JP2020158328A - Method for production of graphite-containing refractory - Google Patents

Method for production of graphite-containing refractory Download PDF

Info

Publication number
JP2020158328A
JP2020158328A JP2019057764A JP2019057764A JP2020158328A JP 2020158328 A JP2020158328 A JP 2020158328A JP 2019057764 A JP2019057764 A JP 2019057764A JP 2019057764 A JP2019057764 A JP 2019057764A JP 2020158328 A JP2020158328 A JP 2020158328A
Authority
JP
Japan
Prior art keywords
refractory
adhesive
carbon fiber
graphite
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019057764A
Other languages
Japanese (ja)
Other versions
JP6957544B2 (en
Inventor
圭佑 吉田
Keisuke Yoshida
圭佑 吉田
近藤 大介
Daisuke Kondo
大介 近藤
久宏 松永
Hisahiro Matsunaga
久宏 松永
亮磨 藤吉
Ryoma Fujiyoshi
亮磨 藤吉
尚士 冨谷
Naoshi Tomitani
尚士 冨谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
JFE Steel Corp
Original Assignee
Shinagawa Refractories Co Ltd
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, JFE Steel Corp filed Critical Shinagawa Refractories Co Ltd
Priority to JP2019057764A priority Critical patent/JP6957544B2/en
Publication of JP2020158328A publication Critical patent/JP2020158328A/en
Application granted granted Critical
Publication of JP6957544B2 publication Critical patent/JP6957544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a production method for a graphite-containing refractory in which the spread of crack generating by heat stress is suppressed and high durability is obtained even in the use under such conditions that temperature rising and lowering are repeated for a long term like a lining refractory of a converter and further, even in the use such a condition that an inside temperature gradient is extremely large.SOLUTION: A graphite-containing refractory is produced by bonding a carbon fiber fabric y having 40-1,300 g in mass per 1 m2 to at least a part of the surface in the molding body x0 of a refractory raw material having a graphite content of 1-80 mass% via an adhesive a0, and further bonding the fabric y to at least a part of the surface of refractory body x composed of the molding body x0 via an adhesive-hardening material a composed of the adhesive a0. The difference between the thermal expansion coefficient of the adhesive-hardening material a and that of the refractory body x at temperature rising from normal temperature to 1,000°C is 2.0% or less, and the difference between the residual expansion rate of the adhesive-hardening material a and that of the refractory body x at temperature lowering from 1,000°C to normal temperature is also 2.0% or less.SELECTED DRAWING: Figure 1

Description

本発明は、耐火物本体の表面に炭素繊維織物が接着された黒鉛含有耐火物の製造方法に関するものである。 The present invention relates to a method for producing a graphite-containing refractory in which a carbon fiber woven fabric is adhered to the surface of the refractory body.

製鉄所において製銑工程や製鋼工程で使用される設備(精錬容器、搬送容器など)は、高温下で長期間の使用に耐えられるように耐火物が内張り施工されている。一般に、精錬工程で使用される転炉の内張りにはマグネシア・カーボン質耐火物が使用され、溶銑予備処理工程で使用されるトピードや高炉鍋の内張りにはアルミナ・炭化珪素・カーボン質耐火物などが使用される。
これらの精錬容器や搬送容器で内張りに使用される耐火物は、装入物による機械的衝撃、溶鋼や溶融スラグの撹拌による摩耗、溶融スラグによるスラグ浸食、操業中の急激な温度変化などが生じる非常に過酷な条件下で使用される。このため、安定した操業を行うためにも、そのような過酷な条件に耐えられる耐用性の高い耐火物を使用する必要がある。
Equipment (refining containers, transport containers, etc.) used in the ironmaking process and steelmaking process at steelworks is lined with refractories so that it can withstand long-term use at high temperatures. Generally, magnesia carbon refractories are used for the lining of converters used in the refining process, and alumina, silicon carbide, and carbon refractories are used for the linings of topides and blast furnace pots used in the hot metal pretreatment process. Is used.
Refractory materials used for lining in these refining vessels and transport vessels are subject to mechanical impact due to charged materials, wear due to stirring of molten steel and molten slag, slag erosion due to molten slag, and sudden temperature changes during operation. Used under very harsh conditions. Therefore, in order to perform stable operation, it is necessary to use a refractory material having high durability that can withstand such harsh conditions.

特に、転炉の羽口部を構成する羽口煉瓦は、内部に常温のガス(酸素や冷却用炭化水素ガス等)が流れており、炉内に近い部位では内面が常温のガスにより冷却され、外面は炉内の溶鋼からの伝熱による高温に曝されるため、羽口煉瓦内の熱勾配は極めて大きく、しかも転炉の1チャージ分の吹錬が終わる度に、溶鋼を排出することによる温度低下が生じ、大きな熱変動が繰り返される。転炉に設置される羽口煉瓦は、使用頻度が2500〜4000チャージ程度にも達し、この1チャージ毎に上記のような大きな熱勾配を生じる状況と大きな熱変動が繰り返されるという極めて過酷な条件で使用されるため、このような条件での使用に耐え得る高い耐用性が必要である。また、羽口煉瓦以外の転炉内張り耐火物(転炉内壁を構成する煉瓦)も、上述したような大きな熱変動が繰り返される過酷な条件で使用されるため、羽口煉瓦ほどではないが、高い耐用性が求められる。 In particular, the tuyere bricks that make up the tuyere of a converter have normal temperature gas (oxygen, hydrocarbon gas for cooling, etc.) flowing inside, and the inner surface is cooled by the normal temperature gas near the inside of the furnace. Since the outer surface is exposed to high temperature due to heat transfer from the molten steel in the furnace, the heat gradient inside the tuyere brick is extremely large, and the molten steel must be discharged after each charge of one charge of the converter is blown. The temperature drops due to the above, and large thermal fluctuations are repeated. The tuyere bricks installed in the converter reach a frequency of use of about 2500 to 4000 charges, and the extremely harsh conditions that the above-mentioned large thermal gradient is generated and large thermal fluctuations are repeated for each charge. Therefore, it is necessary to have high durability that can withstand use under such conditions. In addition, refractories for converter linings other than tuyere bricks (brick that constitutes the inner wall of the converter) are also used under harsh conditions where large thermal fluctuations are repeated as described above, so they are not as good as tuyere bricks. High durability is required.

耐火物の耐用性を高める技術として、特許文献1には、耐火物の表面の一部または全体に、耐火物よりも引張強度が高い繊維からなる一方向の束あるいは織物を接着させることが記載されており、この技術により、従来よりも耐火物を高強度のまま長時間保持できるとともに、耐火物の引張強度を改善でき、亀裂発生や破壊を抑制でき、耐火物の寿命や信頼性を向上できるとしている。具体的には、鉄鋼の連続鋳造工程に使用されるロングノズル、浸漬ノズル、スライディングノズルといった内部を溶鋼が流通するノズルに対し、その外面を拘束する方向に繊維の束あるいは織物をフェノール樹脂により接着し、その表面に酸化防止下地層や酸化防止層を配置することが記載されている。これらのノズルでは、内部を溶鋼が流通するときに外面側へ熱膨張するのを前記繊維の束や織物で拘束し、ノズルを構成する耐火物に圧縮応力を生じさせ、亀裂の発生や破壊を抑制しているものと考えられる。 As a technique for improving the durability of a refractory, Patent Document 1 describes that a unidirectional bundle or a woven fabric made of fibers having a tensile strength higher than that of the refractory is adhered to a part or the whole of the surface of the refractory. With this technology, refractories can be held for a long time with higher strength than before, the tensile strength of refractories can be improved, cracks and breakage can be suppressed, and the life and reliability of refractories can be improved. It is said that it can be done. Specifically, a bundle of fibers or a woven fabric is bonded to a nozzle through which molten steel flows inside, such as a long nozzle, a dipping nozzle, and a sliding nozzle used in a continuous steel casting process, with a phenol resin in a direction that restrains the outer surface. However, it is described that an antioxidant base layer and an antioxidant layer are arranged on the surface thereof. In these nozzles, the thermal expansion to the outer surface side when molten steel flows inside is restrained by the fiber bundle or woven fabric, and compressive stress is generated in the refractory that constitutes the nozzle, causing cracks or fracture. It is considered to be suppressing.

特開2007−106618号公報JP-A-2007-106618

しかしながら、特許文献1に記載のノズルが使用される連続鋳造工程では、転炉で吹錬された複数チャージ分の溶鋼を連続的に鋳造するため、使用されるノズルの温度変化のサイクルは転炉の内張り耐火物に較べれば長く、またノズルの外面は下方に位置する下流側の容器に貯留される溶鋼からの輻射を受けるため、ノズル内を流れる溶鋼との温度差はそれほど大きなものではない。これに対して、転炉の内張り耐火物(転炉の内壁を構成する煉瓦)、特に羽口部を構成する羽口煉瓦は、上述したように非常に過酷な条件で使用されるものであり、本発明者らが検討したところによれば、特許文献1に記載の技術では、そのような耐火物の耐用性を十分に高めることができないことが判った。 However, in the continuous casting process in which the nozzle described in Patent Document 1 is used, molten steel for a plurality of charges blown in a converter is continuously cast, so that the cycle of temperature change of the nozzle used is a converter. The temperature difference from the molten steel flowing in the nozzle is not so large because it is longer than the refractory lining of the nozzle and the outer surface of the nozzle receives radiation from the molten steel stored in the container on the downstream side located below. On the other hand, the refractory lining of the converter (the brick that constitutes the inner wall of the converter), especially the tuyere brick that constitutes the tuyere, is used under extremely harsh conditions as described above. As a result of studies by the present inventors, it has been found that the technique described in Patent Document 1 cannot sufficiently enhance the durability of such a refractory.

したがって本発明の目的は、以上のような従来技術の課題を解決し、転炉の内張り耐火物のように長期間にわたって昇温と降温が繰り返される条件で使用される場合でも、熱応力により発生する亀裂の進展が抑制されて高い耐用性が得られ、また、特に転炉の羽口煉瓦のように内部の温度勾配が非常に大きい条件で使用される場合でも高い耐用性が得られる黒鉛含有耐火物を安定して製造することができる製造方法を提供することにある。 Therefore, an object of the present invention solves the above-mentioned problems of the prior art, and is generated by thermal stress even when the refractory material in the lining of a converter is used under the condition that the temperature is repeatedly raised and lowered for a long period of time. Graphite content that suppresses the growth of cracks and provides high durability, and also provides high durability even when used under conditions with a very large internal temperature gradient, such as the tuyere bricks of converters. An object of the present invention is to provide a manufacturing method capable of stably manufacturing a refractory material.

本発明者らは、上記課題を解決するために検討を重ねた結果、耐火物本体(耐火物原料の成型体)表面に、特定の単位質量を有する炭素繊維織物を接着剤を介して接着するとともに、その接着剤の硬化物と耐火物本体の熱特性を特定の関係とすること、具体的には、常温から1000℃まで昇温させたときの両者の熱膨張率の差および1000℃から常温まで降温させたときの両者の残存膨張率の差を、それぞれ所定の値以下とすることにより、上述したような極めて厳しい使用環境でも高い耐用性を有する黒鉛含有耐火物が得られることを見出した。 As a result of repeated studies to solve the above problems, the present inventors adhere a carbon fiber woven fabric having a specific unit mass to the surface of the refractory body (molded body of the refractory raw material) via an adhesive. At the same time, make the thermal characteristics of the cured product of the adhesive and the refractory body a specific relationship, specifically, from the difference in the coefficient of thermal expansion between the two when the temperature is raised from room temperature to 1000 ° C and from 1000 ° C. It was found that a graphite-containing refractory having high durability can be obtained even in the extremely harsh usage environment as described above by setting the difference in the residual expansion coefficient between the two when the temperature is lowered to room temperature to a predetermined value or less. It was.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]黒鉛含有量が1〜80質量%の耐火物原料を成型して成型体(x)を得る成型工程と、
該成型工程で得られた成型体(x)の表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物(y)を接着剤(a)を介して接着する接着工程と、
該接着工程で炭素繊維織物(y)が接着された成型体(x)を乾燥する乾燥工程を有し、
成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物(a)の熱膨張率と耐火物本体(x)の熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物(a)の残存膨張率と耐火物本体(x)の残存膨張率の差が2.0%以下である黒鉛含有耐火物を得ることを特徴とする黒鉛含有耐火物の製造方法。
The present invention has been made based on such findings, and has the following gist.
[1] A molding process of molding a refractory raw material having a graphite content of 1 to 80% by mass to obtain a molded body (x 0 ).
Adhesion of carbon fiber woven fabric (y) having a mass of 40 to 1300 g per 1 m 2 to at least a part of the surface of the molded body (x 0 ) obtained in the molding step via an adhesive (a 0 ). Process and
The bonding step includes a drying step of drying the molded body (x 0 ) to which the carbon fiber woven fabric (y) is bonded.
A carbon fiber woven fabric (y) is formed on at least a part of the surface of the refractory body (x) composed of the molded body (x 0 ) via an adhesive cured product (a) composed of the adhesive (a 0 ). 2. The difference between the coefficient of thermal expansion of the cured adhesive (a) and the coefficient of thermal expansion of the refractory body (x) when the temperature is raised from room temperature to 1000 ° C. Graphite that is 0% or less and the difference between the residual expansion coefficient of the cured adhesive (a) and the residual expansion coefficient of the refractory body (x) when the temperature is lowered from 1000 ° C to room temperature is 2.0% or less. A method for producing a graphite-containing refractory, which comprises obtaining a refractory containing refractory.

[2]黒鉛含有量が1〜80質量%の耐火物原料を成型して成型体(x)を得る成型工程と、
該成型工程で得られた成型体(x)を乾燥する乾燥工程と、
該乾燥工程を経た成型体(x)の表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物(y)を接着剤(a)を介して接着する接着工程を有し、
成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物(a)の熱膨張率と耐火物本体(x)の熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物(a)の残存膨張率と耐火物本体(x)の残存膨張率の差が2.0%以下である黒鉛含有耐火物を得ることを特徴とする黒鉛含有耐火物の製造方法。
[2] A molding process of molding a refractory raw material having a graphite content of 1 to 80% by mass to obtain a molded body (x 0 ).
A drying step of drying the molded body (x 0 ) obtained in the molding step, and a drying step.
An adhesive step of adhering a carbon fiber woven fabric (y) having a mass of 40 to 1300 g per m 2 to at least a part of the surface of the molded body (x 0 ) that has undergone the drying step via an adhesive (a 0 ). Have and
A carbon fiber woven fabric (y) is formed on at least a part of the surface of the refractory body (x) composed of the molded body (x 0 ) via an adhesive cured product (a) composed of the adhesive (a 0 ). 2. The difference between the coefficient of thermal expansion of the cured adhesive (a) and the coefficient of thermal expansion of the refractory body (x) when the temperature is raised from room temperature to 1000 ° C. Graphite that is 0% or less and the difference between the residual expansion coefficient of the cured adhesive (a) and the residual expansion coefficient of the refractory body (x) when the temperature is lowered from 1000 ° C to room temperature is 2.0% or less. A method for producing a graphite-containing refractory, which comprises obtaining a refractory containing refractory.

[3]上記[1]または[2]の製造方法において、さらに、乾燥工程を経た成型体(x)を還元焼成する工程を有することを特徴とする黒鉛含有耐火物の製造方法。
[4]黒鉛含有量が1〜80質量%の耐火物原料の成型体(x)の表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物(y)を接着剤(a)を介して接着する接着工程を有し、
成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物(a)の熱膨張率と耐火物本体(x)の熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物(a)の残存膨張率と耐火物本体(x)の残存膨張率の差が2.0%以下である黒鉛含有耐火物を得ることを特徴とする黒鉛含有耐火物の製造方法。
[3] A method for producing a graphite-containing refractory, which further comprises a step of reducing and firing a molded product (x 0 ) that has undergone a drying step in the production method of the above [1] or [2].
[4] Adhesive is a carbon fiber woven fabric (y) having a weight of 40 to 1300 g per m 2 on at least a part of the surface of a molded body (x 0 ) of a refractory raw material having a graphite content of 1 to 80% by mass. It has a bonding process of bonding via (a 0 ),
A carbon fiber woven fabric (y) is formed on at least a part of the surface of the refractory body (x) composed of the molded body (x 0 ) via an adhesive cured product (a) composed of the adhesive (a 0 ). 2. The difference between the coefficient of thermal expansion of the cured adhesive (a) and the coefficient of thermal expansion of the refractory body (x) when the temperature is raised from room temperature to 1000 ° C. Graphite that is 0% or less and the difference between the residual expansion coefficient of the cured adhesive (a) and the residual expansion coefficient of the refractory body (x) when the temperature is lowered from 1000 ° C to room temperature is 2.0% or less. A method for producing a graphite-containing refractory, which comprises obtaining a refractory containing refractory.

[5]上記[1]〜[4]のいずれかの製造方法において、炭素繊維織物(y)は炭素繊維束を2方向以上に配向した織物であり、
前記炭素繊維束は、繊維径が1〜45μmの炭素繊維を束に纏めたものであって、1束当たりの炭素繊維の本数が100本超120000本以下であり、
接着工程では、成型体(x)の表面の少なくとも一部に、炭素繊維織物(y)が接着剤(a)を介して1層または2層以上接着されることを特徴とする黒鉛含有耐火物の製造方法。
[6]上記[1]〜[5]のいずれかの製造方法において、接着剤(a)は酸化物系接着剤であることを特徴とする黒鉛含有耐火物の製造方法。
[7]上記[1]〜[6]のいずれかの製造方法において、耐火物原料は、マグネシア濃度が90質量%以上のマグネシア原料を20〜99質量%含有することを特徴とする黒鉛含有耐火物の製造方法。
[5] In any of the above-mentioned production methods [1] to [4], the carbon fiber woven fabric (y) is a woven fabric in which carbon fiber bundles are oriented in two or more directions.
The carbon fiber bundle is a bundle of carbon fibers having a fiber diameter of 1 to 45 μm, and the number of carbon fibers per bundle is more than 100 and 120,000 or less.
In the bonding step, a graphite-containing material is characterized in that one or more layers of the carbon fiber woven fabric (y) are adhered to at least a part of the surface of the molded body (x 0 ) via an adhesive (a 0 ). How to manufacture refractories.
[6] A method for producing a graphite-containing refractory, wherein the adhesive (a 0 ) is an oxide-based adhesive in any of the above-mentioned production methods [1] to [5].
[7] In any of the above-mentioned production methods [1] to [6], the refractory raw material contains 20 to 99% by mass of a magnesia raw material having a magnesia concentration of 90% by mass or more, and is characterized by having a graphite-containing refractory. Manufacturing method of goods.

[8]上記[1]〜[6]のいずれかの製造方法において、耐火物原料は、アルミナ濃度が70質量%以上のアルミナ原料を10〜95質量%含有することを特徴とする黒鉛含有耐火物の製造方法。
[9]上記[8]の製造方法において、耐火物原料は、炭化珪素濃度が80質量%以上の炭化珪素原料を1質量%以上含有することを特徴とする黒鉛含有耐火物の製造方法。
[10]上記[1]〜[6]、[8]、[9]のいずれかの製造方法において、耐火物原料は、シリカ原料を1〜50質量%含有することを特徴とする記載の黒鉛含有耐火物の製造方法。
[11]上記[1]〜[10]のいずれかの製造方法において、耐火物原料は、使用済み耐火物を粉砕した耐火物屑を10〜90質量%含有することを特徴とする黒鉛含有耐火物の製造方法。
[8] In any of the above-mentioned production methods [1] to [6], the refractory raw material contains 10 to 95% by mass of an alumina raw material having an alumina concentration of 70% by mass or more, and is characterized by having a graphite-containing refractory. Manufacturing method of goods.
[9] In the method for producing a graphite-containing refractory according to the above [8], the refractory raw material contains 1% by mass or more of a silicon carbide raw material having a silicon carbide concentration of 80% by mass or more.
[10] The graphite according to any one of the above [1] to [6], [8], and [9], wherein the refractory raw material contains 1 to 50% by mass of a silica raw material. Method for manufacturing refractory containing.
[11] In any of the above-mentioned production methods [1] to [10], the refractory raw material contains 10 to 90% by mass of refractory waste obtained by crushing a used refractory. How to make things.

[12]稼働面となる上面から底面に亘って長手方向を貫通するガス通孔(2)を有する羽口煉瓦であって、長手方向を分割面として分割された複数の煉瓦構成部材(1)が接着層(b)で接合されることにより構成される精錬容器用の羽口煉瓦を製造する方法であって、
上記[1]〜[11]のいずれかの製造方法により、成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された煉瓦構成部材(1)を製作し、該製作された複数の煉瓦構成部材(1)を接着材料(b)で接合することにより羽口煉瓦を得ることを特徴とする精錬容器用の羽口煉瓦の製造方法。
[13]上記[12]の製造方法において、製作される各煉瓦構成部材(1)は、成型体(x)で構成される耐火物本体(x)の一側面にガス通孔(2)の一部を構成する溝(4)が形成され、耐火物本体(x)の少なくとも上部側部位の表面に、耐火物本体(x)の全周を被覆するように、接着剤硬化物(a)を介して炭素繊維織物(y)が接着されていることを特徴とする精錬容器用の羽口煉瓦の製造方法。
[12] A tuyere brick having a gas passage hole (2) penetrating in the longitudinal direction from the upper surface to the bottom surface, which is an operating surface, and a plurality of brick constituent members (1) divided with the longitudinal direction as a dividing surface. Is a method of manufacturing tuyere bricks for refining vessels, which is formed by joining with an adhesive layer (b).
By any of the manufacturing methods [1] to [11] above, at least a part of the surface of the refractory body (x) made of the molded body (x 0 ) is made of an adhesive (a 0 ). A brick component (1) to which a carbon fiber woven fabric (y) is bonded via an adhesive cured product (a) is manufactured, and the plurality of manufactured brick components (1) are joined with an adhesive material (b). A method for manufacturing tuyere bricks for refining containers, which comprises obtaining tuyere bricks by doing so.
[13] Each brick component (1) manufactured in the manufacturing method of the above [12] has a gas passage hole (2) on one side surface of a refractory body (x) composed of a molded body (x 0 ). A groove (4) forming a part of the refractory body is formed, and the surface of at least the upper part of the refractory body (x) is covered with the entire circumference of the refractory body (x). ), A method for producing a tuyere brick for a refractory container, which comprises adhering a carbon fiber woven fabric (y).

本発明によれば、高い破壊エネルギーを有するため、転炉の内張り耐火物のように長期間にわたって昇温と降温が繰り返される条件下で使用しても、熱応力により発生する亀裂の進展が抑制されるため高い耐用性が得られ、特に転炉の羽口煉瓦のように内部の温度勾配が非常に大きい条件で使用される場合でも高い耐用性が得られる黒鉛含有耐火物を安定して製造することができる。 According to the present invention, since it has high fracture energy, the growth of cracks generated by thermal stress is suppressed even when it is used under the condition that the temperature is repeatedly raised and lowered for a long period of time like a refractory lining of a converter. Therefore, high durability can be obtained, and graphite-containing refractories with high durability can be stably manufactured even when used under conditions where the internal temperature gradient is extremely large, such as the tuyere bricks of converters. can do.

本発明法による黒鉛含有耐火物の製造工程の一例を示すフロー図A flow chart showing an example of a manufacturing process of a graphite-containing refractory by the method of the present invention. 本発明法の接着工程において、成型体の4面に炭素繊維織物を接着する場合の手順の一例を示すものであって、前段の手順を示す説明図An explanatory view showing an example of a procedure for adhering a carbon fiber woven fabric to four surfaces of a molded body in the bonding step of the present invention, and showing the procedure in the previous stage. 図2−1に続く手順を示す説明図Explanatory drawing showing the procedure following FIG. 2-1 表面に炭素繊維織物が2層以上接着された成型体を示す説明図Explanatory drawing showing a molded body in which two or more layers of carbon fiber woven fabrics are adhered to the surface. 本発明法により羽口煉瓦を製造する場合一実施形態において、羽口煉瓦を構成する煉瓦構成部材の1つを模式的に示すものであり、図4(A)は斜視図、図4(B)は平面図When manufacturing a tuyere brick by the method of the present invention In one embodiment, one of the brick constituent members constituting the tuyere brick is schematically shown, and FIG. 4 (A) is a perspective view and FIG. 4 (B). ) Is a plan view 図4の実施形態において、2つの煉瓦構成部材を組み付けて構成された羽口煉瓦を示す平面図In the embodiment of FIG. 4, a plan view showing a tuyere brick constructed by assembling two brick components. 接着剤硬化物の熱膨張率および残存膨張率を測定するための測定用サンプルの作成方法を示す説明図Explanatory drawing which shows the preparation method of the sample for measurement for measuring the coefficient of thermal expansion and the coefficient of residual expansion of an adhesive cured product. 実施例における黒鉛含有耐火物の曲げ強度の測定方法を示すもので、図7(A)は3点曲げ強度試験の実施状況を模式的に示す説明図、図7(B)は図7(A)の試験片の端面を模式的に示す説明図A method for measuring the bending strength of a graphite-containing refractory in an example is shown. FIG. 7 (A) is an explanatory diagram schematically showing the implementation status of a three-point bending strength test, and FIG. 7 (B) is FIG. 7 (A). ) Schematic diagram showing the end face of the test piece 実施例において、3点曲げ強度試験で得られた荷重−変位曲線から求められる破壊エネルギーの一例(本発明例の破壊エネルギー)を示す図面A drawing showing an example of fracture energy (fracture energy of the example of the present invention) obtained from a load-displacement curve obtained in a three-point bending strength test in an example. 実施例において、3点曲げ強度試験で得られた荷重−変位曲線から求められる破壊エネルギーの他の例(比較例の破壊エネルギー)を示す図面A drawing showing another example of fracture energy (fracture energy of a comparative example) obtained from a load-displacement curve obtained in a three-point bending strength test in an embodiment. 実施例における黒鉛含有耐火物の耐溶損性の評価試験方法を示すもので、図9(A)は試験の実施状況を試験炉および筒状サンプルを縦断面した状態で模式的に示す説明図、図9(B)は図9(A)に示される筒状サンプルの平面図、図9(C)は図9(A),(B)に示す筒状サンプルを構成する試験片の1つを示す斜視図The evaluation test method of the erosion resistance of the graphite-containing refractory in the examples is shown, and FIG. 9A is an explanatory view schematically showing the implementation status of the test in a state where the test furnace and the tubular sample are vertically crossed. 9 (B) is a plan view of the tubular sample shown in FIG. 9 (A), and FIG. 9 (C) is one of the test pieces constituting the tubular sample shown in FIGS. 9 (A) and 9 (B). Perspective view shown 実施例で得られた本発明例と従来例の羽口煉瓦を転炉に使用した際の損耗速度を示すグラフA graph showing the wear rate when the tuyere bricks of the present invention and the conventional example obtained in the examples are used in a converter.

本発明の第一の製造方法は、黒鉛含有量が1〜80質量%の耐火物原料を成型して成型体xを得る成型工程と、この成型工程で得られた成型体xの表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物yを接着剤aを介して接着する接着工程と、この接着工程で炭素繊維織物yが接着された成型体xを乾燥する乾燥工程を有する。また、本発明の第二の製造方法は、成型体xを乾燥させた後、成型体xの表面に炭素繊維織物を接着するものであり、黒鉛含有量が1〜80質量%の耐火物原料を成型して成型体xを得る成型工程と、この成型工程で得られた成型体xを乾燥する乾燥工程と、この乾燥工程を経た成型体xの表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物yを接着剤aを介して接着する接着工程を有する。さらに、本発明の第三の製造方法は、予め得られている成型体x(乾燥した成型体)に炭素繊維織物を接着するものであり、黒鉛含有量が1〜80質量%の耐火物原料の成型体xの表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物yを接着剤aを介して接着する接着工程を有する。 The first production method of the present invention, the molding process of the graphite content to obtain a molded body x 0 by molding is from 1 to 80% by weight of the refractory material, the surface of the molded body x 0 obtained in this molding step A bonding step of bonding the carbon fiber woven fabric y having a mass of 40 to 1300 g per 1 m 2 to at least a part of the above via an adhesive a 0 , and a molded body x 0 to which the carbon fiber woven fabric y is bonded in this bonding step. Has a drying step of drying. Further, in the second production method of the present invention, after the molded body x 0 is dried, a carbon fiber woven fabric is adhered to the surface of the molded body x 0 , and the fire resistance has a graphite content of 1 to 80% by mass. a molding step of obtaining a molded body x 0 by molding objects feedstock, a drying step of drying the molded body x 0 obtained in this molding step, at least a portion of the surface of the molded body x 0 passing through this drying step It has a bonding step of bonding carbon fiber woven fabric y having a mass of 40 to 1300 g per 1 m 2 via an adhesive a 0 . Further, the third production method of the present invention is to bond a carbon fiber woven fabric to a molded body x 0 (dried molded body) obtained in advance, and is a refractory material having a graphite content of 1 to 80% by mass. It has a bonding step of bonding a carbon fiber woven fabric y having a mass of 40 to 1300 g per 1 m 2 to at least a part of the surface of the raw material molded body x 0 via an adhesive a 0 .

本発明では、以上のような工程を経ることで、成型体xで構成される耐火物本体xの表面の少なくとも一部に、接着剤aで構成される接着剤硬化物aを介して炭素繊維織物yが接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物aの熱膨張率と耐火物本体xの熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物aの残存膨張率と耐火物本体xの残存膨張率の差が2.0%以下である黒鉛含有耐火物を得る。したがって、このような条件を満足する熱膨張特性を有する耐火物本体x(成型体x)と接着剤硬化物a(接着剤a)が適宜選択されるが、一般には、耐火物本体x(成型体x)に対して、上記のような条件を満足する熱膨張特性を有する接着剤硬化物a(接着剤a)が適宜選択される。 In the present invention, by going through the above steps, at least a part of the surface of the refractory body x made of the molded body x 0 is passed through the cured adhesive a made of the adhesive a 0. 2. The difference between the coefficient of thermal expansion of the cured adhesive a and the coefficient of thermal expansion of the refractory body x when the temperature is raised from room temperature to 1000 ° C. in the graphite-containing refractory to which the carbon fiber woven fabric y is adhered. A graphite-containing refractory whose difference between the residual expansion coefficient of the cured adhesive a and the residual expansion coefficient of the refractory body x when the temperature is lowered from 1000 ° C. to room temperature is 2.0% or less. obtain. Therefore, a refractory body x (molded body x 0 ) and an adhesive cured product a (adhesive a 0 ) having thermal expansion characteristics satisfying such conditions are appropriately selected, but in general, the refractory body x With respect to (molded body x 0 ), an adhesive cured product a (adhesive a 0 ) having a thermal expansion characteristic satisfying the above conditions is appropriately selected.

図1は、本発明の第一の製造方法における製造工程の一例を示すものである。
成型工程では、耐火物原料に適量のバインダーを加えて混練し、その混練物を型に充填してプレス成型を行い、成型体x(耐火物原料の成型品)を得る。バインダーとしては、例えば、フェノールレジン(主剤)+ヘキサミン(硬化剤)、カーボンボンド、セラミックボンドなどが用いられる。
続く接着工程では、成型工程で得られた成型体x(耐火物本体xを構成する成型品)の表面に接着剤aにより炭素繊維織物yを接着する。
続く乾燥工程では、炭素繊維織物yが接着された成型体xを乾燥させる。この乾燥は成型体xの乾燥(キュアリング)を目的として、通常、200〜230℃程度で行われるが、接着剤aの乾燥を兼ねて行うことができる。また、乾燥(キュアリング)後、さらに還元焼成(コーキング処理)を施して製品煉瓦(焼成煉瓦)としてもよい。
FIG. 1 shows an example of a manufacturing process in the first manufacturing method of the present invention.
In the molding step, an appropriate amount of binder is added to the refractory raw material and kneaded, and the kneaded product is filled in a mold and press-molded to obtain a molded body x 0 (a molded product of the refractory raw material). As the binder, for example, phenol resin (main agent) + hexamine (hardener), carbon bond, ceramic bond and the like are used.
In the subsequent bonding step, the carbon fiber woven fabric y is bonded to the surface of the molded body x 0 (molded product constituting the refractory body x) obtained in the molding step with the adhesive a 0 .
In the subsequent drying step, the molded body x 0 to which the carbon fiber woven fabric y is adhered is dried. This drying is usually performed at about 200 to 230 ° C. for the purpose of drying (curing) the molded body x 0 , but it can also be performed for drying the adhesive a 0 . Further, after drying (curing), reduction firing (caulking treatment) may be further performed to obtain product bricks (fired bricks).

また、本発明の第二の製造方法のように、成型体xの乾燥工程を実施した後に、炭素繊維織物yの接着工程を実施してもよく、その後、必要に応じて接着剤の乾燥を行ってもよい。また、この場合も、乾燥(キュアリング)後、さらに還元焼成(コーキング処理)を施して製品煉瓦(焼成煉瓦)としてもよく、その還元焼成(コーキング処理)は炭素繊維織物の接着前・接着後のいずれで行ってもよい。
また、場合によっては、本発明の第三の製造方法のように、予め得られている成型体x(乾燥した成型体)に対して炭素繊維織物yの接着工程を実施し、その後、必要に応じて接着剤の乾燥を行うようにしてもよい。
以上により、成型体xで構成される耐火物本体xの表面の少なくとも一部に、接着剤aで構成される接着剤硬化物aを介して炭素繊維織物yが接着された黒鉛含有耐火物が得られる。
Further, as in the second production method of the present invention, the carbon fiber woven fabric y may be bonded after the drying step of the molded body x 0 is carried out, and then the adhesive is dried if necessary. May be done. Further, in this case as well, after drying (curing), further reduction firing (caulking treatment) may be performed to obtain product bricks (caulking treatment), and the reduction firing (caulking treatment) is performed before and after bonding the carbon fiber woven fabric. It may be done by any of.
Further, in some cases, as in the third manufacturing method of the present invention, a step of adhering the carbon fiber woven fabric y to the preliminarily obtained molded body x 0 (dried molded body) is performed, and then it is necessary. Depending on the situation, the adhesive may be dried.
As described above, a graphite-containing refractory in which the carbon fiber woven fabric y is adhered to at least a part of the surface of the refractory body x composed of the molded body x 0 via the adhesive cured product a composed of the adhesive a 0. You can get things.

成型体xに対する炭素繊維織物yの接着工程は、例えば、以下のようにして実施される。図2は、直方体形状の成型体xの4面(側面(1)〜(4))に炭素繊維織物yを接着する場合の手順の一例を示している。この例では、図2−1(A)に示すように、成型体xを平坦な場所に置き、両面接着テープなどの粘着材料3を用いて炭素繊維織物yの一端を成型体xの表面に貼り付けた後、図2−1(B)に示すように炭素繊維織物yの面に接着剤aを塗布する。なお、接着剤aは成型体xの方に塗布してもよい。次いで、図2−2に示すように、炭素繊維織物yが皺にならないように、炭素繊維織物yを引っ張った状態で成型体xを90°回転させながら、成型体xの側面(1)に接着剤aを介して炭素繊維織物yを接着させる。図2−2に示すように、以上のような炭素繊維織物y(または成型体x)の面への接着剤aの塗布と成型体xの90°回転を繰り返すことにより、成型体xの側面(2)〜(4)に炭素繊維織物yを順次接着させる。これにより、成型体xの4面(側面(1)〜(4))に炭素繊維織物yを接着した耐火物が得られる。
また、図3に示すように炭素繊維織物yを2層以上施工する場合には、図2−2の一連の作業を2回以上繰り返せばよい。
The step of adhering the carbon fiber woven fabric y to the molded body x 0 is carried out, for example, as follows. FIG. 2 shows an example of a procedure for adhering the carbon fiber woven fabric y to the four surfaces (side surfaces (1) to (4)) of the rectangular parallelepiped molded body x 0 . In this example, as shown in FIG. 2-1 (A), a molded x 0 placed on a flat place, one end of the carbon fiber woven fabric y with adhesive material 3 such as double-sided adhesive tape of the molded body x 0 was adhered to the surface, applying an adhesive a 0 on the surface of the carbon fiber woven fabric y as shown in FIG. 2-1 (B). The adhesive a 0 may be applied to the molded body x 0 . Then, as shown in Figure 2-2, such that the carbon fiber fabric y does not become wrinkled, while the molded body x 0 is rotated 90 ° in a state of pulling the carbon fiber woven fabric y, the side surface of the molded body x 0 (1 ) Is bonded to the carbon fiber woven fabric y via the adhesive a 0 . As shown in FIG. 2-2, by repeating the application of the adhesive a 0 to the surface of the carbon fiber woven fabric y (or the molded body x 0 ) and the 90 ° rotation of the molded body x 0 as described above, the molded body and sequentially adhering the carbon fiber woven fabric y to the side of x 0 (2) ~ (4 ). As a result, a refractory material obtained by adhering the carbon fiber woven fabric y to the four surfaces (side surfaces (1) to (4)) of the molded body x 0 can be obtained.
Further, when the carbon fiber woven fabric y is constructed in two or more layers as shown in FIG. 3, the series of operations in FIG. 2-2 may be repeated twice or more.

成型体xの表面に接着剤aを介して接着する炭素繊維織物yは、1m当たりの質量が40〜1300gであり、好ましくは、繊維径が1〜45μmの炭素繊維を束に纏めた炭素繊維束を2方向以上に配向した炭素繊維織物であって、炭素繊維束は1束あたり100本超120000本以下の炭素繊維からなるものである。このような炭素繊維織物yが接着剤a(接着剤硬化物a)を介して成型体x(耐火物本体x)の表面に接着されることにより、接着剤硬化物aを介して耐火物本体xと炭素繊維織物yが一体化するため、耐火物本体xに対して炭素繊維織物yが滑ることがなく、このため耐火物全体の破壊エネルギーが大幅に上昇し、亀裂進展抑制効果も向上する。 The carbon fiber woven fabric y to be bonded to the surface of the molded body x 0 via the adhesive a 0 has a mass of 40 to 1300 g per 1 m 2 , and preferably carbon fibers having a fiber diameter of 1 to 45 μm are bundled together. It is a carbon fiber woven fabric in which the carbon fiber bundles are oriented in two or more directions, and the carbon fiber bundle is composed of more than 100 carbon fibers and 120,000 or less carbon fibers per bundle. By adhering such a carbon fiber woven fabric y to the surface of the molded body x 0 (refractory body x) via the adhesive a 0 (adhesive cured product a), it is fire resistant via the adhesive cured product a. Since the object body x and the carbon fiber woven fabric y are integrated, the carbon fiber woven fabric y does not slip with respect to the refractory body x, which greatly increases the breaking energy of the entire refractory material and also has the effect of suppressing crack growth. improves.

炭素繊維織物yの1m当たりの質量が40g未満では、炭素繊維織物が薄過ぎるため亀裂進展抑制効果は向上せず、破壊エネルギーが上昇しない。一方、炭素繊維織物yの1m当たりの質量が1300gを超えると炭素繊維織物が厚過ぎるため施工性が悪く、炭素繊維織物を耐火物本体表面に接着させる際、炭素繊維織物と耐火物本体の間に隙間ができるため亀裂進展抑制効果は向上せず、この場合も破壊エネルギーが上昇しない。また、炭素繊維織物y(炭素繊維束)を構成する炭素繊維の繊維径が1μm未満の場合や、炭素繊維束の1束あたりの炭素繊維の本数が100本以下の場合、炭素繊維織物yの1m当たりの質量が40g未満となりやすい。一方、炭素繊維織物y(炭素繊維束)を構成する炭素繊維の繊維径が45μm超の場合や、炭素繊維束の1束あたりの炭素繊維の本数が120000本超の場合、炭素繊維織物yの1m当たりの質量が1300g超となりやすい。 If the mass of the carbon fiber woven fabric y per 1 m 2 is less than 40 g, the carbon fiber woven fabric is too thin, so that the crack growth suppressing effect is not improved and the breaking energy is not increased. On the other hand, the mass of 1 m 2 per carbon fiber fabric y is poor workability because of too thick carbon fiber fabric exceeds 1300 g, when adhering the carbon fiber woven fabric in the refractory body surface of the carbon fiber woven fabric and refractory body Since there is a gap between them, the crack growth suppressing effect is not improved, and the breaking energy does not increase in this case as well. Further, when the fiber diameter of the carbon fibers constituting the carbon fiber fabric y (carbon fiber bundle) is less than 1 μm, or when the number of carbon fibers per bundle of the carbon fiber bundle is 100 or less, the carbon fiber fabric y The mass per 1 m 2 tends to be less than 40 g. On the other hand, when the fiber diameter of the carbon fibers constituting the carbon fiber woven fabric y (carbon fiber bundle) exceeds 45 μm, or when the number of carbon fibers per bundle of the carbon fiber bundles exceeds 120,000, the carbon fiber woven fabric y The mass per 1 m 2 tends to exceed 1300 g.

炭素繊維織物yは、炭素繊維束を2方向以上に配向したものであり、その配向数は任意である。炭素繊維束の配向方向が1方向の場合には炭素繊維織物を形成できないため、炭素繊維織物を接着させた黒鉛含有耐火物が得られない。
成型体xの表面に接着剤aを介して接着される炭素繊維織物yの層数は任意であり、1層または2層以上とすることができるが、炭素繊維織物yを2層以上とすると、亀裂進展抑制効果がより向上するので好ましい。
炭素繊維織物yは、成型体x(耐火物本体x)の全体を覆うように成型体xの表面に接着してもよいが、特に亀裂が進展しやすい部位の表面にのみ接着してもよい。この場合、炭素繊維織物yをその部位の外周に接着し、亀裂が進展しないように拘束する。
The carbon fiber woven fabric y is one in which carbon fiber bundles are oriented in two or more directions, and the number of orientations is arbitrary. When the orientation direction of the carbon fiber bundle is one direction, the carbon fiber woven fabric cannot be formed, so that a graphite-containing refractory to which the carbon fiber woven fabric is adhered cannot be obtained.
The number of layers of the carbon fiber woven fabric y bonded to the surface of the molded body x 0 via the adhesive a 0 is arbitrary and may be one layer or two or more layers, but the carbon fiber woven fabric y has two or more layers. This is preferable because the effect of suppressing crack growth is further improved.
The carbon fiber woven fabric y may be adhered to the surface of the molded body x 0 so as to cover the entire molded body x 0 (refractory body x), but is particularly adhered only to the surface of the portion where cracks are likely to develop. May be good. In this case, the carbon fiber woven fabric y is adhered to the outer periphery of the portion and restrained so that cracks do not grow.

本発明により製造される黒鉛含有耐火物は、上述したような炭素繊維織物yの構成に加えて、接着剤硬化物aと耐火物本体xの熱特性を特定の関係とすることが重要である。すなわち、(i)常温から1000℃まで昇温させたときの接着剤硬化物aの熱膨張率と耐火物本体xの熱膨張率の差が2.0%以下であり、且つ、(ii)1000℃から常温まで降温させたときの接着剤硬化物aの残存膨張率と耐火物本体xの残存膨張率の差が2.0%以下であることが必要である。
接着剤硬化物aと耐火物本体xの熱膨張率の差や残存膨張率の差が2.0%を超えると、黒鉛含有耐火物を大きな熱勾配や熱変動が生じる条件下で長期間使用すると、耐火物本体xと炭素繊維織物yの接着性が低下して炭素繊維織物yが耐火物本体xから剥がれやすくなり、使用中に破壊エネルギーが低下し、耐割れ性の低下により亀裂進展抑制効果が得られなくなる。特に転炉の内張り耐火物(転炉の内壁を構成する煉瓦)、とりわけ転炉の羽口部を構成する羽口煉瓦は、上述したように極めて過酷な条件で使用されるため、長期間の耐用性が得られなくなる。
In the graphite-containing refractory produced by the present invention, it is important that the thermal properties of the cured adhesive a and the refractory body x have a specific relationship in addition to the constitution of the carbon fiber woven fabric y as described above. .. That is, (i) the difference between the coefficient of thermal expansion of the cured adhesive product a and the coefficient of thermal expansion of the refractory body x when the temperature is raised from room temperature to 1000 ° C. is 2.0% or less, and (ii). It is necessary that the difference between the residual expansion coefficient of the cured adhesive product a and the residual expansion coefficient of the refractory body x when the temperature is lowered from 1000 ° C. to room temperature is 2.0% or less.
If the difference in the coefficient of thermal expansion or the difference in the coefficient of residual expansion between the cured adhesive a and the refractory body x exceeds 2.0%, the graphite-containing refractory is used for a long period of time under conditions where large thermal gradients and thermal fluctuations occur. Then, the adhesiveness between the refractory body x and the carbon fiber woven fabric y decreases, and the carbon fiber woven fabric y easily peels off from the refractory body x, the breaking energy decreases during use, and the crack growth is suppressed by the decrease in crack resistance. The effect will not be obtained. In particular, the refractory lining of the converter (the bricks that make up the inner wall of the converter), especially the tuyere bricks that make up the tuyere of the converter, are used under extremely harsh conditions as described above, so they are used for a long period of time. Durability cannot be obtained.

本発明で使用する接着剤aの種類に特別な制限はないが、接着剤硬化物aと耐火物本体xの熱膨張率の差や残存膨張率の差を2.0%以下に維持するという観点からは、高温域において分解反応が生じにくい酸化物系接着剤が好ましい。すなわち、酸化物系接着剤の硬化物は、1000℃以上の高温域でも分解反応が進行せず、接着剤が大幅に熱膨張しないため、黒鉛含有耐火物を転炉などのような昇温と降温が繰り返される条件下で使用しても耐火物本体xと接着剤硬化物aの熱膨張率の差及び残存膨張率の差が2.0%以下に抑えられ、耐火物本体xと炭素繊維織物yの接着性を維持できる(炭素繊維織物yが剥がれにくい)ので、酸化物系接着剤が特に好ましい。 Although there is no particular restriction on the type of adhesive a 0 for use in the present invention, to maintain the difference of the difference and the residual expansion rate of thermal expansion of the cured adhesive a refractory material body x to 2.0% From this point of view, an oxide-based adhesive that does not easily cause a decomposition reaction in a high temperature range is preferable. That is, the cured product of the oxide-based adhesive does not undergo a decomposition reaction even in a high temperature range of 1000 ° C. or higher, and the adhesive does not undergo significant thermal expansion. Therefore, the temperature of the graphite-containing refractory is increased as in a converter. The difference in the coefficient of thermal expansion and the difference in the residual expansion coefficient between the refractory body x and the adhesive cured product a can be suppressed to 2.0% or less even when used under conditions where the temperature is repeatedly lowered, and the refractory body x and the carbon fiber An oxide-based adhesive is particularly preferable because the adhesiveness of the woven fabric y can be maintained (the carbon fiber woven fabric y does not easily come off).

また、接着剤aは1000℃以上での耐熱性を有することが望ましく、このため粉体であるアルミナ、シリカ、マグネシア、ジルコニアなどの1種以上を主成分とするものが特に好ましい。そのような接着剤(酸化物系接着剤)として、例えば、東亜合成株式会社製「アロンセラミックD」(商品名)、スリーボンド株式会社製「無機系耐熱接着剤TB3732」(商品名)、品川リフラクトリーズ株式会社製「SIM#512」(商品名)などを挙げることができる。
耐火物本体x(成型体x)の熱膨張率および残存膨張率が決まっているときは、耐火物本体xと接着剤硬化物aの熱膨張率の差および残存膨張率の差が2.0%以下になるような接着剤aが選択される。
The adhesive a 0 desirably have a heat resistance at 1000 ° C. or higher, and thus alumina is a powder, silica, magnesia, is composed mainly of one or more such zirconia particularly preferred. As such an adhesive (oxide adhesive), for example, "Aron Ceramic D" (trade name) manufactured by Toa Synthetic Co., Ltd., "Inorganic heat resistant adhesive TB3732" (trade name) manufactured by ThreeBond Co., Ltd., Shinagawa Riff Examples thereof include "SIM # 512" (trade name) manufactured by Lactories Co., Ltd.
When the coefficient of thermal expansion and the coefficient of residual expansion of the refractory body x (molded body x 0 ) are determined, the difference in the coefficient of thermal expansion and the difference in the coefficient of residual expansion between the refractory body x and the adhesive cured product a are 2. Adhesive a 0 such that it is 0% or less is selected.

次に、耐火物原料(耐火物本体xを構成する原料)の組成について説明する。
耐火物原料の黒鉛含有量は1〜80質量%であり、黒鉛含有量が1質量%未満では、熱応力による割れの発生を抑制できず、耐割れ性が大幅に低下してしまう。一方、黒鉛含有量が80質量%を超えると、耐火物本体xの材質によって、耐溶損性、耐割れ性、破壊エネルギーといった特性に悪影響がでる場合がある。
一般に、精錬工程において使用される転炉の内張り(羽口部を含む)には、マグネシアおよびカーボンを主成分とする耐火物であるマグネシア・カーボン質耐火物(マグネシア原料を骨材とした黒鉛含有耐火物)が使用される。耐火物本体xがマグネシア・カーボン質耐火物の場合、耐火物原料は、マグネシア濃度が90質量%以上の高純度のマグネシア原料を20〜99質量%含有することが好ましく、これにより熱スポーリングによる割れが抑制され、且つ転炉スラグの浸食にも耐えられる耐火物とすることができる。マグネシア原料の含有量が20質量%未満では、転炉スラグの浸食に耐えられず、耐溶損性が大幅に低下する。カーボン原料としては、一般に鱗状黒鉛などが用いられる。
Next, the composition of the refractory raw material (the raw material constituting the refractory body x) will be described.
The graphite content of the refractory raw material is 1 to 80% by mass, and if the graphite content is less than 1% by mass, the occurrence of cracks due to thermal stress cannot be suppressed, and the crack resistance is significantly lowered. On the other hand, if the graphite content exceeds 80% by mass, the properties such as erosion resistance, crack resistance, and fracture energy may be adversely affected depending on the material of the refractory body x.
Generally, the lining of the converter used in the refining process (including the tuyere) contains magnesia-carbon refractory (graphite made from magnesia raw material as an aggregate), which is a refractory mainly composed of magnesia and carbon. Refractory) is used. When the refractory body x is a magnesia-carbon refractory, the refractory raw material preferably contains 20 to 99% by mass of a high-purity magnesia raw material having a magnesia concentration of 90% by mass or more, and thus by thermal erosion. It can be a refractory that can withstand erosion of converter slag while suppressing cracking. If the content of the magnesia raw material is less than 20% by mass, the converter slag cannot withstand erosion and the erosion resistance is significantly reduced. As the carbon raw material, scaly graphite or the like is generally used.

また、一般に、溶銑予備処理工程において使用されるトピードや高炉鍋の内張りにはアルミナ、炭化珪素およびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)や、アルミナ、炭化珪素、シリカおよびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・シリカ・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)などが使用される。耐火物本体xがアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、耐火物原料は、アルミナ濃度が70質量%以上の高純度のアルミナ原料を10〜95質量%含有することが好ましく、これにより溶銑予備処理スラグの浸食に耐えられ、且つ熱スポーリングによる割れも抑制できる。アルミナ原料の含有量が10質量%未満では、溶銑予備処理スラグの浸食に耐えられず、耐火物本体x(煉瓦)のマトリックス部分にスラグが浸透し、耐溶損性が低下する。一方、アルミナ原料の含有量が95質量%を超えると、熱スポーリングによる亀裂の発生を抑制できず、耐割れ性が低下する。 In general, the topede and blast furnace lining used in the hot metal pretreatment process are made of alumina, silicon carbide, and carbon refractories, which are refractories mainly composed of alumina, silicon carbide, and carbon (alumina raw material, silicon carbide). Graphite-containing refractories made from raw materials as aggregates) and alumina / silicon carbide / silica / carbon refractories (alumina raw materials, silicon carbide raw materials, silica) which are refractories mainly composed of alumina, silicon carbide, silica and carbon. A graphite-containing refractory whose raw material is aggregate) is used. When the refractory body x is an alumina / silicon carbide / carbonaceous refractory or an alumina / silicon carbide / silica / carbon refractory, the refractory raw material is 10 to 10 high-purity alumina raw materials having an alumina concentration of 70% by mass or more. It is preferably contained in an amount of 95% by mass, which can withstand the erosion of the hot metal pretreatment slag and suppress the cracking due to thermal spalling. If the content of the alumina raw material is less than 10% by mass, the erosion of the hot metal pretreatment slag cannot be tolerated, the slag permeates into the matrix portion of the refractory body x (brick), and the erosion resistance is lowered. On the other hand, if the content of the alumina raw material exceeds 95% by mass, the occurrence of cracks due to thermal spalling cannot be suppressed, and the crack resistance is lowered.

さらに、耐火物本体xがアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、耐火物原料は、炭化珪素濃度が80質量%以上の高純度の炭化珪素原料を1質量%以上含有することが好ましい。炭化珪素原料を1質量%以上含有することにより、大気雰囲気下における黒鉛の酸化を抑制できるので、高耐割れ性を維持できる。炭化珪素原料の含有量が1質量%未満では、大気雰囲気下における黒鉛の酸化を抑制できないため、耐割れ性が低下する。
また、耐火物本体xがアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、耐火物原料は、シリカ原料を1〜50質量%含有することが好ましく、これにより高耐割れ性と高耐溶損性を両立できる。シリカ原料の含有量が1質量%未満では、膨張量が少なく微細亀裂が生成しないため、熱衝撃破壊抵抗も大きくならず耐割れ性が低下しやすい。一方、シリカ原料の含有量が50質量%を超えると耐溶損性が大幅に劣化する。
Further, when the refractory body x is an alumina / silicon carbide / carbonaceous refractory or an alumina / silicon carbide / silica / carbon refractory, the refractory raw material is high-purity silicon carbide having a silicon carbide concentration of 80% by mass or more. It is preferable that the raw material is contained in an amount of 1% by mass or more. By containing 1% by mass or more of the silicon carbide raw material, the oxidation of graphite in the air atmosphere can be suppressed, so that high crack resistance can be maintained. If the content of the silicon carbide raw material is less than 1% by mass, the oxidation of graphite in the air atmosphere cannot be suppressed, so that the crack resistance is lowered.
When the refractory body x is alumina, silicon carbide, silica, or carbonaceous refractory, the refractory raw material preferably contains 1 to 50% by mass of the silica raw material, whereby high crack resistance and high erosion resistance. Both sex can be achieved. When the content of the silica raw material is less than 1% by mass, the amount of expansion is small and fine cracks are not generated, so that the thermal shock fracture resistance does not increase and the crack resistance tends to decrease. On the other hand, if the content of the silica raw material exceeds 50% by mass, the erosion resistance is significantly deteriorated.

また、耐火物本体xがシリカ、炭化珪素およびカーボンを主成分とする耐火物であるシリカ・炭化珪素・カーボン質耐火物の場合、耐火物原料は、炭化珪素濃度が80質量%以上の高純度の炭化珪素原料を1質量%以上、シリカ原料を1〜50質量%含有することが好ましく、これにより高耐割れ性と高耐溶損性を両立できる。炭化珪素原料を1質量%以上含有することにより、大気雰囲気下における黒鉛の酸化を抑制できるので、高耐割れ性を維持できる。炭化珪素原料の含有量が1質量%未満では、大気雰囲気下における黒鉛の酸化を抑制できないため、耐割れ性が低下する。また、シリカ原料の含有量が1質量%未満では、膨張量が少なく微細亀裂が生成しないため、熱衝撃破壊抵抗も大きくならず耐割れ性が低下しやすい。一方、シリカ原料の含有量が50質量%を超えると耐溶損性が大幅に劣化する。 Further, when the refractory body x is a refractory containing silica, silicon carbide and carbon as main components of silica, silicon carbide and carbonaceous refractory, the refractory raw material has a high purity of silicon carbide concentration of 80% by mass or more. It is preferable to contain 1% by mass or more of the silicon carbide raw material and 1 to 50% by mass of the silica raw material, whereby both high crack resistance and high erosion resistance can be achieved. By containing 1% by mass or more of the silicon carbide raw material, the oxidation of graphite in the air atmosphere can be suppressed, so that high crack resistance can be maintained. If the content of the silicon carbide raw material is less than 1% by mass, the oxidation of graphite in the air atmosphere cannot be suppressed, so that the crack resistance is lowered. Further, when the content of the silica raw material is less than 1% by mass, the expansion amount is small and fine cracks are not generated, so that the thermal shock fracture resistance does not increase and the crack resistance tends to decrease. On the other hand, if the content of the silica raw material exceeds 50% by mass, the erosion resistance is significantly deteriorated.

ここで、アルミナ原料としては、例えば、バン土頁岩、ホワイトアルミナ、ブラウンアルミナなどの1種以上が用いられる。また、炭化珪素原料としては、例えば、緑色炭化ケイ素、黒色炭化ケイ素などの1種以上が用いられる。また、シリカ原料としては、例えば、ろう石、ムライトなどの1種以上が用いられる。
耐火物原料は、製鉄容器からの放熱量を抑制しながら、耐用性を高くすることを目的として、さらに金属粉末原料を含有(配合)することができる。金属粉末原料としては、例えば、金属Si、金属Al、金属Al−Si、AlSiC、BCなどが挙げられ、これらの1種以上を含有させることができる。金属粉末原料の含有量は特に規定しないが、通常、1〜5質量%程度が好ましい。金属粉末原料の含有量(配合量)が1質量%未満では、金属粉末原料を配合することによる耐用性の向上効果が十分に得られず、一方、5質量%を超えると、強度が高くなりすぎるため、実機で使用した際に亀裂が発生し易くなって煉瓦が割れ易くなり、実機での使用回数が低下するおそれがある。
Here, as the alumina raw material, for example, one or more kinds of van shale, white alumina, brown alumina and the like are used. Further, as the silicon carbide raw material, for example, one or more kinds such as green silicon carbide and black silicon carbide are used. Further, as the silica raw material, for example, one or more kinds such as pyrophyllite and mullite are used.
The refractory raw material can further contain (blend) a metal powder raw material for the purpose of increasing the durability while suppressing the amount of heat radiated from the steelmaking container. Examples of the metal powder raw material include metal Si, metal Al, metal Al—Si, Al 4 SiC 4 , B 4 C, and the like, and one or more of these can be contained. The content of the metal powder raw material is not particularly specified, but is usually preferably about 1 to 5% by mass. If the content (blending amount) of the metal powder raw material is less than 1% by mass, the effect of improving the durability by blending the metal powder raw material cannot be sufficiently obtained, while if it exceeds 5% by mass, the strength becomes high. If it is too much, cracks are likely to occur when used in an actual machine, and the bricks are likely to be cracked, which may reduce the number of times of use in the actual machine.

耐火物原料は、骨材原料として使用済み耐火物を粉砕した耐火物屑を10〜90質量%程度含有することができる。特に、耐火物本体xがアルミナ・炭化珪素・カーボン質耐火物(さらにシリカ原料を含有するアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合を含む。以下同様)の場合には、使用済みのアルミナ・炭化珪素・カーボン質耐火物(さらにシリカ原料を含有するアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合を含む。以下同様)を粉砕して得られた耐火物屑を骨材原料として好適に用いることができる。
このように耐火物屑を含有する場合、耐火物原料の残部は未使用の原料(バージン原料)である。
The refractory raw material can contain about 10 to 90% by mass of refractory scraps obtained by crushing a used refractory as an aggregate raw material. In particular, when the refractory body x is an alumina / silicon carbide / carbon refractory (including the case of an alumina / silicon carbide / silica / carbon refractory containing a silica raw material; the same applies hereinafter), it has been used. Alumina / silicon carbide / carbon refractory (including the case of alumina / silicon carbide / silica / carbon refractory containing silica raw material; the same applies hereinafter) is used as an aggregate raw material. It can be preferably used.
When the refractory waste is contained in this way, the rest of the refractory raw material is an unused raw material (virgin raw material).

アルミナ・炭化珪素・カーボン質耐火物からなる耐火物本体xの耐火物原料において、使用済みのアルミナ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑の含有量を10〜90質量%とした場合、バージン原料のみを使用した黒鉛含有耐火物と同程度の耐割れ性および耐溶損性が得られる。その理由は、耐火物屑原料はバージン原料と比較して純度が低いが、耐火物屑原料とバージン原料を併用することにより、耐火物屑原料中のAl成分が有する耐溶損性の大幅な低下を抑制できることが挙げられる。一方、耐火物屑の含有量を90質量%超とした場合、バージン原料の含有量が少な過ぎるため、耐火物屑原料中のAl成分が有する耐食性の大幅な低下を抑制できない。また、耐火物屑の含有量を10質量%未満とした場合、耐火物屑の再利用率が低過ぎるため、産業廃棄物としての耐火物屑処理費用が大幅に上がる。 The content of refractory waste obtained by crushing used alumina / silicon carbide / carbon refractory in the refractory raw material of the refractory body x made of alumina / silicon carbide / carbon refractory is 10 to 90. When it is set to% by mass, crack resistance and erosion resistance equivalent to those of a graphite-containing refractory using only a virgin raw material can be obtained. The reason is that the refractory waste raw material has a lower purity than the virgin raw material, but by using the refractory waste raw material and the virgin raw material together, the erosion resistance of the Al 2 O 3 component in the refractory waste raw material can be improved. It can be mentioned that a significant decrease can be suppressed. On the other hand, when the content of the refractory waste is more than 90% by mass, the content of the virgin raw material is too small, so that it is not possible to suppress a significant decrease in the corrosion resistance of the Al 2 O 3 component in the refractory waste raw material. Further, when the content of the refractory waste is less than 10% by mass, the reuse rate of the refractory waste is too low, so that the cost of treating the refractory waste as industrial waste increases significantly.

本発明により製造される黒鉛含有耐火物は、昇温と降温が繰り返される条件下でも熱応力により発生する亀裂の進展を抑制できるので、特に転炉の内張り耐火物に好適である。さらに、本発明の黒鉛含有耐火物は、内部の温度勾配が非常に大きい条件で使用される場合も高い耐用性が得られるので、転炉の内張り耐火物のなかでも、特に羽口煉瓦に好適である。
図4および図5は、本発明法により羽口煉瓦を製造する場合一実施形態を示すものである。図4は、羽口煉瓦を構成する煉瓦構成部材の1つを模式的に示すものであり、図4(A)は斜視図、図4(B)は平面図である。図5は、2つの煉瓦構成部材を組み付けて構成された羽口煉瓦を示す平面図である。
The graphite-containing refractory produced by the present invention is particularly suitable for a converter lining refractory because it can suppress the growth of cracks generated by thermal stress even under conditions where temperature rise and fall are repeated. Furthermore, the graphite-containing refractory of the present invention can obtain high durability even when used under conditions where the internal temperature gradient is very large, and is therefore particularly suitable for tuyere bricks among refractory linings of converters. Is.
4 and 5 show an embodiment when producing tuyere bricks by the method of the present invention. 4A and 4B schematically show one of the brick constituent members constituting the tuyere brick, FIG. 4A is a perspective view, and FIG. 4B is a plan view. FIG. 5 is a plan view showing a tuyere brick constructed by assembling two brick components.

羽口煉瓦は、稼働面となる上面5から底面6に亘って長手方向(上下方向)を貫通するガス通孔2を有しており、羽口部に設置される時には、このガス通孔2に金属管が嵌め込まれ、この金属管内がガス通孔となる。
羽口煉瓦は、ガス通孔長手方向を分割面として分割された複数の煉瓦構成部材1で構成される。本実施形態では、羽口煉瓦が1対の煉瓦構成部材1で構成されており、各煉瓦構成部材1の一側面にはガス通孔用の溝4が形成されている。
この羽口煉瓦の製造方法では、まず、図4に示すように、各煉瓦構成部材1を構成すべき成型体xの表面の少なくとも一部に、接着剤aにより炭素繊維織物yを接着し、成型体xで構成される耐火物本体xの表面の少なくとも一部に、接着剤aで構成される接着剤硬化物aを介して炭素繊維織物yが接着された煉瓦構成部材1を製作する。
The tuyere brick has a gas through hole 2 penetrating in the longitudinal direction (vertical direction) from the upper surface 5 to the bottom surface 6 which is an operating surface, and when installed in the tuyere portion, the gas through hole 2 A metal pipe is fitted into the metal pipe, and the inside of the metal pipe serves as a gas passage hole.
The tuyere brick is composed of a plurality of brick constituent members 1 divided with the longitudinal direction of the gas passage as a dividing surface. In the present embodiment, the tuyere brick is composed of a pair of brick constituent members 1, and a groove 4 for gas passage is formed on one side surface of each brick constituent member 1.
In this method of manufacturing tuyere bricks, first, as shown in FIG. 4, a carbon fiber woven fabric y is adhered to at least a part of the surface of a molded body x 0 to form each brick component 1 with an adhesive a 0. A brick component 1 in which a carbon fiber woven fabric y is adhered to at least a part of the surface of a refractory body x composed of a molded body x 0 via an adhesive cured product a composed of an adhesive a 0. To make.

本実施形態における各煉瓦構成部材1の製作では、成型体xの上部側の所定範囲(稼働面となる上面5に接する上部側の所定範囲)の表面に接着剤aを介して炭素繊維織物yが接着される。この炭素繊維織物yは、ガス通孔用の溝4を含む成型体xの全周(上記所定範囲の全周)を覆うように接着される。炭素繊維織物yは成型体xの全長を被覆するように設けてもよいが、羽口煉瓦は上部側の所定範囲(この範囲は羽口煉瓦の外面温度が800〜1000℃程度にもなり、特に熱応力が発生しやすい)で特に割れが生じやすいので、少なくとも本実施形態のような上部側の所定範囲に設ける必要がある。
このようにして製作された1対の煉瓦構成部材1は、図5に示すように両者の溝4によりガス通孔2が構成されるように組み付けられ、その合せ面をモルタルなどの接着材料b(接着層)で接合することにより羽口煉瓦が得られる。
In the production of each brick component 1 in the present embodiment, carbon fibers are placed on the surface of a predetermined range on the upper side of the molded body x 0 (a predetermined range on the upper side in contact with the upper surface 5 which is an operating surface) via an adhesive a 0. The woven fabric y is glued. The carbon fiber woven fabric y is adhered so as to cover the entire circumference (the entire circumference of the above-mentioned predetermined range) of the molded body x 0 including the groove 4 for gas passage. The carbon fiber woven fabric y may be provided so as to cover the entire length of the molded body x 0 , but the tuyere brick has a predetermined range on the upper side (in this range, the outer surface temperature of the tuyere brick is about 800 to 1000 ° C. , Especially, thermal stress is likely to occur), and cracks are particularly likely to occur. Therefore, it is necessary to provide at least a predetermined range on the upper side as in the present embodiment.
As shown in FIG. 5, the pair of brick constituent members 1 produced in this manner are assembled so that the gas passage holes 2 are formed by the grooves 4 of both, and the mating surfaces thereof are bonded materials such as mortar b. A tuyere brick can be obtained by joining with (adhesive layer).

本発明で製造された黒鉛含有耐火物は、種々の設備や容器の耐火物として使用できるが、なかでも製鉄所内で使用される精錬容器や搬送容器の内張り耐火物として好適である。特に、非常に過酷な使用環境である転炉の内張り耐火物として好適であり、そのなかでも羽口部を構成する羽口煉瓦として特に好適である。 The graphite-containing refractory produced in the present invention can be used as a refractory for various facilities and containers, and is particularly suitable as a refractory for lining refractories and transport containers used in steelworks. In particular, it is suitable as a refractory material for the lining of a converter, which is in a very harsh usage environment, and is particularly suitable as a tuyere brick constituting a tuyere portion.

耐火物本体の表面に炭素繊維織物が接着剤硬化物を介して接着された黒鉛含有耐火物を図1に示す工程で製造した。成型体の表面への炭素繊維織物の接着は、図2に示すような手順で行った。耐火物原料を混練・成型するにあたり、バインダーとして、耐火物原料に対する外掛けでフェノールレジンを3質量%、ヘキサミンを0.3質量%配合した。
耐火物本体と接着剤硬化物の熱膨張率および残存膨張率は、以下のようにして作成された測定用サンプルについて、JIS R2207に記載された方法に準拠して測定した。
耐火物本体については、ボーリングマシーンにより直径40mm、高さ40mmの円柱型サンプルを切り出し、これを測定用サンプルとした。
A graphite-containing refractory in which a carbon fiber woven fabric was adhered to the surface of the refractory body via an adhesive cured product was produced by the process shown in FIG. Adhesion of the carbon fiber woven fabric to the surface of the molded body was carried out by the procedure as shown in FIG. In kneading and molding the refractory raw material, 3% by mass of phenol resin and 0.3% by mass of hexamine were blended as a binder by externally covering the refractory raw material.
The coefficient of thermal expansion and the coefficient of residual expansion of the refractory body and the cured adhesive were measured according to the method described in JIS R2207 for the measurement sample prepared as follows.
For the refractory body, a cylindrical sample having a diameter of 40 mm and a height of 40 mm was cut out by a boring machine and used as a measurement sample.

接着剤硬化物については、以下の方法で測定用サンプルを作成した。
酸化物系接着剤の原液および希釈用アルコールを準備し、酸化物系接着剤の原液に対して原液量の3mass%の希釈用アルコールを添加することにより、酸化物系接着剤に流動性を持たせた。次に、80×80×3mm厚のポリ塩化ビニル製の水平板と、内径40mm、高さ40mm、厚さ3mmのポリ塩化ビニル製のパイプを準備し、図6に示すように水平板の上にパイプを立てて固定し、このパイプ中に酸化物系接着剤を流し込んで充填した。この酸化物系接着剤を大気中で硬化させた後、接着剤の外枠となるパイプのみを外し、測定用サンプルを作成した。
For the cured adhesive, a measurement sample was prepared by the following method.
The oxide-based adhesive has fluidity by preparing a stock solution of the oxide-based adhesive and a diluting alcohol, and adding 3 mass% of the diluted alcohol to the stock solution of the oxide-based adhesive. Diluted. Next, prepare a horizontal plate made of polyvinyl chloride having a thickness of 80 × 80 × 3 mm and a pipe made of polyvinyl chloride having an inner diameter of 40 mm, a height of 40 mm and a thickness of 3 mm, and on the horizontal plate as shown in FIG. A pipe was erected and fixed to the pipe, and an oxide-based adhesive was poured into the pipe to fill it. After curing this oxide-based adhesive in the atmosphere, only the pipe that became the outer frame of the adhesive was removed to prepare a sample for measurement.

耐火物本体と接着剤硬化物の測定用サンプルを炉内に設置した後、昇温速度を5℃/分として1000℃まで昇温させて1時間保持した後、常温まで炉冷した。昇温前の測定用サンプルの高さをL、1000℃に保持中の測定用サンプルの高さをL、炉冷後の測定用サンプルの高さをLとし、下記の式に基づいて耐火物本体と接着剤硬化物の熱膨張率および残存膨張率を算出した。
熱膨張率(%)=(L−L)/L×100
残存膨張率(%)=(L−L)/L×100
After the refractory body and the sample for measuring the cured adhesive were placed in the furnace, the temperature was raised to 1000 ° C. at a heating rate of 5 ° C./min and held for 1 hour, and then cooled to room temperature. The height of the measurement sample before the temperature rise is L 0 , the height of the measurement sample held at 1000 ° C is L 1 , and the height of the measurement sample after refractory cooling is L 2 , based on the following formula. The coefficient of thermal expansion and the coefficient of residual expansion of the refractory body and the cured adhesive were calculated.
Coefficient of thermal expansion (%) = (L 1 − L 0 ) / L 0 × 100
Residual expansion coefficient (%) = (L 2- L 0 ) / L 0 × 100

製造された黒鉛含有耐火物について、曲げ強度、破壊エネルギー、耐溶損性、耐割れ性を、それぞれ以下の方法で評価した。また、表1に示す炭素繊維織物を接着する前の耐火物成形品の耐溶損性、耐割れ性についても、同様の方法で評価した。
曲げ強度については、図7(試験方法)に示すとおり、耐火物本体の長手方向の全側面に酸化物系接着剤を介して炭素繊維織物を接着させた試験片(試験片サイズ:40mm×40mm×160mm)を用い、中心間距離を100mm、荷重印加速度を0.5mm/minとし、JIS R2213に記載された3点曲げ試験方法に準拠して測定した。なお、図7(B)は図7(A)の試験片の端面を模式的に示したものである。
The bending strength, fracture energy, erosion resistance, and crack resistance of the produced graphite-containing refractory were evaluated by the following methods. Further, the erosion resistance and crack resistance of the refractory molded product before adhering the carbon fiber woven fabric shown in Table 1 were also evaluated by the same method.
As for the bending strength, as shown in FIG. 7 (test method), a test piece (test piece size: 40 mm × 40 mm) in which a carbon fiber woven fabric is adhered to all side surfaces of the refractory body in the longitudinal direction via an oxide adhesive. × 160 mm), the center-to-center distance was 100 mm, the load application speed was 0.5 mm / min, and the measurement was performed in accordance with the three-point bending test method described in JIS R2213. Note that FIG. 7B schematically shows the end faces of the test pieces of FIG. 7A.

破壊エネルギーについては、図8−1および図8−2に示すとおり、3点曲げ強度試験で得られた荷重−変位曲線において第1ピーク値を示した位置を基準とし、基準位置から変位1mmの範囲の面積で評価した。なお、図8−1は、本発明例の荷重−変位曲線から求められる破壊エネルギーの一例を、図8−2は表面に炭素繊維織物が接着されていない比較例の荷重−変位曲線から求められる破壊エネルギーの一例をそれぞれ示すものである。
耐溶損性については、図9(試験方法)に示すとおり、高周波誘導炉を用いた内張り分け法で溶損量を測定し、その溶損量に基づき評価した。内張り分け法による試験では、試験温度を1650℃、温度保持時間を4時間として表2に示す組成の合成スラグを1時間毎に投入し、冷却後に稼働面の溶損量を測定した。そして、その溶損量から表1中の発明配合例1−3の溶損量を100とした溶損指数を求めた。試験片としては、図9(C)に示すように、耐火物本体の長手方向の全側面に酸化物系接着剤を介して炭素繊維織物を接着させたものを用いた。なお、図9(A)は試験の実施状況を試験炉および筒状サンプルを縦断面した状態で模式的に示す説明図、図9(B)は図9(A)に示される筒状サンプルの平面図、図9(C)は図9(A),(B)に示す筒状サンプルを構成する試験片の1つを示す斜視図である。
Regarding the fracture energy, as shown in FIGS. 8-1 and 8-2, the displacement of 1 mm from the reference position is based on the position showing the first peak value in the load-displacement curve obtained by the three-point bending strength test. Evaluated by the area of the range. Note that FIG. 8-1 shows an example of the breaking energy obtained from the load-displacement curve of the example of the present invention, and FIG. 8-2 shows the load-displacement curve of the comparative example in which the carbon fiber woven fabric is not adhered to the surface. Each example of the breaking energy is shown.
As shown in FIG. 9 (test method), the erosion resistance was measured by the lining method using a high-frequency induction furnace and evaluated based on the erosion resistance. In the test by the lining method, the test temperature was 1650 ° C., the temperature holding time was 4 hours, and the synthetic slag having the composition shown in Table 2 was added every hour, and the amount of erosion of the working surface was measured after cooling. Then, from the amount of erosion, the erosion index was obtained with the amount of erosion of Invention Formulation Examples 1-3 in Table 1 as 100. As the test piece, as shown in FIG. 9C, a carbon fiber woven fabric having a carbon fiber woven fabric adhered to all side surfaces of the refractory body in the longitudinal direction via an oxide adhesive was used. Note that FIG. 9 (A) is an explanatory view schematically showing the test implementation status in a state in which the test furnace and the tubular sample are cross-sectionally crossed, and FIG. 9 (B) is the tubular sample shown in FIG. 9 (A). A plan view and FIG. 9C is a perspective view showing one of the test pieces constituting the tubular sample shown in FIGS. 9A and 9B.

耐割れ性については、40×40×200mmの試料の長手方向の動弾性率EをJIS R1605に示された超音波パルス法に従って測定した後、1500℃×10分間の加熱、5分間の水冷、10分間の大気冷却を1サイクルとした工程を3回繰り返し、3回終了後に再び上記方法で動弾性率Eを測定し、試験前後での動弾性率の変化率E/Eを指標として評価した。試験片としては、耐火物本体の長手方向の全側面に酸化物系接着剤を介して炭素繊維織物を接着させたものを用いた。 Regarding crack resistance, after measuring the dynamic elastic modulus E 0 in the longitudinal direction of a 40 × 40 × 200 mm sample according to the ultrasonic pulse method shown in JIS R1605, heating at 1500 ° C. for 10 minutes and cooling with water for 5 minutes. The process of cooling the atmosphere for 10 minutes as one cycle was repeated 3 times, and after the 3 times, the dynamic elastic modulus E 3 was measured again by the above method, and the change rate E 3 / E 0 of the dynamic elastic modulus before and after the test was measured. It was evaluated as an index. As the test piece, a material in which a carbon fiber woven fabric was adhered to all side surfaces of the refractory body in the longitudinal direction via an oxide adhesive was used.

表1に示すような原料配合でマグネシア原料を骨材とした耐火物成形品、すなわち、炭素繊維織物を接着する前の耐火物本体を製作し、それらの耐溶損性と耐割れ性を評価した。その結果を表1に併せて示す。
表1の発明配合例1−1〜発明配合例1−7に示す通り、黒鉛含有量を1〜80質量%とした場合には耐溶損性と耐割れ性は良好であるが、比較配合例1−1に示す通り、黒鉛含有量を1質量%未満とした場合には耐割れ性が大幅に低下している。また、比較配合例1−2に示す通り、黒鉛含有量を80質量%超とした場合には耐溶損性が大幅に低下している。
また、発明配合例1−1〜発明配合例1−7に示す通り、マグネシア・カーボン質原料の配合において、マグネシア原料(表1の場合にはマグネシア濃度100質量%)の含有量が20〜99質量%であれば、耐溶損性と耐割れ性は良好である。以上のことから、耐火物の耐溶損性と耐割れ性を両立させるためには、黒鉛含有量は1〜80質量%とする必要があり、また、マグネシア・カーボン質原料の場合には、マグネシア原料の含有量を20〜99質量%とすることが適当であることが分かる。
A refractory molded product using a magnesia raw material as an aggregate, that is, a refractory main body before adhering a carbon fiber woven fabric, was manufactured by blending the raw materials as shown in Table 1, and their erosion resistance and crack resistance were evaluated. .. The results are also shown in Table 1.
As shown in Invention Formulation Examples 1-1 to Invention Formulation Examples 1-7 in Table 1, when the graphite content is 1 to 80% by mass, the erosion resistance and crack resistance are good, but the comparative formulation examples As shown in 1-1, when the graphite content is less than 1% by mass, the crack resistance is significantly lowered. Further, as shown in Comparative Formulation Example 1-2, when the graphite content is more than 80% by mass, the erosion resistance is significantly lowered.
Further, as shown in Invention Formulation Examples 1-1 to Invention Formulation Example 1-7, the content of the magnesia raw material (magnesia concentration 100% by mass in the case of Table 1) is 20 to 99 in the formulation of the magnesia-carbon raw material. If it is by mass%, the erosion resistance and crack resistance are good. From the above, in order to achieve both erosion resistance and crack resistance of refractories, the graphite content must be 1 to 80% by mass, and in the case of magnesia carbonaceous raw materials, magnesia It can be seen that it is appropriate to set the content of the raw material to 20 to 99% by mass.

表3〜表9に、発明例及び比較例の黒鉛含有耐火物(耐火物本体の表面に炭素繊維織物が接着された黒鉛含有耐火物)の構成と特性(曲げ強度、破壊エネルギー、耐溶損性、耐割れ性)を示す。
表3の実施例は、耐火物本体に接着した炭素繊維織物の1m当たりの質量が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調査したものである。また、炭素繊維織物を構成する炭素繊維束の1束当たりの炭素繊維の本数と炭素繊維織物の1m当たりの質量との関係も調べた。この実施例では、100〜150,000本の炭素繊維(繊維径7μm)を束に纏めた炭素繊維束を2方向に配向した1m当たりの質量が異なる炭素繊維織物を、マグネシア・カーボン質耐火物(耐火物本体)の表面に酸化物系接着剤による接着剤硬化物を介して接着した。
Tables 3 to 9 show the configurations and characteristics (bending strength, fracture energy, erosion resistance) of graphite-containing refractories (graphite-containing refractories in which a carbon fiber woven fabric is adhered to the surface of the refractory body) of the invention examples and comparative examples. , Crack resistance).
The examples in Table 3 investigated the effects of the mass per 1 m 2 of the carbon fiber woven fabric adhered to the refractory body on the bending strength, fracture energy / crack resistance, and erosion resistance of the graphite-containing refractory. is there. The relationship between the number of carbon fibers per bundle of carbon fiber bundles constituting the carbon fiber woven fabric and the mass per 1 m 2 of the carbon fiber woven fabric was also investigated. In this embodiment, carbon fiber woven fabrics in which 100 to 150,000 carbon fibers (fiber diameter 7 μm) are bundled and carbon fiber bundles are oriented in two directions and have different masses per 1 m 2 are used as magnesia carbon fiber fireproof. It was adhered to the surface of the object (fireproof object body) via an adhesive cured product with an oxide-based adhesive.

発明例2−1〜発明例2−8(及び後述する発明例3−2)が示す通り、炭素繊維織物の1m当たりの質量が40〜1300gの場合には、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。また、炭素繊維織物を構成する炭素繊維束の1束当たりの炭素繊維の本数が100本超120,000本以下の場合に、炭素繊維織物の1m当たりの質量が40〜1300gとなり、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。
一方、比較例2−1が示す通り、炭素繊維織物を構成する炭素繊維束の1束当たりの炭素繊維の本数が100本以下の場合、炭素繊維織物の1m当たりの質量が40g未満となり、炭素繊維織物が薄過ぎるため、高い曲げ強度および破壊エネルギー・耐割れ性は得られない。
As shown in Invention Examples 2-1 to 2-8 (and Invention Example 3-2 described later), when the mass of the carbon fiber woven fabric per 1 m 2 is 40 to 1300 g, high bending strength and breaking energy. Crack resistance is obtained. Further, when the number of carbon fibers per bundle of the carbon fiber bundles constituting the carbon fiber woven fabric is more than 100 and 120,000 or less, the mass of the carbon fiber woven fabric per 1 m 2 is 40 to 1300 g, which is a high bending ratio. Strength, breaking energy and crack resistance are obtained.
On the other hand, as shown in Comparative Example 2-1 when the number of carbon fibers per bundle of carbon fiber bundles constituting the carbon fiber woven fabric is 100 or less, the mass of the carbon fiber woven fabric per 1 m 2 is less than 40 g. Since the carbon fiber woven fabric is too thin, high bending strength, breaking energy and crack resistance cannot be obtained.

また、比較例2−2が示す通り、炭素繊維織物を構成する炭素繊維束の1束当たりの炭素繊維の本数が120,000本超の場合、炭素繊維織物の1m当たりの質量が1300g超となり、炭素繊維織物が厚過ぎるため施工性が悪く、炭素繊維織物と耐火物本体の間に隙間ができ、高い曲げ強度および破壊エネルギー・耐割れ性は得られない。さらに、比較例2−3が示す通り、炭素繊維束を1方向に配向させただけでは炭素繊維織物を形成することができないため、炭素繊維織物を接着させた黒鉛含有耐火物の製造は不可能であった。
以上のことから、耐火物本体に接着する炭素繊維織物の1m当たりの質量を40〜1300gとすることにより、高い曲げ強度および破壊エネルギー・耐割れ性が得られることが分かる。また、炭素繊維織物の1m当たりの質量を40〜1300gとするためには、炭素繊維織物を構成する炭素繊維束の1束当たりの炭素繊維の本数を100本超120,000本以下とすることが好ましいことが分かる。
Further, as shown in Comparative Example 2-2, when the number of carbon fibers per bundle of the carbon fiber bundles constituting the carbon fiber woven fabric exceeds 120,000, the mass of the carbon fiber woven fabric per 1 m 2 exceeds 1300 g. Therefore, since the carbon fiber woven fabric is too thick, the workability is poor, and a gap is formed between the carbon fiber woven fabric and the main body of the fireproof material, so that high bending strength, breaking energy, and crack resistance cannot be obtained. Further, as shown in Comparative Example 2-3, since the carbon fiber woven fabric cannot be formed only by orienting the carbon fiber bundles in one direction, it is impossible to produce a graphite-containing refractory to which the carbon fiber woven fabric is adhered. Met.
From the above, it can be seen that high bending strength, fracture energy, and crack resistance can be obtained by setting the mass per 1 m 2 of the carbon fiber woven fabric to be adhered to the refractory body to 40 to 1300 g. Further, in order to make the mass per 1 m 2 of the carbon fiber woven fabric 40 to 1300 g, the number of carbon fibers per bundle of the carbon fiber bundles constituting the carbon fiber woven fabric should be more than 100 and 120,000 or less. It turns out that is preferable.

表4の実施例は、耐火物本体に接着した炭素繊維織物(炭素繊維束)を構成する炭素繊維の繊維径と炭素繊維織物の1m当たりの質量との関係を調べるとともに、耐火物本体に接着した炭素繊維織物の1m当たりの質量および層数が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調査したものである。この実施例では、炭素繊維織物(炭素繊維束)を構成する炭素繊維の繊維径を0.5μm、1μm、7μm、15μm、23μm、45μm、50μmとし、60,000本の炭素繊維を束に纏めた炭素繊維束を2方向に配向した1m当たりの質量が異なる炭素繊維織物を、マグネシア・カーボン質耐火物(耐火物本体)の表面に酸化物系接着剤による接着剤硬化物を介して接着した。また、耐火物本体に接着した炭素繊維織物の層数は1〜3層とした。 In the examples of Table 4, the relationship between the fiber diameter of the carbon fibers constituting the carbon fiber woven fabric (carbon fiber bundle) adhered to the fireproof material body and the mass per 1 m 2 of the carbon fiber fabric was investigated, and the fireproof material body was used. The effects of the mass and the number of layers per 1 m 2 of the bonded carbon fiber woven fabric on the bending strength, breaking energy / crack resistance, and erosion resistance of the graphite-containing refractory material were investigated. In this embodiment, the fiber diameters of the carbon fibers constituting the carbon fiber woven fabric (carbon fiber bundle) are set to 0.5 μm, 1 μm, 7 μm, 15 μm, 23 μm, 45 μm, and 50 μm, and 60,000 carbon fibers are bundled together. bonding two directions oriented 1 m 2 per mass different carbon fiber fabric of carbon fiber bundles, magnesia-carbon refractories through the adhesive cured by oxide-based adhesive to the surface of the (refractory body) did. The number of layers of the carbon fiber woven fabric adhered to the refractory body was set to 1 to 3.

発明例3−1〜発明例3−7が示す通り、炭素繊維織物(炭素繊維束)を構成する炭素繊維の繊維径が1〜45μmの場合、炭素繊維織物の1m当たりの質量が40〜1300gとなり、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。また、発明例3−1〜発明例3−7が示す通り、炭素繊維織物の層数が1層でも十分な曲げ強度および破壊エネルギー・耐割れ性が得られているが、炭素繊維織物の1m当たりの質量が同じであれば、炭素繊維織物の層数が多いほど高い曲げ強度および破壊エネルギー・耐割れ性が得られている。 As shown in Invention Examples 3-1 to 3-7, when the fiber diameter of the carbon fibers constituting the carbon fiber woven fabric (carbon fiber bundle) is 1 to 45 μm, the mass of the carbon fiber woven fabric per 1 m 2 is 40 to. It weighs 1300 g and has high bending strength, breaking energy and crack resistance. Further, as shown in Invention Examples 3-1 to 3-7, even if the number of layers of the carbon fiber woven fabric is one, sufficient bending strength, breaking energy and crack resistance are obtained, but 1 m of the carbon fiber woven fabric is obtained. If the mass per two is the same, the higher the number of layers of the carbon fiber woven fabric, the higher the bending strength, the breaking energy, and the crack resistance.

一方、比較例3−1が示す通り、炭素繊維織物(炭素繊維束)を構成する炭素繊維の繊維径が1μm未満の場合、炭素繊維織物の1m当たりの質量が40g未満となり、炭素繊維織物が薄過ぎるため、高い曲げ強度および破壊エネルギー・耐割れ性は得られない。また、比較例3−2が示す通り、炭素繊維織物(炭素繊維束)を構成する炭素繊維の繊維径が45μm超の場合、炭素繊維織物1m当たりの質量が1300g超となり、炭素繊維が厚過ぎるため施工性が悪く、炭素繊維織物と耐火物の間に隙間ができ、高い曲げ強度および破壊エネルギー・耐割れ性は得られない。
以上のことから、耐火物本体に接着する炭素繊維織物の1m当たりの質量を40〜1300gとすることで高い曲げ強度および破壊エネルギー・耐割れ性が得られるようにするには、炭素繊維織物(炭素繊維束)を構成する炭素繊維の繊維径を1〜45μmとすることが好ましいことが分かる。また、炭素繊維織物の層数を2層以上とすれば、より高い曲げ強度および破壊エネルギー・耐割れ性が得られることが分かる。
On the other hand, as shown in Comparative Example 3-1 when the fiber diameter of the carbon fibers constituting the carbon fiber woven fabric (carbon fiber bundle) is less than 1 μm, the mass of the carbon fiber woven fabric per 1 m 2 is less than 40 g, and the carbon fiber woven fabric Is too thin, so high bending strength, breaking energy and crack resistance cannot be obtained. Further, as shown in Comparative Example 3-2, when the fiber diameter of the carbon fibers constituting the carbon fiber woven fabric (carbon fiber bundle) is more than 45 μm, the mass per 1 m 2 of the carbon fiber woven fabric is more than 1300 g, and the carbon fiber is thick. Since it is too much, the workability is poor, and a gap is formed between the carbon fiber fabric and the fireproof material, and high bending strength, breaking energy, and crack resistance cannot be obtained.
From the above, in order to obtain high bending strength, breaking energy, and crack resistance by setting the mass per 1 m 2 of the carbon fiber woven fabric to be adhered to the fireproof body to 40 to 1300 g, the carbon fiber woven fabric It can be seen that it is preferable that the fiber diameter of the carbon fibers constituting the (carbon fiber bundle) is 1 to 45 μm. Further, it can be seen that when the number of layers of the carbon fiber woven fabric is two or more, higher bending strength, breaking energy and crack resistance can be obtained.

表5の実施例は、耐火物本体と接着剤硬化物の熱膨張率(常温から1000℃まで昇温させたときの熱膨張率)の差及び残存膨張率(1000℃から常温まで降温させたときの残存膨張率)の差が、黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。この実施例では、60,000本の炭素繊維(繊維径7μm)を束に纏めた炭素繊維束を2方向に配向した炭素繊維織物(1m当たりの質量500g)を、熱膨張率および残存膨張率の異なる酸化物系接着剤による接着剤硬化物を介してマグネシア・カーボン質耐火物(耐火物本体)の表面に接着した。
なお、表5において、マイナスの値の残存膨張率は接着剤硬化物が収縮したことを示しており、耐火物本体と接着剤硬化物の残存膨張率の差は発明例4−1が1.0%、発明例4−2が2.0%、比較例4−1が3.0%、比較例4−2が4.0%、比較例4−3が1.5%である。
発明例3−2、発明例4−1、発明例4−2が示す通り、耐火物本体と接着剤硬化物の熱膨張率の差および残存膨張率の差が2.0%以下の場合、耐火物本体と炭素繊維織物の接着性が維持できるため、炭素繊維織物が耐火物本体から剥がれることがなく、このため高い曲げ強度および破壊エネルギー・耐割れ性が得られている。
In the examples of Table 5, the difference between the coefficient of thermal expansion of the refractory body and the cured adhesive (the coefficient of thermal expansion when the temperature is raised from room temperature to 1000 ° C.) and the residual expansion rate (the temperature is lowered from 1000 ° C. to room temperature). The effect of the difference in the coefficient of residual expansion) on the bending strength, breaking energy / crack resistance, and erosion resistance of the graphite-containing refractory was investigated. In this embodiment, a carbon fiber woven fabric (mass 500 g per 1 m 2 ) in which 60,000 carbon fibers (fiber diameter 7 μm) are bundled and carbon fiber bundles are oriented in two directions is subjected to thermal expansion rate and residual expansion. It was adhered to the surface of magnesia-carbon fire-resistant material (fire-resistant material body) via an adhesive cured product with oxide-based adhesives having different coefficients.
In Table 5, a negative value of the residual expansion coefficient indicates that the cured adhesive product has shrunk, and the difference between the residual expansion coefficient of the refractory body and the cured adhesive product is 1. 0%, Inventive Example 4-2 is 2.0%, Comparative Example 4-1 is 3.0%, Comparative Example 4-2 is 4.0%, and Comparative Example 4-3 is 1.5%.
As shown in Invention Example 3-2, Invention Example 4-1 and Invention Example 4-2, when the difference in the coefficient of thermal expansion and the difference in the residual expansion rate between the refractory body and the cured adhesive is 2.0% or less. Since the adhesiveness between the refractory body and the carbon fiber woven fabric can be maintained, the carbon fiber woven fabric does not peel off from the refractory body, and therefore high bending strength, breaking energy, and crack resistance are obtained.

これに対して、比較例4−1〜比較例4−3が示す通り、耐火物本体と接着剤硬化物の熱膨張率の差または/および残存膨張率の差が2.0%を超えると、耐火物本体と炭素繊維織物の接着性が維持できず、炭素繊維織物が耐火物本体から剥がれるため、高い曲げ強度および破壊エネルギー・耐割れ性が得られない。
以上のことから、耐火物本体と炭素繊維織物の接着性を維持し、高い曲げ強度および破壊エネルギー・耐割れ性を得るには、耐火物本体と接着剤硬化物の熱膨張率(常温から1000℃まで昇温させたときの熱膨張率)の差および残存膨張率(1000℃から常温まで降温させたときの残存膨張率)の差を2.0%以下にする必要があること、また、炭素繊維織物を耐火物本体に接着する接着剤は、酸化物系接着剤が好ましいことが分かる。
On the other hand, as shown in Comparative Examples 4-1 to 4-3, when the difference in the coefficient of thermal expansion and / and the difference in the residual expansion rate between the refractory body and the cured adhesive product exceeds 2.0%. Since the adhesiveness between the refractory body and the carbon fiber woven fabric cannot be maintained and the carbon fiber woven fabric is peeled off from the refractory body, high bending strength, breaking energy and crack resistance cannot be obtained.
From the above, in order to maintain the adhesiveness between the refractory body and the carbon fiber fabric and obtain high bending strength, breaking energy and crack resistance, the coefficient of thermal expansion between the refractory body and the cured adhesive (from room temperature to 1000). The difference between the difference in the coefficient of thermal expansion when the temperature is raised to ° C. and the difference in the residual expansion rate (the coefficient of residual expansion when the temperature is lowered from 1000 ° C to room temperature) must be 2.0% or less. It can be seen that an oxide-based adhesive is preferable as the adhesive for adhering the carbon fiber woven fabric to the refractory body.

表6の実施例は、溶銑予備処理容器の内張りに使用するアルミナ・シリカ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。この実施例では、60,000本の炭素繊維(繊維径7μm)を束に纏めた炭素繊維束を2方向に配向した炭素繊維織物(1m当たりの質量500g)をアルミナ・シリカ・炭化珪素・カーボン質耐火物(耐火物本体)の表面に酸化物系接着剤による接着剤硬化物を介して接着した。
発明例5−1〜発明例5−7が示す通り、アルミナ原料の含有量を10〜95質量%、シリカ原料の含有量を1〜50質量%、黒鉛含有量を1〜80質量%とした場合、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。
The examples in Table 6 show the alumina / silica / silicon carbide / carbonic refractory (alumina raw material, silicon carbide raw material, graphite-containing refractory using silica raw material as aggregate) used for the lining of the hot metal pretreatment container. The effects of the composition on the bending strength, fracture energy / crack resistance, and erosion resistance of graphite-containing refractories were investigated. In this embodiment, a carbon fiber woven fabric (mass 500 g per 1 m 2 ) in which 60,000 carbon fibers (fiber diameter 7 μm) are bundled and the carbon fiber bundles are oriented in two directions is formed of alumina, silica, silicon carbide, and the like. It was adhered to the surface of the carbon-based fire-resistant material (the main body of the fire-resistant material) via an adhesive cured product using an oxide-based adhesive.
As shown in Invention Examples 5-1 to 5-7, the content of the alumina raw material was 10 to 95% by mass, the content of the silica raw material was 1 to 50% by mass, and the graphite content was 1 to 80% by mass. In this case, high bending strength, fracture energy and crack resistance are obtained.

これに対して、比較例5−1が示す通り、アルミナ原料の含有量が10質量%未満、シリカ原料の含有量が1質量%未満、黒鉛含有量が80質量%超の場合には、破壊エネルギー、耐溶損性がともに大幅に低下している。また、比較例5−2が示す通り、アルミナ原料の含有量が95質量%超、シリカ原料の含有量が1質量%未満、黒鉛含有量が1質量%未満の場合、破壊エネルギー・耐割れ性が大幅に低下している。
以上のことから、アルミナ・シリカ・炭化珪素・カーボン質耐火物において、アルミナ原料の含有量を10〜95質量%、シリカ原料の含有量を1〜50質量%、黒鉛含有量を1〜80質量%とすれば、高耐溶損性と高い破壊エネルギー・耐割れ性を両立できることが分かる。
On the other hand, as shown in Comparative Example 5-1, when the content of the alumina raw material is less than 10% by mass, the content of the silica raw material is less than 1% by mass, and the graphite content is more than 80% by mass, the fracture occurs. Both energy and erosion resistance are significantly reduced. Further, as shown in Comparative Example 5-2, when the content of the alumina raw material is more than 95% by mass, the content of the silica raw material is less than 1% by mass, and the graphite content is less than 1% by mass, the fracture energy and crack resistance Has dropped significantly.
From the above, in alumina / silica / silicon carbide / carbon refractories, the content of the alumina raw material is 10 to 95% by mass, the content of the silica raw material is 1 to 50% by mass, and the graphite content is 1 to 80% by mass. If it is set to%, it can be seen that both high erosion resistance and high fracture energy / crack resistance can be achieved.

表7の実施例は、溶銑予備処理容器の内張りに使用するアルミナ・シリカ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)であって、使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑を骨材原料とした黒鉛含有耐火物について、その耐火物屑含有量が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。この実施例では、60,000本の炭素繊維(繊維径7μm)を束に纏めた炭素繊維束を2方向に配向した炭素繊維織物(1m当たりの質量500g)をアルミナ・シリカ・炭化珪素・カーボン質耐火物(耐火物本体)の表面に酸化物系接着剤による接着剤硬化物を介して接着した。 Examples in Table 7 are alumina / silica / silicon carbide / carbon refractories (alumina raw material, silicon carbide raw material, graphite-containing refractory using silica raw material as aggregate) used for the lining of the hot metal pretreatment container. For graphite-containing refractories using refractory scraps obtained by crushing used alumina, silica, silicon carbide, and carbon refractories as aggregate raw materials, the refractory scrap content is the bending of graphite-containing refractories. The effects on strength, fracture energy / crack resistance, and erosion resistance were investigated. In this embodiment, a carbon fiber woven fabric (mass 500 g per 1 m 2 ) in which 60,000 carbon fibers (fiber diameter 7 μm) are bundled and the carbon fiber bundles are oriented in two directions is formed of alumina, silica, silicon carbide, and the like. It was adhered to the surface of the carbon-based fire-resistant material (the main body of the fire-resistant material) via an adhesive cured product using an oxide-based adhesive.

発明例6−1〜発明例6−3が示す通り、耐火物屑の含有量を10〜90質量%、シリカ原料の含有量を1質量%以上、黒鉛含有量を1〜80質量%とした場合、表6に示したバージン原料のみを使用した黒鉛含有耐火物と同程度の破壊エネルギー・耐割れ性および耐溶損性が得られている。
これに対して、比較例6−1が示す通り、耐火物屑含有量が90質量%超、シリカ原料の含有量が1質量%未満、黒鉛含有量が1質量%未満の場合、破壊エネルギー・耐割れ性および耐溶損性が大幅に低下している。
以上のことから、使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑を骨材原料とした黒鉛含有耐火物については、耐火物屑の含有量を10〜90質量%、シリカ原料の含有量を1質量%以上、黒鉛含有量を1〜80質量%とすれば、破壊エネルギー・耐割れ性を高く維持でき、さらに、バージン原料のみを使用した黒鉛含有耐火物と同等の耐溶損性を有することが分かる。
As shown in Invention Examples 6-1 to 6-3, the content of refractory waste was 10 to 90% by mass, the content of silica raw material was 1% by mass or more, and the graphite content was 1 to 80% by mass. In this case, the same level of fracture energy, crack resistance and erosion resistance as those of graphite-containing refractories using only the virgin raw materials shown in Table 6 are obtained.
On the other hand, as shown in Comparative Example 6-1, when the refractory waste content is more than 90% by mass, the silica raw material content is less than 1% by mass, and the graphite content is less than 1% by mass, the fracture energy. Crack resistance and erosion resistance are significantly reduced.
Based on the above, the graphite-containing refractory made from the refractory scraps obtained by crushing used alumina, silica, silicon carbide, and carbon refractory materials has a refractory waste content of 10. If the content of the silica raw material is 1% by mass or more and the graphite content is 1 to 80% by mass, the fracture energy and crack resistance can be maintained high, and the graphite content using only the virgin raw material can be maintained. It can be seen that it has the same erosion resistance as refractories.

表8の実施例は、アルミナ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。この実施例では、60,000本の炭素繊維(繊維径7μm)を束に纏めた炭素繊維束を2方向に配向した炭素繊維織物(1m当たりの質量500g)をアルミナ・炭化珪素・カーボン質耐火物(耐火物本体)の表面に酸化物系接着剤による接着剤硬化物を介して接着した。
発明例7−1〜発明例7−3が示す通り、アルミナ原料の含有量を10〜95質量%、黒鉛含有量を1〜80質量%とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
In the examples shown in Table 8, the composition of an alumina / silicon carbide / carbon refractory (alumina raw material, a graphite-containing refractory using a silicon carbide raw material as an aggregate) is the bending strength, breaking energy / resistance of the graphite-containing refractory. The effect on crackability and erosion resistance was investigated. In this embodiment, a carbon fiber woven fabric (mass 500 g per 1 m 2 ) in which 60,000 carbon fibers (fiber diameter 7 μm) are bundled and the carbon fiber bundles are oriented in two directions is made of alumina, silicon carbide, and carbon. It was adhered to the surface of the fire-resistant material (the main body of the fire-resistant material) via an adhesive cured product using an oxide-based adhesive.
As shown in Invention Examples 7-1 to 7-3, when the content of the alumina raw material is 10 to 95% by mass and the graphite content is 1 to 80% by mass, high bending strength, fracture energy and crack resistance And erosion resistance is obtained.

これに対して、比較例7−1が示す通り、アルミナ原料の含有量が10質量%未満、黒鉛含有量が80質量%超の場合、破壊エネルギー、耐溶損性が大幅に低下している。また、比較例7−2が示す通り、アルミナ原料の含有量が95質量%超、黒鉛含有量が1質量%未満の場合、破壊エネルギー・耐割れ性が大幅に低下している。
以上のことから、アルミナ・炭化珪素・カーボン質耐火物において、アルミナ原料の含有量を10〜95質量%、黒鉛含有量を1〜80質量%とすれば、高い破壊エネルギー・耐割れ性と耐溶損性が得られることが分かる。
On the other hand, as shown in Comparative Example 7-1, when the content of the alumina raw material is less than 10% by mass and the graphite content is more than 80% by mass, the fracture energy and the erosion resistance are significantly lowered. Further, as shown in Comparative Example 7-2, when the content of the alumina raw material is more than 95% by mass and the graphite content is less than 1% by mass, the fracture energy and crack resistance are significantly lowered.
From the above, if the content of the alumina raw material is 10 to 95% by mass and the graphite content is 1 to 80% by mass in the alumina / silicon carbide / carbon refractory, high fracture energy, crack resistance and melting resistance. It can be seen that loss is obtained.

表9の実施例は、シリカ・炭化珪素・カーボン質耐火物(シリカ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。この実施例では、60,000本の炭素繊維(繊維径7μm)を束に纏めた炭素繊維束を2方向に配向した炭素繊維織物(1m当たりの質量500g)をシリカ・炭化珪素・カーボン質耐火物(耐火物本体)の表面に酸化物系接着剤による接着剤硬化物を介して接着した。 In the examples of Table 9, the composition of silica / silicon carbide / carbonic refractory (silica raw material, graphite-containing refractory using silicon carbide raw material as aggregate) is the bending strength, breaking energy / resistance of the graphite-containing refractory. The effect on crackability and erosion resistance was investigated. In this embodiment, a carbon fiber woven fabric (mass 500 g per 1 m 2 ) in which 60,000 carbon fibers (fiber diameter 7 μm) are bundled and carbon fiber bundles are oriented in two directions is made of silica, silicon carbide, or carbon. It was adhered to the surface of the fire-resistant material (the main body of the fire-resistant material) via an adhesive cured product using an oxide-based adhesive.

発明例8−1、発明例8−2が示す通り、シリカ原料の含有量を1〜50質量%、黒鉛含有量を1〜80質量%とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
これに対して、比較例8−1が示す通り、シリカ原料の含有量を1質量%未満、黒鉛含有量を80質量%超とした場合、破壊エネルギー・耐割れ性が低下している。また、比較例8−2が示す通り、黒鉛含有量を80質量%超とした場合も破壊エネルギー・耐割れ性が低下している。
以上のことから、シリカ・炭化珪素・カーボン質耐火物において、シリカ原料の含有量を1〜50質量%、黒鉛含有量を1〜80質量%とすれば、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られることが分かる。
As shown in Invention Example 8-1 and Invention Example 8-2, when the content of the silica raw material is 1 to 50% by mass and the graphite content is 1 to 80% by mass, high bending strength, breaking energy and crack resistance And erosion resistance is obtained.
On the other hand, as shown in Comparative Example 8-1, when the content of the silica raw material is less than 1% by mass and the graphite content is more than 80% by mass, the fracture energy and crack resistance are lowered. Further, as shown in Comparative Example 8-2, even when the graphite content is more than 80% by mass, the fracture energy and crack resistance are lowered.
From the above, in silica / silicon carbide / carbon refractories, if the content of the silica raw material is 1 to 50% by mass and the graphite content is 1 to 80% by mass, high bending strength, breaking energy and crack resistance are obtained. It can be seen that property and erosion resistance can be obtained.

マグネシア原料の含有量が85質量%、黒鉛含有量が15質量%のマグネシア・カーボン質耐火物(マグネシア原料を骨材とした黒鉛含有耐火物)を耐火物本体xとし、これに図4および図5に示すような形態で、接着剤硬化物aを介して炭素繊維織物yを接着した羽口煉瓦(発明例)を製作した。炭素繊維織物yの構成、耐火物本体xと接着剤硬化物aの熱膨張率および残存膨張率は、発明例3−2と同じにした。また、比較例(従来例)として、炭素繊維織物yを接着しない点を除き、同一の構成を有する羽口煉瓦を製作した。
これらの羽口煉瓦を転炉の羽口部に施工し、使用後の羽口煉瓦の状態を調べ、使用前の厚み、使用後の残厚、羽口の使用回数(ch)から損耗速度を算出した。その結果を図10に示す。
発明例の羽口煉瓦には亀裂や目立った溶損は見られず、図10に示すように損耗速度は従来例と比較して約40%低減した。
A magnesia-carbon refractory having a magnesia raw material content of 85% by mass and a graphite content of 15% by mass (a graphite-containing refractory made of a magnesia raw material as an aggregate) is used as the refractory body x, and FIGS. A tuyere brick (invention example) in which a carbon fiber woven fabric y was bonded via an adhesive cured product a was produced in the form shown in 5. The composition of the carbon fiber woven fabric y, the coefficient of thermal expansion and the coefficient of residual expansion of the refractory body x and the cured adhesive a were the same as in Invention Example 3-2. Further, as a comparative example (conventional example), a tuyere brick having the same structure was produced except that the carbon fiber woven fabric y was not adhered.
These tuyere bricks are installed on the tuyere of the converter, the condition of the tuyere bricks after use is examined, and the wear rate is calculated from the thickness before use, the residual thickness after use, and the number of times the tuyere is used (ch). Calculated. The result is shown in FIG.
No cracks or noticeable melting damage was observed in the tuyere brick of the invention example, and as shown in FIG. 10, the wear rate was reduced by about 40% as compared with the conventional example.

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

Figure 2020158328
Figure 2020158328

1 煉瓦構成部材
2 ガス通孔
3 粘着材料
4 溝
5 上面
6 底面
x 成型体
a 接着剤
x 耐火物本体
y 炭素繊維織物
a 接着剤硬化物
b 接着材料
1 Brick component 2 Gas through hole 3 Adhesive material 4 Groove 5 Top surface 6 Bottom surface
x 0 molded body
a 0 adhesive
x Refractory body
y carbon fiber woven fabric
a Adhesive cured product
b Adhesive material

Claims (13)

黒鉛含有量が1〜80質量%の耐火物原料を成型して成型体(x)を得る成型工程と、
該成型工程で得られた成型体(x)の表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物(y)を接着剤(a)を介して接着する接着工程と、
該接着工程で炭素繊維織物(y)が接着された成型体(x)を乾燥する乾燥工程を有し、
成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物(a)の熱膨張率と耐火物本体(x)の熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物(a)の残存膨張率と耐火物本体(x)の残存膨張率の差が2.0%以下である黒鉛含有耐火物を得ることを特徴とする黒鉛含有耐火物の製造方法。
A molding process of molding a refractory raw material having a graphite content of 1 to 80% by mass to obtain a molded body (x 0 ), and
Adhesion of carbon fiber woven fabric (y) having a mass of 40 to 1300 g per 1 m 2 to at least a part of the surface of the molded body (x 0 ) obtained in the molding step via an adhesive (a 0 ). Process and
The bonding step includes a drying step of drying the molded body (x 0 ) to which the carbon fiber woven fabric (y) is bonded.
A carbon fiber woven fabric (y) is formed on at least a part of the surface of the refractory body (x) composed of the molded body (x 0 ) via an adhesive cured product (a) composed of the adhesive (a 0 ). 2. The difference between the coefficient of thermal expansion of the cured adhesive (a) and the coefficient of thermal expansion of the refractory body (x) when the temperature is raised from room temperature to 1000 ° C. Graphite that is 0% or less and the difference between the residual expansion coefficient of the cured adhesive (a) and the residual expansion coefficient of the refractory body (x) when the temperature is lowered from 1000 ° C to room temperature is 2.0% or less. A method for producing a graphite-containing refractory, which comprises obtaining a refractory containing refractory.
黒鉛含有量が1〜80質量%の耐火物原料を成型して成型体(x)を得る成型工程と、
該成型工程で得られた成型体(x)を乾燥する乾燥工程と、
該乾燥工程を経た成型体(x)の表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物(y)を接着剤(a)を介して接着する接着工程を有し、
成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物(a)の熱膨張率と耐火物本体(x)の熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物(a)の残存膨張率と耐火物本体(x)の残存膨張率の差が2.0%以下である黒鉛含有耐火物を得ることを特徴とする黒鉛含有耐火物の製造方法。
A molding process of molding a refractory raw material having a graphite content of 1 to 80% by mass to obtain a molded body (x 0 ), and
A drying step of drying the molded body (x 0 ) obtained in the molding step, and a drying step.
An adhesive step of adhering a carbon fiber woven fabric (y) having a mass of 40 to 1300 g per m 2 to at least a part of the surface of the molded body (x 0 ) that has undergone the drying step via an adhesive (a 0 ). Have and
A carbon fiber woven fabric (y) is formed on at least a part of the surface of the refractory body (x) composed of the molded body (x 0 ) via an adhesive cured product (a) composed of the adhesive (a 0 ). 2. The difference between the coefficient of thermal expansion of the cured adhesive (a) and the coefficient of thermal expansion of the refractory body (x) when the temperature is raised from room temperature to 1000 ° C. Graphite that is 0% or less and the difference between the residual expansion coefficient of the cured adhesive (a) and the residual expansion coefficient of the refractory body (x) when the temperature is lowered from 1000 ° C to room temperature is 2.0% or less. A method for producing a graphite-containing refractory, which comprises obtaining a refractory containing refractory.
さらに、乾燥工程を経た成型体(x)を還元焼成する工程を有することを特徴とする請求項1または2に記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to claim 1 or 2, further comprising a step of reducing and firing a molded body (x 0 ) that has undergone a drying step. 黒鉛含有量が1〜80質量%の耐火物原料の成型体(x)の表面の少なくとも一部に、1m当たりの質量が40〜1300gの炭素繊維織物(y)を接着剤(a)を介して接着する接着工程を有し、
成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された黒鉛含有耐火物であって、常温から1000℃まで昇温させたときの接着剤硬化物(a)の熱膨張率と耐火物本体(x)の熱膨張率の差が2.0%以下であり、且つ1000℃から常温まで降温させたときの接着剤硬化物(a)の残存膨張率と耐火物本体(x)の残存膨張率の差が2.0%以下である黒鉛含有耐火物を得ることを特徴とする黒鉛含有耐火物の製造方法。
An adhesive (a 0 ) of a carbon fiber woven fabric (y) having a weight of 40 to 1300 g per m 2 is applied to at least a part of the surface of a molded body (x 0 ) of a refractory raw material having a graphite content of 1 to 80% by mass. ) Has an bonding process to bond
A carbon fiber woven fabric (y) is formed on at least a part of the surface of the refractory body (x) composed of the molded body (x 0 ) via an adhesive cured product (a) composed of the adhesive (a 0 ). 2. The difference between the coefficient of thermal expansion of the cured adhesive (a) and the coefficient of thermal expansion of the refractory body (x) when the temperature is raised from room temperature to 1000 ° C. Graphite that is 0% or less and the difference between the residual expansion coefficient of the cured adhesive (a) and the residual expansion coefficient of the refractory body (x) when the temperature is lowered from 1000 ° C to room temperature is 2.0% or less. A method for producing a graphite-containing refractory, which comprises obtaining a refractory containing refractory.
炭素繊維織物(y)は炭素繊維束を2方向以上に配向した織物であり、
前記炭素繊維束は、繊維径が1〜45μmの炭素繊維を束に纏めたものであって、1束当たりの炭素繊維の本数が100本超120000本以下であり、
接着工程では、成型体(x)の表面の少なくとも一部に、炭素繊維織物(y)が接着剤(a)を介して1層または2層以上接着されることを特徴とする請求項1〜4のいずれかに記載の黒鉛含有耐火物の製造方法。
The carbon fiber woven fabric (y) is a woven fabric in which carbon fiber bundles are oriented in two or more directions.
The carbon fiber bundle is a bundle of carbon fibers having a fiber diameter of 1 to 45 μm, and the number of carbon fibers per bundle is more than 100 and 120,000 or less.
The bonding step is characterized in that one or more layers of the carbon fiber woven fabric (y) are bonded to at least a part of the surface of the molded body (x 0 ) via an adhesive (a 0 ). The method for producing a graphite-containing refractory according to any one of 1 to 4.
接着剤(a)は酸化物系接着剤であることを特徴とする請求項1〜5のいずれかに記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to any one of claims 1 to 5, wherein the adhesive (a 0 ) is an oxide-based adhesive. 耐火物原料は、マグネシア濃度が90質量%以上のマグネシア原料を20〜99質量%含有することを特徴とする請求項1〜6のいずれかに記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to any one of claims 1 to 6, wherein the refractory raw material contains 20 to 99% by mass of a magnesia raw material having a magnesia concentration of 90% by mass or more. 耐火物原料は、アルミナ濃度が70質量%以上のアルミナ原料を10〜95質量%含有することを特徴とする請求項1〜6のいずれかに記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to any one of claims 1 to 6, wherein the refractory raw material contains 10 to 95% by mass of an alumina raw material having an alumina concentration of 70% by mass or more. 耐火物原料は、炭化珪素濃度が80質量%以上の炭化珪素原料を1質量%以上含有することを特徴とする請求項8に記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to claim 8, wherein the refractory raw material contains 1% by mass or more of a silicon carbide raw material having a silicon carbide concentration of 80% by mass or more. 耐火物原料は、シリカ原料を1〜50質量%含有することを特徴とする請求項1〜6、8、9のいずれかに記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to any one of claims 1 to 6, 8 and 9, wherein the refractory raw material contains 1 to 50% by mass of a silica raw material. 耐火物原料は、使用済み耐火物を粉砕した耐火物屑を10〜90質量%含有することを特徴とする請求項1〜10のいずれかに記載の黒鉛含有耐火物の製造方法。 The method for producing a graphite-containing refractory according to any one of claims 1 to 10, wherein the refractory raw material contains 10 to 90% by mass of refractory waste obtained by crushing a used refractory. 稼働面となる上面から底面に亘って長手方向を貫通するガス通孔(2)を有する羽口煉瓦であって、長手方向を分割面として分割された複数の煉瓦構成部材(1)が接着層(b)で接合されることにより構成される精錬容器用の羽口煉瓦を製造する方法であって、
請求項1〜11のいずれかに記載の製造方法により、成型体(x)で構成される耐火物本体(x)の表面の少なくとも一部に、接着剤(a)で構成される接着剤硬化物(a)を介して炭素繊維織物(y)が接着された煉瓦構成部材(1)を製作し、該製作された複数の煉瓦構成部材(1)を接着材料(b)で接合することにより羽口煉瓦を得ることを特徴とする精錬容器用の羽口煉瓦の製造方法。
A tuyere brick having a gas passage hole (2) penetrating in the longitudinal direction from the upper surface to the bottom surface, which is an operating surface, and a plurality of brick constituent members (1) divided with the longitudinal direction as a dividing surface are bonded layers. It is a method of manufacturing tuyere bricks for refining containers, which is constructed by joining in (b).
Adhesion made of an adhesive (a 0 ) to at least a part of the surface of a refractory body (x) made of a molded body (x 0 ) by the manufacturing method according to any one of claims 1 to 11. A brick component (1) to which a carbon fiber woven fabric (y) is bonded via an agent-cured product (a) is manufactured, and the plurality of manufactured brick components (1) are joined with an adhesive material (b). A method for manufacturing tuyere bricks for a refining container, which is characterized by obtaining tuyere bricks.
製作される各煉瓦構成部材(1)は、成型体(x)で構成される耐火物本体(x)の一側面にガス通孔(2)の一部を構成する溝(4)が形成され、耐火物本体(x)の少なくとも上部側部位の表面に、耐火物本体(x)の全周を被覆するように、接着剤硬化物(a)を介して炭素繊維織物(y)が接着されていることを特徴とする請求項12に記載の精錬容器用の羽口煉瓦の製造方法。 Each brick component (1) to be manufactured has a groove (4) forming a part of a gas passage hole (2) formed on one side surface of a refractory body (x) composed of a molded body (x 0 ). Then, the carbon fiber woven fabric (y) is adhered to the surface of at least the upper part of the refractory body (x) via the adhesive cured product (a) so as to cover the entire circumference of the refractory body (x). The method for producing a tuyere brick for a refractory container according to claim 12, wherein the tuyere brick is made.
JP2019057764A 2019-03-26 2019-03-26 Method for manufacturing graphite-containing refractory Active JP6957544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057764A JP6957544B2 (en) 2019-03-26 2019-03-26 Method for manufacturing graphite-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057764A JP6957544B2 (en) 2019-03-26 2019-03-26 Method for manufacturing graphite-containing refractory

Publications (2)

Publication Number Publication Date
JP2020158328A true JP2020158328A (en) 2020-10-01
JP6957544B2 JP6957544B2 (en) 2021-11-02

Family

ID=72641715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057764A Active JP6957544B2 (en) 2019-03-26 2019-03-26 Method for manufacturing graphite-containing refractory

Country Status (1)

Country Link
JP (1) JP6957544B2 (en)

Also Published As

Publication number Publication date
JP6957544B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US8138109B2 (en) Zirconia-mullite refractory raw material and a plate brick
US8093169B2 (en) High-durability sleeve bricks
US11629916B2 (en) Graphite-containing refractory and method of producing graphite-containing refractory
US20160130185A1 (en) Batch for producing a carbon-bonded or resin-bonded shaped fire-resistant product, a method for producing such a product, a product of said type, and a use of magnesia spinel zirconium oxide
JP6957544B2 (en) Method for manufacturing graphite-containing refractory
JP6974801B2 (en) Graphite-containing refractory
AU648652B2 (en) Mud for tap hole of blast furnace
JP6420748B2 (en) Unburned silicon carbide-containing high alumina brick used for lining of containers holding molten metal
JP2022161032A (en) Castable refractory and molten steel ladle
JP4187183B2 (en) Magnesia-carbon brick
JP4945257B2 (en) Refractory
JP6583968B2 (en) Refractory brick
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP2015171991A (en) Iron-making vessel
JP2023166932A (en) Graphite-containing refractory
JP2023166933A (en) Manufacturing method of refractory containing graphite
CN114180977B (en) Phosphorus-free plastic material for casting and preparation method thereof
JP2023149344A (en) Graphite-containing refractory
JPH0520391B2 (en)
JP2023149350A (en) Manufacturing method of graphite-containing refractory
JP2023089721A (en) Graphite-containing refractory and method of producing the same
JP2023130030A (en) Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory
JP2011196578A (en) Refractory brick including metallic fiber and lining structure using the same
JPH03205347A (en) Magnesia-carbon brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6957544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150