。
調製した電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液は、個別に常温(20±10℃)で保管し、次工程(初期乳化)にて混合した。
(2) Preparation of solution containing polyol and electrolyte In another compounding bottle,
400.0 g of polyol (polypoly 3165: manufactured by Perstoop) and 0.30 g of LiCl (lithium chloride: manufactured by Wako Pure Chemical Industries, Ltd.)
Was weighed and added, and the mixture was stirred at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C. for 8 hours.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, additional stirring for 2 hours at the same temperature as above (stirring conditions). The same as above) was used as one set, and stirring was continued until "undissolved substances and precipitates" disappeared (visual confirmation became impossible).
In addition to the above solution
・ ZnCl 2 (Zinc chloride: manufactured by Wako Pure Chemical Industries, Ltd.) 0.68 g
Was weighed and added, and the mixture was stirred for 2 hours at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, additional stirring for 2 hours at the same temperature as above (stirring conditions). The same as above) was used as one set, and stirring was continued until "undissolved substances and precipitates" disappeared (visual confirmation became impossible).
In addition to the above solution
DABCO (1,4-diazabicyclo [2.2.2] octane: manufactured by Tokyo Chemical Industry Co., Ltd.) 1.11 g
Was weighed and added, and the mixture was stirred for 2 hours at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, additional stirring for 1 hour at the same temperature as above (stirring conditions). Was the same as above) as one set, and stirring was continued until "undissolved substances and precipitates" disappeared (visual confirmation became impossible) to prepare a solution containing a polyol and an electrolyte.
The prepared solution containing the electrically insulating medium, emulsifier, lubricant and the like, and the solution containing the polyol and the electrolyte were individually stored at room temperature (20 ± 10 ° C.) and mixed in the next step (initial emulsification).

2.初期乳化(せん断・分散I)
(a)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液をそれぞれ別系統のダイヤフラムポンプ(無脈動定量ポンプ)を介してそれぞれ一定量(比率)/定速(流速)で同時に分散機(IKAジャパン社製:IKA−5L−magic−Lab)の供給口へ供給した。
(b)その際、分散機のせん断羽根の回転数(速度)を、26000rpm/sとした。(c)分散機で乳化(分散混合)した溶液を、撹拌タンク(自家製SUSタンク:5L)へ吐出(圧送)し保管した。
(d)撹拌タンクでは、スリーワンモータ(Fine社製:FBL−600)を用い、ディスパTYPE羽根2枚使用し、回転数300〜500rpm/sにて撹拌を実施したが、タンク内に供給される溶液量に応じて、最適な回転数になるように微調整した。
(e)上記(a)〜(c)により電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリ
オール及び電解質を含む溶液の全量の初期乳化が完了したら、撹拌タンクの底面下部よりダイヤフラムポンプを介して、乳化した溶液を再び分散機へ供給し、乳化(分散混合)処理を行い、上記(a)〜(e)の操作を14回繰り返し行った。
2. 2. Initial emulsification (shear / dispersion I)
(A) A constant amount (ratio) / constant speed (flow velocity) of a solution containing an electrically insulating medium, an emulsifier, a lubricant, etc., and a solution containing a polyol and an electrolyte via separate diaphragm pumps (pulsation-free metering pumps). At the same time, the solution was supplied to the supply port of the disperser (manufactured by IKA Japan: IKA-5L-magic-Lab).
(B) At that time, the rotation speed (speed) of the shear blade of the disperser was set to 26000 rpm / s. (C) The solution emulsified (dispersed and mixed) by the disperser was discharged (pressure-fed) to a stirring tank (homemade SUS tank: 5 L) and stored.
(D) In the stirring tank, a three-one motor (Fine Co., Ltd .: FBL-600) was used, two dispa TYPE blades were used, and stirring was performed at a rotation speed of 300 to 500 rpm / s, but the mixture was supplied into the tank. The rotation speed was finely adjusted according to the amount of the solution.
(E) When the initial emulsification of the entire amount of the solution containing the electrically insulating medium, the emulsifier, the lubricant and the like and the solution containing the polyol and the electrolyte is completed according to the above (a) to (c), from the lower bottom of the stirring tank via the diaphragm pump. Then, the emulsified solution was supplied to the disperser again, emulsification (dispersion mixing) treatment was performed, and the above operations (a) to (e) were repeated 14 times.

3.予備硬化(硬化剤添加I+分散II)
撹拌タンク内にて撹拌状態で保管中の、上記2.初期乳化(せん断・分散I)の工程で調製したエマルジョンに、撹拌を継続させながら、硬化剤TDI(トリレンジイソシアネート:東京化成工業(株)製/T−80)14.20gをチューブポンプ(ASONE社製:SMP−21AS)を用い、滴下添加した(添加速度:volume3)。
硬化剤TDI添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲に調整した。
規定量の硬化剤添加が完了した後、撹拌タンクの底面下部よりダイヤフラムポンプを介して、初期乳化で使用した分散機へ、初期乳化時の50%の速度で供給し、分散処理を行った。
この時の分散条件は、分散機のせん断羽根の回転数(速度)を、26000rpm/sとし、上記(a)〜(e)と同様の操作を1回行った。
3. 3. Pre-curing (hardener addition I + dispersion II)
2. Stored in a stirring state in a stirring tank. To the emulsion prepared in the initial emulsification (shearing / dispersion I) step, 14.20 g of the curing agent TDI (Torrange isocyanate: manufactured by Tokyo Chemical Industry Co., Ltd./T-80) was added to the tube pump (ASONE) while continuing stirring. (Manufactured by SMP-21AS) was added dropwise (addition rate: volume 3).
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" when the curing agent TDI is added, the liquid temperature was adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.
After the addition of the specified amount of the curing agent was completed, the mixture was supplied from the lower bottom of the stirring tank to the disperser used in the initial emulsification via a diaphragm pump at a rate of 50% of that in the initial emulsification, and the dispersion treatment was performed.
The dispersion condition at this time was that the rotation speed (speed) of the shear blades of the disperser was 26000 rpm / s, and the same operations as in (a) to (e) above were performed once.

4.本硬化(硬化剤添加II+攪拌)
上記3.予備硬化(硬化剤添加I+分散II)の工程の完了後、同じ撹拌タンク内にて撹拌状態で保管中の半硬化状態にあるポリウレタン粒子のエマルジョンにおいて、撹拌力を上げ、回転数500〜700rpm/sにて撹拌しながら、硬化剤TDI(トリレンジイソシアネート:東京化成工業(株)製/T−80)80.40gをチューブポンプ(ASONE社製:SMP−21AS)を用い、滴下添加した(添加速度:volume3−10)。
硬化剤TDI添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲に調整した。
4. Main curing (hardener addition II + stirring)
Above 3. After the pre-curing (hardener addition I + dispersion II) process is completed, the stirring power is increased in the emulsion of the semi-cured polyurethane particles that are being stored in the same stirring tank in the stirring state, and the rotation speed is 500 to 700 rpm / While stirring at s, 80.40 g of the curing agent TDI (Torrange isocyanate: manufactured by Tokyo Kasei Kogyo Co., Ltd./T-80) was added dropwise using a tube pump (manufactured by ASONE: SMP-21AS) (addition). Speed: volume 3-10).
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" when the curing agent TDI is added, the liquid temperature was adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.

5.固定化(加熱加温+攪拌)
上記4.本硬化(硬化剤添加II+攪拌)の工程の完了後、硬化したポリウレタン粒子のエマルジョンを撹拌タンクから初期秤量で使用した調合瓶へ移し換え、撹拌子+加温機能(常温〜250℃範囲)付きマグネッチックスターラ(ホットマグネッチックスターラ)を用いて液温:65℃、撹拌速度(回転数):100rpm/s相当以上、撹拌時間:8時間以上、加温攪拌した。
加温攪拌完了後、保温機能を停止し、同じ回転数のまま、液温が常温:室温(20−30℃)となるまで自然冷却しながら、撹拌を継続させた。
5. Immobilization (heating + stirring)
Above 4. After the main curing (hardener addition II + stirring) process is completed, the cured polyurethane particle emulsion is transferred from the stirring tank to the compounding bottle used in the initial weighing, with a stirrer + heating function (normal temperature to 250 ° C range). Using a magnetic stirrer (hot magnetic stirrer), the liquid temperature was 65 ° C., the stirring speed (rotation speed) was equivalent to 100 rpm / s or more, and the stirring time was 8 hours or more.
After the completion of the heating and stirring, the heat retention function was stopped, and the stirring was continued while naturally cooling the liquid at room temperature: room temperature (20-30 ° C.) at the same rotation speed.

6.濾過(SUSメッシュ#125)
上記5.固定化(加熱加温+攪拌)の工程の完了後、調製された流体を、(目の開き)180μm,(線径)125μmの濾過メッシュ(東京スクリーン(株)製:TESTING SIEVE)を用いて、流体を濾過(1回目)し、続いて、(目の開き)180μm,(線径)125μmの濾過メッシュ(東京スクリーン(株)製:TESTING SIEVE)を用いて、流体を濾過(2回目)して、流体4(電解質の濃度が高い粒子B(V)を含む流体)を得た。
6. Filtration (SUS mesh # 125)
5. Above. After the immobilization (heating + stirring) process is completed, the prepared fluid is applied to the prepared fluid using a filtration mesh (manufactured by Tokyo Screen Co., Ltd .: TESTING SIEVE) with (opening of eyes) 180 μm and (wire diameter) 125 μm. , The fluid is filtered (first time), and then the fluid is filtered using a filtration mesh (manufactured by Tokyo Screen Co., Ltd .: TESTING SIEVE) with (opening of eyes) 180 μm and (wire diameter) 125 μm (second time). Then, a fluid 4 (a fluid containing particles B (V) having a high concentration of electrolyte) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体4中の粒子の平均粒子径は3.7μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体4中の粒子のイオン量を測定したところ、リチウムイオン量として300ppm及び亜鉛イオンとして680ppm(総計980ppm)であった。 The average particle size of the particles in the fluid 4 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 3.7 μm. Further, when the amount of ions of the particles in the fluid 4 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 300 ppm and the amount of zinc ions was 680 ppm (total 980 ppm).

調製例5:流体5(電解質の濃度が高い粒子A(IV)を含む流体)の調製
2.初期乳化(せん断・分散I)における(a)〜(e)の操作の繰り返しを20回以上とした以外は、調製例4と同様の操作を行って、流体5(電解質の濃度が高い粒子A(IV)を含む流体)を得た。
Preparation Example 5: Preparation of fluid 5 (fluid containing particles A (IV) having a high concentration of electrolyte) 2. The same operation as in Preparation Example 4 was performed except that the operations (a) to (e) in the initial emulsification (shear / dispersion I) were repeated 20 times or more, and the fluid 5 (particle A having a high concentration of electrolyte) was performed. (Fluid containing (IV)) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体5中の粒子の平均粒子径は2.4μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体5中の粒子のイオン量を測定したところ、リチウムイオン量として300ppm及び亜鉛イオンとして680ppm(総計980ppm)であった。 The average particle size of the particles in the fluid 5 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 2.4 μm. Further, when the amount of ions of the particles in the fluid 5 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 300 ppm and the amount of zinc ions was 680 ppm (total 980 ppm).

調製例6:流体6(電解質の濃度が高い粒子C(VI)を含む流体)の調製
2.初期乳化(せん断・分散I)の(b)における分散機のせん断羽根の回転数(速度)を、5000〜10000rpm/sとし、(a)〜(e)の操作の繰り返しを1回とし、3.予備硬化(硬化剤添加I+分散II)における分散条件(分散機のせん断羽根の回転数(速度))を、5000〜10000rpm/sとした以外は、調製例4と同様の操作を行って、流体6(電解質の濃度が高い粒子C(VI)を含む流体)を得た。
Preparation Example 6: Preparation of fluid 6 (fluid containing particles C (VI) having a high concentration of electrolyte) 2. The rotation speed (speed) of the shear blade of the disperser in (b) of the initial emulsification (shearing / dispersion I) is set to 5000 to 10000 rpm / s, and the operations of (a) to (e) are repeated once, and 3 .. The fluid was operated in the same manner as in Preparation Example 4 except that the dispersion conditions (rotation speed (speed) of the shear blades of the disperser) in the pre-curing (hardener addition I + dispersion II) were set to 5000 to 10000 rpm / s. 6 (fluid containing particles C (VI) having a high concentration of electrolyte) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体6中の粒子の平均粒子径は6.5μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体6中の粒子のイオン量を測定したところ、リチウムイオン量として300ppm及び亜鉛イオンとして680ppm(総計980ppm)であった。 The average particle size of the particles in the fluid 6 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 6.5 μm. Further, when the amount of ions of the particles in the fluid 6 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 300 ppm and the amount of zinc ions was 680 ppm (total 980 ppm).

調製例7:流体7(電解質を含まない粒子B(VIII)を含む流体)の調製
1.初期秤量+溶解
(1)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液の調製
調合瓶に、
・シリコーンオイル(KF96−5cs:信越化学(株)製)489.71g
・乳化剤(OF7747:モーメンティブパフォーマンスマテリアルズ合同会社製)8.8g、及び
・潤滑剤(GPW2233:モーメンティブパフォーマンスマテリアルズ合同会社製)16.1g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、常温(20±10℃)で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、2時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継続実施し、電気絶縁媒質、乳化剤、潤滑剤等を含む溶液を調製した。
Preparation Example 7: Preparation of fluid 7 (fluid containing particles B (VIII) containing no electrolyte) 1. Initial weighing + dissolution (1) Preparation of solution containing electrically insulating medium, emulsifier, lubricant, etc. In a compounding bottle,
-Silicone oil (KF96-5cs: manufactured by Shin-Etsu Chemical Co., Ltd.) 489.71 g
-Emulsifier (OF7747: manufactured by Momentive Performance Materials GK) 8.8 g, and-Lubricant (GPW2233: manufactured by Momentive Performance Materials GK) 16.1 g
Was weighed and added, and the mixture was stirred at a stirring speed (rotation speed) of 100 rpm / s or more and at room temperature (20 ± 10 ° C.) for 2 hours.
Visually check the appearance that there are no "undissolved substances or precipitates", and if "undissolved substances or precipitates" are confirmed, perform additional stirring for 2 hours (stirring conditions are the same as above). As one set, stirring was continuously carried out until "undissolved substances and precipitates" disappeared (visual confirmation became impossible), and a solution containing an electrically insulating medium, an emulsifier, a lubricant and the like was prepared.

(2)ポリオールを含む溶液の調製
別の調合瓶に、
・ポリオール(ポリオール3165:パーストープ社製)400.0g及び
・DABCO(1,4−ジアザビシクロ[2.2.2]オクタン:東京化成工業(株)製)1.11g
を秤量・添加し、撹拌速度(回転数)100rpm/s以上、加温設定温度65℃で、2時間攪拌した。
「未溶解物や沈殿物」などが無い事を目視にて外観確認し、もし、「未溶解や沈殿物」が確認された場合は、上記と同一温度にて1時間の追加撹拌(攪拌条件は上記と同一)を1セットとして「未溶解物や沈殿物」が無くなる(目視確認出来なくなる)まで撹拌を継
続実施し、ポリオール及び電解質を含む溶液を調製した。
調製した電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液は、個別に常温(20±10℃)で保管し、次工程(初期乳化)にて混合した。
(2) Preparation of solution containing polyol In another compounding bottle,
400.0 g of polyol (polyol 3165: manufactured by Perstoop) and 1.11 g of DABCO (1,4-diazabicyclo [2.2.2] octane: manufactured by Tokyo Chemical Industry Co., Ltd.)
Was weighed and added, and the mixture was stirred for 2 hours at a stirring speed (rotation speed) of 100 rpm / s or more and a heating set temperature of 65 ° C.
Visually check the appearance that there is no "undissolved substance or precipitate", and if "undissolved substance or precipitate" is confirmed, additional stirring for 1 hour at the same temperature as above (stirring condition). Was the same as above) as one set, and stirring was continued until "undissolved substances and precipitates" disappeared (visual confirmation became impossible) to prepare a solution containing a polyol and an electrolyte.
The prepared solution containing the electrically insulating medium, emulsifier, lubricant and the like, and the solution containing the polyol and the electrolyte were individually stored at room temperature (20 ± 10 ° C.) and mixed in the next step (initial emulsification).

2.初期乳化(せん断・分散I)
(a)電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液をそれぞれ別系統のダイヤフラムポンプ(無脈動定量ポンプ)を介してそれぞれ一定量(比率)/定速(流速)で同時に分散機(IKAジャパン社製:IKA−5L−magic−Lab)の供給口へ供給した。
(b)その際、分散機のせん断羽根の回転数(速度)を、26000rpm/sとした。(c)分散機で乳化(分散混合)した溶液を、撹拌タンク(自家製SUSタンク:5L)へ吐出(圧送)し保管した。
(d)撹拌タンクでは、スリーワンモータ(Fine社製:FBL−600)を用い、ディスパTYPE羽根2枚使用し、回転数300〜500rpm/sにて撹拌を実施したが、タンク内に供給される溶液量に応じて、最適な回転数になるように微調整した。
(e)上記(a)〜(c)により電気絶縁媒質、乳化剤、潤滑剤等を含む溶液並びにポリオール及び電解質を含む溶液の全量の初期乳化が完了したら、撹拌タンクの底面下部よりダイヤフラムポンプを介して、乳化した溶液を再び分散機へ供給し、乳化(分散混合)処理を行い、上記(a)〜(e)の操作を14回繰り返し行った。
2. 2. Initial emulsification (shear / dispersion I)
(A) A constant amount (ratio) / constant speed (flow velocity) of a solution containing an electrically insulating medium, an emulsifier, a lubricant, etc., and a solution containing a polyol and an electrolyte via separate diaphragm pumps (pulsation-free metering pumps). At the same time, the solution was supplied to the supply port of the disperser (manufactured by IKA Japan: IKA-5L-magic-Lab).
(B) At that time, the rotation speed (speed) of the shear blade of the disperser was set to 26000 rpm / s. (C) The solution emulsified (dispersed and mixed) by the disperser was discharged (pressure-fed) to a stirring tank (homemade SUS tank: 5 L) and stored.
(D) In the stirring tank, a three-one motor (Fine Co., Ltd .: FBL-600) was used, two dispa TYPE blades were used, and stirring was performed at a rotation speed of 300 to 500 rpm / s, but the mixture was supplied into the tank. The rotation speed was finely adjusted according to the amount of the solution.
(E) When the initial emulsification of the entire amount of the solution containing the electrically insulating medium, the emulsifier, the lubricant and the like and the solution containing the polyol and the electrolyte is completed according to the above (a) to (c), from the lower bottom of the stirring tank via the diaphragm pump. Then, the emulsified solution was supplied to the disperser again, emulsification (dispersion mixing) treatment was performed, and the above operations (a) to (e) were repeated 14 times.

3.予備硬化(硬化剤添加I+分散II)
撹拌タンク内にて撹拌状態で保管中の、上記2.初期乳化(せん断・分散I)の工程で調製したエマルジョンに、撹拌を継続させながら、硬化剤TDI(トリレンジイソシアネート:東京化成工業(株)製/T−80)14.20gをチューブポンプ(ASONE社製:SMP−21AS)を用い、滴下添加した(添加速度:volume3)。
硬化剤TDI添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲に調整した。
規定量の硬化剤添加が完了した後、撹拌タンクの底面下部よりダイヤフラムポンプを介して、初期乳化で使用した分散機へ、初期乳化時の50%の速度で供給し、分散処理を行った。
この時の分散条件は、分散機のせん断羽根の回転数(速度)を、26000rpm/sとし、上記(a)〜(e)と同様の操作を1回行った。
3. 3. Pre-curing (hardener addition I + dispersion II)
2. Stored in a stirring state in a stirring tank. To the emulsion prepared in the initial emulsification (shearing / dispersion I) step, 14.20 g of the curing agent TDI (Torrange isocyanate: manufactured by Tokyo Chemical Industry Co., Ltd./T-80) was added to the tube pump (ASONE) while continuing stirring. (Manufactured by SMP-21AS) was added dropwise (addition rate: volume 3).
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" when the curing agent TDI is added, the liquid temperature was adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.
After the addition of the specified amount of the curing agent was completed, the mixture was supplied from the lower bottom of the stirring tank to the disperser used in the initial emulsification via a diaphragm pump at a rate of 50% of that in the initial emulsification, and the dispersion treatment was performed.
The dispersion condition at this time was that the rotation speed (speed) of the shear blades of the disperser was 26000 rpm / s, and the same operations as in (a) to (e) above were performed once.

4.本硬化(硬化剤添加II+攪拌)
上記3.予備硬化(硬化剤添加I+分散II)の工程の完了後、同じ撹拌タンク内にて撹拌状態で保管中の半硬化状態にあるポリウレタン粒子のエマルジョンにおいて、撹拌力を上げ、回転数500〜700rpm/sにて撹拌しながら、硬化剤TDI(トリレンジイソシアネート:東京化成工業(株)製/T−80)80.40gをチューブポンプ(ASONE社製:SMP−21AS)を用い、滴下添加した(添加速度:volume3−10)。
硬化剤TDI添加時に「反応熱(イソシアネート反応)」により液温上昇が生じる為、撹拌タンクに備わる冷却チラーにて、液温が50℃を超過しない範囲に調整した。
4. Main curing (hardener addition II + stirring)
Above 3. After the pre-curing (hardener addition I + dispersion II) process is completed, the stirring power is increased in the emulsion of the semi-cured polyurethane particles that are being stored in the same stirring tank in the stirring state, and the rotation speed is 500 to 700 rpm / While stirring at s, 80.40 g of the curing agent TDI (Torrange isocyanate: manufactured by Tokyo Kasei Kogyo Co., Ltd./T-80) was added dropwise using a tube pump (manufactured by ASONE: SMP-21AS) (addition). Speed: volume 3-10).
Since the liquid temperature rises due to the "heat of reaction (isocyanate reaction)" when the curing agent TDI is added, the liquid temperature was adjusted within a range not exceeding 50 ° C. with a cooling chiller provided in the stirring tank.

5.固定化(加熱加温+攪拌)
上記4.本硬化(硬化剤添加II+攪拌)の工程の完了後、硬化したポリウレタン粒子のエマルジョンを撹拌タンクから初期秤量で使用した調合瓶へ移し換え、撹拌子+加温機能(常温〜250℃範囲)付きマグネッチックスターラ(ホットマグネッチックスターラ)を用いて液温:65℃、撹拌速度(回転数):100rpm/s相当以上、撹拌時間:8時間以上、加温攪拌した。
加温攪拌完了後、保温機能を停止し、同じ回転数のまま、液温が常温:室温(20−3
0℃)となるまで自然冷却しながら、撹拌を継続させた。
5. Immobilization (heating + stirring)
Above 4. After the main curing (hardener addition II + stirring) process is completed, the cured polyurethane particle emulsion is transferred from the stirring tank to the compounding bottle used in the initial weighing, with a stirrer + heating function (normal temperature to 250 ° C range). Using a magnetic stirrer (hot magnetic stirrer), the liquid temperature was 65 ° C., the stirring speed (rotation speed) was equivalent to 100 rpm / s or more, and the stirring time was 8 hours or more.
After the heating and stirring are completed, the heat retention function is stopped and the liquid temperature remains at room temperature: room temperature (20-3) at the same rotation speed.
Stirring was continued while naturally cooling until the temperature reached 0 ° C.).

6.濾過(SUSメッシュ#125)
上記5.固定化(加熱加温+攪拌)の工程の完了後、調製された流体を、(目の開き)180μm,(線径)125μmの濾過メッシュ(東京スクリーン(株)製:TESTING SIEVE)を用いて、流体を濾過(1回目)し、続いて、(目の開き)180μm,(線径)125μmの濾過メッシュ(東京スクリーン(株)製:TESTING SIEVE)を用いて、流体を濾過(2回目)して、流体7(電解質を含まない粒子B(VIII)を含む流体)を得た。
6. Filtration (SUS mesh # 125)
5. Above. After the immobilization (heating + stirring) process is completed, the prepared fluid is applied to the prepared fluid using a filtration mesh (manufactured by Tokyo Screen Co., Ltd .: TESTING SIEVE) with (opening of eyes) 180 μm and (wire diameter) 125 μm. , The fluid is filtered (first time), and then the fluid is filtered using a filtration mesh (manufactured by Tokyo Screen Co., Ltd .: TESTING SIEVE) with (opening of eyes) 180 μm and (wire diameter) 125 μm (second time). A fluid 7 (a fluid containing particles B (VIII) containing no electrolyte) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体7中の粒子の平均粒子径は3.7μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体7中の粒子のイオン量を測定したところ、リチウムイオン量として0ppm及び亜鉛イオンとして0ppm(総計0ppm)であった。 The average particle size of the particles in the fluid 7 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 3.7 μm. Further, when the amount of ions of the particles in the fluid 7 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 0 ppm and the amount of zinc ions was 0 ppm (total 0 ppm).

調製例8:流体8(電解質を含まない粒子A(VII)を含む流体)の調製
2.初期乳化(せん断・分散I)における(a)〜(e)の操作の繰り返しを20回以上とした以外は、調製例7と同様の操作を行って、流体8(電解質を含まない粒子A(VII)を含む流体)を得た。
Preparation Example 8: Preparation of fluid 8 (fluid containing particles A (VII) containing no electrolyte) 2. The same operation as in Preparation Example 7 was performed except that the operations (a) to (e) in the initial emulsification (shear / dispersion I) were repeated 20 times or more, and the fluid 8 (electrolyte-free particles A (electrolyte-free particles A) was performed. A fluid containing VII) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体8中の粒子の平均粒子径は2.4μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体8中の粒子のイオン量を測定したところ、リチウムイオン量として0ppm及び亜鉛イオンとして0ppm(総計0ppm)であった。 The average particle size of the particles in the fluid 8 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 2.4 μm. Further, when the amount of ions of the particles in the fluid 8 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 0 ppm and the amount of zinc ions was 0 ppm (total 0 ppm).

調製例9:流体9(電解質を含まない粒子C(IX)を含む流体)の調製
2.初期乳化(せん断・分散I)の(b)における分散機のせん断羽根の回転数(速度)を、5000〜10000rpm/sとし、(a)〜(e)の操作の繰り返しを1回とし、3.予備硬化(硬化剤添加I+分散II)における分散条件(分散機のせん断羽根の回転数(速度))を、5000〜10000rpm/sとした以外は、調製例7と同様の操作を行って、流体9(電解質を含まない粒子C(IX)を含む流体)を得た。
Preparation Example 9: Preparation of fluid 9 (fluid containing particles C (IX) containing no electrolyte) 2. The rotation speed (speed) of the shear blade of the disperser in (b) of the initial emulsification (shearing / dispersion I) is set to 5000 to 10000 rpm / s, and the operations of (a) to (e) are repeated once, and 3 .. The fluid was operated in the same manner as in Preparation Example 7 except that the dispersion conditions (rotation speed (speed) of the shear blades of the disperser) in the pre-curing (hardener addition I + dispersion II) were set to 5000 to 10000 rpm / s. 9 (fluid containing particles C (IX) containing no electrolyte) was obtained.

レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3000II、マイクロトラック(株)社製)を用い測定した流体9中の粒子の平均粒子径は6.5μmであった。また、ICP−MS(誘導結合型プラズマー質量分析)測定で、流体9中の粒子のイオン量を測定したところ、リチウムイオン量として0ppm及び亜鉛イオンとして0ppm(総計0ppm)であった。 The average particle size of the particles in the fluid 9 measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3000II, manufactured by Microtrack Co., Ltd.) was 6.5 μm. Further, when the amount of ions of the particles in the fluid 9 was measured by ICP-MS (inductively coupled plasma mass spectrometry) measurement, the amount of lithium ions was 0 ppm and the amount of zinc ions was 0 ppm (total 0 ppm).

実施例1
調製例1で調製した流体1と、調製例6で調製した流体6とを、流体1:流体6=90:10の質量比で混合して、電気粘性流体を製造した。
Example 1
The fluid 1 prepared in Preparation Example 1 and the fluid 6 prepared in Preparation Example 6 were mixed at a mass ratio of fluid 1: fluid 6 = 90:10 to produce an electrorheological fluid.

実施例2
調製例1で調製した流体1と、調製例6で調製した流体6と、調製例8で調製した流体8とを、流体1:流体6:流体8=70:10:20の質量比で混合して、電気粘性流体を製造した。
Example 2
The fluid 1 prepared in Preparation Example 1, the fluid 6 prepared in Preparation Example 6, and the fluid 8 prepared in Preparation Example 8 are mixed at a mass ratio of fluid 1: fluid 6: fluid 8 = 70: 10: 20. Then, an electrorheological fluid was produced.

試験例1
以下に示すA乃至Dの流体における30℃の最大せん断応力(Pa)と、3kV/mm電圧印加時の電流密度(μA/cm2)を、以下の測定条件で測定して図2に示した。
A:流体8
B:実施例1の電気粘性流体
C:流体1
D:実施例2の電気粘性流体
・測定条件
装置:Anton Paar社製、Rheometer MCR302
治具:cc28(シリンダータイプ、ギャップ0.3mm)
温度:30℃
測定プログラム:(研CTI)12000〜1s−1
Test Example 1
The maximum shear stress (Pa) at 30 ° C. in the fluids A to D shown below and the current density (μA / cm 2 ) when a voltage of 3 kV / mm was applied were measured under the following measurement conditions and shown in FIG. ..
A: Fluid 8
B: Electrorheological fluid of Example 1 C: Fluid 1
D: Electrorheological fluid of Example 2 ・ Measurement condition device: Rheometer MCR302 manufactured by Antonio Par
Jig: cc28 (cylinder type, gap 0.3 mm)
Temperature: 30 ° C
Measurement program: (Lab CTI) 12000 to 1s-1

図2から明らかなように、B及びDは、最大せん断応力が高く且つ電流密度が低いという優れた特性を示した。
一方、Aは、最大せん断応力は高かったものの、電流密度が高く、また、Cは、電流密度は低かったものの、最大せん断応力が低かった。
As is clear from FIG. 2, B and D exhibited excellent characteristics of high maximum shear stress and low current density.
On the other hand, A had a high maximum shear stress but a high current density, and C had a low current density but a low maximum shear stress.

Claims (4)

電気絶縁媒質中に分極粒子を分散した電気粘性流体であって、前記電気絶縁媒質中には溶解又は分散された少なくとも1種類の電解質が含有され、前記分極粒子は、前記電解質を粒子中に含有し、前記分極粒子には、粒子中に含有される前記電解質の濃度が異なる2種以上の粒子が含まれ、そして、前記分極粒子は、以下のA乃至Cで示される異なる平均粒子径を有する粒子の1種又は2種以上からなる電気粘性流体。
A:0.50〜2.50μm
B:3.00〜5.00μm
C:5.50〜15.00μm
An electrorheological fluid in which polarized particles are dispersed in an electrically insulating medium, wherein the electrically insulating medium contains at least one kind of electrolyte dissolved or dispersed, and the polarized particles contain the electrolyte in the particles. However, the polarized particles include two or more kinds of particles having different concentrations of the electrolyte contained in the particles, and the polarized particles have different average particle diameters represented by the following A to C. An electrorheological fluid consisting of one or more particles.
A: 0.50 to 2.50 μm
B: 3.00 to 5.00 μm
C: 5.50-15.00 μm
前記分極粒子は、前記のA乃至Cで示される異なる平均粒子径を有する粒子の2種以上からなり、該2種以上の異なる平均粒子径を有する粒子は、その平均粒子径の差異により、粒子中に含有される前記電解質の濃度が互いに異なるものとなる、請求項1に記載の電気粘性流体。 The polarized particles are composed of two or more kinds of particles having different average particle diameters represented by the above A to C, and the particles having two or more kinds of different average particle diameters are particles due to the difference in the average particle diameters. The electrorheological fluid according to claim 1, wherein the concentrations of the electrolytes contained therein are different from each other. 前記分極粒子は、前記Cで示される平均粒子径を有する粒子を含み、該Cで示される平均粒子径を有する粒子中に含有される前記電解質の濃度が、他の平均粒子径を有する粒子よりも高くなる、請求項1又は請求項2に記載の電気粘性流体。 The polarized particles include particles having an average particle diameter indicated by C, and the concentration of the electrolyte contained in the particles having an average particle diameter indicated by C is higher than that of particles having another average particle diameter. The electrorheological fluid according to claim 1 or 2, which also increases. 請求項1乃至請求項3の何れか1項に記載の電気粘性流体の2種以上の混合物である電気粘性流体。 An electrorheological fluid which is a mixture of two or more kinds of electrorheological fluids according to any one of claims 1 to 3.
JP2019058193A 2019-03-26 2019-03-26 Electro-viscous fluid Abandoned JP2020158598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058193A JP2020158598A (en) 2019-03-26 2019-03-26 Electro-viscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058193A JP2020158598A (en) 2019-03-26 2019-03-26 Electro-viscous fluid

Publications (1)

Publication Number Publication Date
JP2020158598A true JP2020158598A (en) 2020-10-01

Family

ID=72641878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058193A Abandoned JP2020158598A (en) 2019-03-26 2019-03-26 Electro-viscous fluid

Country Status (1)

Country Link
JP (1) JP2020158598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102217A1 (en) * 2020-11-12 2022-05-19 日立Astemo株式会社 Electroviscous fluid damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102217A1 (en) * 2020-11-12 2022-05-19 日立Astemo株式会社 Electroviscous fluid damper

Similar Documents

Publication Publication Date Title
CN107429116B (en) Aqueous coating agent composition, and coating composition for aqueous lubricating coating film and member comprising same
JP5368523B2 (en) Method for producing fine particle dispersed polyol and method for producing polyurethane resin
JP6108319B2 (en) Electroviscous composition
JP2007506831A (en) Microgels in non-crosslinkable organic media
JP2020158598A (en) Electro-viscous fluid
KR102450069B1 (en) Process for making a polymer polyol
JP2010116429A (en) Polymer polyol composition for urethane resin
CN107667125A (en) Method for ERF to be made
US20090250652A1 (en) Stable sediment dispersion, method for production and use thereof
JP4976249B2 (en) Method for producing aqueous polyurethane resin
DE19632430C1 (en) Process for the preparation of non-aqueous dispersions and their use
JP5225901B2 (en) Method for producing aqueous polyurethane resin, aqueous polyurethane resin and film
CN114929838A (en) Liquid crystal emulsification method and liquid crystal emulsion
WO2022102217A1 (en) Electroviscous fluid damper
JP6155868B2 (en) Polyol composition
Ma et al. Effect of compatibilizer concentration on rheological behavior, morphologies, and mechanical properties of PVDF/TPU blends
JP2022077822A (en) Electrorheological fluid damper
CN102382409A (en) Aqueous resin composition, method for producing the same and metallic coating material
WO2023042829A1 (en) Electro-rheological fluid and cylinder device using same
JP2016069436A (en) Urethane prepolymer composition for transmission belt and two-liquid curing type polyurethane resin composition for transmission belt
JP4921324B2 (en) Method for producing fine particle dispersed polyol
JP7009007B1 (en) Flame-retardant coated red phosphorus and flame-retardant rigid polyurethane foam composition
JP2001310944A (en) Method for producing aqueous dispersion of polyester resin
WO2011152036A1 (en) Polymer polyol and method for producing polyurethane
JP2005120282A (en) Aqueous dispersion of polyurethane urea resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20220408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422