WO2022102217A1 - Electroviscous fluid damper - Google Patents

Electroviscous fluid damper Download PDF

Info

Publication number
WO2022102217A1
WO2022102217A1 PCT/JP2021/031972 JP2021031972W WO2022102217A1 WO 2022102217 A1 WO2022102217 A1 WO 2022102217A1 JP 2021031972 W JP2021031972 W JP 2021031972W WO 2022102217 A1 WO2022102217 A1 WO 2022102217A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrorheological fluid
mol
emulsifier
amount
damper
Prior art date
Application number
PCT/JP2021/031972
Other languages
French (fr)
Japanese (ja)
Inventor
ソクチョル 申
裕一郎 山本
智弘 岡田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022102217A1 publication Critical patent/WO2022102217A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes

Definitions

  • the present invention relates to an electrorheological fluid and an electrorheological fluid damper using the same.
  • An electrorheological fluid is a fluid whose apparent viscosity changes rapidly and reversibly in the presence of an applied electric field. Electrorheological fluids are roughly classified into uniform systems and particle dispersion systems, and the latter is generally dispersed in a hydrophobic and electrically non-conductive oil (dispersion medium) in which finely divided solids (particles, etc.) are dispersed. Has a body aspect. When an electrorheological fluid is exposed to an electric field, its flow resistance changes and generally becomes highly viscous, and when the electric field is removed, it returns to a normal liquid state.
  • the electrorheological fluid is characterized in that the current density of the leakage current is small and the power consumption is small when a voltage is applied, and can be advantageously used in applications such as dampers in which it is desirable to control the transmission of force by a low power level.
  • the characteristics required for the electrorheological fluid mainly include damping force and responsiveness, and in addition to these, there are a plurality of characteristics including heat resistance, current density, damping force fluctuation characteristics, and the like.
  • damping force damping force
  • damping force fluctuation characteristics damping force fluctuation characteristics
  • an electrorheological fluid having a high maximum shear stress and a low current density is desired.
  • Patent Document 1 describes 1 selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, Zr, In, Sn, and Hf in order to improve the induced shear stress.
  • An electrically viscous fluid in which a zinc oxide powder containing a seed or two or more kinds of doped metal elements is dispersed in an electrically insulating oily medium is disclosed.
  • this document does not disclose the Li—Zn mixed system containing Li as a doped metal element, and the dispersion (powder) in the medium disclosed in the same document is zinc oxide powder. Resin particles, especially polyurethane particles, are not disclosed.
  • Non-Patent Document 1 discloses that the Li ion concentration is 0.00306 mol / kg and the Zn ion concentration is 0.00614 mol / kg, which are dispersed in silicone oil.
  • An electrically viscous fluid consisting of doped polyurethane particles is disclosed.
  • this document does not disclose an electrorheological fluid using polyurethane particles whose doped Li ion concentration exceeds the Zn ion concentration.
  • Non-Patent Document 1 An electrically viscous fluid using polyurethane particles having a Zn ion concentration higher than the Li ion concentration disclosed in Non-Patent Document 1 cannot exhibit a sufficient damping force, and when this is applied to a damper, the damper is damped. The force cannot be kept constant. When the electrorheological fluid cannot sufficiently exert its damping force in the damper, a "fluctuation” phenomenon occurs in which the damping force fluctuates. This "fluctuation” phenomenon can be confirmed from the Lissajous waveform of the stroke (piston displacement) and damping force in the damper test.
  • An object of the present invention is to provide an electrorheological fluid that exhibits a sufficient damping force and suppresses a fluctuation phenomenon, and an electrorheological fluid damper using the electrorheological fluid.
  • One aspect of the present invention is an electrically viscous fluid in which polyurethane particles are dispersed in an electrically insulating medium, wherein the polyurethane particles are contained in the particles or adhered to the surface of the particles. It contains metal ions, and the metal ions are characterized by containing lithium ions and zinc ions in a smaller amount than the lithium ions.
  • the lithium ion is in the range of 0.001 to 0.006 mol / kg with respect to the polyurethane particles, and the zinc ion is in the range of 0.00004 to 0.0004 mol / kg. Can be done.
  • the polyurethane particles can be a reaction product of a mixture containing polyols, isocyanates and an emulsifier having an alkoxy group.
  • the present invention also relates to an electrorheological fluid damper having a piston, a cylinder in which the piston is housed, and the electrorheological fluid enclosed in the cylinder.
  • an electrorheological fluid that exhibits a sufficient damping force and suppresses a fluctuation phenomenon, and an electrorheological fluid damper using the electrorheological fluid.
  • FIG. 1 is a diagram showing an example of a flow chart of an electrorheological fluid synthesis process according to the present invention.
  • FIG. 2 is a schematic diagram illustrating the structure of the electrorheological fluid damper according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the amount of lithium ions in the electrorheological fluid used for the electrorheological fluid damper and the standard deviation of the damping force when a voltage of 5 kV is applied to the damper.
  • FIG. 4 is a diagram showing the relationship between the amount of lithium ions in the electrorheological fluid used for the electrorheological fluid damper and the current value when a voltage of 5 kV is applied to the damper.
  • FIG. 1 is a diagram showing an example of a flow chart of an electrorheological fluid synthesis process according to the present invention.
  • FIG. 2 is a schematic diagram illustrating the structure of the electrorheological fluid damper according to the embodiment of the present invention.
  • FIG. 3 is a diagram
  • FIG. 5 is a diagram showing the relationship between the amount of zinc ions in the electrorheological fluid and the polyurethane particle size.
  • FIG. 6 is a diagram showing the relationship between the amount of zinc ions in the electrorheological fluid and the rate of increase in viscosity of the electrorheological fluid after heat loading.
  • FIG. 7 is a diagram showing Lissajous waveforms before and after the fluctuation improvement (comparative example) and after the improvement (example) using the actual damper.
  • FIG. 8 is a diagram showing the relationship between the current value at 45 ° C. and the current value at 65 ° C. when a voltage of 5 kV is applied to the electrorheological fluid damper.
  • FIG. 9 is a diagram showing a Lissajous waveform at 80 ° C. when a voltage of 5 kV is applied to an electrorheological fluid damper.
  • FIG. 10 is a diagram showing the time variation of the damping force and the current value observed when the fluctuation of the damper damping force occurs.
  • FIG. 11 is a schematic diagram showing the mechanism of the electrorheological fluid (ER) effect when a voltage is applied to the damper.
  • FIG. 12 is a diagram showing a schematic diagram in which a capacitor is introduced into an electric circuit of an electrorheological fluid damper.
  • FIG. 13 is a diagram showing a resage waveform using an actual damper, and as a result of using (a) an electrorheological fluid containing an emulsifier for improving redispersibility, (b) electricity without an emulsifier for improving redispersibility. It is a figure which shows the result using the viscous fluid respectively.
  • FIG. 14 is a diagram showing the standard deviation of the damping force. As a result of using (a) an electrorheological fluid containing an emulsifier for improving redispersibility, (b) an electrorheological fluid not containing an emulsifier for improving redispersibility was used. It is a figure which shows each of the results used.
  • 15 is a diagram showing measured values of current densities at measured temperatures: 10 ° C, 30 ° C, 50 ° C, and 80 ° C when a voltage of 5 kV is applied to an electrorheological fluid damper according to the amount of lithium ions.
  • the electrorheological fluid of the present invention has an embodiment in which polyurethane particles containing specific metal ions are dispersed in an electrically insulating medium.
  • the present inventions are in the process of doping the polyurethane particles in an electrorheological fluid containing the polyurethane particles as a dispersoid.
  • the polarizability of the polyurethane particles was increased by controlling the amount of metal ions and improving the mobility of the ions.
  • the damping force of the damper using the polyurethane particles can be strengthened, and as a result, the fluctuation of the damper damping force can be reduced.
  • the inventors have found that the fluctuation reduction can be achieved by adjusting the amount of lithium ions having high ion mobility in the polyurethane particles in the electrorheological fluid to a state higher than the amount of zinc ions.
  • the present inventors use modified silicone containing an alkoxy group such as a methoxy group or an ethoxy group as an emulsifier in the production of an electrorheological fluid containing polyurethane particles as a dispersoid, whereby the alkoxy group is used.
  • the water contained as an impurity in the raw material of the electrorheological fluid is consumed, so that the water content can be removed from the reaction system, that is, the electrorheological fluid in which the content of water content is suppressed can be obtained.
  • the electrorheological fluid in addition to the improvement of durability, the decrease of the current density at the time of applying a voltage can be achieved.
  • each component of the electrorheological fluid according to the present invention and an electrorheological fluid damper in which the electrorheological fluid is enclosed will be described in detail.
  • Examples of the electrically insulating medium used in the present invention include paraffins (eg n-nonene), olefins (eg l-nonene, (cis, trans) -4-nonene) and aromatic hydrocarbons (eg xylene).
  • Liquid hydrocarbons such as: Polydimethylsiloxane having a viscosity of 3 mPa ⁇ s to 300 mPa ⁇ s, silicone oil such as liquid methylphenylsiloxane, and the like. Silicone oil is used as the preferred electrically insulating medium.
  • the electrically insulating medium can be used alone or in combination with other electrically insulating media.
  • the freezing point of the electrically insulating medium is preferably less than ⁇ 30 ° C., and the boiling point is preferably 150 ° C. or higher.
  • the polyurethane particles according to the present invention contain at least one kind of metal ion described later, which is encapsulated in the form of a molecule or an ion or adheres to the surface of the particle.
  • the polyurethane particles according to the present invention are reaction products of a mixture containing polyols, isocyanates, and an emulsifier having an alkoxy group.
  • the amount of the polyurethane particles contained in the electrorheological fluid can be, for example, 30% by mass to 70% by mass based on the total mass of the electrorheological fluid.
  • polyols examples include polyether polyols, polyester polyols, polymer polyols and the like.
  • examples of the polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, 1,4-butylene glycol, dihydroxydiphenylpropane, glycerin, hexanetriol, trimethylolpropane, pentaerythritol, sorbitol, sucrose, dipropylene glycol and dihydroxy.
  • polyester polyols examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,3- or 1,4-butylene glycol, neopentyl glycol, 1,6-hexamethylene glycol, and deca.
  • Polyhydric alcohols such as methylene glycol, bisphenol A, bisphenol F, p-xylylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, glycerin, trimethylolpropane, hexanetriol, pentaerythlit, etc.
  • One or two of polyvalent carboxylic acids such as malonic acid, maleic acid, succinic acid, adipic acid, glutaric acid, pimelli acid, sebacic acid, oxalic acid, phthalic acid, isophthalic acid, terephthalic acid, hexahydrophthalic acid, etc.
  • polyvalent carboxylic acids such as malonic acid, maleic acid, succinic acid, adipic acid, glutaric acid, pimelli acid, sebacic acid, oxalic acid, phthalic acid, isophthalic acid, terephthalic acid, hexahydrophthalic acid, etc.
  • polyester polyol which is a condensate of the above, or a polyester polyol obtained by ring-opening polymerization of a cyclic ester such as propiolactone, butyrolactone, and caprolactone.
  • polyester polyols produced from the above-mentioned polyols and cyclic esters polyester polyols produced from the above-mentioned polyols, dibasic acids, and three types of cyclic esters can also be mentioned.
  • the polymer polyols include 1,2-polybutadiene polyol, 1,4-polybutadiene polyol, polychloroprene polyol, butadiene-acrylonitrile copolymer polyol, polydimethylsiloxane dicarbinol, polytetramethylene ether glycol and Himashi.
  • Examples thereof include a ricinol acid ester such as oil, a polymer polyol obtained by graft-polymerizing an ethylenically unsaturated compound such as acrylonitrile, styrene, and methyl methacrylate with the polyether polyol or the polyester polyol.
  • a ricinol acid ester such as oil
  • a polymer polyol obtained by graft-polymerizing an ethylenically unsaturated compound such as acrylonitrile, styrene, and methyl methacrylate with the polyether polyol or the polyester polyol.
  • polyether polyols are preferable.
  • isocyanates examples include toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (p-MDI), isophorone diisocyanate (IPDI), methyl isocyanate and the like. ..
  • the molar ratio [(NCO group) / (OH group)] of the hydroxy group (OH group) of the polyols and the isocyanate group (NCO group) of the isocyanates is 1 to 1.5. It is desirable to use it for.
  • the water content in the reaction system is consumed by the reaction between the isocyanate groups of the curing agent and water, and it has an alkoxy group described later.
  • the water removing effect from the electroviscous fluid can be enhanced.
  • the emulsifier (surfactant) having an alkoxy group is not particularly limited, and for example, a polysiloxane having an alkoxy group at the side chain and / or the terminal may be mentioned because of its affinity with silicone oil as an electrically insulating medium. Can be done.
  • polysiloxane represented by the following formula can be mentioned.
  • A represents an aminoalkyl group, for example, an aminoethyl group (-(CH 2 ) 2 NH 2 ), an aminopropyl group (-(CH 2 ) 3 NH 2 ), an aminoethyl aminopropyl group (-(CH)). 2 ) 3 NH (CH 2 ) 2 NH 2 ) etc.
  • B represents an alkoxy group, for example, a methoxy group (CH 3O ⁇ ), an ethoxy group ( C2H 5O ⁇ ), or the like.
  • Examples of commercially available emulsifiers (surfactants) having an alkoxy group include reactive silicone oils manufactured by Shin-Etsu Silicone Co., Ltd. (trade names: KF-857, KF-8001, KF-862, KF-858) and the like. However, it is not limited to these.
  • the emulsifier having an alkoxy group may be used alone or in combination of two or more.
  • the emulsifier having an alkoxy group is preferably blended in a proportion of 1 to 2% by mass with respect to the mass of the above-mentioned electrically insulating medium.
  • the blending amount of the emulsifier having an alkoxy group By setting the blending amount of the emulsifier having an alkoxy group to 1% by mass or more with respect to the mass of the electrorheological insulating medium, a sufficient dispersed state is ensured, and by setting it to 2% by mass or less, the particle size of the polyurethane particles is in a suitable range.
  • the characteristics of the electrorheological fluid can be made suitable.
  • emulsifiers other than the above-mentioned emulsifier having an alkoxy group may be used in combination as long as the effect of the present invention is not impaired.
  • Other emulsifiers include surfactants that are soluble in the electrical insulating medium and derived from, for example, amines, imidazolines, oxazolines, alcohols, glycols or sorbitol. Polymers soluble in the electrical insulating medium can also be used, for example having a N (nitrogen atom) and / or OH (hydroxy group) content of 0.1-10% by weight and 25-83% by weight.
  • Examples thereof include polymers containing% C 4-24 alkyl groups and having a weight average molecular weight of 5,000 to 1,000,000.
  • Examples of the N and OH functional compounds in these polymers include amines, amides, imides, nitrilos, 5- to 6-membered N-containing heterocycles or alcohols, and C 4-24 alkyl esters of acrylic acid or methacrylic acid. be able to.
  • Examples of the N and OH functional compounds are N, N-dimethylaminoethyl methacrylate, tert-butylacrylamide, maleic acidimide, acrylonitrile, N-vinylpyrrolidone, vinylpyridine, 2-hydroxyethylmethacrylate and the like.
  • the polymer emulsifiers described above have the advantage that the systems prepared using them are generally more stable with respect to sedimentation dynamics compared to low molecular weight surfactants.
  • Modified silicone oils such as amino-modified silicone and fluorine-modified silicone can also be used.
  • the polyurethane particles according to the present invention contain metal ions in the particles.
  • the inclusion of the metal ion may mean that the metal ion is dissolved or dispersed in the particle or is in a non-dispersed state (unevenly distributed), that is, in a form enclosed in the particle, or the particle surface. It may be an aspect attached to.
  • metal ions dissolved or dispersed in the electrorheological insulating medium or in a non-dispersed (unevenly distributed) state may be present.
  • the metal ion examples include ions of metal elements such as lithium, zinc, chromium, copper, nickel, cobalt, iron, manganese, and tungsten, and in the present invention, lithium ion and zinc ion are essentially contained. do.
  • the present invention is characterized in that the amount of lithium ions is larger than that of zinc ions, for example, the lithium ions are in the range of 0.001 to 0.006 mol / kg in an electroviscous fluid, or 0. It is preferably in the range of .003 to 0.006 mol / kg or 0.001 to 0.003 mol / kg, and the zinc ion is preferably used in the range of 0.00004 to 0.0004 mol / kg. Is.
  • the amount of lithium ions in the above range it can be expected that the damping force of the obtained electrorheological fluid is enhanced, the generation of fluctuations is suppressed, and at the same time, the current value at the time of applying a voltage is suppressed within an allowable range.
  • the amount of zinc ions in the above range the particle size of the polyurethane particles can be controlled, and it can be expected that the increase in viscosity can be suppressed even after the heat load of the electrorheological fluid.
  • the particle size of the polyurethane particles may increase beyond a desired range (for example, 10 ⁇ m), and as a result, the contact area between the particles may decrease and the electrorheological effect may decrease.
  • the emulsifier having the alkoxy group is used as the emulsifier, no other emulsifier is used, the lithium ion amount is in the range of 0.001 to 0.003 mol / kg, and the zinc ion amount is 0.
  • the range is in the range of 0.0004 to 0.0004 mol / kg, it can be expected that the damping force is increased in the obtained electroviscous fluid to suppress the occurrence of fluctuations, and at the same time, the current value when a voltage is applied is suppressed to an allowable range.
  • the other emulsifiers particularly the above-mentioned polymer emulsifiers and modified silicone oils such as amino-modified silicones or fluorine-modified silicones, have the advantage that the systems prepared using them as described above are more stable with respect to sedimentation dynamics. This is because by preparing the polyurethane particles using the emulsifier, long molecular chains derived from the emulsifier are present on the surface of the obtained polyurethane particles, whereby the polyurethane particles are easily separated from each other. (Aggregation is suppressed). Therefore, these emulsifiers can be classified as emulsifiers for improving redispersibility.
  • the emulsifier having an alkoxy group has a large emulsifying ability and can impart a molecular chain having an appropriate length to the surface of the polyurethane particles.
  • a polysiloxane having an alkoxy group represented by the above formula as an emulsifying agent having an alkoxy group has an alkoxy group at both ends and an alkylamino group (NH 2 R-) in the side chain.
  • an emulsifier having an alkoxy group to which a monoamino group having a relatively short chain length such as an aminoethyl group is bonded has good adhesion to polyurethane particles and improves dispersibility of polyurethane particles. , Does not excessively deprive particles of frictional force. Therefore, even without using an emulsifier for improving redispersibility, it is possible to achieve both the electrorheological viscosity effect and the improvement of redispersibility even in a range where the amount of ions is relatively small.
  • a lubricant may be further added to the electrorheological fluid of the present invention.
  • the lubricant include polydimethylsiloxane, polytrifluoropropylmethylsiloxane, and oil-based lubricants such as a copolymer of dimethylsiloxane and trifluoropropylmethylsiloxane.
  • oil-based lubricants such as a copolymer of dimethylsiloxane and trifluoropropylmethylsiloxane.
  • the polyurethane particles according to the present invention can be particles having an average particle diameter of, for example, about 2 ⁇ m to 5 ⁇ m.
  • the electroviscosity fluid of the present invention disperses and emulsifies a mixture containing, for example, the above-mentioned electrically insulating medium, polyols, metal ions, emulsifiers, and optionally other additives (lubricant, catalyst for polyurethane synthesis, etc.), and is used therein. It can be produced by adding isocyanates as a curing agent.
  • an example of the method for preparing the electrorheological fluid of the present invention will be described with reference to the manufacturing flowchart (outline) shown in FIG.
  • This step is a step of separately preparing a solution containing polyols and metal ions (electrolyte-containing polyol solution) and a solution containing an electrically insulating medium and an emulsifier (electrically insulating medium-containing solution). ..
  • the prepared electrolyte-containing polyol solution and electrically insulating medium-containing solution are individually stored at room temperature and mixed in the next step (emulsification). The preparation of each solution is described below.
  • Preparation of electrolyte-containing polyol solution Weigh the polyols and metal ions, add them to a compounding bottle (such as a bottle with a stopper) or a glass beaker / flask of an appropriate size, and add them to a magnetic stirrer and a magnetic stirrer, or a stirrer such as a homogenizer. Is used to mix and dissolve each material by heating and stirring.
  • a compounding bottle such as a bottle with a stopper
  • a glass beaker / flask of an appropriate size and add them to a magnetic stirrer and a magnetic stirrer, or a stirrer such as a homogenizer. Is used to mix and dissolve each material by heating and stirring.
  • the following operations can be performed in the glove box as needed.
  • the metal ion can be prepared as a salt of the above metal element, for example, a halide, preferably as a chloride, and in the present invention, lithium chloride and zinc chloride can be preferably used as a source of lithium ion and zinc ion. Therefore, lithium chloride and zinc chloride are preferably weighed, and if used, a synthetic catalyst for polyurethane is weighed. Since salts of metal elements have deliquescent properties depending on the type, care must be taken when handling them.
  • the polyols are heated and stirred to, for example, 50 ° C. to 80 ° C., and after confirming that the desired temperature has been reached, salts of metal elements are sequentially added thereto.
  • lithium chloride is added to the polyols. While maintaining the desired temperature, lithium chloride is mixed and stirred, and the mixture is stirred and dissolved until no undissolved matter or precipitate can be visually confirmed from the appearance.
  • zinc chloride is added, and the mixture is mixed and stirred while maintaining the desired temperature, and the mixture is stirred and dissolved until no undissolved matter or precipitate can be visually confirmed from the appearance.
  • a synthetic catalyst for polyurethane When a synthetic catalyst for polyurethane is used, it is added after the salt of the metal element is dissolved, and the mixture is mixed and stirred while maintaining the desired temperature to obtain an electrolyte-containing polyol solution.
  • the stirring time can be appropriately set until no undissolved substance or precipitate is confirmed in the electrolyte and each component is dissolved or dispersed, and can be, for example, 8 hours or more in total.
  • lithium ions are present in a larger amount than zinc ions, and in a preferred embodiment, the lithium ions are in the range of 0.001 to 0.006 mol / kg in the electrically viscous fluid.
  • the amount of the salt of the above-mentioned metal element can be adjusted so that the zinc ion is in the range of 0.00004 to 0.0004 mol / kg.
  • a polyurethane synthesis catalyst When a polyurethane synthesis catalyst is used, it is preferably added into the system after the metal ions (that is, salts of metal elements) are completely dissolved, as shown in the above specific operating procedure.
  • the catalyst include amine-based catalysts, and specific examples thereof include triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, and 1,8-diazabicyclo [5,4,0]. Examples thereof include undecene, N, N, N', N'-tetramethyl-1,3-butanediamine, N-ethylmorpholine and the like.
  • the catalyst When the catalyst is used, it can be blended in a proportion of up to about 0.2% by mass with respect to the amount of polyurethane finally obtained. However, if a large amount is added, a decomposition reaction may occur due to the catalyst, so caution is required.
  • an electrically insulating medium silicone oil, etc.
  • an emulsifier having an alkoxy group emulsifier 1
  • another emulsifier emulsifier 2
  • a lubricant if desired
  • these emulsifiers / lubricants are added / mixed to the electrically insulating medium to be added / mixed to the electrically insulating medium.
  • the emulsifier having an alkoxy group emulsifier 1
  • the temperature at the time of stirring can be set to room temperature (20 ⁇ 10 ° C.).
  • Temporary curing process and 5. This is a step of preparing a curing agent used in the main curing step, that is, isocyanates.
  • the above-mentioned isocyanates as a curing agent can be used in combination of two or more, and for example, toluene diisocyanate (TDI) and polymethylene polyphenyl polyisocyanate (p-MDI) can be used in combination.
  • TDI toluene diisocyanate
  • p-MDI polymethylene polyphenyl polyisocyanate
  • Another kind of isocyanates can be added thereto to prepare a mixed solution.
  • the weighing and prepared curing agents (isocyanates) will be described later in 4.
  • Temporary curing process and 5 Since it is used separately in the main curing step in two steps, for example, 4. A 10% to 20% amount can be set aside in advance for use in the temporary curing step.
  • the curing agent isocyanate
  • a neutralizing solution eg, a mixed solution of a 5% sodium carbonate aqueous solution and a neutral detergent
  • Emulsification process This process is described in 1. above.
  • the electrolyte-containing polyol solution and the electrically insulating medium-containing solution obtained in the preparation step of the above are dispersed and mixed by a stirrer such as a homogenizer or a disperser to obtain an electrolyte-containing polyol solution / an electrically insulating medium-containing solution mixture, and then the mixture is obtained.
  • a stirrer such as a homogenizer or a disperser to obtain an electrolyte-containing polyol solution / an electrically insulating medium-containing solution mixture, and then the mixture is obtained.
  • the average particle size of the polyurethane particles formed in the subsequent process is adjusted according to the type of agitator and disperser used in this process, the type of shear blades in the disperser, the number of rotations (speed), and the stirring (rotation) time. can do.
  • the electrolyte-containing polyol solution obtained in the step is weighed in a flask, and here, 1-2.
  • the solution containing the electrically insulating medium obtained in the step is weighed and added.
  • the flask is set in a constant temperature device such as a water bath, and the mixture is stirred and mixed with a homogenizer to obtain an emulsion.
  • the rotation speed at the time of stirring can be about 10,000 rpm to 20,000 rpm
  • the temperature at the time of stirring can be, for example, about 40 ° C.
  • the stirring time can be about 0.5 hours. Yes, but not limited to these conditions.
  • Temporary curing (hardener addition (1)) step This step is described in 3. above. This is a step of curing the emulsion (uncured emulsion particles) produced in the emulsification step to obtain semi-cured polyurethane particles. In this step, about 10% to 20% of the total amount of the curing agent (isocyanates) used to form the polyurethane particles is used.
  • a curing agent isocyanate in an amount of about 10% to 20% of the total addition amount is added dropwise using a tube pump or the like.
  • the emulsion is set in a constant temperature device such as a mantle heater so that the temperature becomes a predetermined temperature (for example, 50 ° C. or higher), stirring is continued, and after reaching the predetermined temperature, the curing agent (partly). ) Can be added.
  • the stirring time can be about 0.5 hours, but is not limited to such addition / stirring conditions.
  • several drops can be dropped (about 5 times) in order to confirm that the stirring does not stop.
  • Main curing (hardener addition (2)) step This step is described in 4. above. This is a step of further curing the semi-cured polyurethane particles (emulsion particles) formed by the temporary curing step. In this step, of the total amount of the curing agent (isocyanates) used for forming the polyurethane particles, the remaining amount of the one consumed in the previous step, that is, 80% to 90% of the total amount is used.
  • the curing agent isocyanates
  • the stirring time can be about 1.0 hour, but is not limited to such addition / stirring conditions.
  • the liquid temperature drops to about 70 ° C., and then the stirring device (homogenizer or the like) is stopped to obtain a fluid that can be said to be a crude product.
  • Filtration process 5 After the operation of this curing step is completed, the obtained fluid is filtered to obtain an electrorheological fluid.
  • filtration treatment may be performed in two steps.
  • the present invention also covers an electrorheological fluid damper having a piston, a cylinder in which the piston is housed, and the above-mentioned electrorheological fluid which is enclosed in the cylinder and whose viscosity is changed by applying a voltage.
  • an electrorheological fluid damper having a piston, a cylinder in which the piston is housed, and the above-mentioned electrorheological fluid which is enclosed in the cylinder and whose viscosity is changed by applying a voltage.
  • the electrorheological fluid damper is a damping force adjusting shock absorber that uses an electrorheological fluid as a working fluid.
  • FIG. 2 is a sectional view taken along a plane including an axis of the electrorheological fluid damper 11 of the preferred embodiment of the present invention.
  • the electrorheological fluid damper 11 has an inner cylinder 12 (cylinder), an outer cylinder 13, and an intermediate cylinder 14.
  • the vertical direction in FIG. 2 is the vertical direction in the electrorheological fluid damper 11.
  • the lower end of the outer cylinder 13 is closed by the bottom cap 15.
  • the lower end of the inner cylinder 12 is fitted to the valve body 17 of the bottom valve 16, and the upper end is fitted to the rod guide 18.
  • An annular reservoir chamber 19 is formed between the inner cylinder 12 and the outer cylinder 13.
  • the electrorheological fluid and gas according to the present invention are sealed in the reservoir chamber 19.
  • the gas in the reservoir chamber 19 is, for example, nitrogen gas or air.
  • a piston 20 is slidably provided inside the inner cylinder 12.
  • the lower end of the piston rod 23 is connected to the piston 20.
  • the upper end of the piston rod 23 extends to the outside of the outer cylinder 13 via the rod guide 18.
  • the piston 20 divides the inside of the inner cylinder 12 into two chambers, a cylinder upper chamber 21 and a cylinder lower chamber 22.
  • the piston 20 is provided with a contraction-side passage 24 and an extension-side passage 25 for communicating the cylinder upper chamber 21 and the cylinder lower chamber 22.
  • the electrorheological fluid damper 11 has a uniflow structure, and as an example, a double-cylinder uniflow structure is shown.
  • the electrorheological fluid damper may have a biflow structure or a single cylinder type, but the case where the electrorheological fluid damper 11 has a uniflow structure will be described below with reference to FIG. That is, the electrorheological fluid damper 11 transfers the electrorheological fluid from the cylinder upper chamber 21 through the passage 26 provided in the inner cylinder 12 in both the contraction stroke and the expansion stroke of the piston rod 23. It is circulated to the annular flow path 27 formed between the intermediate cylinder 14 and the intermediate cylinder 14.
  • a contraction-side check valve 28 is provided on the upper end surface of the piston 20, and a disc valve 32 is provided on the lower end surface of the piston 20.
  • the contraction-side check valve 28 opens during the contraction stroke of the piston rod 23, and allows the flow of electrorheological fluid from the cylinder lower chamber 22 to the cylinder upper chamber 21 via the contraction-side passage 24.
  • the disc valve 32 opens when the pressure in the cylinder upper chamber 21 reaches a predetermined pressure during the extension stroke of the piston rod 23, and the pressure in the cylinder upper chamber 21 is applied to the extension side passage 25. Relieve to the cylinder lower chamber 22 through.
  • the valve body 17 separates the reservoir chamber 19 and the cylinder lower chamber 22.
  • An annular holding member 29 is fitted to the outer periphery of the inner cylinder 12 fitted to the small diameter portion of the valve body 17.
  • the holding member 29 positions the lower end portion of the intermediate cylinder 14 in the axial direction (vertical direction) and the radial direction.
  • the holding member 29 is made of an electrically insulating material and electrically insulates the inner cylinder 12, the bottom cap 15, and the valve body 17 from the intermediate cylinder 14.
  • the holding member 29 is formed with a passage 30 for communicating an annular flow path 27 formed between the inner cylinder 12 and the intermediate cylinder 14 to the reservoir chamber 19.
  • the check valve 33 opens during the extension stroke of the piston rod 23, and allows the flow of the electrorheological fluid from the reservoir chamber 19 to the cylinder lower chamber 22 via the extension side passage 34.
  • the disc valve (relief valve) 35 opens when the pressure in the cylinder lower chamber 22 reaches a predetermined pressure during the contraction stroke of the piston rod 23, and the pressure in the cylinder lower chamber 22 is contracted. Relief to the reservoir chamber 19 via the side passage 36.
  • the intermediate cylinder 14 is made of a conductive material.
  • the upper end portion of the intermediate cylinder 14 is radially positioned by the rod guide 18 via the holding member 31 fitted to the outer peripheral surface of the upper end portion of the inner cylinder 12.
  • the holding member 31 is made of an electrically insulating material and electrically insulates the intermediate cylinder 14 from the inner cylinder 12.
  • the intermediate cylinder 14 is connected to the positive electrode of the battery (not shown) via a high voltage driver (voltage generation unit, not shown). That is, the intermediate cylinder 14 constitutes a positive electrode (electrode) that applies an electric field (voltage) to the electrorheological fluid flowing in the flow path 27.
  • the inner cylinder 12 used as the negative electrode (ground electrode) is connected to the ground via the valve body 17, the bottom cap 15, the outer cylinder 13, and the high voltage driver 10.
  • the intermediate cylinder 14 is provided with an electrode connection portion with a positive electrode
  • the inner cylinder 12 is provided with a first ground connection portion with a negative electrode (ground electrode).
  • a first ground connection portion with the electrode (ground electrode) may be provided, and the inner cylinder 12 may be provided with an electrode connection portion with the positive electrode.
  • the electrode connection portion with the positive electrode is the inner cylinder 12 and the outer cylinder. It may be provided in 13.
  • the damping force generated when a voltage is applied to the electrorheological fluid is between the electrodes. Since it is determined by the amount of electrorheological fluid (cross-sectional area), it is better to provide the electrodes so that the voltage is applied between the inner cylinder 12 and the intermediate cylinder 14, because the cross-sectional area between the electrodes is smaller, the applied voltage is smaller, and by extension, more. The same damping force (braking force) can be obtained with a small current consumption.
  • the energization amount increases due to an increase in the liquid temperature, the energization amount is suppressed to be smaller, the load applied to the power supply is suppressed to be smaller, and the power supply is prevented from being overloaded.
  • the ground may be ground, a frame ground, a signal ground, or the like.
  • the current from the positive electrode may be connected to the reference potential point.
  • the amount of metal ions doped in the particles is controlled, specifically, lithium ions and zinc ions in a smaller amount than the lithium ions are contained or adhered to the particle surface.
  • the amount of water present as impurities in the reaction system is reduced, for example.
  • the water content can be reduced from the order of more than 1,000 ppm to the level of several hundred ppm to several tens of ppm. This leads to the suppression of side reactions between the residual water remaining in the system and the isoialates, and the efficient progress of the curing reaction of the polyurethane improves the degree of curing of the polyurethane, resulting in the durability of the electrorheological fluid. This leads to improved properties (heat resistance).
  • Deterioration of heat resistance in an electrorheological fluid can lead to an accelerated decrease in damping force, and can also affect the viscosity and current value, so it can be said to be one of the important solutions. Further, the reduction of the water content can lead to the suppression of the amount of current flowing in the electrorheological fluid when a voltage is applied to the electrorheological fluid, and particularly in the case of the present invention, it also suppresses the increase in the amount of current that can occur due to the increase in lithium ions. It can be expected to connect and reduce energy consumption.
  • the electrorheological fluid damper of the present invention can suppress an increase in the amount of current even when the operating temperature rises, and the damper can be operated in a higher temperature range. Become.
  • FIG. 10 shows the time variation of the damping force and the current value observed when the fluctuation of the damper damping force occurs. As shown in FIG. 10, it can be confirmed that the current value increases several milliseconds after the damping force decreases, and then the damping force recovers. As shown in FIG. 11, this phenomenon is caused by the column of polyurethane particles (polarizing particles) formed when the damping force is high (FIG. 11 (a)) collapses when the damping force decreases (FIG.
  • inrush current flows through the electrode in order to repolarize the polyurethane particles after the column collapse, and this is observed as an increase in the current value.
  • This inrush current has a problem of raising the upper limit of the power supply capacity, so countermeasures are required.
  • a countermeasure against inrush current for example, as shown in FIG. 12 (1), a resistor is inserted in series between the power supply and the electrodes, and a capacitor is connected in parallel between the electrodes to connect the column shown in FIG. 11 (b).
  • the electrorheological fluid is a fluid in which the fluctuation of the damping force itself is suppressed by adjusting the blending amount of the metal ions doped in the polyurethane particles, thereby suppressing the generation of the inrush power itself. Even if the inrush power is generated, its magnitude can be suppressed. That is, the suppression of the fluctuation phenomenon of the damping force in the electrorheological fluid of the present invention also leads to the suppression of the inrush current.
  • the electrorheological fluid of the example was prepared according to the flow chart for producing the electrorheological fluid shown in FIG.
  • Lithium chloride and zinc chloride were used as raw materials for metal ions (lithium ion and zinc ion), and an electrolyte-containing polyol solution (polyol: Polyol3165 manufactured by Perstop) in which this and a catalyst for polyurethane synthesis were dissolved was prepared.
  • the amount of lithium ions in the finally obtained electrorheological fluid is 0.0007 mol / kg to 0.007 mol / kg, and the amount of zinc ions is 0 mol / kg to 0.005 mol / kg. Adjustment was made to prepare an electrolyte-containing polyol solution.
  • silicone oil (KT-5 manufactured by Momentive) used as an electrically insulating medium
  • emulsifier 1 KF-862 manufactured by Shinetsu Chemical Industry Co., Ltd. or OF7747 manufactured by Momentive
  • emulsifier 2 Fludicon having an alkoxy group.
  • Fluorinated amino-modified polysiloxane manufactured by Momentive
  • a lubricant GPW2233 manufactured by Momentive
  • the emulsifier 1 having an alkoxy group was used in an amount of 1.5% by mass with respect to the silicone oil which is an electrically insulating medium.
  • a silicone solution solution containing an electrically insulating medium under the same conditions except that emulsifier 2 was not used was also prepared.
  • a predetermined amount of the electrolyte-containing polyol solution and the electrically insulating medium-containing solution were weighed and filled in the container of the disperser. The concentration and amount of each solution were variously adjusted so that the amount of polyurethane particles in the finally obtained electrorheological fluid was 50% by mass. Then, as shown in the flow chart of FIG. 1, the electrolyte-containing polyol solution was dispersed in the electrically insulating medium-containing solution in the emulsification step.
  • the curing agent isocyanates a mixture of 2,4-diisocyanate toluene (TDI) manufactured by Tosoh Corporation and the multimer diphenylmethane diisocyanate (p-MDI)
  • TDI 2,4-diisocyanate toluene
  • p-MDI multimer diphenylmethane diisocyanate
  • the total amount of the curing agent added here is the molar ratio of the hydroxy group (OH group) of the polyol and the isocyanate group (NCO group) of the curing agent (isocyanates): (NCO group) / (OH group) of 1 to 1. It was adjusted to be .5.
  • the amount of the curing agent By making the amount of the curing agent larger than the equal amount of the polyol amount, in addition to the water removing effect of the emulsifier 1 having an alkoxy group, water removal by the reaction with the water content by the isocyanate group of the curing agent can be expected.
  • the obtained fluid was filtered using a filter having a mesh of 125 ⁇ m to obtain an electrorheological viscous fluid.
  • ⁇ Measuring device Vertical vibration machine (Tokyo Koki Co., Ltd.) ⁇ Amplitude type: sine wave ⁇ Frequency: 1Hz ⁇ Amplitude width: ⁇ 40 mm ⁇ Applied voltage: 5kV -Measurement temperature: 45 ° C -Temperature measurement: Sheath thermocouple K type In the electrorheological fluid damper system used in the examples, a power supply of 50 W is used and a maximum of 5,000 V is applied, so 10 mA is set as the upper limit current value.
  • FIG. 3 shows the relationship between the amount of lithium ions in the electrorheological fluid used for the electrorheological fluid damper and the standard deviation of the damping force when a voltage of 5 kV is applied to the damper (N number: about 500 in this example). It is a figure which shows.
  • the standard deviation of the damping force is an index that quantitatively expresses the fluctuation.
  • the amount of zinc ions in the electroviscous fluid is 0.005 mol / kg in the region where the lithium ion amount is less than 0.003 mol / kg, and 0.003 mol / kg or more in the region where the lithium ion amount is 0.003 mol / kg or more.
  • the lithium ion amount is preferably 0.003 mol / kg or more.
  • FIG. 4 shows the relationship between the amount of lithium ions (0.0007 mol / kg to 0.007 mol / kg) in the electrorheological fluid used for the electrorheological fluid damper and the current value when a voltage of 5 kV is applied to the damper. It is a figure which shows. At the measurement points shown in this figure, the amount of zinc ions in the electrorheological fluid is about 0.00035 mol / kg. As shown in FIG. 4, it was confirmed that the damper current value increased as the amount of lithium ions increased. In particular, from the approximate curve (see the broken line), it was confirmed that the damper current value increased sharply when the lithium ion amount exceeded 0.006 mol / kg.
  • the current value at 45 ° C. is 1.0 mA or less. From the results in this figure, it can be judged that it is preferable that the amount of lithium ions is 0.006 mol / kg or less.
  • FIG. 5 is a diagram showing the relationship between the amount of zinc ions in the electrorheological fluid and the particle size of the obtained polyurethane particles.
  • the particle size of the polyurethane particles increased as the amount of zinc ions decreased.
  • the polyurethane particle size dramatically increased when the zinc ion content was less than 0.00004 mol / kg.
  • the amount of lithium ions at the zinc ion amount: 0 mol / kg is 0.003 mol / kg
  • the amount of lithium ions in the region where the zinc ion amount exceeds 0 mol / kg is 0.004 mol / kg. ..
  • the surface area of particles having a large polyurethane particle size is reduced, and the contact area between the particles is reduced, so that the electrorheological effect is reduced. Further, particles having a large polyurethane particle size also have a problem that their sedimentation is accelerated. As described above, it is desirable that the particle size of the polyurethane particles is 5 ⁇ m or less in consideration of the electrorheological effect and the dispersion / sedimentation phenomenon. From the results shown in this figure, it can be judged that it is preferable that the zinc ion amount is 0.0004 mol / kg or more.
  • FIG. 6 is a diagram showing the relationship between the amount of zinc ions and the rate of increase in viscosity of the electrorheological fluid after heat loading. As shown in FIG. 6, it was confirmed that the viscosity increase rate increased as the amount of zinc ions increased.
  • An increase in the viscosity of the electrorheological fluid affects the damping force of the damper, and when the viscosity increases, the ride quality becomes worse in the vehicle body to which the damper is applied. Therefore, it is desirable that the amount of zinc ions is in a range in which the viscosity change rate is approximately ⁇ 5% or less, that is, 0.0004 mol / kg or less, where it can be judged that there is almost no change in viscosity.
  • Test Example 3 Electrorheological fluid performance test using an actual damper
  • An electrorheological fluid performance test was carried out using the electrorheological fluid damper 11 shown in FIG. 2 under the same conditions as in Test Example 1, but at measurement temperatures of 45 ° C., 60 ° C., and 80 ° C.
  • the electrorheological fluid used in this test was prepared by using emulsifier 1 and emulsifier 2 in combination.
  • FIG. 7 shows a Lissajous waveform (45 ° C.) of the stroke (piston displacement) and damping force using the actual damper machine before and after the fluctuation improvement (comparative example) and after the improvement (example).
  • the amount of lithium ions and the amount of zinc ions in the electrorheological fluid used in the electrorheological fluid damper 11 obtained from the resage waveform of FIG. 7 are as follows.
  • FIG. 8 is a diagram showing the relationship between the current value at 45 ° C. and the current value at 65 ° C. when a voltage of 5 kV is applied to the electrorheological fluid damper.
  • the horizontal axis and the vertical axis are current values measured at 45 ° C. and 65 ° C., respectively.
  • the results of Example ( ⁇ ) or Comparative Example ( ⁇ ) shown in FIG. 8 were obtained by using the electrorheological fluid having the lithium ion amount and the zinc ion amount shown in Formulations 1 to 7.
  • FIG. 1 The results of Example ( ⁇ ) or Comparative Example ( ⁇ ) shown in FIG. 8 were obtained by using the electrorheological fluid having the lithium ion amount and the zinc ion amount shown in Formulations 1 to 7.
  • the comparative example group shows the results of prescriptions 1 to 5 in order from the result with the smallest damper current value (horizontal axis) at 45 ° C., and the example group has the damper current value (vertical axis) at 65 ° C.
  • a slightly higher result is the result of Formulation 6.
  • FIG. 8 it can be confirmed that the behavior of the result of the example shown by the square point ( ⁇ ) is completely different from the result of the comparative example shown by the round point ( ⁇ ).
  • the ratio of the 65 ° C. current value to the 45 ° C. current value is high, because the ion mobility at 65 ° C.
  • the electrorheological fluid of the present invention has achieved improved ion mobility and damping force at high temperatures, and as shown in FIG. 9 (using the electrorheological fluid of Formulation 7), the damping force fluctuates even at 80 ° C. A non-resage waveform is obtained.
  • Test Example 4 Electrorheological fluid performance test using an actual damper
  • An electrorheological fluid performance test was carried out on the electrorheological fluid damper 11 shown in FIG. 2 under the same conditions as in Test Example 1, but at a measurement temperature of 45 ° C.
  • the electroviscous fluid used in this test is an electroviscous fluid prepared by using emulsifier 1 and emulsifier 2 in combination (containing an emulsifier for improving redispersibility) and an electroviscous fluid prepared by using only emulsifier 1. No emulsifier for improving dispersibility).
  • FIG. 13 shows the stroke (piston displacement) and damping using an actual damper machine using (a) an electrorheological fluid containing an emulsifier for improving redispersibility and (b) an electrorheological fluid not containing an emulsifier for improving redispersibility.
  • the force resage waveform (45 ° C.) is shown (piston speed of the resage waveform shown in FIGS. 13 (a) and 13 (b): 0.02 m / s, 0.05 m / s, 0.1 m / s, 0.13 m / s, 0.15 m / s, 0.3 m / s, 0.6 m / s, 0.9 m / s).
  • the amount of lithium ions and the amount of zinc ions in the electrorheological fluid (both containing the emulsifier for improving redispersibility and not containing the emulsifier for improving redispersibility) used in the electrorheological fluid damper 11 obtained with the resage waveform of FIG. 13 It is as follows.
  • FIG. 14 shows the standard deviation of the damping force calculated from the resage waveform shown in FIG. 13 (calculated from the region where the piston speed is 0.1 m / s, the damping force is 0 kN or more, and the stroke is ⁇ 20 mm).
  • the standard deviation of the damping force is an index that quantitatively expresses the fluctuation, and under this condition, (a) the redispersibility is improved as compared with (a) the standard deviation of the emulsifier for improving the redispersibility.
  • the results were obtained that the standard deviation of the electroviscous fluid containing no emulsifier was small.
  • Test Example 5 Current density measurement using a rheometer
  • the current densities of the prepared various electrorheological fluids were measured using a rheometer while changing the measurement temperature.
  • the equipment and measurement conditions used for the measurement are shown below.
  • the electrorheological fluid used in this test is an electrorheological fluid prepared by using only emulsifier 1 (without emulsifier for improving redispersibility).
  • -Measuring device Rheometer MCR302 (Anton Pair) ⁇ Jig: CC27 -Measurement temperature: 10 ° C, 30 ° C, 50 ° C, 80 ° C ⁇ Applied voltage: 5kV ⁇ Sample volume: 15 mL ⁇ Measurement program: Current value 1 minute after the start of strain dispersion measurement (frequency: 0.2Hz) -Lithium ion amount in electrorheological fluid: 0.002 mol / kg, 0.0023 mol / kg, or 0.0038 mol / kg; Zinc ion amount: 0.00035 mol / kg (constant) Based on the above measurement results, FIG.
  • an electrorheological fluid having a lithium ion amount of 0.0038 mol / kg has a current density of 15 ⁇ A / cm 2 at 80 ° C. The result was much higher. From this result, it was determined that the upper limit of the amount of lithium ions was 0.003 mol / kg in the case of the electrorheological fluid containing no emulsifier for improving redispersibility.
  • ERF damper electroheological fluid damper
  • 12 inner cylinder cylinder
  • 13 outer cylinder 20 piston
  • 23 piston rod piston
  • 14 intermediate cylinder electrowetting rod

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

[Problem] To provide: an electroviscous fluid which exhibits a satisfactory damping force and in which fluctuation is suppressed; and an electroviscous fluid damper in which the electroviscous fluid is used. [Solution] Provided are an electroviscous fluid in which polyurethane particles are dispersed in an electrically insulating medium, wherein the polyurethane particles contain at least one type of metal ion encapsulated in the particles or attached to the surface of the particles, and the metal ions include lithium ions and zinc ions at a lower quantity than the lithium ions; and an electroviscous fluid damper in which the electroviscous fluid is sealed.

Description

電気粘性流体ダンパElectrorheological fluid damper
 本発明は電気粘性流体およびそれを用いた電気粘性流体ダンパに関する。 The present invention relates to an electrorheological fluid and an electrorheological fluid damper using the same.
 電気粘性流体は、印加した電場の存在下にて、その見かけの粘度が急速かつ可逆的に変わる流体である。電気粘性流体は大別すると均一系と粒子分散系に分類され、後者は一般に、疎水性で電気非導電性のオイル(分散媒)に、細かく分割された固体(粒子等)が分散された分散体の態様を有する。電気粘性流体は、電場に晒されると流動抵抗が変化して一般に高粘度化し、電場が取り除かれると通常の液体状態に戻る。電気粘性流体は、電圧印加の際に漏れ電流の電流密度が小さく消費電力も小さいという特徴があり、低電力レベルにより力の伝達を制御するのが望ましいダンパ等の用途において有利に使用され得る。 An electrorheological fluid is a fluid whose apparent viscosity changes rapidly and reversibly in the presence of an applied electric field. Electrorheological fluids are roughly classified into uniform systems and particle dispersion systems, and the latter is generally dispersed in a hydrophobic and electrically non-conductive oil (dispersion medium) in which finely divided solids (particles, etc.) are dispersed. Has a body aspect. When an electrorheological fluid is exposed to an electric field, its flow resistance changes and generally becomes highly viscous, and when the electric field is removed, it returns to a normal liquid state. The electrorheological fluid is characterized in that the current density of the leakage current is small and the power consumption is small when a voltage is applied, and can be advantageously used in applications such as dampers in which it is desirable to control the transmission of force by a low power level.
 電気粘性流体に要求される特性としては、主に、減衰力及び応答性が挙げられ、これらに加え、耐熱性、電流密度、減衰力ゆらぎ特性等を含む複数項目の特性を挙げることができる。電気粘性流体において、これら特性は、それぞれの許容範囲内でバランスが取れ、総合効果に優れることが望まれる。特に制動力(減衰力)や消費電力等を考慮し、高い最大せん断応力を有し、低い電流密度を併せ持つ電気粘性流体が望まれている。 The characteristics required for the electrorheological fluid mainly include damping force and responsiveness, and in addition to these, there are a plurality of characteristics including heat resistance, current density, damping force fluctuation characteristics, and the like. In electrorheological fluids, it is desired that these characteristics are balanced within their respective permissible ranges and that the overall effect is excellent. In particular, in consideration of braking force (damping force), power consumption, etc., an electrorheological fluid having a high maximum shear stress and a low current density is desired.
 特許文献1には、誘起せん断応力の向上を図り、Al、Si、Ti、V、Cr、Mn、Fe、Co、Ga、Ge、Zr、In、Sn、およびHfよりなる群から選ばれた1種または2種以上のドープ金属元素を含有する酸化亜鉛粉末を電気絶縁性の油状媒質中に分散させた電気粘性流体が開示されている。ただし同文献には、ドープ金属元素としてLiを含有するLi-Zn混合系については開示されておらず、また同文献に開示された媒質中の分散物(粉体)は酸化亜鉛粉末であり、樹脂粒子、特にポリウレタン粒子について開示されていない。
 また金属イオンをドープした粒子を用いた系の一例として、非特許文献1には、シリコーンオイル中に分散され、Liイオン濃度が0.00306mol/kg、Znイオン濃度が0.00614mol/kgにてドープされたポリウレタン粒子からなる電気粘性流体が開示されている。ただし同文献には、ドープされたLiイオン濃度がZnイオン濃度を上回るポリウレタン粒子を用いた電気粘性流体の開示はない。
Patent Document 1 describes 1 selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, Zr, In, Sn, and Hf in order to improve the induced shear stress. An electrically viscous fluid in which a zinc oxide powder containing a seed or two or more kinds of doped metal elements is dispersed in an electrically insulating oily medium is disclosed. However, this document does not disclose the Li—Zn mixed system containing Li as a doped metal element, and the dispersion (powder) in the medium disclosed in the same document is zinc oxide powder. Resin particles, especially polyurethane particles, are not disclosed.
Further, as an example of a system using particles doped with metal ions, Non-Patent Document 1 discloses that the Li ion concentration is 0.00306 mol / kg and the Zn ion concentration is 0.00614 mol / kg, which are dispersed in silicone oil. An electrically viscous fluid consisting of doped polyurethane particles is disclosed. However, this document does not disclose an electrorheological fluid using polyurethane particles whose doped Li ion concentration exceeds the Zn ion concentration.
特開平10-36871号公報Japanese Unexamined Patent Publication No. 10-36871
 非特許文献1に開示されたLiイオン濃度よりZnイオン濃度が高いポリウレタン粒子を用いた電気粘性流体では、十分な減衰力を発揮することができず、これをダンパに適用した場合にダンパの減衰力を一定に保つことができない。そしてダンパにおいて電気粘性流体がその減衰力を十分に発揮できない場合、減衰力が上下する「ゆらぎ」現象が発生する。この「ゆらぎ」現象は、ダンパ試験におけるストローク(ピストン変位)と減衰力のリサージュ波形から確認可能である。 An electrically viscous fluid using polyurethane particles having a Zn ion concentration higher than the Li ion concentration disclosed in Non-Patent Document 1 cannot exhibit a sufficient damping force, and when this is applied to a damper, the damper is damped. The force cannot be kept constant. When the electrorheological fluid cannot sufficiently exert its damping force in the damper, a "fluctuation" phenomenon occurs in which the damping force fluctuates. This "fluctuation" phenomenon can be confirmed from the Lissajous waveform of the stroke (piston displacement) and damping force in the damper test.
 本発明は、十分な減衰力を発揮し、ゆらぎ現象の抑制を図った電気粘性流体、並びに該電気粘性流体を用いた電気粘性流体ダンパの提供を課題とする。 An object of the present invention is to provide an electrorheological fluid that exhibits a sufficient damping force and suppresses a fluctuation phenomenon, and an electrorheological fluid damper using the electrorheological fluid.
 本発明の一態様は、電気絶縁媒質中にポリウレタン粒子が分散された電気粘性流体であって、前記ポリウレタン粒子は、該粒子中に内包される、又は該粒子表面に付着した、少なくとも1種類の金属イオンを含有し、前記金属イオンは、リチオムイオンと、該リチウムイオンより少量の亜鉛イオンを含むことを特徴とする。
 本発明の電気粘性流体において、前記リチウムイオンは、該ポリウレタン粒子に対して0.001~0.006mol/kgの範囲に、前記亜鉛イオンは0.00004~0.0004mol/kgの範囲とすることができる。また前記ポリウレタン粒子は、ポリオール類とイソシアネート類とアルコキシ基を有する乳化剤とを含有する混合物の反応生成物とすることができる。
 本発明はまた、ピストンと、前記ピストンが収納されるシリンダと、前記シリンダに封入された前記電気粘性流体とを有する電気粘性流体ダンパを対象とする。
One aspect of the present invention is an electrically viscous fluid in which polyurethane particles are dispersed in an electrically insulating medium, wherein the polyurethane particles are contained in the particles or adhered to the surface of the particles. It contains metal ions, and the metal ions are characterized by containing lithium ions and zinc ions in a smaller amount than the lithium ions.
In the electrorheological fluid of the present invention, the lithium ion is in the range of 0.001 to 0.006 mol / kg with respect to the polyurethane particles, and the zinc ion is in the range of 0.00004 to 0.0004 mol / kg. Can be done. Further, the polyurethane particles can be a reaction product of a mixture containing polyols, isocyanates and an emulsifier having an alkoxy group.
The present invention also relates to an electrorheological fluid damper having a piston, a cylinder in which the piston is housed, and the electrorheological fluid enclosed in the cylinder.
 本発明によれば、十分な減衰力を発揮し、ゆらぎ現象が抑制された電気粘性流体、並びに該電気粘性流体を用いた電気粘性流体ダンパを提供することができる。 According to the present invention, it is possible to provide an electrorheological fluid that exhibits a sufficient damping force and suppresses a fluctuation phenomenon, and an electrorheological fluid damper using the electrorheological fluid.
図1は、本発明に係る電気粘性流体の合成プロセスフローチャートの一例を示す図である。FIG. 1 is a diagram showing an example of a flow chart of an electrorheological fluid synthesis process according to the present invention. 図2は、本発明の一実施形態に係る電気粘性流体ダンパの構造を説明する模式図である。FIG. 2 is a schematic diagram illustrating the structure of the electrorheological fluid damper according to the embodiment of the present invention. 図3は、電気粘性流体ダンパに使用した電気粘性流体におけるリチウムイオン量と該ダンパに5kVの電圧を印加した際の減衰力の標準偏差との関係を示す図である。FIG. 3 is a diagram showing the relationship between the amount of lithium ions in the electrorheological fluid used for the electrorheological fluid damper and the standard deviation of the damping force when a voltage of 5 kV is applied to the damper. 図4は、電気粘性流体ダンパに使用した電気粘性流体におけるリチウムイオン量と該ダンパに5kVの電圧を印加した際の電流値との関係を示す図である。FIG. 4 is a diagram showing the relationship between the amount of lithium ions in the electrorheological fluid used for the electrorheological fluid damper and the current value when a voltage of 5 kV is applied to the damper. 図5は、電気粘性流体の亜鉛イオン量とポリウレタン粒径との関係を示す図である。FIG. 5 is a diagram showing the relationship between the amount of zinc ions in the electrorheological fluid and the polyurethane particle size. 図6は、電気粘性流体の亜鉛イオン量と電気粘性流体の熱負荷後の粘度上昇率との関係を示す図である。FIG. 6 is a diagram showing the relationship between the amount of zinc ions in the electrorheological fluid and the rate of increase in viscosity of the electrorheological fluid after heat loading. 図7は、ダンパ実機を用いたゆらぎ改善前(比較例)及び改善後(実施例)のリサージュ波形を示す図である。FIG. 7 is a diagram showing Lissajous waveforms before and after the fluctuation improvement (comparative example) and after the improvement (example) using the actual damper. 図8は、電気粘性流体ダンパに5kVの電圧を印加した際の45℃における電流値と65℃における電流値との関係を示す図である。FIG. 8 is a diagram showing the relationship between the current value at 45 ° C. and the current value at 65 ° C. when a voltage of 5 kV is applied to the electrorheological fluid damper. 図9は、電気粘性流体ダンパに5kVの電圧を印加した際の80℃におけるリサージュ波形を示す図である。FIG. 9 is a diagram showing a Lissajous waveform at 80 ° C. when a voltage of 5 kV is applied to an electrorheological fluid damper. 図10は、ダンパ減衰力のゆらぎが発生した際に観測された減衰力と電流値の時間変化を示す図である。FIG. 10 is a diagram showing the time variation of the damping force and the current value observed when the fluctuation of the damper damping force occurs. 図11は、ダンパにおける電圧印加時の電気粘性(ER)効果のメカニズムを示す模式図である。FIG. 11 is a schematic diagram showing the mechanism of the electrorheological fluid (ER) effect when a voltage is applied to the damper. 図12は、電気粘性流体ダンパの電気回路にコンデンサを導入した模式図を示す図である。FIG. 12 is a diagram showing a schematic diagram in which a capacitor is introduced into an electric circuit of an electrorheological fluid damper. 図13は、ダンパ実機を用いたリサージュ波形を示す図であって、(a)再分散性向上用乳化剤配合の電気粘性流体を用いた結果、(b)再分散性向上用乳化剤非配合の電気粘性流体を用いた結果をそれぞれ示す図である。FIG. 13 is a diagram showing a resage waveform using an actual damper, and as a result of using (a) an electrorheological fluid containing an emulsifier for improving redispersibility, (b) electricity without an emulsifier for improving redispersibility. It is a figure which shows the result using the viscous fluid respectively. 図14は、減衰力の標準偏差を示す図であって(a)再分散性向上用乳化剤配合の電気粘性流体を用いた結果、(b)再分散性向上用乳化剤非配合の電気粘性流体を用いた結果をそれぞれ示す図である。FIG. 14 is a diagram showing the standard deviation of the damping force. As a result of using (a) an electrorheological fluid containing an emulsifier for improving redispersibility, (b) an electrorheological fluid not containing an emulsifier for improving redispersibility was used. It is a figure which shows each of the results used. 図15は、リチウムイオン量別に、電気粘性流体ダンパに5kVの電圧を印加した際の、測定温度:10℃、30℃、50℃、80℃における電流密度の測定値を示す図である。FIG. 15 is a diagram showing measured values of current densities at measured temperatures: 10 ° C, 30 ° C, 50 ° C, and 80 ° C when a voltage of 5 kV is applied to an electrorheological fluid damper according to the amount of lithium ions.
 本発明の電気粘性流体は、電気絶縁媒質中に特定の金属イオンを含有するポリウレタン粒子が分散された態様を有する。
 本発明らは上述の課題、すなわち、減衰力の不十分な発現によるゆらぎ現象の発生という課題を解決するために、ポリウレタン粒子を分散質として含む電気粘性流体において、該ポリウレタン粒子にドープする中の金属イオン量を制御し、そのイオンの移動度を向上させることでポリウレタン粒子の分極率を高めた。そして該ポリウレタン粒子を電気粘性流体に用いることで、これを使用したダンパの減衰力を強め、その結果ダンパ減衰力のゆらぎを低減させることができることを見出した。詳細には、発明者らは電気粘性流体におけるポリウレタン粒子においてイオン移動度の高いリチウムイオンの量を亜鉛イオン量よりも多い状態に調整することで、ゆらぎ低下が達成できることを見出した。
 加えて、本発明者らは、ポリウレタン粒子を分散質として含む電気粘性流体の製造において、メトキシ基やエトキシ基などのアルコキシ基を含有する変性シリコーンを乳化剤として用いること、それにより、該アルコキシ基の加水分解反応時に、電気粘性流体の原材料中に不純物として含有してなる水分が消費されることで、反応系内からの水分の除去、すなわち含有水分量が抑制された電気粘性流体を得られること、そしてそれにより、得られた電気粘性流体において、耐久性の向上に加え、電圧印加時の電流密度の低下が達成できることを見出した。
 以下、本発明に係る電気粘性流体の各構成成分並びに該電気粘性流体を封入した電気粘性流体ダンパに関して詳述する。
The electrorheological fluid of the present invention has an embodiment in which polyurethane particles containing specific metal ions are dispersed in an electrically insulating medium.
In order to solve the above-mentioned problem, that is, the problem of generation of fluctuation phenomenon due to insufficient development of damping force, the present inventions are in the process of doping the polyurethane particles in an electrorheological fluid containing the polyurethane particles as a dispersoid. The polarizability of the polyurethane particles was increased by controlling the amount of metal ions and improving the mobility of the ions. Then, they have found that by using the polyurethane particles in an electrorheological fluid, the damping force of the damper using the polyurethane particles can be strengthened, and as a result, the fluctuation of the damper damping force can be reduced. In detail, the inventors have found that the fluctuation reduction can be achieved by adjusting the amount of lithium ions having high ion mobility in the polyurethane particles in the electrorheological fluid to a state higher than the amount of zinc ions.
In addition, the present inventors use modified silicone containing an alkoxy group such as a methoxy group or an ethoxy group as an emulsifier in the production of an electrorheological fluid containing polyurethane particles as a dispersoid, whereby the alkoxy group is used. During the hydrolysis reaction, the water contained as an impurity in the raw material of the electrorheological fluid is consumed, so that the water content can be removed from the reaction system, that is, the electrorheological fluid in which the content of water content is suppressed can be obtained. And, it was found that in the obtained electrorheological fluid, in addition to the improvement of durability, the decrease of the current density at the time of applying a voltage can be achieved.
Hereinafter, each component of the electrorheological fluid according to the present invention and an electrorheological fluid damper in which the electrorheological fluid is enclosed will be described in detail.
〔電気絶縁媒質〕
 本発明で使用する電気絶縁媒質としては、例えば、パラフィン類(例えばn-ノナン)、オレフィン類(例えばl-ノネン、(シス、トランス)-4-ノネン)及び芳香族炭化水素類(例えばキシレン)等の液状炭化水素;3mPa・s乃至300mPa・sの粘度をもつポリジメチルシロキサン及び液体メチルフェニルシロキサン等のシリコーン油などが挙げられる。好ましい電気絶縁媒質としてはシリコーン油が使用される。電気絶縁媒質はそれ単独でも又はその他の電気絶縁媒質と組み合わせても使用することができる。電気絶縁媒質の凝固点は好ましくは-30℃未満であり、沸点は好ましくは150℃以上である。
[Electrical insulation medium]
Examples of the electrically insulating medium used in the present invention include paraffins (eg n-nonene), olefins (eg l-nonene, (cis, trans) -4-nonene) and aromatic hydrocarbons (eg xylene). Liquid hydrocarbons such as: Polydimethylsiloxane having a viscosity of 3 mPa · s to 300 mPa · s, silicone oil such as liquid methylphenylsiloxane, and the like. Silicone oil is used as the preferred electrically insulating medium. The electrically insulating medium can be used alone or in combination with other electrically insulating media. The freezing point of the electrically insulating medium is preferably less than −30 ° C., and the boiling point is preferably 150 ° C. or higher.
〔ポリウレタン粒子〕
 本発明に係るポリウレタン粒子は、分子又はイオンの形態で内包される、又は該粒子表面に付着した少なくとも1種類の後述する金属イオンを含有する。
 好ましい態様において、本発明に係るポリウレタン粒子は、ポリオール類と、イソシアネート類と、アルコキシ基を有する乳化剤とを含有する混合物の反応生成物である。
 また電気粘性流体中に含まれるポリウレタン粒子の量は、電気粘性流体の総質量に基づき、例えば30質量%~70質量%とすることができる。
[Polyurethane particles]
The polyurethane particles according to the present invention contain at least one kind of metal ion described later, which is encapsulated in the form of a molecule or an ion or adheres to the surface of the particle.
In a preferred embodiment, the polyurethane particles according to the present invention are reaction products of a mixture containing polyols, isocyanates, and an emulsifier having an alkoxy group.
The amount of the polyurethane particles contained in the electrorheological fluid can be, for example, 30% by mass to 70% by mass based on the total mass of the electrorheological fluid.
〈ポリオール類〉
 上記ポリオール類としては、ポリエーテルポリオール類、ポリエステルポリオール類、ポリマーポリオール類等が挙げられる。
 上記ポリエーテルポリオール類としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブチレングリコール、ジヒドロキシジフェニルプロパン、グリセリン、ヘキサントリオール、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、スクロース、ジプロピレングリコール、ジヒドロキシジフェニルメタン、ジヒドロキシジフェニルエーテル、ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、ナフタレンジオール、アミノフェノール、アミノナフトール、フェノールホルムアルデヒド縮合物、フロログルシン、メチルジエタノールアミン、エチルジイソプロパノールアミン、トリエタノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ビス(p-アミノシクロヘキサン)、トリレンジアミン、ジフェニルメタンジアミン、又はナフタレンジアミンなどに、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシドなどの1種又は2種以上を付加させて得られるポリエーテルポリオールが挙げられる。
 上記ポリエステルポリオール類としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリメチレングリコール、1,3-または1,4-ブチレングリコール、ネオペンチルグリコール、1,6-ヘキサメチレングリコール、デカメチレングリコール、ビスフェノールA、ビスフェノールF、p-キシリレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、グリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリット等の多価アルコール類と、マロン酸、マレイン酸、コハク酸、アジピン酸、グルタル酸、ピメリン酸、セバシン酸、シュウ酸、フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロフタル酸等の多価カルボン酸類のうち1種または2種以上との縮合物であるポリエステルポリオール、または、プロピオラクトン、ブチロラクトン、カプロラクトンなどの環状エステルを開環重合したポリエステルポリオールが挙げられる。さらに上記ポリオールと環状エステルとより製造したポリエステルポリオール、及び上記ポリオール、2塩基酸、環状エステル3種より製造したポリエステルポリオールなども挙げることができる。
 また上記ポリマーポリオール類としては、例えば、1,2-ポリブタジエンポリオール、1,4-ポリブタジエンポリオール、ポリクロロプレンポリオール、ブタジエン-アクリロニトリル共重合体ポリオール、ポリジメチルシロキサンジカルビノール、ポリテトラメチレンエーテルグリコール及びヒマシ油などのリシノール酸エステル、あるいは前記ポリエーテルポリオール又は前記ポリエステルポリオールに対して、アクリロニトリル、スチレン、メチルメタクリレート等のエチレン性不飽和化合物をグラフト重合させて得たポリマーポリオール等が挙げられる。
 これらの中でも、ポリエーテルポリオール類が好ましい。
<Polyols>
Examples of the polyols include polyether polyols, polyester polyols, polymer polyols and the like.
Examples of the polyether polyols include ethylene glycol, diethylene glycol, propylene glycol, 1,4-butylene glycol, dihydroxydiphenylpropane, glycerin, hexanetriol, trimethylolpropane, pentaerythritol, sorbitol, sucrose, dipropylene glycol and dihydroxy. Diphenylmethane, dihydroxydiphenyl ether, dihydroxybiphenyl, hydroquinone, resorcin, naphthalene diol, aminophenol, aminonaphthol, phenol formaldehyde condensate, fluoroglucolcin, methyldiethanolamine, ethyldiisopropanolamine, triethanolamine, ethylenediamine, hexamethylenediamine, bis (p- Examples thereof include polyether polyols obtained by adding one or more of ethylene oxide, propylene oxide, butylene oxide, styrene oxide and the like to aminocyclohexane), tolylene diamine, diphenylmethanediamine, naphthalene diamine and the like.
Examples of the polyester polyols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,3- or 1,4-butylene glycol, neopentyl glycol, 1,6-hexamethylene glycol, and deca. Polyhydric alcohols such as methylene glycol, bisphenol A, bisphenol F, p-xylylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, glycerin, trimethylolpropane, hexanetriol, pentaerythlit, etc. One or two of polyvalent carboxylic acids such as malonic acid, maleic acid, succinic acid, adipic acid, glutaric acid, pimelli acid, sebacic acid, oxalic acid, phthalic acid, isophthalic acid, terephthalic acid, hexahydrophthalic acid, etc. Examples thereof include a polyester polyol which is a condensate of the above, or a polyester polyol obtained by ring-opening polymerization of a cyclic ester such as propiolactone, butyrolactone, and caprolactone. Further, polyester polyols produced from the above-mentioned polyols and cyclic esters, polyester polyols produced from the above-mentioned polyols, dibasic acids, and three types of cyclic esters can also be mentioned.
Examples of the polymer polyols include 1,2-polybutadiene polyol, 1,4-polybutadiene polyol, polychloroprene polyol, butadiene-acrylonitrile copolymer polyol, polydimethylsiloxane dicarbinol, polytetramethylene ether glycol and Himashi. Examples thereof include a ricinol acid ester such as oil, a polymer polyol obtained by graft-polymerizing an ethylenically unsaturated compound such as acrylonitrile, styrene, and methyl methacrylate with the polyether polyol or the polyester polyol.
Among these, polyether polyols are preferable.
〈イソシアネート類〉
 上記イソシアネート類としては、トルエンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルポリイソシアネート(p-MDI)、イソホロンジイソシアネート(IPDI)、イソシアン酸メチル等が挙げられる。
<Isocyanates>
Examples of the isocyanates include toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (p-MDI), isophorone diisocyanate (IPDI), methyl isocyanate and the like. ..
 上記ポリオール類とイソシアネート類は、ポリオール類のヒドロキシ基(OH基)とイソシアネート類のイソシアネート基(NCO基)のモル比[(NCO基)/(OH基)]が1~1.5となるように使用することが望ましい。
 ポリオール類に比べて、硬化剤であるイソシアネート類を等量よりやや過剰に使用することにより、硬化剤のイソシアネート基と水との反応によって反応系内の水分が消費され、後述するアルコキシ基を有する乳化剤の水分除去効果に加えて、電気粘性流体からの水分除去効果を高めることができる。
For the above-mentioned polyols and isocyanates, the molar ratio [(NCO group) / (OH group)] of the hydroxy group (OH group) of the polyols and the isocyanate group (NCO group) of the isocyanates is 1 to 1.5. It is desirable to use it for.
By using a slightly excessive amount of isocyanates as a curing agent as compared with polyols, the water content in the reaction system is consumed by the reaction between the isocyanate groups of the curing agent and water, and it has an alkoxy group described later. In addition to the water removing effect of the emulsifier, the water removing effect from the electroviscous fluid can be enhanced.
〈アルコキシ基を有する乳化剤〉
 上記アルコキシ基を有する乳化剤(界面活性剤)としては特に限定されないが、上記電気絶縁媒質としてのシリコーンオイルとの親和性などから、例えば側鎖及び/又は末端にアルコキシ基を有するポリシロキサンを挙げることができる。
 一例として、下記式で表されるポリシロキサンを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 上記式中、Aはアミノアルキル基を表し、例えばアミノエチル基(-(CHNH)、アミノプロピル基(-(CHNH)、アミノエチルアミノプロピル基(-(CHNH(CHNH)等を表す。
 Bはアルコキシ基を表し、例えばメトキシ基(CHO-)、エトキシ基(CO-)等を表す。
<Emulsifier with alkoxy group>
The emulsifier (surfactant) having an alkoxy group is not particularly limited, and for example, a polysiloxane having an alkoxy group at the side chain and / or the terminal may be mentioned because of its affinity with silicone oil as an electrically insulating medium. Can be done.
As an example, polysiloxane represented by the following formula can be mentioned.
Figure JPOXMLDOC01-appb-C000001
In the above formula, A represents an aminoalkyl group, for example, an aminoethyl group (-(CH 2 ) 2 NH 2 ), an aminopropyl group (-(CH 2 ) 3 NH 2 ), an aminoethyl aminopropyl group (-(CH)). 2 ) 3 NH (CH 2 ) 2 NH 2 ) etc.
B represents an alkoxy group, for example, a methoxy group (CH 3O− ), an ethoxy group ( C2H 5O− ), or the like.
 上記アルコキシ基を有する乳化剤(界面活性剤)の市販品の一例としては、信越シリコーン(株)製反応性シリコーンオイル(商品名:KF-857、KF-8001、KF-862、KF-858)等を挙げることができるがこれらに限定されない。
 アルコキシ基を有する乳化剤は一種又は二種以上を組み合わせて使用してもよい。
 なお、アルコキシ基を有する乳化剤は、前述の電気絶縁媒質の質量に対して、1~2質量%の割合で配合されることが好ましい。アルコキシ基を有する乳化剤の配合量を電気絶縁媒質の質量に対して1質量%以上とすることにより十分な分散状態を確保し、また2質量%以下とすることでポリウレタン粒子の粒子径を好適範囲にコントロールでき、電気粘性流体の特性を好適なものとすることができる。
Examples of commercially available emulsifiers (surfactants) having an alkoxy group include reactive silicone oils manufactured by Shin-Etsu Silicone Co., Ltd. (trade names: KF-857, KF-8001, KF-862, KF-858) and the like. However, it is not limited to these.
The emulsifier having an alkoxy group may be used alone or in combination of two or more.
The emulsifier having an alkoxy group is preferably blended in a proportion of 1 to 2% by mass with respect to the mass of the above-mentioned electrically insulating medium. By setting the blending amount of the emulsifier having an alkoxy group to 1% by mass or more with respect to the mass of the electrorheological insulating medium, a sufficient dispersed state is ensured, and by setting it to 2% by mass or less, the particle size of the polyurethane particles is in a suitable range. The characteristics of the electrorheological fluid can be made suitable.
〈その他乳化剤〉
 また本発明にあっては、本発明の効果を損なわない範囲において、上記アルコキシ基を有する乳化剤以外の、その他乳化剤を併用してもよい。
 その他乳化剤としては上記電気絶縁媒質中に可溶性であり、そして例えばアミン、イミダゾリン、オキサゾリン、アルコール、グリコール又はソルビトールから誘導される界面活性剤が挙げられる。
 また、上記電気絶縁媒質に可溶性のポリマーも使用することができ、例えば、0.1乃至10質量%のN(窒素原子)及び/又はOH(ヒドロキシ基)含量を有し、並びに25乃至83質量%のC4-24アルキル基を含有し、重量平均分子量が5,000乃至1,000,000であるポリマーなどを挙げることができる。これらのポリマー中のN及びOH官能化合物は、例えば、アミン、アミド、イミド、ニトリロ、5乃至6員のN含有複素環あるいはアルコール、及び、アクリル酸若しくはメタクリル酸のC4-24アルキルエステルを挙げることができる。前記N及びOH官能化合物の例は、N,N-ジメチルアミノエチルメタクリレート、tert-ブチルアクリルアミド、マレイン酸イミド、アクリロニトリル、N-ビニルピロリドン、ビニルピリジン及び2-ヒドロキシエチルメタクリレート等である。前記のポリマー乳化剤は、一般に低分子量の界面活性剤に比較して、それらを使用して調製された系が沈降動態に関してより安定であるという利点を有する。
 またアミノ変性シリコーンあるいはフッ素変性シリコーンなどの変性シリコーンオイルも使用可能である。
<Other emulsifiers>
Further, in the present invention, other emulsifiers other than the above-mentioned emulsifier having an alkoxy group may be used in combination as long as the effect of the present invention is not impaired.
Other emulsifiers include surfactants that are soluble in the electrical insulating medium and derived from, for example, amines, imidazolines, oxazolines, alcohols, glycols or sorbitol.
Polymers soluble in the electrical insulating medium can also be used, for example having a N (nitrogen atom) and / or OH (hydroxy group) content of 0.1-10% by weight and 25-83% by weight. Examples thereof include polymers containing% C 4-24 alkyl groups and having a weight average molecular weight of 5,000 to 1,000,000. Examples of the N and OH functional compounds in these polymers include amines, amides, imides, nitrilos, 5- to 6-membered N-containing heterocycles or alcohols, and C 4-24 alkyl esters of acrylic acid or methacrylic acid. be able to. Examples of the N and OH functional compounds are N, N-dimethylaminoethyl methacrylate, tert-butylacrylamide, maleic acidimide, acrylonitrile, N-vinylpyrrolidone, vinylpyridine, 2-hydroxyethylmethacrylate and the like. The polymer emulsifiers described above have the advantage that the systems prepared using them are generally more stable with respect to sedimentation dynamics compared to low molecular weight surfactants.
Modified silicone oils such as amino-modified silicone and fluorine-modified silicone can also be used.
〈金属イオン〉
 本発明に係るポリウレタン粒子は、該粒子中に金属イオンを含有する。該金属イオンを含有するとは、該金属イオンが該粒子中に溶解又は分散されるか非分散の状態(偏在)にある、すなわち粒子中に内包された形態にあってもよいし、あるいは粒子表面に付着した態様であってもよい。なお本発明の電気粘性流体において、電気絶縁媒質中に溶解や分散した、あるいは非分散(偏在)の状態にある金属イオンが存在していてもよい。
 上記金属イオンとしては、リチウム、亜鉛、クロム、銅、ニッケル、コバルト、鉄、マンガン、タングステン等の金属元素のイオンが挙げられ、本発明にあっては、リチウムイオンと亜鉛イオンとを必須として含有する。
 そして本発明にあっては、リチウムイオンが、亜鉛イオンよりも多量であることを特徴とし、例えば前記リチウムイオンは、電気粘性流体において0.001~0.006mol/kgの範囲であり、あるいは0.003~0.006mol/kgの範囲であり、もしくは0.001~0.003mol/kgの範囲であり、前記亜鉛イオンは、0.00004~0.0004mol/kgの範囲で用いられることが好適である。
 リチウムイオン量を上記範囲とすることにより、得られる電気粘性流体において減衰力を高め、ゆらぎ発生を抑制すると同時に、電圧印加時の電流値を許容範囲に抑えることが期待できる。
 また、亜鉛イオン量を上記範囲とすることにより、ポリウレタン粒子の粒径を制御することができ、また電気粘性流体の熱負荷後においても粘度上昇の抑制を図ることが期待できる。なお亜鉛イオンを用いない場合、ポリウレタン粒子の粒径が所望範囲(例えば10μm)を超えて大きくなる虞があり、その結果、粒子同士の接触面積が減り、電気粘性効果が低下する虞がある。
<Metal ions>
The polyurethane particles according to the present invention contain metal ions in the particles. The inclusion of the metal ion may mean that the metal ion is dissolved or dispersed in the particle or is in a non-dispersed state (unevenly distributed), that is, in a form enclosed in the particle, or the particle surface. It may be an aspect attached to. In the electrorheological fluid of the present invention, metal ions dissolved or dispersed in the electrorheological insulating medium or in a non-dispersed (unevenly distributed) state may be present.
Examples of the metal ion include ions of metal elements such as lithium, zinc, chromium, copper, nickel, cobalt, iron, manganese, and tungsten, and in the present invention, lithium ion and zinc ion are essentially contained. do.
The present invention is characterized in that the amount of lithium ions is larger than that of zinc ions, for example, the lithium ions are in the range of 0.001 to 0.006 mol / kg in an electroviscous fluid, or 0. It is preferably in the range of .003 to 0.006 mol / kg or 0.001 to 0.003 mol / kg, and the zinc ion is preferably used in the range of 0.00004 to 0.0004 mol / kg. Is.
By setting the amount of lithium ions in the above range, it can be expected that the damping force of the obtained electrorheological fluid is enhanced, the generation of fluctuations is suppressed, and at the same time, the current value at the time of applying a voltage is suppressed within an allowable range.
Further, by setting the amount of zinc ions in the above range, the particle size of the polyurethane particles can be controlled, and it can be expected that the increase in viscosity can be suppressed even after the heat load of the electrorheological fluid. When zinc ions are not used, the particle size of the polyurethane particles may increase beyond a desired range (for example, 10 μm), and as a result, the contact area between the particles may decrease and the electrorheological effect may decrease.
 なお本発明において、乳化剤として前記アルコキシ基を有する乳化剤のみを使用してその他の乳化剤を不使用とし、前記リチウムイオン量を0.001~0.003mol/kgの範囲とし、前記亜鉛イオン量を0.00004~0.0004mol/kgの範囲としたとき、得られる電気粘性流体において減衰力を高め、ゆらぎ発生を抑制すると同時に、電圧印加時の電流値を許容範囲に抑えることが期待できる。
 前記その他乳化剤、特に前述のポリマー乳化剤やアミノ変性シリコーンあるいはフッ素変性シリコーンなどの変性シリコーンオイルは、前述の如くこれらを使用して調製された系が沈降動態に関してより安定であるという利点を有する。これは、前記乳化剤を使用してポリウレタン粒子を調製することで、得られたポリウレタン粒子の表面に前記乳化剤に由来する長鎖の分子鎖が存在することとなり、これにより、ポリウレタン粒子同士が離れ易くなる(凝集が抑制される)ことに起因する。そのため、これら乳化剤を再分散性向上用乳化剤として分類することができる。しかし、この再分散性向上用乳化剤に起因する長い分子鎖の存在は、ポリウレタン粒子同士の摩擦力を減少させ、電気粘性効果が小さくなる要因にもなり得る。
 一方、アルコキシ基を有する乳化剤は、乳化能力が大きく、かつポリウレタン粒子表面に適度な長さの分子鎖を付与することができる。例えば、アルコキシ基を有する乳化剤として前述した式で表されるアルコキシ基を有するポリシロキサンは、両末端にアルコキシ基を有し、側鎖にアルキルアミノ基(NHR-)を有する。該アルキルアミノ基として、例えばアミノエチル基などの比較的鎖長が短いモノアミノ基が結合したアルコキシ基を有する乳化剤は、ポリウレタン粒子との密着性が良好であり、ポリウレタン粒子の分散性を向上させつつ、粒子同士の摩擦力を過度に奪うことがない。そのため、再分散性向上用乳化剤を使用せずとも、比較的イオン量が少ない範囲においても、電気粘性効果と再分散性の向上を両立することが可能となる。
In the present invention, only the emulsifier having the alkoxy group is used as the emulsifier, no other emulsifier is used, the lithium ion amount is in the range of 0.001 to 0.003 mol / kg, and the zinc ion amount is 0. When the range is in the range of 0.0004 to 0.0004 mol / kg, it can be expected that the damping force is increased in the obtained electroviscous fluid to suppress the occurrence of fluctuations, and at the same time, the current value when a voltage is applied is suppressed to an allowable range.
The other emulsifiers, particularly the above-mentioned polymer emulsifiers and modified silicone oils such as amino-modified silicones or fluorine-modified silicones, have the advantage that the systems prepared using them as described above are more stable with respect to sedimentation dynamics. This is because by preparing the polyurethane particles using the emulsifier, long molecular chains derived from the emulsifier are present on the surface of the obtained polyurethane particles, whereby the polyurethane particles are easily separated from each other. (Aggregation is suppressed). Therefore, these emulsifiers can be classified as emulsifiers for improving redispersibility. However, the presence of long molecular chains due to this emulsifier for improving redispersibility reduces the frictional force between the polyurethane particles and may be a factor that reduces the electrorheological effect.
On the other hand, the emulsifier having an alkoxy group has a large emulsifying ability and can impart a molecular chain having an appropriate length to the surface of the polyurethane particles. For example, a polysiloxane having an alkoxy group represented by the above formula as an emulsifying agent having an alkoxy group has an alkoxy group at both ends and an alkylamino group (NH 2 R-) in the side chain. As the alkylamino group, an emulsifier having an alkoxy group to which a monoamino group having a relatively short chain length such as an aminoethyl group is bonded has good adhesion to polyurethane particles and improves dispersibility of polyurethane particles. , Does not excessively deprive particles of frictional force. Therefore, even without using an emulsifier for improving redispersibility, it is possible to achieve both the electrorheological viscosity effect and the improvement of redispersibility even in a range where the amount of ions is relatively small.
〔潤滑剤〕
 また本発明の電気粘性流体には、更に潤滑剤を添加し得る。
 潤滑剤としては、ポリジメチルシロキサン、ポリトリフルオロプロピルメチルシロキサン又はジメチルシロキサンとトリフルオロプロピルメチルシロキサンとの共重合体のような油性潤滑剤等が挙げられる。
 潤滑油が使用される場合、電気粘性流体に対して1質量%~2質量%の割合にて、電気粘性流体に配合され得る。
〔lubricant〕
Further, a lubricant may be further added to the electrorheological fluid of the present invention.
Examples of the lubricant include polydimethylsiloxane, polytrifluoropropylmethylsiloxane, and oil-based lubricants such as a copolymer of dimethylsiloxane and trifluoropropylmethylsiloxane.
When a lubricating oil is used, it can be blended in the electrorheological fluid in a proportion of 1% by mass to 2% by mass with respect to the electrorheological fluid.
〈ポリウレタン粒子の粒子径〉
 本発明に係るポリウレタン粒子は、例えば2μm~5μm程度の平均粒子径を有する粒子とすることができる。ポリウレタン粒子の粒子径を上記数値範囲とすることにより、電気粘性効果と分散性の両立を図ることが期待でき、また沈降や再分散性の悪化を防ぐことが期待できる。
<Particle diameter of polyurethane particles>
The polyurethane particles according to the present invention can be particles having an average particle diameter of, for example, about 2 μm to 5 μm. By setting the particle size of the polyurethane particles within the above numerical range, it can be expected that both the electrorheological effect and the dispersibility can be achieved, and that sedimentation and deterioration of redispersibility can be prevented.
〈電気粘性流体の製造方法〉
 本発明の電気粘性流体は、例えば、上記電気絶縁媒質、ポリオール類、金属イオン、乳化剤、及び所望によりその他添加剤(潤滑剤、ポリウレタン合成用触媒等)を含む混合物を分散・乳化し、ここに硬化剤であるイソシアネート類を添加することにより製造可能である。
 以下に、本発明の電気粘性流体を調製する方法の一例として、図1に示す製造フローチャート(概略)に基づき説明する。
<Manufacturing method of electrorheological fluid>
The electroviscosity fluid of the present invention disperses and emulsifies a mixture containing, for example, the above-mentioned electrically insulating medium, polyols, metal ions, emulsifiers, and optionally other additives (lubricant, catalyst for polyurethane synthesis, etc.), and is used therein. It can be produced by adding isocyanates as a curing agent.
Hereinafter, an example of the method for preparing the electrorheological fluid of the present invention will be described with reference to the manufacturing flowchart (outline) shown in FIG.
1.秤量、並びに、溶解工程
 この工程は、ポリオール類と金属イオン等を含む溶液(電解質含有ポリオール溶液)と、電気絶縁媒質と乳化剤を含む溶液(電気絶縁媒質含有溶液)を別途に調製する工程である。
 調製した電解質含有ポリオール溶液及び電気絶縁媒質含有溶液は、個別に室温で保管し、次工程(乳化)にて混合される。
 各溶液の調製を以下に記載する。
1. 1. Weighing and dissolution step This step is a step of separately preparing a solution containing polyols and metal ions (electrolyte-containing polyol solution) and a solution containing an electrically insulating medium and an emulsifier (electrically insulating medium-containing solution). ..
The prepared electrolyte-containing polyol solution and electrically insulating medium-containing solution are individually stored at room temperature and mixed in the next step (emulsification).
The preparation of each solution is described below.
1-1.電解質含有ポリオール溶液の調製
 ポリオール類と金属イオンをそれぞれ秤量し、調合瓶(栓付き瓶など)若しくは適量サイズのガラスビーカー・フラスコに添加し、マグネチックスターラーとマグネット撹拌子、若しくはホモジナイザー等の撹拌装置を用いて、各材料を加温撹拌にて混合溶解する。
1-1. Preparation of electrolyte-containing polyol solution Weigh the polyols and metal ions, add them to a compounding bottle (such as a bottle with a stopper) or a glass beaker / flask of an appropriate size, and add them to a magnetic stirrer and a magnetic stirrer, or a stirrer such as a homogenizer. Is used to mix and dissolve each material by heating and stirring.
 具体的な操作手順の一例を以下に示す。以下の操作は必要に応じてグローブボックス内で行うことができる。
 まず、ポリオール類を栓付き瓶に秤量する。
 金属イオンは、上記金属元素の塩、例えばハロゲン化物として、好ましくは塩化物として準備することができ、本発明ではリチウムイオンと亜鉛イオンの発生源として塩化リチウムと塩化亜鉛を好ましく用いることができる。
 したがって、好ましくは塩化リチウムと塩化亜鉛を、また使用する場合にはポリウレタン用合成触媒を、それぞれ秤量する。なお金属元素の塩は、その種類によって潮解性を有するため、取り扱いには注意を要する。
 次に、ポリオール類を、例えば50℃乃至80℃に加熱撹拌し、所望の温度に到達したことを確認した後、ここに金属元素の塩を順次添加する。具体的には、まず塩化リチウムをポリオール類に添加する。上記所望の温度を維持したまま、塩化リチウムを混合撹拌し、その外観から目視にて未溶解物や沈殿物などが確認できなくなるまで撹拌溶解を行う。次に塩化亜鉛を添加し、上記所望の温度を維持したまま混合撹拌し、その外観から目視にて未溶解物や沈殿物などが確認できなくなるまで撹拌溶解を行う。ポリウレタン用合成触媒を使用する場合には金属元素の塩の溶解後に添加し、上記所望の温度を維持したまま混合撹拌し、電解質含有ポリオール溶液を得る。
 撹拌時間は、電解質にあっては未溶解物や沈殿物が確認されず、また各成分がそれぞれ溶解あるいは分散するまで適宜設定され得、例えば全体で8時間以上とすることができる。
An example of a specific operation procedure is shown below. The following operations can be performed in the glove box as needed.
First, the polyols are weighed in a bottle with a stopper.
The metal ion can be prepared as a salt of the above metal element, for example, a halide, preferably as a chloride, and in the present invention, lithium chloride and zinc chloride can be preferably used as a source of lithium ion and zinc ion.
Therefore, lithium chloride and zinc chloride are preferably weighed, and if used, a synthetic catalyst for polyurethane is weighed. Since salts of metal elements have deliquescent properties depending on the type, care must be taken when handling them.
Next, the polyols are heated and stirred to, for example, 50 ° C. to 80 ° C., and after confirming that the desired temperature has been reached, salts of metal elements are sequentially added thereto. Specifically, first, lithium chloride is added to the polyols. While maintaining the desired temperature, lithium chloride is mixed and stirred, and the mixture is stirred and dissolved until no undissolved matter or precipitate can be visually confirmed from the appearance. Next, zinc chloride is added, and the mixture is mixed and stirred while maintaining the desired temperature, and the mixture is stirred and dissolved until no undissolved matter or precipitate can be visually confirmed from the appearance. When a synthetic catalyst for polyurethane is used, it is added after the salt of the metal element is dissolved, and the mixture is mixed and stirred while maintaining the desired temperature to obtain an electrolyte-containing polyol solution.
The stirring time can be appropriately set until no undissolved substance or precipitate is confirmed in the electrolyte and each component is dissolved or dispersed, and can be, for example, 8 hours or more in total.
 上記具体的な操作手順に示すように、金属イオンの発生源として金属元素の塩を少なくとも2種用いるため、これらは段階的に溶解させるのが好ましい。すなわち、1種の金属元素の塩を添加して完全に溶解させた後に、次の1種の金属元素の塩を添加して完全に溶解させる等の操作を行うのが好ましい。
 なお本発明にあっては、リチウムイオンは亜鉛イオンよりも多い量にて存在し、好ましい態様において、電気粘性流体中、前記リチウムイオンは、0.001~0.006mol/kgの範囲であり、前記亜鉛イオンは、0.00004~0.0004mol/kgの範囲となるように、前述の金属元素の塩の使用量が調整され得る。
As shown in the specific operating procedure, since at least two kinds of salts of metal elements are used as sources of metal ions, it is preferable to dissolve them step by step. That is, it is preferable to perform an operation such as adding a salt of one kind of metal element and completely dissolving it, and then adding a salt of the next one kind of metal element and completely dissolving it.
In the present invention, lithium ions are present in a larger amount than zinc ions, and in a preferred embodiment, the lithium ions are in the range of 0.001 to 0.006 mol / kg in the electrically viscous fluid. The amount of the salt of the above-mentioned metal element can be adjusted so that the zinc ion is in the range of 0.00004 to 0.0004 mol / kg.
 またポリウレタン合成用触媒を使用する場合、上記具体的な操作手順に示すように、好ましくは金属イオン(すなわち金属元素の塩)が完全に溶解した後に系内に添加する。
 該触媒としては、アミン系触媒を挙げることができ、具体的には、トリエチルアミン、ベンジルジエチルアミン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン、N,N,N’,N’-テトラメチル-1,3-ブタンジアミン、N-エチルモルホリン等が挙げられる。該触媒が使用される場合、最終的に得られるポリウレタン量に対して最大で0.2質量%程度の割合にて配合され得る。ただし多量に添加した場合、触媒による分解反応が起こる虞があるため注意を要する。
When a polyurethane synthesis catalyst is used, it is preferably added into the system after the metal ions (that is, salts of metal elements) are completely dissolved, as shown in the above specific operating procedure.
Examples of the catalyst include amine-based catalysts, and specific examples thereof include triethylamine, benzyldiethylamine, 1,4-diazabicyclo [2,2,2] octane, and 1,8-diazabicyclo [5,4,0]. Examples thereof include undecene, N, N, N', N'-tetramethyl-1,3-butanediamine, N-ethylmorpholine and the like. When the catalyst is used, it can be blended in a proportion of up to about 0.2% by mass with respect to the amount of polyurethane finally obtained. However, if a large amount is added, a decomposition reaction may occur due to the catalyst, so caution is required.
1-2.電気絶縁媒質含有溶液の調製
 電気絶縁媒質と、アルコキシ基を有する乳化剤(乳化剤1)と、所望によりその他乳化剤(乳化剤2)をそれぞれ秤量し、また所望により潤滑剤を秤量し、調合瓶(栓付き瓶など)若しくは適量サイズのガラスビーカー・フラスコに添加し、必要に応じてマグネチックスターラーとマグネット撹拌子、若しくはホモジナイザー等の撹拌装置を用いて、各材料を常温にて混合する。
1-2. Preparation of solution containing electrically insulating medium Weigh the electrically insulating medium, the emulsifier having an alkoxy group (emulsifier 1), and if desired, the other emulsifier (emulsifier 2), and if desired, weigh the lubricant. Add to a glass beaker / flask of appropriate size (such as a bottle) or, if necessary, mix each material at room temperature using a magnetic stirrer and a stirrer such as a magnetic stirrer or a homogenizer.
 具体的な操作手順の一例を以下に示す。
 まず、電気絶縁媒質(シリコーン油等)を栓付き瓶に秤量する。他方、アルコキシ基を有する乳化剤(乳化剤1)、及び所望によりその他乳化剤(乳化剤2)、さらに所望により潤滑剤をそれぞれ秤量し、これら乳化剤・潤滑剤を電気絶縁媒質に添加・混合し、電気絶縁媒質含有溶液を得る。
 上記アルコキシ基を有する乳化剤(乳化剤1)は、電気絶縁媒質の使用量に対して、1質量%~2.0質量%の量となるように添加することが好適である。
 上記の混合溶解に際し、撹拌時の温度は常温(20±10℃)とすることができる。
An example of a specific operation procedure is shown below.
First, an electrically insulating medium (silicone oil, etc.) is weighed in a bottle with a stopper. On the other hand, an emulsifier having an alkoxy group (emulsifier 1), another emulsifier (emulsifier 2) if desired, and a lubricant if desired are weighed, and these emulsifiers / lubricants are added / mixed to the electrically insulating medium to be added / mixed to the electrically insulating medium. Obtain the containing solution.
It is preferable to add the emulsifier having an alkoxy group (emulsifier 1) in an amount of 1% by mass to 2.0% by mass with respect to the amount of the electrically insulating medium used.
In the above mixing and dissolution, the temperature at the time of stirring can be set to room temperature (20 ± 10 ° C.).
2.合成準備工程
 本工程は、後述する4.仮硬化工程及び5.本硬化工程で使用する硬化剤、すなわちイソシアネート類を準備する工程である。
 硬化剤である上述のイソシアネート類は、2種以上を組み合わせて用いることができ、例えばトルエンジイソシアネート(TDI)とポリメチレンポリフェニルポリイソシアネート(p-MDI)を組み合わせて用いることができる。
 イソシアネート類を栓付き瓶に秤量し、2種以上のイソシアネート類を使用する場合には、ここに別の種類のイソシアネート類を添加し、混液とすることができる。
 なお、秤量・準備した硬化剤(イソシアネート類)は、後述する4.仮硬化工程と5.本硬化工程に2工程において分割して使用することから、例えば4.仮硬化工程に使用する分として予め10%~20%量を取り分けておくことができる。
 なお、硬化剤(イソシアネート類)は、その種類によって特定化学物質に指定されていることから、十分な換気下で操作を実施し、また反応性が高い物質であるため、使用した器具等はイソシアネート中和液(例:5%炭酸ナトリウム水溶液と中性洗剤の混合液など)などで中和した後、洗浄に供することが望ましい。
2. 2. Synthesis preparation step This step will be described later in 4. Temporary curing process and 5. This is a step of preparing a curing agent used in the main curing step, that is, isocyanates.
The above-mentioned isocyanates as a curing agent can be used in combination of two or more, and for example, toluene diisocyanate (TDI) and polymethylene polyphenyl polyisocyanate (p-MDI) can be used in combination.
When the isocyanates are weighed in a bottle with a stopper and two or more kinds of isocyanates are used, another kind of isocyanates can be added thereto to prepare a mixed solution.
The weighing and prepared curing agents (isocyanates) will be described later in 4. Temporary curing process and 5. Since it is used separately in the main curing step in two steps, for example, 4. A 10% to 20% amount can be set aside in advance for use in the temporary curing step.
Since the curing agent (isocyanate) is designated as a specific chemical substance depending on its type, it should be operated under sufficient ventilation, and since it is a highly reactive substance, the equipment used is isocyanate. It is desirable to neutralize with a neutralizing solution (eg, a mixed solution of a 5% sodium carbonate aqueous solution and a neutral detergent), and then use the mixture for washing.
3.乳化工程
 本工程は、上記1.の調製工程で得た電解質含有ポリオール溶液と電気絶縁媒質含有溶液を、ホモジナイザー等の撹拌装置や分散機にて分散混合し、電解質含有ポリオール溶液/電気絶縁媒質含有溶液混合物を得た後、該混合物を乳化させ、電気絶縁媒質中にポリオールを分散させたエマルジョン(乳化液)を得る工程である。本工程に用いる撹拌装置や分散機の種類、分散機におけるせん断羽根の種類、回転数(速度)、また撹拌(回転)時間などにより、後の工程で形成されるポリウレタン粒子の平均粒子径を調整することができる。
3. 3. Emulsification process This process is described in 1. above. The electrolyte-containing polyol solution and the electrically insulating medium-containing solution obtained in the preparation step of the above are dispersed and mixed by a stirrer such as a homogenizer or a disperser to obtain an electrolyte-containing polyol solution / an electrically insulating medium-containing solution mixture, and then the mixture is obtained. Is an emulsion (emulsion solution) in which a polyol is dispersed in an electrically insulating medium. The average particle size of the polyurethane particles formed in the subsequent process is adjusted according to the type of agitator and disperser used in this process, the type of shear blades in the disperser, the number of rotations (speed), and the stirring (rotation) time. can do.
 具体的な操作手順の一例を以下に示す。
 まず、1-1.工程で得た電解質含有ポリオール溶液をフラスコに秤量し、ここに、1-2.工程で得た電気絶縁媒質含有溶液を秤量して添加する。
 該フラスコを、ウォーターバス等の恒温装置にセットし、ホモジナイザーで撹拌・混合を行い、乳化液を得る。
 上記の撹拌・混合に際し、撹拌時の回転数は10,000rpm~20,000rpm程度、撹拌時の温度は例えば40℃前後とすることができ、また撹拌時間は0.5時間程度とすることができるが、これら条件に限定されない。
An example of a specific operation procedure is shown below.
First, 1-1. The electrolyte-containing polyol solution obtained in the step is weighed in a flask, and here, 1-2. The solution containing the electrically insulating medium obtained in the step is weighed and added.
The flask is set in a constant temperature device such as a water bath, and the mixture is stirred and mixed with a homogenizer to obtain an emulsion.
In the above stirring and mixing, the rotation speed at the time of stirring can be about 10,000 rpm to 20,000 rpm, the temperature at the time of stirring can be, for example, about 40 ° C., and the stirring time can be about 0.5 hours. Yes, but not limited to these conditions.
4.仮硬化(硬化剤添加(1))工程
 本工程は、前述の3.乳化工程にて生成した乳化液(未硬化状態のエマルジョン粒子)を硬化させ、半硬化のポリウレタン粒子を得る工程である。本工程において、ポリウレタン粒子を形成するために用いる硬化剤(イソシアネート類)の全量のうち、およそ10%~20%量を使用する。
4. Temporary curing (hardener addition (1)) step This step is described in 3. above. This is a step of curing the emulsion (uncured emulsion particles) produced in the emulsification step to obtain semi-cured polyurethane particles. In this step, about 10% to 20% of the total amount of the curing agent (isocyanates) used to form the polyurethane particles is used.
 具体的な操作手順の一例を以下に示す。
 上記3.乳化工程で調製した乳化液(エマルジョン)に、例えば上記3.工程と同一の撹拌(例:ホモジナイザーによる撹拌・混合)を継続させながら、総添加量のおよそ10%~20%量の硬化剤(イソシアネート類)を、チューブポンプ等を用いて滴下添加する。
 上記の硬化剤の添加に際して、乳化液は所定温度(例えば50℃以上)となるようにマントルヒーター等の恒温装置にセットして撹拌を継続し、所定温度に到達した後、硬化剤(一部)を添加することができる。また撹拌時間は0.5時間程度とすることができるが、こうした添加・撹拌条件には限定されない。なお、硬化剤の投入初期においては、撹拌が停止しないことを確認するべく、数滴ずつの滴下(5回程度)とすることができる。
An example of a specific operation procedure is shown below.
Above 3. In the emulsion prepared in the emulsification step, for example, the above 3. While continuing the same stirring as in the step (eg, stirring / mixing with a homogenizer), a curing agent (isocyanate) in an amount of about 10% to 20% of the total addition amount is added dropwise using a tube pump or the like.
When adding the above-mentioned curing agent, the emulsion is set in a constant temperature device such as a mantle heater so that the temperature becomes a predetermined temperature (for example, 50 ° C. or higher), stirring is continued, and after reaching the predetermined temperature, the curing agent (partly). ) Can be added. The stirring time can be about 0.5 hours, but is not limited to such addition / stirring conditions. At the initial stage of adding the curing agent, several drops can be dropped (about 5 times) in order to confirm that the stirring does not stop.
5.本硬化(硬化剤添加(2))工程
 本工程は、上記の4.仮硬化工程により形成された半硬化のポリウレタン粒子(エマルジョン粒子)をさらに硬化させる工程である。本工程において、ポリウレタン粒子を形成するために用いる硬化剤(イソシアネート類)の全量のうち、前工程で消費したものの残りの量、即ち、全量の80%~90%量を使用する。
5. Main curing (hardener addition (2)) step This step is described in 4. above. This is a step of further curing the semi-cured polyurethane particles (emulsion particles) formed by the temporary curing step. In this step, of the total amount of the curing agent (isocyanates) used for forming the polyurethane particles, the remaining amount of the one consumed in the previous step, that is, 80% to 90% of the total amount is used.
 具体的な操作手順の一例を以下に示す。
 上記の4.仮硬化工程の操作の完了後、容器内(フラスコ等)で撹拌状態にて保管中の半硬化のポリウレタン粒子のエマルジョンに対し、撹拌を継続させたまま硬化剤(イソシアネート類)の残りの量、即ち、全量の80%~90%量を、チューブポンプ等を用いて滴下添加する。
 上記の残りの硬化剤の添加に際して、反応熱(イソシアネート反応)により過度な温度上昇を防ぐべく、半硬化のエマルジョンは所定温度(例えば80℃以下)となるように調整して撹拌を継続し、所定温度に到達した後、残りの硬化剤を添加することができる。また撹拌時間は1.0時間程度とすることができるが、こうした添加・撹拌条件には限定されない。添加・撹拌後、液温が70℃程度までに低下した後、撹拌装置(ホモジナイザー等)を停止させ、粗生成物といえる流体を得ることができる。
An example of a specific operation procedure is shown below.
4. above. After the operation of the temporary curing step is completed, the remaining amount of the curing agent (isocyanates) is applied to the emulsion of the semi-cured polyurethane particles stored in the container (flask, etc.) in a stirred state while stirring is continued. That is, 80% to 90% of the total amount is added dropwise using a tube pump or the like.
When the remaining curing agent is added, the semi-cured emulsion is adjusted to a predetermined temperature (for example, 80 ° C. or lower) and stirring is continued in order to prevent an excessive temperature rise due to the reaction heat (isocyanate reaction). After reaching a predetermined temperature, the remaining curing agent can be added. The stirring time can be about 1.0 hour, but is not limited to such addition / stirring conditions. After the addition and stirring, the liquid temperature drops to about 70 ° C., and then the stirring device (homogenizer or the like) is stopped to obtain a fluid that can be said to be a crude product.
6.ろ過工程
 5.本硬化工程の操作完了後、得られた流体をろ過し、電気粘性流体を得る。ここで、容器内壁への飛散を防ぎ、乾燥屑や不純物を除去する為、2段階で濾過処理を施してもよい。
6. Filtration process 5. After the operation of this curing step is completed, the obtained fluid is filtered to obtain an electrorheological fluid. Here, in order to prevent scattering to the inner wall of the container and remove dry debris and impurities, filtration treatment may be performed in two steps.
[電気粘性流体ダンパ]
 本発明は、ピストンと、前記ピストンが収納されるシリンダと、前記シリンダに封入され、電圧を印加されることにより粘性を変化させる上述の電気粘性流体とを有する電気粘性流体ダンパも対象とする。
 以下に添付図面を参照して、本発明に係る電気粘性流体ダンパの好ましい実施形態について詳細に説明する。なお、以下の実施形態によって本発明が対象とする電気粘性流体ダンパを限定することを意図したものではない。
[Electrorheological fluid damper]
The present invention also covers an electrorheological fluid damper having a piston, a cylinder in which the piston is housed, and the above-mentioned electrorheological fluid which is enclosed in the cylinder and whose viscosity is changed by applying a voltage.
Hereinafter, preferred embodiments of the electrorheological fluid damper according to the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments are not intended to limit the electrorheological fluid damper targeted by the present invention.
 電気粘性流体ダンパは、電気粘性流体を作動流体として用いる減衰力調整式緩衝器である。
 図2は、本発明の好ましい実施形態の電気粘性流体ダンパ11の軸線を含む平面による断面図である。
 図2を参照すると、電気粘性流体ダンパ11は、内筒12(シリンダ)、外筒13、および中間筒14を有する。便宜上、図2における上下方向を電気粘性流体ダンパ11における上下方向とする。
The electrorheological fluid damper is a damping force adjusting shock absorber that uses an electrorheological fluid as a working fluid.
FIG. 2 is a sectional view taken along a plane including an axis of the electrorheological fluid damper 11 of the preferred embodiment of the present invention.
Referring to FIG. 2, the electrorheological fluid damper 11 has an inner cylinder 12 (cylinder), an outer cylinder 13, and an intermediate cylinder 14. For convenience, the vertical direction in FIG. 2 is the vertical direction in the electrorheological fluid damper 11.
 外筒13の下端部は、ボトムキャップ15によって閉塞される。内筒12は、下端部がボトムバルブ16のバルブボディ17に嵌合され、上端部がロッドガイド18に嵌合される。内筒12と外筒13との間には、環状のリザーバ室19が形成される。リザーバ室19には、本発明に係る電気粘性流体とガスとが封入される。なお、リザーバ室19内のガスは、例えば窒素ガス又はエアである。 The lower end of the outer cylinder 13 is closed by the bottom cap 15. The lower end of the inner cylinder 12 is fitted to the valve body 17 of the bottom valve 16, and the upper end is fitted to the rod guide 18. An annular reservoir chamber 19 is formed between the inner cylinder 12 and the outer cylinder 13. The electrorheological fluid and gas according to the present invention are sealed in the reservoir chamber 19. The gas in the reservoir chamber 19 is, for example, nitrogen gas or air.
 内筒12の内側には、ピストン20が摺動可能に設けられる。ピストン20には、ピストンロッド23の下端部が連結される。ピストンロッド23の上端部は、ロッドガイド18を介して外筒13の外部へ延出する。ピストン20は、内筒12内をシリンダ上室21とシリンダ下室22との2室に画分する。ピストン20には、シリンダ上室21とシリンダ下室22とを連通させる縮み側通路24と伸び側通路25とが設けられる。 A piston 20 is slidably provided inside the inner cylinder 12. The lower end of the piston rod 23 is connected to the piston 20. The upper end of the piston rod 23 extends to the outside of the outer cylinder 13 via the rod guide 18. The piston 20 divides the inside of the inner cylinder 12 into two chambers, a cylinder upper chamber 21 and a cylinder lower chamber 22. The piston 20 is provided with a contraction-side passage 24 and an extension-side passage 25 for communicating the cylinder upper chamber 21 and the cylinder lower chamber 22.
 ここで、電気粘性流体ダンパ11は、ユニフロー構造をなし、一例として複筒式ユニフロー構造を示す。なお電気粘性流体ダンパは、バイフロー構造、単筒式であってもよいが、以下、図2に従い、電気粘性流体ダンパ11がユニフロー構造を有する場合について説明する。
 すなわち、電気粘性流体ダンパ11は、ピストンロッド23の縮み行程と伸び行程との両行程で、電気粘性流体を、シリンダ上室21から、内筒12に設けられる通路26を介して、内筒12と中間筒14との間に形成される環状の流路27へ流通させる。当該ユニフロー構造を構成するため、ピストン20の上端面には縮み側逆止弁28が設けられ、ピストン20の下端面には、ディスクバルブ32が設けられる。
Here, the electrorheological fluid damper 11 has a uniflow structure, and as an example, a double-cylinder uniflow structure is shown. The electrorheological fluid damper may have a biflow structure or a single cylinder type, but the case where the electrorheological fluid damper 11 has a uniflow structure will be described below with reference to FIG.
That is, the electrorheological fluid damper 11 transfers the electrorheological fluid from the cylinder upper chamber 21 through the passage 26 provided in the inner cylinder 12 in both the contraction stroke and the expansion stroke of the piston rod 23. It is circulated to the annular flow path 27 formed between the intermediate cylinder 14 and the intermediate cylinder 14. In order to form the uniflow structure, a contraction-side check valve 28 is provided on the upper end surface of the piston 20, and a disc valve 32 is provided on the lower end surface of the piston 20.
 縮み側逆止弁28は、ピストンロッド23の縮み行程時に開弁し、縮み側通路24を介するシリンダ下室22からシリンダ上室21への電気粘性流体の流通を許容する。他方、ディスクバルブ32は、ピストンロッド23の伸び行程時にシリンダ上室21内の圧力が予め定められた圧力に達することで開弁し、当該シリンダ上室21内の圧力を、伸び側通路25を介してシリンダ下室22へリリーフする。 The contraction-side check valve 28 opens during the contraction stroke of the piston rod 23, and allows the flow of electrorheological fluid from the cylinder lower chamber 22 to the cylinder upper chamber 21 via the contraction-side passage 24. On the other hand, the disc valve 32 opens when the pressure in the cylinder upper chamber 21 reaches a predetermined pressure during the extension stroke of the piston rod 23, and the pressure in the cylinder upper chamber 21 is applied to the extension side passage 25. Relieve to the cylinder lower chamber 22 through.
 図2を参照すると、バルブボディ17は、リザーバ室19とシリンダ下室22とを分画する。バルブボディ17の小径部に嵌合された内筒12の外周には、環状の保持部材29が嵌着される。保持部材29は、中間筒14の下端部を軸方向(上下方向)および径方向に位置決めさせる。保持部材29は、電気絶縁性材料からなり、内筒12、ボトムキャップ15、およびバルブボディ17を、中間筒14に対して電気的に絶縁させる。なお、保持部材29には、内筒12と中間筒14との間に形成される環状の流路27をリザーバ室19に連通させる通路30が形成される。 Referring to FIG. 2, the valve body 17 separates the reservoir chamber 19 and the cylinder lower chamber 22. An annular holding member 29 is fitted to the outer periphery of the inner cylinder 12 fitted to the small diameter portion of the valve body 17. The holding member 29 positions the lower end portion of the intermediate cylinder 14 in the axial direction (vertical direction) and the radial direction. The holding member 29 is made of an electrically insulating material and electrically insulates the inner cylinder 12, the bottom cap 15, and the valve body 17 from the intermediate cylinder 14. The holding member 29 is formed with a passage 30 for communicating an annular flow path 27 formed between the inner cylinder 12 and the intermediate cylinder 14 to the reservoir chamber 19.
 また逆止弁33は、ピストンロッド23の伸び行程時に開弁し、伸び側通路34を介してリザーバ室19からシリンダ下室22への電気粘性流体の流通を許容する。他方、ディスクバルブ(リリーフ弁)35は、ピストンロッド23の縮み行程時にシリンダ下室22内の圧力が予め定められた圧力に達することで開弁し、当該シリンダ下室22内の圧力を、縮み側通路36を介してリザーバ室19へリリーフする。 Further, the check valve 33 opens during the extension stroke of the piston rod 23, and allows the flow of the electrorheological fluid from the reservoir chamber 19 to the cylinder lower chamber 22 via the extension side passage 34. On the other hand, the disc valve (relief valve) 35 opens when the pressure in the cylinder lower chamber 22 reaches a predetermined pressure during the contraction stroke of the piston rod 23, and the pressure in the cylinder lower chamber 22 is contracted. Relief to the reservoir chamber 19 via the side passage 36.
 一方、中間筒14は、導電性材料からなる。中間筒14の上端部は、内筒12の上端部外周面に嵌着される保持部材31を介して、ロッドガイド18によって径方向に位置決めされる。保持部材31は、電気絶縁性材料からなり、中間筒14を内筒12に対して電気的に絶縁させる。また、中間筒14は、高電圧ドライバ(電圧生成部、図示せず)を介してバッテリ(図示せず)の正極に接続される。すなわち、中間筒14は、流路27内を流通する電気粘性流体に電界(電圧)を印加する正極電極(エレクトロード)を構成する。他方、負極電極(接地電極)として用いられる内筒12は、バルブボディ17、ボトムキャップ15、外筒13、および高電圧ドライバ10を介してグランドに接続される。 On the other hand, the intermediate cylinder 14 is made of a conductive material. The upper end portion of the intermediate cylinder 14 is radially positioned by the rod guide 18 via the holding member 31 fitted to the outer peripheral surface of the upper end portion of the inner cylinder 12. The holding member 31 is made of an electrically insulating material and electrically insulates the intermediate cylinder 14 from the inner cylinder 12. Further, the intermediate cylinder 14 is connected to the positive electrode of the battery (not shown) via a high voltage driver (voltage generation unit, not shown). That is, the intermediate cylinder 14 constitutes a positive electrode (electrode) that applies an electric field (voltage) to the electrorheological fluid flowing in the flow path 27. On the other hand, the inner cylinder 12 used as the negative electrode (ground electrode) is connected to the ground via the valve body 17, the bottom cap 15, the outer cylinder 13, and the high voltage driver 10.
 なお、図2において、中間筒14に正極電極との電極接続部が設けられ、内筒12に負極電極(接地電極)との第1接地接続部が設けられているが、中間筒14に負極電極(接地電極)との第1接地接続部が設けられ、内筒12に正極電極との電極接続部が設けられてもよく、同様に正極電極との電極接続部は内筒12及び外筒13に設けてもよい。 In FIG. 2, the intermediate cylinder 14 is provided with an electrode connection portion with a positive electrode, and the inner cylinder 12 is provided with a first ground connection portion with a negative electrode (ground electrode). A first ground connection portion with the electrode (ground electrode) may be provided, and the inner cylinder 12 may be provided with an electrode connection portion with the positive electrode. Similarly, the electrode connection portion with the positive electrode is the inner cylinder 12 and the outer cylinder. It may be provided in 13.
 一方、内筒12と中間筒14の間、及び中間筒14と外筒13の間の流路断面積を比較した場合、電気粘性流体に電圧を印加したときに発生する減衰力は、電極間の通電量(断面積)で決まるため、内筒12と中間筒14の間で電圧を印加するように電極を設けた方が、電極間の断面積が小さいので、より小さい印加電圧、ひいてはより少ない消費電流で同等の減衰力(制動力)を得ることができる。さらに、液温の上昇によって通電量が増大するようなことがあっても、その通電量をより小さく抑制して、電源にかかる負荷をより小さく抑制し、電源が過負荷になることを回避することができる。また、グランドは、アースでもよく、フレーム・グランドや、シグナル・グランドなどでもよい。最終的に、正極電極からの電流が基準電位点に接続すればよい。 On the other hand, when comparing the flow path cross-sectional areas between the inner cylinder 12 and the intermediate cylinder 14 and between the intermediate cylinder 14 and the outer cylinder 13, the damping force generated when a voltage is applied to the electrorheological fluid is between the electrodes. Since it is determined by the amount of electrorheological fluid (cross-sectional area), it is better to provide the electrodes so that the voltage is applied between the inner cylinder 12 and the intermediate cylinder 14, because the cross-sectional area between the electrodes is smaller, the applied voltage is smaller, and by extension, more. The same damping force (braking force) can be obtained with a small current consumption. Further, even if the energization amount increases due to an increase in the liquid temperature, the energization amount is suppressed to be smaller, the load applied to the power supply is suppressed to be smaller, and the power supply is prevented from being overloaded. be able to. Further, the ground may be ground, a frame ground, a signal ground, or the like. Finally, the current from the positive electrode may be connected to the reference potential point.
 本発明によれば、ポリウレタン粒子を含む電気粘性流体において、該粒子にドープする金属イオン量を制御する、具体的にはリチオムイオンと、該リチウムイオンより少量の亜鉛イオンを内包する又は粒子表面に付着したポリウレタン粒子を採用することにより、該粒子の分極率を高め、これを用いた電気粘性流体において強い減衰力を実現することができる。そして該流体を用いた電気粘性流体における減衰力を高め、従来のダンパに生じていた減衰力のゆらぎを低減させることができる。
 好ましい態様において、本発明ではポリウレタン粒子としてポリオール類とイソシアネート類とアルコキシ基を含有する乳化剤を含む混合物の反応生成物を採用することにより、反応系内に不純物として存在する水分量を低減させる、例えば千ppm超のオーダーから数百ppm~数十ppmのレベルにまで水分量を低減させることができる。これは、系内に残存する残存する水分とイソイアネート類との副反応の抑制につながり、ポリウレタンの硬化反応が効率よく進むことにより、ポリウレタンの硬化度を向上させ、その結果、電気粘性流体の耐久性(耐熱性)の向上につながる。電気粘性流体における耐熱性の悪化は減衰力の低下を早めることにつながり得、また、粘度や電流値等にも影響を及ぼし得るため、重要な解決課題の一つといえる。さらに、水分量の低減は、電気粘性流体への電圧印加時における電気粘性流体に流れる電流量の抑制につながり得、特に本発明の場合、リチウムイオンの増加により生じ得る電流量増加の抑制にもつながり、エネルギー消費の低減を期待できる。水分量を低減させた上記電気粘性流体の使用により、本発明の電気粘性流体ダンパは、作動温度が上昇した場合においても電流量の上昇を抑制でき、より高温域でのダンパの作動が可能となる。
According to the present invention, in an electroviscoud fluid containing polyurethane particles, the amount of metal ions doped in the particles is controlled, specifically, lithium ions and zinc ions in a smaller amount than the lithium ions are contained or adhered to the particle surface. By adopting the above-mentioned polyurethane particles, it is possible to increase the polarization rate of the particles and realize a strong damping force in an electroviscous fluid using the particles. Then, the damping force in the electrorheological fluid using the fluid can be increased, and the fluctuation of the damping force generated in the conventional damper can be reduced.
In a preferred embodiment, in the present invention, by adopting a reaction product of a mixture containing polyols, isocyanates and an emulsifier containing an alkoxy group as polyurethane particles, the amount of water present as impurities in the reaction system is reduced, for example. The water content can be reduced from the order of more than 1,000 ppm to the level of several hundred ppm to several tens of ppm. This leads to the suppression of side reactions between the residual water remaining in the system and the isoialates, and the efficient progress of the curing reaction of the polyurethane improves the degree of curing of the polyurethane, resulting in the durability of the electrorheological fluid. This leads to improved properties (heat resistance). Deterioration of heat resistance in an electrorheological fluid can lead to an accelerated decrease in damping force, and can also affect the viscosity and current value, so it can be said to be one of the important solutions. Further, the reduction of the water content can lead to the suppression of the amount of current flowing in the electrorheological fluid when a voltage is applied to the electrorheological fluid, and particularly in the case of the present invention, it also suppresses the increase in the amount of current that can occur due to the increase in lithium ions. It can be expected to connect and reduce energy consumption. By using the electrorheological fluid having a reduced amount of water, the electrorheological fluid damper of the present invention can suppress an increase in the amount of current even when the operating temperature rises, and the damper can be operated in a higher temperature range. Become.
 なお本発明者らは、ダンパ減衰力のゆらぎの原因解析において、ダンパのピストンの動作に伴い、ダンパ減衰力のゆらぎと連動して、電極間に電圧を印加した際に流れる電流が変化することを確認した。
 図10に、ダンパ減衰力のゆらぎが発生した際に観測された減衰力と電流値の時間変化を示す。図10に示すように減衰力が低下した後、数ミリ秒後に電流値が上昇し、その後、減衰力が回復していることが確認できる。
 この現象は、図11に示すように、減衰力が高いときには形成されていたポリウレタン粒子(分極粒子)のカラム(図11(a))が、減衰力低下時にカラムが崩れ(図11(b))、その後、減衰力回復時にカラムが再生されたこと(図11(c))を反映した現象であるとみられる。すなわち、カラム崩壊後にポリウレタン粒子を再分極させるために、いわゆる突入電流が電極に流れ、これが電流値の上昇として観察されたとみられる。この突入電流は、電源容量の上限値を引き上げてしまう問題があるため対策が必要となる。
 突入電流の対策として、例えば図12(1)に示すように電源から電極の間に抵抗を直列に挿入し、さらに電極間に並列にコンデンサを接続することにより、図11(b)に示すカラム崩壊時に図12(2)のように電流が流れるものの、突入電流の大きさを低減させることができる。
 また電気粘性流体を、本発明に示すようにポリウレタン粒子にドープする金属イオンの配合量を調整するなどして減衰力のゆらぎ自体を抑制した流体とすることにより、突入電力の発生自体を抑制し、突入電力が発生したとしてもその大きさを抑制することができる。すなわち、本発明の電気粘性流体における減衰力のゆらぎ現象の抑制は、突入電流の抑制にもつながるものである。
In the analysis of the cause of the fluctuation of the damper damping force, the present inventors have found that the current flowing when a voltage is applied between the electrodes changes with the movement of the piston of the damper in conjunction with the fluctuation of the damper damping force. It was confirmed.
FIG. 10 shows the time variation of the damping force and the current value observed when the fluctuation of the damper damping force occurs. As shown in FIG. 10, it can be confirmed that the current value increases several milliseconds after the damping force decreases, and then the damping force recovers.
As shown in FIG. 11, this phenomenon is caused by the column of polyurethane particles (polarizing particles) formed when the damping force is high (FIG. 11 (a)) collapses when the damping force decreases (FIG. 11 (b)). ), After that, it seems that this is a phenomenon that reflects the fact that the column was regenerated when the damping force was restored (FIG. 11 (c)). That is, it is considered that a so-called inrush current flows through the electrode in order to repolarize the polyurethane particles after the column collapse, and this is observed as an increase in the current value. This inrush current has a problem of raising the upper limit of the power supply capacity, so countermeasures are required.
As a countermeasure against inrush current, for example, as shown in FIG. 12 (1), a resistor is inserted in series between the power supply and the electrodes, and a capacitor is connected in parallel between the electrodes to connect the column shown in FIG. 11 (b). Although a current flows as shown in FIG. 12 (2) at the time of collapse, the magnitude of the inrush current can be reduced.
Further, as shown in the present invention, the electrorheological fluid is a fluid in which the fluctuation of the damping force itself is suppressed by adjusting the blending amount of the metal ions doped in the polyurethane particles, thereby suppressing the generation of the inrush power itself. Even if the inrush power is generated, its magnitude can be suppressed. That is, the suppression of the fluctuation phenomenon of the damping force in the electrorheological fluid of the present invention also leads to the suppression of the inrush current.
 次に、本発明をさらに詳細に説明するために実施例を挙げるが、本発明はこれに限定されるものではない。
 図1に示す電気粘性流体の製造フローチャートに従い、実施例の電気粘性流体を調製した。
Next, examples will be given to explain the present invention in more detail, but the present invention is not limited thereto.
The electrorheological fluid of the example was prepared according to the flow chart for producing the electrorheological fluid shown in FIG.
 金属イオン(リチウムイオン、亜鉛イオン)の原料として、塩化リチウムと塩化亜鉛を用い、これとポリウレタン合成用の触媒とを溶解した電解質含有ポリオール溶液(ポリオール:Perstorp社製 Polyol3165)を作製した。
 なお最終的に得られる電気粘性流体におけるリチウムイオン量が0.0007mol/kg~0.007mol/kgとなるように、また亜鉛イオン量が0mol/kg~0.005mol/kgとなるように、種々調整して電解質含有ポリオール溶液を作製した。
Lithium chloride and zinc chloride were used as raw materials for metal ions (lithium ion and zinc ion), and an electrolyte-containing polyol solution (polyol: Polyol3165 manufactured by Perstop) in which this and a catalyst for polyurethane synthesis were dissolved was prepared.
The amount of lithium ions in the finally obtained electrorheological fluid is 0.0007 mol / kg to 0.007 mol / kg, and the amount of zinc ions is 0 mol / kg to 0.005 mol / kg. Adjustment was made to prepare an electrolyte-containing polyol solution.
 一方、電気絶縁媒質として用いるシリコーンオイル(Momentive社製KT-5)に対して、アルコキシ基を有する乳化剤1(信越化学工業(株)製KF-862あるいはMomentive社製OF7747)と、乳化剤2(Fludicon社製フッ素化アミノ変性ポリシロキサン)、並びに、潤滑剤(Momentive社製GPW2233)を溶解し、シリコーン溶液(電気絶縁媒質含有溶液)を作製した。なおアルコキシ基を有する乳化剤1は、電気絶縁媒質であるシリコーンオイルに対して1.5質量%となる量にて用いた。
 また乳化剤2を不使用とした以外は同じ条件としたシリコーン溶液(電気絶縁媒質含有溶液)も準備した。
On the other hand, for silicone oil (KT-5 manufactured by Momentive) used as an electrically insulating medium, emulsifier 1 (KF-862 manufactured by Shinetsu Chemical Industry Co., Ltd. or OF7747 manufactured by Momentive) and emulsifier 2 (Fludicon) having an alkoxy group. Fluorinated amino-modified polysiloxane (manufactured by Momentive) and a lubricant (GPW2233 manufactured by Momentive) were dissolved to prepare a silicone solution (solution containing an electrically insulating medium). The emulsifier 1 having an alkoxy group was used in an amount of 1.5% by mass with respect to the silicone oil which is an electrically insulating medium.
In addition, a silicone solution (solution containing an electrically insulating medium) under the same conditions except that emulsifier 2 was not used was also prepared.
 電解質含有ポリオール溶液と、電気絶縁媒質含有溶液(シリコーン溶液)とを所定量図り取り、分散機の容器に充填した。なお最終的に得られる電気粘性流体におけるポリウレタン粒子の量が50質量%となるよう、各溶液の濃度や使用量等を種々調整した。
 その後、図1のフロー図に示すように、乳化工程にて、電気絶縁媒質含有溶液中に電解質含有ポリオール溶液を分散させた。
 次に硬化剤であるイソシアネート類(東ソー(株)製2,4-ジイソシアネートトルエン(TDI)と多量体ジフェニルメタンジイソシアネート(p-MDI)の混合物)の全体量のうち約2割量を系内に添加し、仮硬化させた。その後、本硬化工程で残り約8割量の硬化剤を添加した。ここで添加する硬化剤の全体量は、ポリオールのヒドロキシ基(OH基)と硬化剤(イソシアネート類)のイソシアネート基(NCO基)のモル比:(NCO基)/(OH基)が1~1.5となるように調整した。硬化剤量をポリオール量の等量より多めとすることにより、アルコキシ基を有する乳化剤1の水分除去効果に加えて、硬化剤のイソシアネート基による水分との反応による水分除去が期待できる。
 本硬化工程終了後、得られた流体を網目125μmのフィルタを用いてろ過し、電気粘性流体を得た。
A predetermined amount of the electrolyte-containing polyol solution and the electrically insulating medium-containing solution (silicone solution) were weighed and filled in the container of the disperser. The concentration and amount of each solution were variously adjusted so that the amount of polyurethane particles in the finally obtained electrorheological fluid was 50% by mass.
Then, as shown in the flow chart of FIG. 1, the electrolyte-containing polyol solution was dispersed in the electrically insulating medium-containing solution in the emulsification step.
Next, about 20% of the total amount of the curing agent isocyanates (a mixture of 2,4-diisocyanate toluene (TDI) manufactured by Tosoh Corporation and the multimer diphenylmethane diisocyanate (p-MDI)) is added to the system. And temporarily cured. Then, in the main curing step, the remaining 80% of the curing agent was added. The total amount of the curing agent added here is the molar ratio of the hydroxy group (OH group) of the polyol and the isocyanate group (NCO group) of the curing agent (isocyanates): (NCO group) / (OH group) of 1 to 1. It was adjusted to be .5. By making the amount of the curing agent larger than the equal amount of the polyol amount, in addition to the water removing effect of the emulsifier 1 having an alkoxy group, water removal by the reaction with the water content by the isocyanate group of the curing agent can be expected.
After the completion of the main curing step, the obtained fluid was filtered using a filter having a mesh of 125 μm to obtain an electrorheological viscous fluid.
[試験例1:ダンパ実機を用いた電気粘性流体性能試験]
 図2に示す電気粘性流体ダンパ11にて、電気粘性流体性能試験を実施した。
 本試験で使用した電気粘性流体は、乳化剤1と乳化剤2を併用して調製したものである。
 なおダンパ試験機の装置及び測定条件は以下のとおりである。
・測定装置:垂直加振機((株)東京衡機)
・振幅種:sin波
・周波数:1Hz
・振幅幅:±40mm
・印加電圧:5kV
・測定温度:45℃
・温度計測:シース熱電対 Kタイプ
 なお実施例で使用した電気粘性流体ダンパシステムでは、50Wの電源を使用し、最大5,000Vを印加するため、10mAを上限電流値とした。
[Test Example 1: Electrorheological fluid performance test using an actual damper]
The electrorheological fluid performance test was carried out with the electrorheological fluid damper 11 shown in FIG.
The electrorheological fluid used in this test was prepared by using emulsifier 1 and emulsifier 2 in combination.
The equipment and measurement conditions of the damper tester are as follows.
・ Measuring device: Vertical vibration machine (Tokyo Koki Co., Ltd.)
・ Amplitude type: sine wave ・ Frequency: 1Hz
・ Amplitude width: ± 40 mm
・ Applied voltage: 5kV
-Measurement temperature: 45 ° C
-Temperature measurement: Sheath thermocouple K type In the electrorheological fluid damper system used in the examples, a power supply of 50 W is used and a maximum of 5,000 V is applied, so 10 mA is set as the upper limit current value.
 図3は、電気粘性流体ダンパに使用した電気粘性流体におけるリチウムイオン量と、該ダンパに5kVの電圧を印加した際の減衰力の標準偏差(本例ではN数:約500)との関係を示す図である。減衰力の標準偏差とは、ゆらぎを定量的に表す指標である。なお、本図に示す測定点において、電気粘性流体における亜鉛イオン量は、リチウムイオン量が0.003mol/kg未満の領域では0.005mol/kg、リチウムイオン量が0.003mol/kg以上の領域では0.00035mol/kg程度である。
 図3に示すように、リチウムイオン量が0.003mol/kg未満の領域では、急激に標準偏差が大きくなることが確認された。この理由として、乳化剤2(再分散性向上用乳化剤)の併用により分散性は向上するもののポリウレタン粒子同士の摩擦力が減少したとみられること、その上で電気粘性効果を十分に得るにはリチウムイオン量が不十分であり、そのため電圧印加時の電気粘性効果が小さく、減衰力が不十分となったためと考えられる。
 本図の結果より、例えば乳化剤1と乳化剤2を併用して調製した電気粘性流体を用いた系においてリチウムイオン量は0.003mol/kg以上とすることが好適であることが確認された。
FIG. 3 shows the relationship between the amount of lithium ions in the electrorheological fluid used for the electrorheological fluid damper and the standard deviation of the damping force when a voltage of 5 kV is applied to the damper (N number: about 500 in this example). It is a figure which shows. The standard deviation of the damping force is an index that quantitatively expresses the fluctuation. At the measurement points shown in this figure, the amount of zinc ions in the electroviscous fluid is 0.005 mol / kg in the region where the lithium ion amount is less than 0.003 mol / kg, and 0.003 mol / kg or more in the region where the lithium ion amount is 0.003 mol / kg or more. Then, it is about 0.00035 mol / kg.
As shown in FIG. 3, it was confirmed that the standard deviation sharply increased in the region where the lithium ion amount was less than 0.003 mol / kg. The reason for this is that although the dispersibility was improved by the combined use of emulsifier 2 (embroidery for improving redispersibility), the frictional force between the polyurethane particles was considered to be reduced, and on top of that, lithium ions were required to obtain a sufficient electrorheological effect. It is probable that the amount was insufficient, and therefore the electrorheological effect when the voltage was applied was small and the damping force was insufficient.
From the results of this figure, it was confirmed that, for example, in a system using an electrorheological fluid prepared by using emulsifier 1 and emulsifier 2 in combination, the lithium ion amount is preferably 0.003 mol / kg or more.
 図4は、電気粘性流体ダンパに使用した電気粘性流体におけるリチウムイオン量(0.0007mol/kg~0.007mol/kg)と、該ダンパに5kVの電圧を印加した際の電流値との関係を示す図である。本図に示す測定点において、電気粘性流体における亜鉛イオン量はいずれも0.00035mol/kg程度である。
 図4に示すように、リチウムイオン量が多くなるにつれ、ダンパ電流値が増加することが確認された。特に、その近似曲線(破線参照)から、リチウムイオン量が0.006mol/kgを超えると急激にダンパ電流値が上昇することが確認された。電気粘性流体ダンパでは、45℃における電流値は1.0mA以下であることが望ましい。
 本図の結果より、リチウムイオン量は0.006mol/kg以下とすることが好適であると判断できる。
FIG. 4 shows the relationship between the amount of lithium ions (0.0007 mol / kg to 0.007 mol / kg) in the electrorheological fluid used for the electrorheological fluid damper and the current value when a voltage of 5 kV is applied to the damper. It is a figure which shows. At the measurement points shown in this figure, the amount of zinc ions in the electrorheological fluid is about 0.00035 mol / kg.
As shown in FIG. 4, it was confirmed that the damper current value increased as the amount of lithium ions increased. In particular, from the approximate curve (see the broken line), it was confirmed that the damper current value increased sharply when the lithium ion amount exceeded 0.006 mol / kg. In the electrorheological fluid damper, it is desirable that the current value at 45 ° C. is 1.0 mA or less.
From the results in this figure, it can be judged that it is preferable that the amount of lithium ions is 0.006 mol / kg or less.
 [試験例2]
 得られた電気粘性流体において、ポリウレタン粒子の粒子径を測定し、また熱負荷前後の粘度を測定し、粘度上昇率を算出した。
 本試験で使用した電気粘性流体は、乳化剤1と乳化剤2を併用して調製したものである。
〈平均粒子径〉
・測定装置:レーザー回折・散乱式粒子径分布測定装置 LA-350((株)堀場製作所)
〈熱負荷前後の粘度〉
・熱負荷装置:自然対流式恒温槽 SH400(ヤマト科学(株))
・熱負荷条件:120℃、100時間加熱
 上記測定結果に基づき、実施例にて調製した電気粘性流体において、使用した亜鉛イオン量(横軸)に対する測定されたポリウレタン粒子の粒径の値(縦軸)を図5に、使用した亜鉛イオン量(横軸)に対する、電気粘性流体の熱負荷後の粘度上昇率(縦軸)を図6に、それぞれ示す。
[Test Example 2]
In the obtained electrorheological fluid, the particle size of the polyurethane particles was measured, the viscosity before and after the heat load was measured, and the viscosity increase rate was calculated.
The electrorheological fluid used in this test was prepared by using emulsifier 1 and emulsifier 2 in combination.
<Average particle size>
・ Measuring device: Laser diffraction / scattering type particle size distribution measuring device LA-350 (HORIBA, Ltd.)
<Viscosity before and after heat load>
・ Heat load device: Natural convection constant temperature bath SH400 (Yamato Scientific Co., Ltd.)
-Heat load conditions: heating at 120 ° C. for 100 hours Based on the above measurement results, in the electroviscosity fluid prepared in the example, the measured particle size value (vertical axis) of the polyurethane particles with respect to the amount of zinc ions used (horizontal axis). (Axis) is shown in FIG. 5, and the rate of increase in viscosity (vertical axis) of the electroviscosity fluid after heat loading with respect to the amount of zinc ions used (horizontal axis) is shown in FIG.
 図5は、電気粘性流体における亜鉛イオン量と、得られたポリウレタン粒子の粒径との関係を示す図である。図5に示すように、亜鉛イオン量が少なくなるにつれ、ポリウレタン粒子の粒径が大きくなることが確認された。特に、その近似曲線(破線参照)から、亜鉛イオン量が0.00004mol/kgを下回ると、ポリウレタン粒径が飛躍的に大きくなることが確認された。なお、本図に示す測定点において、亜鉛イオン量:0mol/kgにおけるリチウムイオン量は0.003mol/kg、亜鉛イオン量:0mol/kg超の領域におけるリチウムイオン量は0.004mol/kgである。
 前述したように、ポリウレタン粒径が大きい粒子はその表面積が減り、粒子同士の接触面積が減ることで、電気粘性効果が低下する。さらに、ポリウレタン粒径が大きい粒子はその沈降が早まる不具合も発生する。このように、電気粘性効果と分散・沈降現象を考慮し、ポリウレタン粒子の粒径は5μm以下とすることが望ましい。
 本図に示す結果より、亜鉛イオン量は0.0004mol/kg以上とすることが好適であると判断できる。
FIG. 5 is a diagram showing the relationship between the amount of zinc ions in the electrorheological fluid and the particle size of the obtained polyurethane particles. As shown in FIG. 5, it was confirmed that the particle size of the polyurethane particles increased as the amount of zinc ions decreased. In particular, from the approximate curve (see the broken line), it was confirmed that the polyurethane particle size dramatically increased when the zinc ion content was less than 0.00004 mol / kg. At the measurement points shown in this figure, the amount of lithium ions at the zinc ion amount: 0 mol / kg is 0.003 mol / kg, and the amount of lithium ions in the region where the zinc ion amount exceeds 0 mol / kg is 0.004 mol / kg. ..
As described above, the surface area of particles having a large polyurethane particle size is reduced, and the contact area between the particles is reduced, so that the electrorheological effect is reduced. Further, particles having a large polyurethane particle size also have a problem that their sedimentation is accelerated. As described above, it is desirable that the particle size of the polyurethane particles is 5 μm or less in consideration of the electrorheological effect and the dispersion / sedimentation phenomenon.
From the results shown in this figure, it can be judged that it is preferable that the zinc ion amount is 0.0004 mol / kg or more.
 図6は、亜鉛イオン量と電気粘性流体の熱負荷後の粘度上昇率との関係を示す図である。図6に示すように、亜鉛イオン量が多くなるにつれ、粘度上昇率が増加することが確認された。電気粘性流体の粘度増加はダンパの減衰力に影響を及ぼし、粘度が増加すると該ダンパが適用された車体において乗り心地が悪くなる。そのため、亜鉛イオン量は、粘度変化がほぼないと判断できる、概ね粘度変化率が±5%以下となる範囲、すなわち0.0004mol/kg以下が望ましい。 FIG. 6 is a diagram showing the relationship between the amount of zinc ions and the rate of increase in viscosity of the electrorheological fluid after heat loading. As shown in FIG. 6, it was confirmed that the viscosity increase rate increased as the amount of zinc ions increased. An increase in the viscosity of the electrorheological fluid affects the damping force of the damper, and when the viscosity increases, the ride quality becomes worse in the vehicle body to which the damper is applied. Therefore, it is desirable that the amount of zinc ions is in a range in which the viscosity change rate is approximately ± 5% or less, that is, 0.0004 mol / kg or less, where it can be judged that there is almost no change in viscosity.
[試験例3:ダンパ実機を用いた電気粘性流体性能試験]
 図2に示す電気粘性流体ダンパ11にて、試験例1と同様の条件にて、ただし測定温度を45℃、60℃、80℃として、電気粘性流体性能試験を実施した。
 なお本試験で使用した電気粘性流体は、乳化剤1と乳化剤2を併用して調製したものである。
[Test Example 3: Electrorheological fluid performance test using an actual damper]
An electrorheological fluid performance test was carried out using the electrorheological fluid damper 11 shown in FIG. 2 under the same conditions as in Test Example 1, but at measurement temperatures of 45 ° C., 60 ° C., and 80 ° C.
The electrorheological fluid used in this test was prepared by using emulsifier 1 and emulsifier 2 in combination.
 図7は、ゆらぎ改善前(比較例)及び改善後(実施例)の、ダンパ実機を用いたストローク(ピストン変位)と減衰力のリサージュ波形(45℃)を示す。
 なお、図7のリサージュ波形を得た電気粘性流体ダンパ11に使用した電気粘性流体における、リチウムイオン量及び亜鉛イオン量は以下の通りである。
 ・実施例(ゆらぎ改善後)
  リチウムイオン量:0.00375mol/kg
  亜鉛イオン量  :0.00035mol/kg
 ・比較例(ゆらぎ改善前)
  リチウムイオン量:0.0007mol/kg
  亜鉛イオン量  :0.005mol/kg
 図7に示すように、比較例のリサージュ波形では、減衰力が一定に保たれず、上下するゆらぎを確認できる。一方、リチウムイオン量と亜鉛イオン量を調整した実施例のリサージュ波形では、そのゆらぎが改善されたことが確認された。
FIG. 7 shows a Lissajous waveform (45 ° C.) of the stroke (piston displacement) and damping force using the actual damper machine before and after the fluctuation improvement (comparative example) and after the improvement (example).
The amount of lithium ions and the amount of zinc ions in the electrorheological fluid used in the electrorheological fluid damper 11 obtained from the resage waveform of FIG. 7 are as follows.
・ Example (after improvement of fluctuation)
Lithium ion amount: 0.00375 mol / kg
Zinc ion amount: 0.00035mol / kg
・ Comparative example (before improvement of fluctuation)
Lithium ion amount: 0.0007 mol / kg
Zinc ion amount: 0.005 mol / kg
As shown in FIG. 7, in the Lissajous waveform of the comparative example, the damping force is not kept constant, and fluctuations that fluctuate up and down can be confirmed. On the other hand, in the Lissajous waveform of the example in which the amount of lithium ion and the amount of zinc ion were adjusted, it was confirmed that the fluctuation was improved.
 図8は、電気粘性流体ダンパに5kVの電圧を印加した際の45℃における電流値と65℃における電流値との関係を示す図である。本図において、横軸と縦軸は、それぞれ45℃と65℃にて測定した電流値である。なお図8に示す実施例(◇)又は比較例(○)の結果は、処方1~7に示すリチウムイオン量及び亜鉛イオン量を有する電気粘性流体を使用して得られたものである。図8中、比較例群は45℃のダンパ電流値(横軸)の値が小さい結果から順に処方1~5の結果をそれぞれ示し、実施例群は65℃のダンパ電流値(縦軸)がわずかに高い結果が処方6の結果である。
Figure JPOXMLDOC01-appb-T000002
 図8に示すように、丸い点(○)で示す比較例の結果と比べ、四角点(◇)で示す実施例の結果は、挙動が全く異なることが確認できる。
 本発明で規定する金属イオン量では、45℃電流値に対する65℃電流値の比が高く、これは65℃におけるイオンの移動度が高く、ポリウレタン粒子の分極が大きく、すなわちダンパ減衰力も強いため、高温下における減衰力のゆらぎも改善している。
 一般的に、電気粘性流体は高温で粘度が下がるため、電気粘性効果、つまり減衰力が低下することとなり、これを防ぐため、高温におけるイオン移動度のさらなる向上が必要とされる。本発明の電気粘性流体は、高温下におけるイオン移動度の向上、そして減衰力の向上が達成され、図9(処方7の電気粘性流体を使用)に示すように80℃でも減衰力のゆらぎが無いリサージュ波形が得られる。
FIG. 8 is a diagram showing the relationship between the current value at 45 ° C. and the current value at 65 ° C. when a voltage of 5 kV is applied to the electrorheological fluid damper. In this figure, the horizontal axis and the vertical axis are current values measured at 45 ° C. and 65 ° C., respectively. The results of Example (◇) or Comparative Example (◯) shown in FIG. 8 were obtained by using the electrorheological fluid having the lithium ion amount and the zinc ion amount shown in Formulations 1 to 7. In FIG. 8, the comparative example group shows the results of prescriptions 1 to 5 in order from the result with the smallest damper current value (horizontal axis) at 45 ° C., and the example group has the damper current value (vertical axis) at 65 ° C. A slightly higher result is the result of Formulation 6.
Figure JPOXMLDOC01-appb-T000002
As shown in FIG. 8, it can be confirmed that the behavior of the result of the example shown by the square point (◇) is completely different from the result of the comparative example shown by the round point (◯).
In the amount of metal ions specified in the present invention, the ratio of the 65 ° C. current value to the 45 ° C. current value is high, because the ion mobility at 65 ° C. is high, the polarization of the polyurethane particles is large, that is, the damper damping force is strong. The fluctuation of the damping force under high temperature is also improved.
In general, since the electrorheological fluid decreases in viscosity at high temperature, the electrorheological effect, that is, the damping force decreases, and in order to prevent this, it is necessary to further improve the ion mobility at high temperature. The electrorheological fluid of the present invention has achieved improved ion mobility and damping force at high temperatures, and as shown in FIG. 9 (using the electrorheological fluid of Formulation 7), the damping force fluctuates even at 80 ° C. A non-resage waveform is obtained.
[試験例4:ダンパ実機を用いた電気粘性流体性能試験]
 図2に示す電気粘性流体ダンパ11にて、試験例1と同様の条件にて、ただし、測定温度を45℃として、電気粘性流体性能試験を実施した。
 なお本試験で使用した電気粘性流体は、乳化剤1と乳化剤2を併用して調製した電気粘性流体(再分散性向上用乳化剤 配合)と、乳化剤1のみを使用して調製した電気粘性流体(再分散性向上用乳化剤 非配合)である。
[Test Example 4: Electrorheological fluid performance test using an actual damper]
An electrorheological fluid performance test was carried out on the electrorheological fluid damper 11 shown in FIG. 2 under the same conditions as in Test Example 1, but at a measurement temperature of 45 ° C.
The electroviscous fluid used in this test is an electroviscous fluid prepared by using emulsifier 1 and emulsifier 2 in combination (containing an emulsifier for improving redispersibility) and an electroviscous fluid prepared by using only emulsifier 1. No emulsifier for improving dispersibility).
 図13は、(a)再分散性向上用乳化剤配合の電気粘性流体と(b)再分散性向上用乳化剤非配合の電気粘性流体を用いた、ダンパ実機を用いたストローク(ピストン変位)と減衰力のリサージュ波形(45℃)を示す(図13(a)及び(b)に示すリサージュ波形のピストン速度:0.02m/s、0.05m/s、0.1m/s、0.13m/s、0.15m/s、0.3m/s、0.6m/s、0.9m/s)。
 なお、図13のリサージュ波形を得た電気粘性流体ダンパ11に使用した電気粘性流体(再分散性向上用乳化剤配合、再分散性向上用乳化剤非配合とも)における、リチウムイオン量及び亜鉛イオン量は以下の通りである。
 (a)再分散性向上用乳化剤配合の電気粘性流体
   リチウムイオン量:0.0014mol/kg
   亜鉛イオン量  :0.005mol/kg
 (b)再分散性向上用乳化剤非配合の電気粘性流体
   リチウムイオン量:0.0014mol/kg
   亜鉛イオン量  :0.00035mol/kg
 図13に示すように、(a)再分散性向上用乳化剤配合の電気粘性流体を用いたリサージュ波形では、減衰力が一定に保たれず、上下するゆらぎを確認できる。一方、(b)再分散性向上用乳化剤非配合の電気粘性流体を用いたリサージュ波形では、そのゆらぎが改善されたことが確認された。
 本結果は、再分散性向上用乳化剤を使用せずとも、アルコキシ基を有する乳化剤1により、電気粘性効果と再分散性の向上を両立することが可能であることを示すものである。
FIG. 13 shows the stroke (piston displacement) and damping using an actual damper machine using (a) an electrorheological fluid containing an emulsifier for improving redispersibility and (b) an electrorheological fluid not containing an emulsifier for improving redispersibility. The force resage waveform (45 ° C.) is shown (piston speed of the resage waveform shown in FIGS. 13 (a) and 13 (b): 0.02 m / s, 0.05 m / s, 0.1 m / s, 0.13 m / s, 0.15 m / s, 0.3 m / s, 0.6 m / s, 0.9 m / s).
The amount of lithium ions and the amount of zinc ions in the electrorheological fluid (both containing the emulsifier for improving redispersibility and not containing the emulsifier for improving redispersibility) used in the electrorheological fluid damper 11 obtained with the resage waveform of FIG. 13 It is as follows.
(A) Electrorheological fluid containing an emulsifier for improving redispersibility Lithium ion content: 0.0014 mol / kg
Zinc ion amount: 0.005 mol / kg
(B) Electrorheological fluid without emulsifier for improving redispersibility Lithium ion amount: 0.0014 mol / kg
Zinc ion amount: 0.00035mol / kg
As shown in FIG. 13, in the Lissajous waveform using (a) an electrorheological fluid containing an emulsifier for improving redispersibility, the damping force is not kept constant, and fluctuations that fluctuate up and down can be confirmed. On the other hand, it was confirmed that (b) the fluctuation was improved in the Lissajous waveform using the electrorheological fluid containing no emulsifier for improving redispersibility.
This result shows that it is possible to achieve both the electrorheological viscosity effect and the improvement of the redispersibility by using the emulsifier 1 having an alkoxy group without using the emulsifier for improving the redispersibility.
 また図14に、図13に示すリサージュ波形より算出した減衰力の標準偏差を示す(ピストン速度0.1m/s、減衰力0kN以上の領域、ストローク±20mmの領域より算出)。前述したように、減衰力の標準偏差はゆらぎを定量的に表す指標であり、本条件においては、(a)再分散性向上用乳化剤配合の標準偏差に比べて、(b)再分散性向上用乳化剤非配合の電気粘性流体の標準偏差が小さいとする結果が得られた。 Further, FIG. 14 shows the standard deviation of the damping force calculated from the resage waveform shown in FIG. 13 (calculated from the region where the piston speed is 0.1 m / s, the damping force is 0 kN or more, and the stroke is ± 20 mm). As described above, the standard deviation of the damping force is an index that quantitatively expresses the fluctuation, and under this condition, (a) the redispersibility is improved as compared with (a) the standard deviation of the emulsifier for improving the redispersibility. The results were obtained that the standard deviation of the electroviscous fluid containing no emulsifier was small.
[試験例5:レオメータを用いた電流密度測定]
 調製した種々の電気粘性流体について、測定温度を変えながら、レオメータを用いて電流密度を測定した。以下に測定に供した装置及び測定条件等を示す。
 なお本試験で使用した電気粘性流体は、乳化剤1のみを使用して調製した電気粘性流体(再分散性向上用乳化剤 非配合)である。
〈電流密度〉
 得られた電気粘性流体に対して、電圧印加時の電流密度(μA/cm)を測定した。
・測定装置:Rheometer MCR302(Anton Paar社)
・治具:CC27
・測定温度:10℃、30℃、50℃、80℃
・印加電圧:5kV
・サンプル量:15mL
・測定プログラム:ひずみ分散測定 開始1分後の電流値(周波数:0.2Hz)
・電気粘性流体におけるリチウムイオン量:0.002mol/kg、0.0023mol/kg、又は0.0038mol/kg;亜鉛イオン量:0.00035mol/kg(一定)
 上記測定結果に基づき、電気粘性流体のリチウムイオン量別に、測定温度(横軸)に対するレオメータに5kVの電圧を印加した時の電流密度の値(縦軸)を図15に示す。
 なお、ダンパ試験電流値の上限は80℃で10mA(電流密度換算値:15μA/cm)である。
[Test Example 5: Current density measurement using a rheometer]
The current densities of the prepared various electrorheological fluids were measured using a rheometer while changing the measurement temperature. The equipment and measurement conditions used for the measurement are shown below.
The electrorheological fluid used in this test is an electrorheological fluid prepared by using only emulsifier 1 (without emulsifier for improving redispersibility).
<Current density>
The current density (μA / cm 2 ) when a voltage was applied to the obtained electrorheological fluid was measured.
-Measuring device: Rheometer MCR302 (Anton Pair)
・ Jig: CC27
-Measurement temperature: 10 ° C, 30 ° C, 50 ° C, 80 ° C
・ Applied voltage: 5kV
・ Sample volume: 15 mL
・ Measurement program: Current value 1 minute after the start of strain dispersion measurement (frequency: 0.2Hz)
-Lithium ion amount in electrorheological fluid: 0.002 mol / kg, 0.0023 mol / kg, or 0.0038 mol / kg; Zinc ion amount: 0.00035 mol / kg (constant)
Based on the above measurement results, FIG. 15 shows the current density values (vertical axis) when a voltage of 5 kV is applied to the leometer with respect to the measured temperature (horizontal axis) for each lithium ion amount of the electrorheological fluid.
The upper limit of the damper test current value is 10 mA (current density conversion value: 15 μA / cm 2 ) at 80 ° C.
 図15に示すように、再分散性向上用乳化剤を非配合とした電気粘性流体の場合、リチウムイオン量が0.0038mol/kgの電気粘性流体は、80℃における電流密度が15μA/cmを大きく超える結果となった。本結果より、再分散性向上用乳化剤を非配合とした電気粘性流体の場合、リチウムイオン量の上限を0.003mol/kgと判断した。 As shown in FIG. 15, in the case of an electrorheological fluid containing no emulsifier for improving redispersibility, an electrorheological fluid having a lithium ion amount of 0.0038 mol / kg has a current density of 15 μA / cm 2 at 80 ° C. The result was much higher. From this result, it was determined that the upper limit of the amount of lithium ions was 0.003 mol / kg in the case of the electrorheological fluid containing no emulsifier for improving redispersibility.
11 ERFダンパ(電気粘性流体ダンパ)、12 内筒(シリンダ)、13 外筒、20 ピストン、23 ピストンロッド、14 中間筒(電極) 11 ERF damper (electrorheological fluid damper), 12 inner cylinder (cylinder), 13 outer cylinder, 20 piston, 23 piston rod, 14 intermediate cylinder (electrode)

Claims (6)

  1. 電気絶縁媒質中にポリウレタン粒子が分散された電気粘性流体であって、
    前記ポリウレタン粒子は、該粒子中に内包される、又は該粒子表面に付着した、少なくとも1種類の金属イオンを含有し、
    前記金属イオンは、リチオムイオンと、該リチウムイオンより少量の亜鉛イオンを含む、電気粘性流体。
    An electrorheological fluid in which polyurethane particles are dispersed in an electrically insulating medium.
    The polyurethane particles contain at least one type of metal ion contained in the particles or adhered to the surface of the particles.
    The metal ion is an electrorheological fluid containing lithium ion and zinc ion in a smaller amount than the lithium ion.
  2. 前記リチウムイオンは、0.001~0.006mol/kgの範囲であり、
    前記亜鉛イオンは、0.00004~0.0004mol/kgの範囲である、請求項1に記載の電気粘性流体。
    The lithium ion is in the range of 0.001 to 0.006 mol / kg, and is in the range of 0.001 to 0.006 mol / kg.
    The electrorheological fluid according to claim 1, wherein the zinc ion is in the range of 0.00004 to 0.0004 mol / kg.
  3. 前記リチウムイオンは、0.003~0.006mol/kgの範囲であり、
    前記亜鉛イオンは、0.00004~0.0004mol/kgの範囲である、請求項2に記載の電気粘性流体。
    The lithium ion is in the range of 0.003 to 0.006 mol / kg, and is in the range of 0.003 to 0.006 mol / kg.
    The electrorheological fluid according to claim 2, wherein the zinc ion is in the range of 0.00004 to 0.0004 mol / kg.
  4. 前記ポリウレタン粒子は、ポリオール類とイソシアネート類とアルコキシ基を有する乳化剤とを含有する混合物の反応生成物である、請求項1乃至請求項3のうちいずれか一項に記載の電気粘性流体。 The electrorheological fluid according to any one of claims 1 to 3, wherein the polyurethane particles are a reaction product of a mixture containing polyols, isocyanates, and an emulsifier having an alkoxy group.
  5. 前記リチウムイオンは、0.001~0.003mol/kgの範囲であり、
    前記亜鉛イオンは、0.00004~0.0004mol/kgの範囲であり、
    前記ポリウレタン粒子は、ポリオール類とイソシアネート類と、乳化剤としてアルコキシ基を有する乳化剤のみとを含有する混合物の反応生成物である、請求項1又は請求項2に記載の電気粘性流体。
    The lithium ion is in the range of 0.001 to 0.003 mol / kg.
    The zinc ion is in the range of 0.00004 to 0.0004 mol / kg.
    The electrorheological fluid according to claim 1 or 2, wherein the polyurethane particles are a reaction product of a mixture containing polyols, isocyanates, and only an emulsifier having an alkoxy group as an emulsifier.
  6. ピストンと、
    前記ピストンが収納されるシリンダと、
    前記シリンダに封入され、電圧を印加されることにより粘性を変化させる電気粘性流体とを有する電気粘性流体ダンパであって、
    前記電気粘性流体は、電気絶縁媒質中にポリウレタン粒子が分散され、前記ポリウレタン粒子は、該粒子中に内包される、又は該粒子表面に付着した、少なくとも1種類の金属イオンを含有し、前記金属イオンは、リチオムイオンと、該リチウムイオンより少量の亜鉛イオンを含む、電気粘性流体である、
    電気粘性流体ダンパ。
    With the piston
    The cylinder in which the piston is stored and
    An electrorheological fluid damper enclosed in the cylinder and having an electrorheological fluid whose viscosity is changed by applying a voltage.
    In the electroviscous fluid, polyurethane particles are dispersed in an electrically insulating medium, and the polyurethane particles contain at least one kind of metal ion contained in the particles or adhered to the surface of the particles, and the metal thereof. Ions are electroviscous fluids containing lithium ions and zinc ions in smaller amounts than the lithium ions.
    Electrorheological fluid damper.
PCT/JP2021/031972 2020-11-12 2021-08-31 Electroviscous fluid damper WO2022102217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188849 2020-11-12
JP2020188849 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102217A1 true WO2022102217A1 (en) 2022-05-19

Family

ID=81601074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031972 WO2022102217A1 (en) 2020-11-12 2021-08-31 Electroviscous fluid damper

Country Status (1)

Country Link
WO (1) WO2022102217A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081758A (en) * 1996-08-12 1998-03-31 Bayer Ag Preparation of non-aqueous dispersion system and its use
JP2015511643A (en) * 2012-03-09 2015-04-20 フルディコン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Electroviscous composition
WO2018025456A1 (en) * 2016-08-01 2018-02-08 日立オートモティブシステムズ株式会社 Shock absorber
JP2018521165A (en) * 2015-06-18 2018-08-02 ダウ グローバル テクノロジーズ エルエルシー Method for producing electrorheological fluid
JP2020158598A (en) * 2019-03-26 2020-10-01 日立オートモティブシステムズ株式会社 Electro-viscous fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081758A (en) * 1996-08-12 1998-03-31 Bayer Ag Preparation of non-aqueous dispersion system and its use
JP2015511643A (en) * 2012-03-09 2015-04-20 フルディコン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Electroviscous composition
JP2018521165A (en) * 2015-06-18 2018-08-02 ダウ グローバル テクノロジーズ エルエルシー Method for producing electrorheological fluid
WO2018025456A1 (en) * 2016-08-01 2018-02-08 日立オートモティブシステムズ株式会社 Shock absorber
JP2020158598A (en) * 2019-03-26 2020-10-01 日立オートモティブシステムズ株式会社 Electro-viscous fluid

Similar Documents

Publication Publication Date Title
JP5535529B2 (en) Polyurethane resin composition
US20040217324A1 (en) Magnetorheological fluid compositions and prosthetic knees utilizing same
JP6108319B2 (en) Electroviscous composition
JP2006070263A (en) Method for preparing powdery (poly) urea
CN104725835A (en) Viscous-elastic material with significant changes in damping controlled by magnetic field
WO2014057740A1 (en) Bump cushion
WO2022102217A1 (en) Electroviscous fluid damper
Palanisamy Water‐blown polyurethane–clay nanocomposite foams from biopolyol—effect of nanoclay on the properties
CN106751718A (en) A kind of lubricant particles intelligently discharge high-abrasive material and preparation method thereof
WO1995014747A1 (en) Electrorheological elastomeric composite materials
EP0432601A1 (en) Electroviscous fluids based on dispersed polyethers
DE19632430C1 (en) Process for the preparation of non-aqueous dispersions and their use
JP2009155393A (en) Two-liquid type polyurethane resin composition
JP2022077822A (en) Electrorheological fluid damper
WO2023042829A1 (en) Electro-rheological fluid and cylinder device using same
CN115605565B (en) Electric viscous fluid and cylinder device
WO2021246100A1 (en) Electrorheological fluid and cylinder device
JP2020158598A (en) Electro-viscous fluid
CN114127239A (en) Electro-viscous fluid composition and hydraulic cylinder device
CN110484326A (en) A kind of polyurea grease and preparation method thereof
WO2021161780A1 (en) Electro-rheological fluid and cylinder device
WO2021161781A1 (en) Electrorheological fluid and cylinder device
JP6525622B2 (en) Core-shell microcapsules
JP2021155685A (en) Dilatant composition
JP5797475B2 (en) Polyurethane resin composition and hollow fiber membrane module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP