JP2023166932A - Graphite-containing refractory - Google Patents

Graphite-containing refractory Download PDF

Info

Publication number
JP2023166932A
JP2023166932A JP2022077804A JP2022077804A JP2023166932A JP 2023166932 A JP2023166932 A JP 2023166932A JP 2022077804 A JP2022077804 A JP 2022077804A JP 2022077804 A JP2022077804 A JP 2022077804A JP 2023166932 A JP2023166932 A JP 2023166932A
Authority
JP
Japan
Prior art keywords
refractory
carbon fiber
graphite
fiber fabric
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022077804A
Other languages
Japanese (ja)
Inventor
圭佑 吉田
Keisuke Yoshida
久宏 松永
Hisahiro Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022077804A priority Critical patent/JP2023166932A/en
Publication of JP2023166932A publication Critical patent/JP2023166932A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

To provide graphite-containing refractory having high durability by suppressing crack development caused by thermal stress, even when used in a condition of repeated heating up and cooling down over a long time, like the refractory liner of a converter, and having high durability, even when used in a condition of very large inner temperature gradient, particularly like tuyere bricks of the converter.SOLUTION: There is provided graphite-containing refractory in which carbon fiber fabric B is embedded along one direction, inside a refractory body A containing 1-80 mass% of graphite. The carbon fiber fabric B has mass of 40-1300 g per 1 m2, preferably, existing density of the carbon fiber forming the carbon fiber fabric B, in the refractory cross section parallel to a refractory work face, is 10-2000 pieces/mm2.SELECTED DRAWING: Figure 1

Description

本発明は、内部に炭素繊維を埋設した黒鉛含有耐火物に関するものである。 The present invention relates to a graphite-containing refractory having carbon fibers embedded therein.

製鉄所において製銑工程や製鋼工程で使用される設備(精錬容器、搬送容器など)は、高温下で長期間の使用に耐えられるように耐火物が内張り施工されている。一般に、精錬工程で使用される転炉の内張りにはマグネシア・カーボン質耐火物が使用され、溶銑予備処理工程で使用されるトピードや高炉鍋の内張りにはアルミナ・炭化珪素・カーボン質耐火物などが使用される。
これらの精錬容器や搬送容器で内張りに使用される耐火物は、装入物による機械的衝撃、溶鋼や溶融スラグの撹拌による摩耗、溶融スラグによるスラグ浸食、操業中の急激な温度変化などが生じる非常に過酷な条件下で使用される。このため、安定した操業を行うためにも、そのような過酷な条件に耐えられる耐用性の高い耐火物を使用する必要がある。
Equipment (refining containers, transport containers, etc.) used in the ironmaking process and steelmaking process at a steelworks is lined with refractory material so that it can withstand long-term use at high temperatures. In general, magnesia/carbon refractories are used for the lining of converters used in the refining process, and alumina, silicon carbide, carbon refractories, etc. are used for the lining of torpedoes and blast furnace pots used in the hot metal pretreatment process. is used.
The refractories used as linings in these refining vessels and transport vessels are subject to mechanical shock from the charges, abrasion from agitation of molten steel and molten slag, slag erosion from molten slag, and rapid temperature changes during operation. Used under extremely harsh conditions. Therefore, in order to perform stable operations, it is necessary to use highly durable refractories that can withstand such harsh conditions.

特に、転炉の羽口部を構成する羽口煉瓦は、内部に常温のガス(酸素や冷却用炭化水素ガス等)が流れており、炉内に近い部位では内面が常温のガスにより冷却され、外面は炉内の溶鋼からの伝熱による高温に曝されるため、羽口煉瓦内の熱勾配は極めて大きく、しかも転炉の1チャージ分の吹錬が終わる度に、溶鋼を排出することによる温度低下が生じ、大きな熱変動が繰り返される。転炉に設置される羽口煉瓦は、使用頻度が2500~4000チャージ程度にも達し、この1チャージ毎に上記のような大きな熱勾配を生じる状況と大きな熱変動が繰り返されるという極めて過酷な条件で使用されるため、このような条件での使用に耐え得る高い耐用性が必要である。また、羽口煉瓦以外の転炉内張り耐火物(転炉内壁を構成する煉瓦)も、上述したような大きな熱変動が繰り返される過酷な条件で使用されるため、羽口煉瓦ほどではないが、高い耐用性が求められる。 In particular, the tuyere bricks that make up the tuyeres of a converter have room-temperature gas (oxygen, cooling hydrocarbon gas, etc.) flowing inside them, and the inner surfaces of the parts near the furnace are cooled by the room-temperature gas. Since the outer surface is exposed to high temperatures due to heat transfer from the molten steel in the furnace, the thermal gradient inside the tuyere bricks is extremely large, and moreover, the molten steel must be discharged every time one charge of blowing is completed in the converter. This causes the temperature to drop, causing repeated large thermal fluctuations. The tuyere bricks installed in the converter are used frequently for about 2,500 to 4,000 charges, and are subject to extremely harsh conditions in which the large thermal gradient and large thermal fluctuations described above are repeated for each charge. Because it is used under such conditions, it must have high durability to withstand use under such conditions. In addition, converter lining refractories other than tuyere bricks (bricks that make up the inner walls of converters) are also used under harsh conditions where the large thermal fluctuations described above are repeated, so although they are not as severe as tuyere bricks, High durability is required.

耐火物の耐用性を高める技術として、特許文献1には、高強度繊維束に合成樹脂やピッチなどを浸透(含浸)させたものに、熱処理などの硬化処理を施すことにより得られた棒状または網状の固化体を、耐火物の内部に配置することが記載されており、高強度繊維束の固化体が形状を崩すことなく耐火物の内部に配置されているので、耐火物の機械的強度と耐スポール性を高められるとしている。
また、特許文献2には、耐火物の表面の一部または全体に、耐火物よりも引張強度が高い繊維からなる一方向の束あるいは織物を耐熱性の接着剤で接着させることが記載されており、この技術により、従来よりも耐火物を高強度のまま長時間保持できるとともに、耐火物の引張強度を改善でき、亀裂発生や破壊を抑制でき、耐火物の寿命や信頼性を向上できるとしている。具体的には、鉄鋼の連続鋳造工程に使用されるロングノズル、浸漬ノズル、スライディングノズルといった内部を溶鋼が流通するノズルに対し、その外面を拘束する方向に繊維の束あるいは織物をフェノール樹脂により接着し、その表面に酸化防止下地層や酸化防止層を配置することが記載されている。これらのノズルでは、内部を溶鋼が流通するときに外面側へ熱膨張するのを前記繊維の束や織物で拘束し、ノズルを構成する耐火物に圧縮応力を生じさせ、亀裂の発生や破壊を抑制しているものと考えられる。
As a technique for increasing the durability of refractories, Patent Document 1 describes a rod-shaped or It is described that a net-like solidified body is placed inside the refractory, and since the solidified body of high-strength fiber bundles is placed inside the refractory without losing its shape, the mechanical strength of the refractory is improved. It is said to improve spall resistance.
Further, Patent Document 2 describes that a unidirectional bundle or fabric made of fibers having a higher tensile strength than the refractory is adhered to a part or the entire surface of the refractory using a heat-resistant adhesive. This technology allows refractories to maintain higher strength for longer periods than before, improves the tensile strength of refractories, suppresses cracking and destruction, and extends the lifespan and reliability of refractories. There is. Specifically, fiber bundles or fabrics are bonded using phenolic resin in a direction that constrains the outer surface of nozzles through which molten steel flows, such as long nozzles, immersion nozzles, and sliding nozzles used in the continuous steel casting process. However, it is described that an oxidation-preventing base layer or an oxidation-preventing layer is provided on the surface. In these nozzles, when molten steel flows inside, thermal expansion toward the outside is restrained by the fiber bundles or fabrics, which creates compressive stress in the refractory material that makes up the nozzle, preventing cracking and destruction. It is thought that it is being suppressed.

特開2005-320196号公報Japanese Patent Application Publication No. 2005-320196 特開2007-106618号公報Japanese Patent Application Publication No. 2007-106618

しかしながら、本発明者らが検討した結果、炭素繊維を特許文献1、2に示すような形態で耐火物に配置しても、過酷な条件に曝される転炉等に用いる耐火物としては強度が不十分であることが判った。
また、特許文献1に記載の技術は、高強度繊維束を樹脂やピッチなどで固化させた棒状または網状の固化体を耐火物内に配置するものであるため、炭素繊維束の単位面積当たりの重量が大きい場合には、耐火物原料を圧縮成型や流し込みにより成型または施工する際に、固化体が抵抗となって耐火物原料の均一な圧縮や流入が妨げられる結果、耐火物の強度や破壊エネルギーが低下し、耐火物の耐用性が低下するという問題がある。
However, as a result of studies conducted by the present inventors, even if carbon fibers are arranged in refractories in the form shown in Patent Documents 1 and 2, the strength is insufficient for refractories used in converters exposed to harsh conditions. was found to be insufficient.
In addition, the technology described in Patent Document 1 is a method in which a rod-shaped or net-shaped solidified body made of high-strength fiber bundles solidified with resin or pitch is placed in a refractory, so the carbon fiber bundle per unit area is If the weight is large, when the refractory raw material is compressed or poured, the solidified material acts as resistance and prevents uniform compression and flow of the refractory raw material, resulting in a decrease in the strength and failure of the refractory. There is a problem that energy is reduced and the durability of the refractory is reduced.

また、特許文献2に記載のノズルが使用される連続鋳造工程では、転炉で吹錬された複数チャージ分の溶鋼を連続的に鋳造するため、使用されるノズルの温度変化のサイクルは転炉の内張り耐火物に較べれば長く、またノズルの外面は下方に位置する下流側の容器に貯留される溶鋼からの輻射を受けるため、ノズル内を流れる溶鋼との温度差はそれほど大きなものではない。これに対して、転炉の内張り耐火物(転炉の内壁を構成する煉瓦)、特に羽口部を構成する羽口煉瓦は、上述したように非常に過酷な条件で使用されるものであり、本発明者らが検討したところによれば、特許文献2に記載の技術では、そのような耐火物の耐用性を十分に高めることができないことが判った。 In addition, in the continuous casting process in which the nozzle described in Patent Document 2 is used, multiple charges of molten steel blown in a converter are continuously cast, so the temperature change cycle of the nozzle used is It is longer than the refractory lining of the nozzle, and the outer surface of the nozzle receives radiation from the molten steel stored in the downstream container located below, so the temperature difference between the nozzle and the molten steel flowing inside the nozzle is not that large. On the other hand, the lining refractories of converters (the bricks that make up the inner walls of the converter), especially the tuyere bricks that make up the tuyeres, are used under very harsh conditions as mentioned above. According to the studies conducted by the present inventors, it was found that the technique described in Patent Document 2 cannot sufficiently increase the durability of such refractories.

したがって本発明の目的は、以上のような従来技術の課題を解決し、転炉の内張り耐火物のように長期間にわたって昇温と降温が繰り返される条件で使用される場合でも、熱応力により発生する亀裂の進展が抑制されて高い耐用性が得られ、また、特に転炉の羽口煉瓦のように内部の温度勾配が非常に大きい条件で使用される場合でも高い耐用性が得られる黒鉛含有耐火物を提供することにある。 Therefore, it is an object of the present invention to solve the problems of the prior art as described above, and to solve the problems caused by thermal stress even when the refractory lining of a converter is used under conditions where temperature rises and falls are repeated over a long period of time. The graphite-containing material suppresses the propagation of cracks and provides high durability, and also provides high durability even when used in conditions with extremely large internal temperature gradients, such as in converter tuyere bricks. Our goal is to provide refractories.

本発明者らは、上記課題を解決するために検討を重ねた結果、耐火物の内部に特定の炭素繊維織物を所定の形態で埋設すること、好ましくは炭素繊維織物を構成する炭素繊維の繊維径や本数、さらには耐火物断面における炭素繊維の存在密度を最適化することにより、上述したような極めて厳しい使用環境でも高い耐用性が得られることを見出した。
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
As a result of repeated studies in order to solve the above problems, the present inventors have discovered that a specific carbon fiber fabric can be embedded in a predetermined form inside a refractory, preferably carbon fibers constituting the carbon fiber fabric. It has been found that by optimizing the diameter, number, and density of carbon fibers in the cross section of the refractory, high durability can be obtained even in the extremely harsh usage environment described above.
The present invention was made based on such knowledge and has the following gist.

[1]黒鉛含有量が1~80質量%の耐火物本体(A)の内部に炭素繊維織物(B)が埋設された黒鉛含有耐火物であって、
炭素繊維織物(B)は1mあたりの質量が40~1300gであることを特徴とする黒鉛含有耐火物。
[2]上記[1]の黒鉛含有耐火物において、炭素繊維織物(B)は、炭素繊維束(b)が耐火物本体(A)を構成する骨材の最大粒径超の間隔で2方向以上に編み込まれた織物であり、
炭素繊維束(b)は、繊維径が1~45μmの炭素繊維を束に纏めたものであって、1束あたりの炭素繊維の本数が1000~300000本であり、
耐火物稼働面と平行な耐火物断面における、炭素繊維織物(B)を構成する炭素繊維の存在密度が10~2000本/mmであることを特徴とする黒鉛含有耐火物。
[1] A graphite-containing refractory in which a carbon fiber fabric (B) is embedded inside a refractory body (A) having a graphite content of 1 to 80% by mass,
The carbon fiber fabric (B) is a graphite-containing refractory characterized by a mass of 40 to 1,300 g per 1 m 2 .
[2] In the graphite-containing refractory of [1] above, the carbon fiber fabric (B) has carbon fiber bundles (b) arranged in two directions at intervals exceeding the maximum particle diameter of the aggregate constituting the refractory body (A). It is a fabric that is woven into
The carbon fiber bundle (b) is a bundle of carbon fibers with a fiber diameter of 1 to 45 μm, and the number of carbon fibers per bundle is 1000 to 300000,
A graphite-containing refractory characterized in that the density of carbon fibers constituting the carbon fiber fabric (B) in a cross section of the refractory parallel to the working surface of the refractory is 10 to 2000 fibers/mm 2 .

[3]上記[1]または[2]の黒鉛含有耐火物において、耐火物本体(A)の内部に、耐火物稼動面と直交する方向に沿って炭素繊維織物(B)が埋設されたことを特徴とする黒鉛含有耐火物。
[4]上記[1]~[3]のいずれかの黒鉛含有耐火物において、炭素繊維織物(B)は、同じ方向に編み込まれた炭素繊維束(b)どうしの間隔が3mm超であることを特徴とする黒鉛含有耐火物。
[5]上記[1]~[4]のいずれかの黒鉛含有耐火物において、炭素繊維織物(B)が1枚または積層した2枚以上の織物で構成されることを特徴とする黒鉛含有耐火物。
[6]上記[1]~[5]のいずれかの黒鉛含有耐火物において、耐火物本体(A)の内部に、炭素繊維織物(B)が1層又は間隔をおいて2層以上埋設されることを特徴とする黒鉛含有耐火物。
[3] In the graphite-containing refractory of [1] or [2] above, the carbon fiber fabric (B) is embedded inside the refractory body (A) along a direction perpendicular to the refractory operating surface. A graphite-containing refractory characterized by:
[4] In any of the graphite-containing refractories set forth in [1] to [3] above, the carbon fiber fabric (B) shall have a spacing of more than 3 mm between carbon fiber bundles (b) woven in the same direction. A graphite-containing refractory characterized by:
[5] The graphite-containing refractory according to any one of [1] to [4] above, characterized in that the carbon fiber fabric (B) is composed of one or more laminated fabrics. thing.
[6] In the graphite-containing refractory according to any of [1] to [5] above, one layer or two or more layers of carbon fiber fabric (B) are embedded inside the refractory body (A). A graphite-containing refractory characterized by:

[7]上記[6]の黒鉛含有耐火物において、耐火物本体(A)の内部に埋設された2層以上の炭素繊維織物(B)どうしの間隔が10mm以上であることを特徴とする黒鉛含有耐火物。
[8]上記[1]~[7]のいずれかの黒鉛含有耐火物において、炭素繊維織物(B)が耐火物本体(A)に対して接着剤成分を介して密着し、該接着剤成分は、有機樹脂、無機ゾル由来の無機微粒子、タールまたは/およびピッチ由来の有機物、有機糊由来の有機物の中から選ばれる1種以上であることを特徴とする黒鉛含有耐火物。
[7] In the graphite-containing refractory of [6] above, the graphite is characterized in that the interval between two or more layers of carbon fiber fabric (B) embedded inside the refractory body (A) is 10 mm or more. Contains refractories.
[8] In the graphite-containing refractory according to any one of [1] to [7] above, the carbon fiber fabric (B) adheres to the refractory body (A) via an adhesive component, and the adhesive component is a graphite-containing refractory characterized by being one or more selected from organic resins, inorganic fine particles derived from inorganic sol, organic substances derived from tar and/or pitch, and organic substances derived from organic glue.

[9]上記[1]~[8]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、マグネシア濃度が90質量%以上のマグネシア原料を20~99質量%含有することを特徴とする黒鉛含有耐火物。
[10]上記[1]~[8]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、アルミナ濃度が70質量%以上のアルミナ原料を10~95質量%含有することを特徴とする黒鉛含有耐火物。
[11]上記[1]~[8]、[10]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、シリカ原料を1~50質量%含有することを特徴とする黒鉛含有耐火物。
[12]上記[10]または[11]の黒鉛含有耐火物において、耐火物本体(A)は、炭化珪素濃度が80質量%以上の炭化珪素原料を1質量%以上含有することを特徴とする黒鉛含有耐火物。
[13]上記[1]~[12]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、使用済み耐火物を粉砕した耐火物屑を10~90質量%含有することを特徴とする黒鉛含有耐火物。
[9] In the graphite-containing refractory according to any one of [1] to [8] above, the refractory body (A) is characterized by containing 20 to 99% by mass of a magnesia raw material with a magnesia concentration of 90% by mass or more. Graphite-containing refractories.
[10] In the graphite-containing refractory according to any one of [1] to [8] above, the refractory body (A) is characterized by containing 10 to 95% by mass of an alumina raw material with an alumina concentration of 70% by mass or more. Graphite-containing refractories.
[11] In the graphite-containing refractory according to any one of [1] to [8] and [10] above, the refractory body (A) is a graphite-containing refractory characterized by containing 1 to 50% by mass of a silica raw material. Refractory.
[12] In the graphite-containing refractory of [10] or [11] above, the refractory body (A) is characterized by containing 1% by mass or more of a silicon carbide raw material with a silicon carbide concentration of 80% by mass or more. Graphite-containing refractories.
[13] In the graphite-containing refractory according to any one of [1] to [12] above, the refractory body (A) contains 10 to 90% by mass of refractory waste obtained by crushing used refractories. Graphite-containing refractories.

本発明の黒鉛含有耐火物は、高い破壊エネルギーを有するため、転炉の内張り耐火物のように長期間にわたって昇温と降温が繰り返される条件下で使用しても、熱応力により発生する亀裂の進展が抑制されるため高い耐用性が得られ、特に転炉の羽口煉瓦のように内部の温度勾配が非常に大きい条件で使用される場合でも高い耐用性が得られる。 The graphite-containing refractory of the present invention has high fracture energy, so even if it is used under conditions where the temperature is repeatedly raised and lowered over a long period of time, such as in the refractory lining of a converter, it will not crack due to thermal stress. Since the growth is suppressed, high durability can be obtained, and high durability can be obtained especially when used in conditions where the internal temperature gradient is extremely large, such as in converter tuyere bricks.

本発明の黒鉛含有耐火物を羽口煉瓦に適用した場合の一実施形態において、羽口煉瓦を構成する煉瓦構成部材の1つを模式的に示すものであり、図1(ア)は側面図、図1(イ)は図1(ア)中のI-I線に沿う断面図(耐火物稼働面に平行な断面図)In one embodiment in which the graphite-containing refractory of the present invention is applied to a tuyere brick, one of the brick constituent members constituting the tuyere brick is schematically shown, and FIG. 1(A) is a side view. , Figure 1 (a) is a cross-sectional view along line II in Figure 1 (a) (a cross-sectional view parallel to the refractory operating surface) 本発明の黒鉛含有耐火物において、耐火物本体の内部に埋設される炭素繊維織物の一実施形態を模式的に示す平面図A plan view schematically showing an embodiment of a carbon fiber fabric embedded inside a refractory body in a graphite-containing refractory of the present invention. 本発明の黒鉛含有耐火物の製造工程の一例を示すフロー図A flow diagram showing an example of the manufacturing process of the graphite-containing refractory of the present invention 実施例における黒鉛含有耐火物の曲げ強度の測定方法を示すもので、図4(ア)は3点曲げ強度試験の実施状況を模式的に示す説明図、図4(イ)は図4(ア)の試験片の端面を模式的に示す説明図This figure shows a method for measuring the bending strength of graphite-containing refractories in Examples, and FIG. 4 (A) is an explanatory diagram schematically showing the implementation status of a three-point bending strength test, and FIG. ) is an explanatory diagram schematically showing the end face of a test piece. 実施例において、3点曲げ強度試験で得られた荷重-変位曲線から求められる破壊エネルギーの一例(本発明例の破壊エネルギー)を示す図面A drawing showing an example of the fracture energy (fracture energy of the present invention example) obtained from the load-displacement curve obtained in the three-point bending strength test in the example. 実施例において、3点曲げ強度試験で得られた荷重-変位曲線から求められる破壊エネルギーの他の例(比較例の破壊エネルギー)を示す図面Drawing showing another example of fracture energy (fracture energy of comparative example) obtained from the load-displacement curve obtained in the three-point bending strength test in the example 実施例における黒鉛含有耐火物の耐溶損性の評価試験方法を示すもので、図6(A)は試験の実施状況を試験炉および筒状サンプルを縦断面した状態で模式的に示す説明図、図6(B)は図6(A)に示される筒状サンプルの平面図、図6(C)は図6(A),(B)に示す筒状サンプルを構成する試験片の1つを示す斜視図This shows a test method for evaluating the erosion resistance of graphite-containing refractories in Examples, and FIG. 6(A) is an explanatory diagram schematically showing the test implementation status in a longitudinal section of a test furnace and a cylindrical sample. FIG. 6(B) is a plan view of the cylindrical sample shown in FIG. 6(A), and FIG. 6(C) is a plan view of one of the test pieces constituting the cylindrical sample shown in FIGS. 6(A) and (B). Perspective view shown

本発明の黒鉛含有耐火物は、黒鉛含有量が1~80質量%の耐火物本体Aの内部に炭素繊維織物Bが埋設された黒鉛含有耐火物であって、炭素繊維織物Bは1mあたりの質量が40~1300gであることを特徴とする。このような炭素繊維織物Bが耐火物本体Aの内部に埋設されることにより、炭素繊維織物Bが耐火物と一体化するため、耐火物本体Aの内部で炭素繊維織物Bが滑ることがなく、このため耐火物全体の破壊エネルギーが大幅に上昇し、亀裂進展抑制効果も向上する。 The graphite-containing refractory of the present invention is a graphite-containing refractory in which a carbon fiber fabric B is embedded inside a refractory body A having a graphite content of 1 to 80% by mass, and the carbon fiber fabric B is per 1 m 2 It is characterized by having a mass of 40 to 1300 g. By embedding such carbon fiber fabric B inside the refractory body A, the carbon fiber fabric B is integrated with the refractory, so that the carbon fiber fabric B does not slip inside the refractory body A. , Therefore, the fracture energy of the entire refractory increases significantly, and the effect of suppressing crack growth also improves.

図1は、本発明の黒鉛含有耐火物の一実施形態を模式的に示すもので、図1(ア)は側面図、図1(イ)は図1(ア)中のI-I線に沿う断面図(耐火物稼働面に平行な断面図)であり、xが耐火物稼動面(yが反稼動面)である。この実施形態の黒鉛含有耐火物では、耐火物本体Aの内部に間隔をおいて3層の炭素繊維織物Bが埋設されている。
また、図2は、耐火物本体Aの内部に埋設される炭素繊維織物Bの一実施形態を模式的に示す平面図であり、この実施形態の炭素繊維織物Bは、炭素繊維束bを2方向(直交する2方向)に配向させて編み込んだものである。
FIG. 1 schematically shows an embodiment of the graphite-containing refractory of the present invention. FIG. 1(A) is a side view, and FIG. 1(B) is taken along line II in FIG. It is a sectional view (a sectional view parallel to the refractory operating surface) along which x is the refractory operating surface (y is the counter-operating surface). In the graphite-containing refractory of this embodiment, three layers of carbon fiber fabric B are embedded within a refractory body A at intervals.
Further, FIG. 2 is a plan view schematically showing an embodiment of a carbon fiber fabric B buried inside a refractory body A, and the carbon fiber fabric B of this embodiment has two carbon fiber bundles b. It is woven in such a way that it is oriented in two directions (two orthogonal directions).

以下、炭素繊維織物Bの構成と埋設条件について説明する。
炭素繊維織物Bは、炭素繊維束bを2方向以上に配向させて編み込んだものであり、その配向数は任意である。なお、炭素繊維束bの配向方向が1方向の場合には炭素繊維織物を形成できないため、炭素繊維織物を埋設した黒鉛含有耐火物が得られない。
炭素繊維織物Bは1mあたりの質量が40~1300gである。ここで、1mあたりの質量とは、後述するように炭素繊維織物Bが積層した複数枚の織物からなる場合には、積層した複数枚の合計の質量とする。炭素繊維織物Bの1mあたりの質量が40g未満では、炭素繊維織物が薄過ぎるため亀裂進展抑制効果は向上せず、破壊エネルギーが上昇しない。一方、炭素繊維織物Bの1mあたりの質量が1300gを超えると、炭素繊維織物が厚過ぎるため耐火物を圧縮成形する際に、スプリングバックと呼ばれる圧縮後の反発が発生したり、圧縮力の伝達が不均一になることにより、耐火物に内部欠陥が生じたり、性状が不均一になるなどの不良が生じて耐用性が低下する。また、圧縮成形ではなく流し込みにより耐火物を成形する場合でも、均一な流入が妨げられたり、炭素繊維織物に内包または付随する空隙が残存したりして耐用性が低下する。
The structure and embedding conditions of carbon fiber fabric B will be explained below.
The carbon fiber fabric B is made by weaving carbon fiber bundles b oriented in two or more directions, and the number of orientations is arbitrary. Note that if the carbon fiber bundle b is oriented in one direction, a carbon fiber fabric cannot be formed, and therefore a graphite-containing refractory in which a carbon fiber fabric is embedded cannot be obtained.
Carbon fiber fabric B has a mass of 40 to 1300 g per 1 m 2 . Here, when the carbon fiber fabric B is composed of a plurality of laminated fabrics as described later, the mass per 1 m 2 is the total mass of the laminated fabrics. If the mass of the carbon fiber fabric B is less than 40 g per 1 m 2 , the carbon fiber fabric is too thin, so the crack propagation suppressing effect is not improved and the fracture energy is not increased. On the other hand, if the mass of carbon fiber fabric B exceeds 1300 g per 1 m 2 , the carbon fiber fabric is too thick, and when compression molding a refractory, rebound after compression called springback may occur, or the compression force may be reduced. Uneven transmission causes defects such as internal defects in the refractory or non-uniform properties, reducing its durability. Furthermore, even when a refractory is formed by pouring rather than compression molding, uniform inflow may be hindered, or voids encapsulated or attached to the carbon fiber fabric may remain, resulting in reduced durability.

耐火物本体Aの内部における炭素繊維織物Bの配置形態は任意であり、特別な制限はないが、操業時、亀裂発生原因である引張応力は耐火物の長手方向に発生することから、一方向に沿って直線状に配置(埋設)することが好ましく、特に、耐火物稼動面xと直交する方向に沿って配置(埋設)されることが好ましい。
なお、耐火物本体Aの内部に埋設される炭素繊維織物Bは、その端部が耐火物本体Aの表面に露出していてもよいし、露出していなくてもよい。また、後者の場合、耐火物の稼動面x側においては、炭素繊維織物Bの端部と稼動面x間の距離はなるべく小さいことが好ましいが、反稼動面y側においては、炭素繊維織物Bの端部と反稼動面y間の距離はある程度大きくてもよい。これは、使用終了時にも残存することが想定される耐火物の反稼働面y側の部分には、炭素繊維織物Bが埋設されている必要がないからである。
The arrangement of the carbon fiber fabric B inside the refractory body A is arbitrary and there are no special restrictions, but since the tensile stress that causes cracks is generated in the longitudinal direction of the refractory during operation, it is possible to arrange it in one direction. It is preferable to arrange (buried) in a straight line along the refractory, and particularly preferably to arrange (buried) along the direction orthogonal to the refractory operating surface x.
Note that the ends of the carbon fiber fabric B buried inside the refractory body A may or may not be exposed on the surface of the refractory body A. In the latter case, on the working surface x side of the refractory, it is preferable that the distance between the end of the carbon fiber fabric B and the working surface x is as small as possible; The distance between the end of y and the counter-moving surface y may be large to some extent. This is because the carbon fiber fabric B does not need to be buried in the part on the non-working surface y side of the refractory, which is expected to remain even after use.

炭素繊維織物Bを構成する炭素繊維束bのうち、同じ方向に編み込まれた炭素繊維束bどうしの間隔は、耐火物本体Aを構成する骨材(耐火物原料のうちの骨材と呼ばれる粗大粒子)の最大粒径よりも大きくすることが好ましい。すなわち、同じ方向の炭素繊維束bは、耐火物本体Aを構成する骨材の最大粒径超の間隔で編み込まれることが好ましい。これにより、炭素繊維織物bの編み目の間に骨材(粗大粒子)が入り込むことができ、骨材(粗大粒子)の表面に沿って発生する亀裂の進展を抑制することができる。 Among the carbon fiber bundles b constituting the carbon fiber fabric B, the intervals between the carbon fiber bundles b woven in the same direction are determined by the distance between the carbon fiber bundles b woven in the same direction. It is preferable to make the maximum particle size larger than the maximum particle size of the particles. That is, the carbon fiber bundles b in the same direction are preferably woven at intervals exceeding the maximum particle diameter of the aggregate constituting the refractory body A. Thereby, the aggregate (coarse particles) can enter between the stitches of the carbon fiber fabric b, and it is possible to suppress the propagation of cracks that occur along the surface of the aggregate (coarse particles).

炭素繊維織物Bを構成する炭素繊維束bは、繊維径が1~45μmの炭素繊維を束に纏めたものであって、1束あたりの炭素繊維の本数が1000~300000本であることが好ましい。炭素繊維織物B(炭素繊維束b)を構成する炭素繊維の繊維径を1μm以上とし、かつ炭素繊維束bの1束あたりの炭素繊維の本数を1000本以上とすれば、より高い亀裂進展抑制効果が得られる。一方、炭素繊維織物B(炭素繊維束b)を構成する炭素繊維の繊維径を45μm以下とし、かつ炭素繊維束bの1束あたりの炭素繊維の本数を300000本以下とすれば、成形時の不均一が抑えられ、耐用性が向上する。
また、炭素繊維束bを構成する炭素繊維の繊維径が1μm未満、炭素繊維束bの1束あたりの炭素繊維の本数が1000本未満では、炭素繊維織物Bの1mあたりの質量が40g未満となりやすく、一方、炭素繊維束bを構成する炭素繊維の繊維径が45μm超、炭素繊維束bの1束あたりの炭素繊維の本数が300000本超では、炭素繊維織物Bの1mあたりの質量が1300g超となりやすい。
The carbon fiber bundle b constituting the carbon fiber fabric B is a bundle of carbon fibers with a fiber diameter of 1 to 45 μm, and the number of carbon fibers per bundle is preferably 1,000 to 300,000. . If the fiber diameter of the carbon fibers constituting carbon fiber fabric B (carbon fiber bundle b) is 1 μm or more and the number of carbon fibers per bundle of carbon fiber bundle b is 1000 or more, crack growth can be suppressed to a higher degree. Effects can be obtained. On the other hand, if the fiber diameter of the carbon fibers constituting carbon fiber fabric B (carbon fiber bundle b) is 45 μm or less, and the number of carbon fibers per bundle of carbon fiber bundle b is 300,000 or less, Non-uniformity is suppressed and durability is improved.
Furthermore, if the fiber diameter of the carbon fibers constituting carbon fiber bundle b is less than 1 μm and the number of carbon fibers per bundle of carbon fiber bundle b is less than 1000, the mass per 1 m 2 of carbon fiber fabric B is less than 40 g. On the other hand, when the fiber diameter of the carbon fibers constituting carbon fiber bundle b exceeds 45 μm and the number of carbon fibers per bundle of carbon fiber bundle b exceeds 300,000, the mass per 1 m 2 of carbon fiber fabric B tends to exceed 1300g.

また、炭素繊維織物Bは、耐火物稼働面xと平行な耐火物断面における、炭素繊維織物Bを構成する炭素繊維の存在密度(埋設密度)が10~2000本/mmとなるように、耐火物本体Aの内部に埋設することが好ましい。これにより、耐火物原料と炭素繊維織物Bを構成する炭素繊維束bとの接触面積が多くなり、耐火物原料と炭素繊維織物Bの密着性も高くなるため、破壊エネルギーが大幅に上昇する。ここで、炭素繊維の存在密度(埋設密度)とは、炭素繊維織物Bを構成する炭素繊維束bのうち、耐火物稼働面と平行な炭素繊維束bを除く炭素繊維束bを構成する全炭素繊維本数(本)を耐火物稼働面と平行な耐火物断面の面積(mm)で除した値である。
炭素繊維の存在密度(埋設密度)が10本/mm未満では、耐火物原料と炭素繊維束bの接触面積が少な過ぎるため、耐火物原料と炭素繊維織物Bの密着性も高まらず、破壊エネルギーの大幅な上昇は望めない。また、炭素繊維の存在密度(埋設密度)が2000本/mm超では、耐火物原料と炭素繊維束bの接触面積が大き過ぎるため、成形時に炭素繊維束bがスプリングバックを起こし易く、成形に支障をきたすおそれがある。
In addition, the carbon fiber fabric B is made such that the existing density (buried density) of carbon fibers constituting the carbon fiber fabric B in the refractory cross section parallel to the refractory working surface x is 10 to 2000 fibers/ mm2 . It is preferable to embed it inside the refractory body A. As a result, the contact area between the refractory raw material and the carbon fiber bundle b constituting the carbon fiber fabric B increases, and the adhesion between the refractory raw material and the carbon fiber fabric B also increases, resulting in a significant increase in fracture energy. Here, the existing density of carbon fibers (embedded density) refers to all of the carbon fiber bundles b that make up the carbon fiber bundle b, excluding the carbon fiber bundle b that is parallel to the refractory operating surface. It is the value obtained by dividing the number of carbon fibers (pieces) by the area (mm 2 ) of the refractory cross section parallel to the refractory operating surface.
If the existing density of carbon fibers (buried density) is less than 10 fibers/ mm2 , the contact area between the refractory raw material and the carbon fiber bundle B is too small, and the adhesion between the refractory raw material and the carbon fiber fabric B does not increase, resulting in destruction. We cannot expect a significant increase in energy. Furthermore, if the density of carbon fibers (embedded density) exceeds 2000 fibers/ mm2 , the contact area between the refractory raw material and the carbon fiber bundle b is too large, and the carbon fiber bundle b tends to spring back during molding. There is a risk of causing problems.

炭素繊維織物Bは、同じ方向に編み込まれた炭素繊維束bどうしの間隔が3mm超であることが好ましい。これにより、上述したような粗大粒子だけでなく微小粒子とも炭素繊維織物Bが良く絡み、曲げ強度および破壊エネルギーをより高くできる。ここで、炭素繊維束bどうし間隔とは、図2に示す炭素繊維束bの中心間の距離L,Lであり、方向によって間隔が異なる場合は、短いほうの間隔が3mm超であることが望ましい。
炭素繊維織物Bは1枚または積層した2枚以上の織物で構成され、炭素繊維織物Bを積層した2枚以上の織物で構成する場合の織物の枚数は任意である。また、炭素繊維織物Bは、耐火物本体Aの内部に1層又は間隔をおいて2層以上埋設することができ、2層以上埋設する場合の層数は任意である。炭素繊維織物Bの1層あたりの織物の枚数を増やしたり、炭素繊維織物Bの層数を増やすことにより、耐火物の亀裂の進展を抑制する効果がより向上する。
また、炭素繊維織物Bを耐火物本体Aの内部に2層以上埋設する場合、炭素繊維織物Bの層どうしの間隔が狭すぎると、成形時に炭素繊維織物Bを構成する炭素繊維束bがスプリングバックを生じ、成形体に亀裂が生じやすくなるので、炭素繊維束bのスプリングバックを抑えるために、炭素繊維織物Bの層どうしの間隔は10mm以上であることが好ましい。
In the carbon fiber fabric B, it is preferable that the spacing between the carbon fiber bundles b woven in the same direction is more than 3 mm. As a result, the carbon fiber fabric B is well entangled with not only the coarse particles but also the fine particles as described above, and the bending strength and fracture energy can be further increased. Here, the spacing between the carbon fiber bundles b is the distance L 1 , L 2 between the centers of the carbon fiber bundles b shown in FIG. 2, and if the spacing differs depending on the direction, the shorter spacing is more than 3 mm. This is desirable.
The carbon fiber fabric B is composed of one or more laminated fabrics, and when the carbon fiber fabric B is composed of two or more laminated fabrics, the number of fabrics is arbitrary. Further, the carbon fiber fabric B can be buried in one layer or two or more layers at intervals within the refractory main body A, and the number of layers in the case of two or more layers being buried is arbitrary. By increasing the number of fabrics per layer of carbon fiber fabric B or increasing the number of layers of carbon fiber fabric B, the effect of suppressing the propagation of cracks in the refractory is further improved.
In addition, when embedding two or more layers of carbon fiber fabric B inside the refractory body A, if the spacing between the layers of carbon fiber fabric B is too narrow, the carbon fiber bundles b constituting carbon fiber fabric B will spring up during molding. In order to suppress the springback of the carbon fiber bundle b, the distance between the layers of the carbon fiber fabric B is preferably 10 mm or more, since this tends to cause backing and cracks in the molded body.

炭素繊維織物Bは、耐火物本体Aに対して接着剤(粘着性付与剤)成分を介して密着させることが好ましく、これにより、耐火物原料Aと炭素繊維織物Bの密着性が高くなり、成形時に耐火物が緻密化し易く、破壊エネルギーが大幅に向上する。炭素繊維織物Bと耐火物本体Aとの間に介在する接着剤成分(固形成分)としては、例えば、有機樹脂、無機ゾル由来の無機微粒子、タールまたは/およびピッチ由来の有機物、有機糊由来の有機物などが挙げられ、これらの中から選ばれる1種以上とすることができる。
したがって、製造時に炭素繊維織物に付着させる接着剤(粘着性付与剤)としては、例えば、有機樹脂(溶液)、無機ゾル、ピッチ、タール、有機糊などが挙げられる。具体的には、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、熱硬化性ポリイミド樹脂、アルミナゾル、シリカゾル、ジルコニアゾル、クロミアゾル、チタニアゾル、マグネシアゾル、カルシアゾル、イットリアゾル、ピッチ、タール、でんぷん糊などが挙げられ、これらの中から選ばれる1種以上を用いることができる。
It is preferable that the carbon fiber fabric B is brought into close contact with the refractory body A via an adhesive (tackifier) component, thereby increasing the adhesion between the refractory raw material A and the carbon fiber fabric B, The refractory material is easily densified during molding, and the fracture energy is greatly improved. Examples of the adhesive component (solid component) interposed between the carbon fiber fabric B and the refractory body A include organic resins, inorganic fine particles derived from inorganic sol, organic substances derived from tar and/or pitch, and organic materials derived from organic glue. Examples include organic substances, and one or more types selected from these can be used.
Therefore, examples of the adhesive (tackifier) to be applied to the carbon fiber fabric during production include organic resin (solution), inorganic sol, pitch, tar, and organic glue. Specifically, phenolic resin, epoxy resin, melamine resin, urea resin, alkyd resin, unsaturated polyester resin, polyurethane resin, thermosetting polyimide resin, alumina sol, silica sol, zirconia sol, chromia sol, titania sol, magnesia sol, calcia sol, Examples include yttriazole, pitch, tar, starch paste, etc., and one or more types selected from these can be used.

次に、耐火物本体Aの組成について説明する。
耐火物本体Aの黒鉛含有量は1~80質量%であり、黒鉛含有量が1質量%未満では、熱応力による割れの発生を抑制できず、耐割れ性が大幅に低下してしまう。一方、黒鉛含有量が80質量%を超えると、耐火物本体Aの材質によって、耐溶損性、耐割れ性、破壊エネルギーといった特性に悪影響がでる場合がある。黒鉛(カーボン原料)としては、一般に鱗状黒鉛などが用いられる。
一般に、精錬工程において使用される転炉の内張り(羽口部を含む)には、マグネシアおよびカーボンを主成分とする耐火物であるマグネシア・カーボン質耐火物(マグネシア原料を骨材とした黒鉛含有耐火物)が使用される。耐火物本体Aがマグネシア・カーボン質耐火物の場合、耐火物本体Aは、マグネシア濃度が90質量%以上の高純度のマグネシア原料を20~99質量%含有することが好ましく、これにより熱スポーリングによる割れが抑制され、且つ転炉スラグの浸食にも耐えられる耐火物とすることができる。マグネシア原料の含有量が99質量%超では、割れを抑制できず耐割れ性が大幅に低下する。一方、マグネシア原料の含有量が20質量%未満では、転炉スラグの浸食に耐えられず、耐溶損性が大幅に低下する。
Next, the composition of the refractory body A will be explained.
The graphite content of the refractory body A is 1 to 80% by mass, and if the graphite content is less than 1% by mass, the occurrence of cracking due to thermal stress cannot be suppressed, and the cracking resistance is significantly reduced. On the other hand, if the graphite content exceeds 80% by mass, depending on the material of the refractory body A, properties such as erosion resistance, cracking resistance, and fracture energy may be adversely affected. As the graphite (carbon raw material), scaly graphite or the like is generally used.
In general, the lining (including the tuyeres) of converters used in the refining process is made of magnesia-carbon refractories, which are refractories whose main components are magnesia and carbon. refractories) are used. When the refractory body A is a magnesia-carbon refractory, the refractory body A preferably contains 20 to 99 mass% of a high-purity magnesia raw material with a magnesia concentration of 90 mass% or more, thereby preventing thermal spalling. It is possible to produce a refractory material that can suppress cracking due to oxidation and can also withstand erosion by converter slag. If the content of the magnesia raw material exceeds 99% by mass, cracking cannot be suppressed and the cracking resistance is significantly reduced. On the other hand, if the content of the magnesia raw material is less than 20% by mass, it will not be able to withstand the erosion of converter slag, and the erosion resistance will be significantly reduced.

また、一般に、溶銑予備処理工程において使用されるトピードや高炉鍋の内張りにはアルミナ、炭化珪素およびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)や、アルミナ、炭化珪素、シリカおよびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・シリカ・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)などが使用される。耐火物本体Aがアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、アルミナ濃度が70質量%以上の高純度のアルミナ原料を10~95質量%含有することが好ましく、これにより溶銑予備処理スラグの浸食に耐えられ、且つ熱スポーリングによる割れも抑制できる。アルミナ原料の含有量が10質量%未満では、溶銑予備処理スラグの浸食に耐えられず、耐火物本体A(煉瓦)のマトリックス部分にスラグが浸透し、耐溶損性が低下する。一方、アルミナ原料の含有量が95質量%を超えると、熱スポーリングによる亀裂の発生を抑制できず、耐割れ性が低下する。 In addition, the lining of torpedoes and blast furnace pots used in the hot metal pretreatment process is generally made of alumina, silicon carbide, and carbon refractories (alumina raw materials, silicon carbide), which are refractories whose main components are alumina, silicon carbide, and carbon. graphite-containing refractories whose main components are alumina, silicon carbide, silica, and carbon (alumina raw materials, silicon carbide raw materials, silica Graphite-containing refractories whose raw materials are aggregates are used. When the refractory body A is an alumina/silicon carbide/carbon refractory or an alumina/silicon carbide/silica/carbon refractory, it contains 10 to 95% by mass of a high-purity alumina raw material with an alumina concentration of 70% by mass or more. This is preferable, and as a result, it can withstand the erosion of hot metal pretreatment slag and can also suppress cracking due to thermal spalling. If the content of the alumina raw material is less than 10% by mass, it will not be able to withstand the erosion of the hot metal pretreatment slag, and the slag will penetrate into the matrix portion of the refractory body A (brick), resulting in a decrease in erosion resistance. On the other hand, if the content of the alumina raw material exceeds 95% by mass, the generation of cracks due to thermal spalling cannot be suppressed, resulting in a decrease in crack resistance.

さらに、耐火物本体Aがアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、炭化珪素濃度が80質量%以上の高純度の炭化珪素原料を1質量%以上含有することが好ましい。炭化珪素原料を1質量%以上含有することにより、大気雰囲気下における黒鉛の酸化を抑制できるので、高耐割れ性を維持できる。炭化珪素原料の含有量が1質量%未満では、大気雰囲気下における黒鉛の酸化を抑制できないため、耐割れ性が低下する。
また、耐火物本体Aがアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、シリカ原料を1~50質量%含有することが好ましく、これにより高耐割れ性と高耐溶損性を両立できる。シリカ原料の含有量が1質量%未満では、膨張量が少なく微細亀裂が生成しないため、熱衝撃破壊抵抗も大きくならず耐割れ性が低下しやすい。一方、シリカ原料の含有量が50質量%を超えると耐溶損性が大幅に劣化する。
Furthermore, if the refractory body A is an alumina/silicon carbide/carbon refractory or an alumina/silicon carbide/silica/carbon refractory, 1% by mass of a high purity silicon carbide raw material with a silicon carbide concentration of 80% by mass or more is added. It is preferable to contain the above amount. By containing 1% by mass or more of the silicon carbide raw material, oxidation of graphite in the atmosphere can be suppressed, so that high cracking resistance can be maintained. If the content of the silicon carbide raw material is less than 1% by mass, oxidation of graphite in the air cannot be suppressed, resulting in a decrease in cracking resistance.
Further, when the refractory body A is an alumina/silicon carbide/silica/carbon refractory, it is preferable to contain 1 to 50% by mass of the silica raw material, thereby achieving both high cracking resistance and high erosion resistance. When the content of the silica raw material is less than 1% by mass, the amount of expansion is small and no microcracks are generated, so the thermal shock fracture resistance is not increased and the cracking resistance is likely to decrease. On the other hand, when the content of the silica raw material exceeds 50% by mass, the erosion resistance deteriorates significantly.

転炉の内張りに使用するマグネシア・カーボン質耐火物は、装入物による機械的衝撃、溶鋼及び溶融スラグの撹拌による摩耗、溶融スラグによるスラグ浸食および転炉操業中の急激な温度変化など、非常に苛酷な条件下で使用される。このため、安定した操業を行うためにも苛酷な条件に耐える耐用性の高いマグネシア・カーボン質耐火物を使用することが好ましい。同様に、トピードや高炉鍋などの溶銑予備処理容器の内張りに使用するアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物も非常に苛酷な条件下で使用されることから、これらの条件に耐えられる耐火物を使用することが好ましい。本発明によれば、これら非常に苛酷な条件下で使用される黒鉛含有耐火物の破壊エネルギーが、従来の黒鉛含有耐火物と比較して大幅に向上するため、高い耐用性が得られる。 Magnesia-carbon refractories used for the lining of converters are susceptible to extreme damage such as mechanical impact from the charge, abrasion due to agitation of molten steel and molten slag, slag erosion due to molten slag, and rapid temperature changes during converter operation. used under harsh conditions. Therefore, in order to ensure stable operation, it is preferable to use magnesia-carbon refractories, which have high durability and can withstand harsh conditions. Similarly, alumina/silicon carbide/carbon refractories and alumina/silicon carbide/silica/carbon refractories used for lining hot metal pretreatment vessels such as topedoes and blast furnace pots are used under extremely harsh conditions. Therefore, it is preferable to use a refractory that can withstand these conditions. According to the present invention, the fracture energy of graphite-containing refractories used under these extremely severe conditions is significantly improved compared to conventional graphite-containing refractories, so that high durability can be obtained.

また、耐火物本体Aがシリカ、炭化珪素およびカーボンを主成分とする耐火物であるシリカ・炭化珪素・カーボン質耐火物の場合、炭化珪素濃度が80質量%以上の高純度の炭化珪素原料を1質量%以上、シリカ原料を1~50質量%含有することが好ましく、これにより高耐割れ性と高耐溶損性を両立できる。炭化珪素原料を1質量%以上含有することにより、大気雰囲気下における黒鉛の酸化を抑制できるので、高耐割れ性を維持できる。炭化珪素原料の含有量が1質量%未満では、大気雰囲気下における黒鉛の酸化を抑制できないため、耐割れ性が低下する。また、シリカ原料の含有量が1質量%未満では、膨張量が少なく微細亀裂が生成しないため、熱衝撃破壊抵抗も大きくならず耐割れ性が低下しやすい。一方、シリカ原料の含有量が50質量%を超えると耐溶損性が大幅に劣化する。 In addition, if the refractory body A is a silica/silicon carbide/carbon refractory, which is a refractory whose main components are silica, silicon carbide, and carbon, a high-purity silicon carbide raw material with a silicon carbide concentration of 80% by mass or more is used. It is preferable to contain 1% by mass or more and 1 to 50% by mass of silica raw material, thereby achieving both high cracking resistance and high erosion resistance. By containing 1% by mass or more of the silicon carbide raw material, oxidation of graphite in the atmosphere can be suppressed, so that high cracking resistance can be maintained. If the content of the silicon carbide raw material is less than 1% by mass, oxidation of graphite in the air cannot be suppressed, resulting in a decrease in cracking resistance. Furthermore, if the content of the silica raw material is less than 1% by mass, the amount of expansion is small and no microcracks are generated, so the thermal shock fracture resistance is not increased and the cracking resistance is likely to decrease. On the other hand, when the content of the silica raw material exceeds 50% by mass, the erosion resistance deteriorates significantly.

ここで、アルミナ原料としては、例えば、バン土頁岩、ホワイトアルミナ、ブラウンアルミナなどの1種以上が用いられる。また、炭化珪素原料としては、例えば、緑色炭化ケイ素、黒色炭化ケイ素などの1種以上が用いられる。また、シリカ原料としては、例えば、ろう石、ムライトなどの1種以上が用いられる。
黒鉛含有耐火物は、製鉄容器からの放熱量を抑制しながら、耐用性を高くすることを目的として、さらに金属粉末原料を含有(配合)することができる。金属粉末原料としては、例えば、金属Si、金属Al、金属Al-Si、AlSiC、BCなどが挙げられ、これらの1種以上を含有させることができる。金属粉末原料の含有量は特に規定しないが、通常、1~5質量%程度が好ましい。金属粉末原料の含有量(配合量)が1質量%未満では、金属粉末原料を配合することによる耐用性の向上効果が十分に得られず、一方、5質量%を超えると、強度が高くなりすぎるため、実機で使用した際に亀裂が発生し易くなって煉瓦が割れ易くなり、実機での使用回数が低下するおそれがある。
Here, as the alumina raw material, for example, one or more types of aluminum shale, white alumina, brown alumina, etc. are used. Further, as the silicon carbide raw material, for example, one or more types of green silicon carbide, black silicon carbide, etc. are used. Further, as the silica raw material, for example, one or more types of waxite, mullite, etc. are used.
The graphite-containing refractory can further contain (mix) a metal powder raw material for the purpose of increasing durability while suppressing the amount of heat released from the steel container. Examples of the metal powder raw material include metal Si, metal Al, metal Al-Si, Al 4 SiC 4 and B 4 C, and one or more of these can be contained. The content of the metal powder raw material is not particularly limited, but is usually preferably about 1 to 5% by mass. If the content (amount) of the metal powder raw material is less than 1% by mass, the effect of improving durability by blending the metal powder raw material cannot be sufficiently obtained, while on the other hand, if it exceeds 5% by mass, the strength will increase. If this is too high, cracks may easily occur when used in an actual machine, making the bricks more likely to break, which may reduce the number of times the brick can be used in an actual machine.

耐火物本体Aは、骨材原料として使用済み耐火物を粉砕した耐火物屑を10~90質量%程度含有することができる。特に、耐火物本体Aがアルミナ・炭化珪素・カーボン質耐火物(さらにシリカ原料を含有するアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合を含む。以下同様)の場合には、使用済みのアルミナ・炭化珪素・カーボン質耐火物(さらにシリカ原料を含有するアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合を含む。以下同様)を粉砕して得られた耐火物屑を骨材原料として好適に用いることができる。
このように耐火物屑を含有する場合、耐火物原料の残部は未使用の原料(バージン原料)である。
The refractory body A can contain approximately 10 to 90% by mass of refractory waste obtained by crushing used refractories as an aggregate raw material. In particular, if the refractory body A is an alumina, silicon carbide, or carbon refractory (including alumina, silicon carbide, silica, or carbon refractories containing silica raw materials; the same shall apply hereinafter), the used Refractory waste obtained by crushing alumina, silicon carbide, and carbon refractories (including alumina, silicon carbide, silica, and carbon refractories containing silica raw materials; the same shall apply hereinafter) is used as an aggregate raw material. It can be suitably used.
When refractory waste is contained in this manner, the remainder of the refractory raw material is an unused raw material (virgin raw material).

アルミナ・炭化珪素・カーボン質耐火物からなる耐火物本体Aにおいて、使用済みのアルミナ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑の含有量を10~90質量%とした場合、バージン原料のみを使用した黒鉛含有耐火物と同程度の耐割れ性および耐溶損性が得られる。その理由は、耐火物屑原料はバージン原料と比較して純度が低いが、耐火物屑原料とバージン原料を併用することにより、耐火物屑原料中のAl成分が有する耐溶損性の大幅な低下を抑制できることが挙げられる。一方、耐火物屑の含有量を90質量%超とした場合、バージン原料の含有量が少な過ぎるため、耐火物屑原料中のAl成分が有する耐食性の大幅な低下を抑制できない。また、耐火物屑の含有量を10質量%未満とした場合、耐火物屑の再利用率が低過ぎるため、産業廃棄物としての耐火物屑処理費用が大幅に上がる。
本発明の黒鉛含有耐火物には、プレス成形を経て製造される、いわゆる耐火物れんがのほかに、後述するように、鍋やタンディッシュなどの稼働面である施工部位において流し込みにより成形され、そのまま乾燥・固化させる耐火物なども含まれる。
In the refractory body A made of alumina, silicon carbide, and carbonaceous refractories, the content of refractory waste obtained by crushing used alumina, silicon carbide, and carbonaceous refractories was set to 10 to 90% by mass. In this case, cracking resistance and erosion resistance comparable to those of graphite-containing refractories using only virgin raw materials can be obtained. The reason for this is that refractory scrap raw materials have lower purity than virgin raw materials, but by using the refractory scrap raw materials and virgin raw materials together, the corrosion resistance of the Al 2 O 3 components in the refractory scrap raw materials can be improved. One example is that it is possible to suppress a significant decline. On the other hand, when the content of refractory scrap is more than 90% by mass, the content of the virgin raw material is too small, so it is impossible to suppress a significant decrease in the corrosion resistance of the Al 2 O 3 component in the refractory scrap raw material. Moreover, when the content of refractory scraps is less than 10% by mass, the reuse rate of the refractory scraps is too low, and the cost of processing the refractory scraps as industrial waste increases significantly.
In addition to the so-called refractory bricks manufactured through press molding, the graphite-containing refractories of the present invention include, as will be described later, those that are molded by pouring at the construction site that is the operational surface of pots, tundishes, etc. It also includes refractories that are dried and solidified.

次に、本発明の黒鉛含有耐火物の製造方法について説明する。
図3は、本発明の黒鉛含有耐火物の製造工程の一例を示している。この製造工程では、耐火物原料に適量のバインダーを加えて混練し、その混練物を炭素繊維織物とともに型に充填してプレス成形を行い、耐火物成形品を得る。バインダーとしては、例えば、フェノールレジン(主剤)+ヘキサミン(硬化剤)、カーボンボンド、セラミックボンドなどが用いられる。
耐火物原料の混練物を炭素繊維織物とともに型に充填する方法としては、例えば、一定量の混練物を型に装入した後に炭素繊維織物を装入し、さらに一定量の混練物を型に装入する方法がある。したがって、この方法で図1のような複数層の炭素繊維織物が埋設された黒鉛含有耐火物を製造するには、型に一定量の混練物を装入した後、炭素繊維織物の装入とこれに続く一定量の混練物の装入を繰り返し行う。
また、炭素繊維織物に接着剤(粘着性付与剤)を付着させる場合には、例えば、接着剤を構成する樹脂(樹脂溶液)やゾルなどに炭素繊維織物を浸漬したり、接着剤を構成する樹脂(樹脂溶液)やゾルなどを炭素繊維織物に散布することにより、接着剤を炭素繊維織物に付着させ、この接着剤が付着したままの炭素繊維織物を、上記のような要領で混練物とともに型に装入する。
Next, a method for producing a graphite-containing refractory of the present invention will be explained.
FIG. 3 shows an example of the manufacturing process of the graphite-containing refractory of the present invention. In this manufacturing process, an appropriate amount of binder is added to the refractory raw material and kneaded, and the kneaded product is filled into a mold together with a carbon fiber fabric and press-molded to obtain a refractory molded product. As the binder, for example, phenol resin (base resin) + hexamine (curing agent), carbon bond, ceramic bond, etc. are used.
A method of filling a kneaded material of refractory material into a mold together with a carbon fiber fabric is, for example, charging a certain amount of the kneaded material into a mold, charging the carbon fiber fabric, and then adding a certain amount of the kneaded material into the mold. There is a way to load it. Therefore, in order to manufacture a graphite-containing refractory in which multiple layers of carbon fiber fabric are embedded as shown in Figure 1 using this method, a certain amount of kneaded material is charged into the mold, and then the carbon fiber fabric is charged and Subsequent charging of a certain amount of kneaded material is repeated.
In addition, when attaching an adhesive (tackifying agent) to a carbon fiber fabric, for example, the carbon fiber fabric is immersed in a resin (resin solution) or sol that makes up the adhesive, or By spraying resin (resin solution) or sol on the carbon fiber fabric, the adhesive is attached to the carbon fiber fabric, and the carbon fiber fabric with the adhesive still attached is mixed with the kneaded material in the manner described above. Charge into mold.

プレス成形は、金型内で一方向に圧縮する一般的な金型プレス成形を行うことができるが、液体を用いて全方向から均等に圧力を加えるCIP成形を行ってもよい。部位によって厚さが異なる形状など、一方向の圧縮では均等な圧力を加えることが難しい形状に対しては、CIP成形を用いることによって部位による圧縮度の偏りが軽減されるので望ましい。
また、成形工程は、プレス成形以外の成形法で行ってもよい。プレス成形以外の成形法としては、例えば、流し込みによる成形があり、その1つに、鍋やタンディッシュなどの稼働面である施工部位に内枠を設置し、この内枠に不定形耐火物(耐火物原料)を流し込み、乾燥(乾燥工程)・固化させた後に内枠を除去する方法がある。また、施工部位に流し込むのではなく、耐火物形状の型枠内に不定形耐火物(耐火物原料)を流し込み、乾燥(乾燥工程)・固化させた後に型枠から取り出した耐火物を、施工部位まで運搬して施工する方法もあり、この方法は施工部位への耐火物施工の手間はかかるものの、型枠内に不定形耐火物を流し込む際の炭素繊維織物の埋設や固化時の温度管理が容易であるので望ましい。これらの流し込みによる成形法では、上述した内枠や型枠内に炭素繊維織物Bを配置した上で、内枠や型枠内に不定形耐火物(耐火物原料)を流し込み、乾燥(乾燥工程)・固化させる。
Press molding can be performed by general mold press molding in which compression is performed in one direction within a mold, but CIP molding in which pressure is applied evenly from all directions using a liquid may also be performed. For shapes where it is difficult to apply uniform pressure by unidirectional compression, such as shapes where the thickness varies depending on the part, CIP molding is desirable because it reduces the unevenness in the degree of compression depending on the part.
Further, the molding step may be performed by a molding method other than press molding. Forming methods other than press molding include, for example, pouring. One of these methods is to install an inner frame at the construction site, which is the working surface of a pot or tundish, and to inject monolithic refractories ( There is a method in which the inner frame is removed after pouring refractory materials (refractory raw materials), drying (drying process) and solidifying. In addition, instead of pouring it into the construction site, monolithic refractories (refractory raw materials) are poured into the refractory-shaped formwork, dried (drying process), solidified, and then removed from the formwork. There is also a method of transporting the refractory to the construction site, and although this method requires more time and effort to install the refractory at the construction site, it is easier to embed the carbon fiber fabric when pouring the monolithic refractory into the formwork and to control the temperature during solidification. This is desirable because it is easy. In these pouring forming methods, the carbon fiber fabric B is placed in the inner frame or formwork described above, and then the monolithic refractory (refractory raw material) is poured into the inner frame or formwork, followed by drying (drying process). )・Solidify.

以上のようにして得られた耐火物成型品を乾燥させる。この乾燥は耐火物成型品の乾燥(キュアリング)を目的として、通常、200~230℃程度で行われる。また、乾燥(キュアリング)後、さらに還元焼成(コーキング処理)を施して製品煉瓦(焼成煉瓦)としてもよい。
また、上述したような流し込みによる成形で得られる耐火物成形体については、施工部位に設置された内枠や他の場所に設置された型枠に保持された耐火物成形体を加熱バーナなどの加熱手段で加熱することにより、乾燥・固化させる。その後、内枠の除去や型枠からの取り出しが行われる。
The refractory molded product obtained as described above is dried. This drying is usually carried out at about 200 to 230°C for the purpose of drying (curing) the refractory molded product. Further, after drying (curing), reduction firing (caulking treatment) may be further performed to obtain a product brick (fired brick).
In addition, for refractory molded bodies obtained by casting as described above, the refractory molded bodies held in the inner frame installed at the construction site or the formwork installed at other locations are heated using a heating burner, etc. It is dried and solidified by heating with a heating means. After that, the inner frame is removed and the mold is taken out.

以上により、耐火物本体の内部に炭素繊維織物が埋設された本発明の黒鉛含有耐火物が得られる。
本発明の黒鉛含有耐火物は、種々の設備や容器の耐火物として使用できるが、なかでも製鉄所内で使用される精錬容器や搬送容器の内張り耐火物として好適である。特に、非常に過酷な使用環境である転炉の内張り耐火物として好適であり、そのなかでも羽口部を構成する羽口煉瓦として特に好適である。
Through the above steps, the graphite-containing refractory of the present invention in which the carbon fiber fabric is embedded inside the refractory body is obtained.
The graphite-containing refractory of the present invention can be used as a refractory for various equipment and containers, and is particularly suitable as a refractory lining for refining containers and transportation containers used in steel plants. In particular, it is suitable as a refractory lining for converters, which are used in very harsh environments, and among these, it is particularly suitable as tuyere bricks constituting the tuyere portion.

耐火物本体の内部に炭素繊維織物が埋設された黒鉛含有耐火物を図3に示す手順で製造した。耐火物原料を混練・成形するにあたり、バインダーとして、耐火物原料に対する外掛けでフェノールレジンを3質量%、ヘキサミンを0.3質量%配合した。
製造された黒鉛含有耐火物について、曲げ強度、破壊エネルギー、耐溶損性、耐割れ性を、それぞれ以下の方法で評価した。
曲げ強度については、図4(試験方法)に示すとおり、耐火物本体の内部に、その長手方向に沿って単層または複数層の炭素繊維織物を埋設した試験片(試験片サイズ:40mm×80mm×160mm)を用い、中心間距離を100mm、荷重印加速度を0.5mm/minとし、JIS R2213に記載された3点曲げ試験方法に準拠して測定した。
A graphite-containing refractory in which a carbon fiber fabric was embedded inside the refractory body was manufactured according to the procedure shown in FIG. 3. When kneading and molding the refractory raw material, 3% by mass of phenol resin and 0.3% by mass of hexamine were added as binders to the refractory raw material.
The produced graphite-containing refractories were evaluated for bending strength, fracture energy, erosion resistance, and cracking resistance using the following methods.
Regarding bending strength, as shown in Figure 4 (test method), a test piece (test piece size: 40 mm x 80 mm) was prepared by embedding a single layer or multiple layers of carbon fiber fabric inside the refractory body along its longitudinal direction. x 160 mm), the center-to-center distance was 100 mm, the load application acceleration was 0.5 mm/min, and the measurement was performed in accordance with the three-point bending test method described in JIS R2213.

破壊エネルギーについては、図5-1および図5-2に示すとおり、3点曲げ強度試験で得られた荷重-変位曲線において第1ピーク値を示した位置を基準とし、基準位置から変位1mmの範囲の面積で評価した。なお、図5-1は、本発明例の荷重-変位曲線から求められる破壊エネルギーの一例を、図5-2は内部に炭素繊維織物が埋設されていない比較例の荷重-変位曲線から求められる破壊エネルギーの一例を、それぞれ示すものである。
耐溶損性については、図6(試験方法)に示すとおり、高周波誘導炉を用いた内張り分け法で溶損量を測定し、その溶損量に基づき評価した。内張り分け法による試験では、試験温度を1650℃、温度保持時間を4時間として表2に示す組成の合成スラグを1時間毎に投入し、冷却後に稼働面の溶損量を測定した。そして、その溶損量から表1中の発明配合例1-3の溶損量を100とした溶損指数を求めた。試験片としては、図6(C)に示すように、スラグや溶鋼に接する面(耐火物稼動面)に垂直に炭素繊維織物が埋設されたものを用いた。なお、図6(A)は試験の実施状況を試験炉および筒状サンプルを縦断面した状態で模式的に示す説明図、図6(B)は図6(A)に示される筒状サンプルの平面図、図6(C)は図6(A),(B)に示す筒状サンプルを構成する試験片の1つを示す斜視図である。
Regarding the fracture energy, as shown in Figures 5-1 and 5-2, the position where the first peak value was shown in the load-displacement curve obtained in the 3-point bending strength test is used as the reference, and the fracture energy is measured at a displacement of 1 mm from the reference position. Evaluation was made based on the area of the range. Furthermore, Figure 5-1 shows an example of the fracture energy obtained from the load-displacement curve of the example of the present invention, and Figure 5-2 shows an example of the fracture energy obtained from the load-displacement curve of the comparative example in which no carbon fiber fabric is embedded inside. Each shows an example of destructive energy.
Regarding the erosion resistance, as shown in FIG. 6 (test method), the amount of erosion was measured by the lining method using a high-frequency induction furnace, and the evaluation was made based on the amount of erosion. In the test using the lining method, the test temperature was 1650°C, the temperature holding time was 4 hours, synthetic slag having the composition shown in Table 2 was introduced every hour, and after cooling, the amount of erosion on the operating surface was measured. Then, from the amount of erosion loss, an erosion index was determined, with the amount of erosion loss of Invention Formulation Example 1-3 in Table 1 taken as 100. As shown in FIG. 6(C), the test piece used was one in which a carbon fiber fabric was embedded perpendicularly to the surface (refractory operating surface) in contact with slag and molten steel. In addition, FIG. 6(A) is an explanatory diagram schematically showing the test implementation status in a longitudinal section of the test furnace and the cylindrical sample, and FIG. 6(B) is an illustration of the cylindrical sample shown in FIG. 6(A). The plan view and FIG. 6(C) are perspective views showing one of the test pieces constituting the cylindrical sample shown in FIGS. 6(A) and 6(B).

耐割れ性については、40×80×200mmの試料の長手方向の動弾性率EをJIS R1605に示された超音波パルス法に従って測定した後、1500℃×10分間の加熱、5分間の水冷、10分間の大気冷却を1サイクルとした工程を3回繰り返し、3回終了後に再び上記方法で動弾性率Eを測定し、試験前後での動弾性率の変化率E/Eを指標として評価した。試験片としては、図1に示すように耐火物本体の長手方向に沿って炭素繊維織物が埋設されたものを用いた。 For cracking resistance, the dynamic elastic modulus E 0 in the longitudinal direction of a 40 x 80 x 200 mm sample was measured according to the ultrasonic pulse method specified in JIS R1605, and then heated at 1500°C for 10 minutes and water-cooled for 5 minutes. , the process of 10 minutes of atmospheric cooling as one cycle was repeated three times, and after the third cycle, the dynamic elastic modulus E 3 was measured again using the above method, and the rate of change in the dynamic elastic modulus E 3 /E 0 before and after the test was calculated. It was evaluated as an indicator. As shown in FIG. 1, the test piece used was one in which a carbon fiber fabric was embedded along the longitudinal direction of the refractory body.

表1に示すような原料配合でマグネシア原料を骨材とした耐火物成形品、すなわち、炭素繊維織物を埋設しない黒鉛含有耐火物を製作し、それらの耐溶損性と耐割れ性を評価した。その結果を表1に併せて示す。
表1の発明配合例1-1~発明配合例1-7に示す通り、黒鉛含有量を1~80質量%とした場合には耐溶損性と耐割れ性は良好であるが、比較配合例1-1に示す通り、黒鉛含有量を1質量%未満とした場合には耐割れ性が大幅に低下している。また、比較配合例1-2に示す通り、黒鉛含有量を80質量%超とした場合には耐溶損性が大幅に低下している。
また、発明配合例1-1~発明配合例1-7に示す通り、マグネシア・カーボン質原料の配合において、マグネシア原料(表1の場合にはマグネシア濃度100質量%)の含有量が20~99質量%であれば、耐溶損性と耐割れ性は良好である。以上のことから、黒鉛含有耐火物の耐溶損性と耐割れ性を両立させるためには、黒鉛含有量は1~80質量%とする必要があり、また、マグネシア・カーボン質原料の場合には、マグネシア原料の含有量を20~99質量%とすることが適当であることが分かる。
A refractory molded product using magnesia raw material as an aggregate, that is, a graphite-containing refractory without embedded carbon fiber fabric, was produced using the raw material composition shown in Table 1, and its erosion resistance and cracking resistance were evaluated. The results are also shown in Table 1.
As shown in Inventive Formulation Examples 1-1 to 1-7 in Table 1, when the graphite content is 1 to 80% by mass, the erosion resistance and cracking resistance are good, but the comparative formulation examples As shown in 1-1, when the graphite content is less than 1% by mass, the cracking resistance is significantly reduced. Furthermore, as shown in Comparative Formulation Example 1-2, when the graphite content exceeds 80% by mass, the erosion resistance is significantly reduced.
In addition, as shown in Invention Blend Examples 1-1 to 1-7, in the blend of magnesia/carbonaceous raw materials, the content of magnesia raw materials (magnesia concentration 100% by mass in the case of Table 1) is 20 to 99%. % by mass, the erosion resistance and cracking resistance are good. From the above, in order to achieve both erosion resistance and cracking resistance of graphite-containing refractories, the graphite content must be 1 to 80% by mass, and in the case of magnesia/carbonaceous raw materials, It can be seen that it is appropriate to set the content of the magnesia raw material to 20 to 99% by mass.

表3~表11に、発明例および比較例の黒鉛含有耐火物(耐火物本体の内部に炭素繊維織物が埋設された黒鉛含有耐火物)の構成と特性(曲げ強度、破壊エネルギー、耐溶損性、耐割れ性)を示す。
まず、表3の実施例は、耐火物本体の内部に埋設される炭素繊維織物について、炭素繊維束を構成する炭素繊維の繊維径、炭素繊維束の1束あたりの炭素繊維数(本数)、炭素繊維織物の1mあたりの質量、耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度(埋設密度)が黒鉛含有耐火物の曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
Tables 3 to 11 show the composition and properties (bending strength, fracture energy, erosion resistance, , cracking resistance).
First, the examples in Table 3 show the fiber diameter of the carbon fibers constituting the carbon fiber bundle, the number of carbon fibers per carbon fiber bundle, and the carbon fiber fabric buried inside the refractory body. We investigated the effects of the mass per 1 m 2 of carbon fiber fabric and the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory (buried density) on the bending strength, fracture energy, and cracking resistance of graphite-containing refractories. It is something that

この実施例では、炭素繊維束を構成する炭素繊維の繊維径を0.5~50μm、炭素繊維束の1束あたりの炭素繊維数(本数)を900~350000本とすることにより、1mあたりの質量が異なる炭素繊維織物を用意し、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が異なるようにマグネシア・カーボン質耐火物(耐火物本体)の内部に埋設した。マグネシア・カーボン質耐火物は、表1の発明配合例1-3の組成を有するものを用いた。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。また、事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(マグネシア)の最大粒径は5mm未満である。
発明例2-1~発明例2-7が示す通り、炭素繊維束を構成する炭素繊維の繊維径が1~45μm、炭素繊維束の1束あたりの炭素繊維数(本数)が1000~300000本の場合に、炭素繊維織物1mあたりの質量が40~1300g、耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が10~2000本/mmとなり、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。
In this example, the fiber diameter of the carbon fibers constituting the carbon fiber bundle is 0.5 to 50 μm, and the number of carbon fibers per carbon fiber bundle is 900 to 350,000 . Carbon fiber fabrics with different masses were prepared, and these were embedded inside a magnesia-carbon refractory (refractory body) so that the density of carbon fibers in the refractory cross section parallel to the refractory working surface was different. The magnesia-carbon refractory used had the composition of Invention Blend Example 1-3 in Table 1. The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. Further, a carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (magnesia) constituting the refractory body is less than 5 mm.
As shown in Invention Examples 2-1 to 2-7, the fiber diameter of the carbon fibers constituting the carbon fiber bundle is 1 to 45 μm, and the number of carbon fibers per carbon fiber bundle is 1,000 to 300,000. In this case, the mass of carbon fiber fabric per 1 m 2 is 40 to 1,300 g, the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory is 10 to 2,000 fibers/mm 2 , and high bending strength and fracture energy. Cracking resistance has been achieved.

一方、比較例2-1が示す通り、炭素繊維束を構成する炭素繊維の繊維径が1μm未満、炭素繊維束の1束あたりの炭素繊維数(本数)が1000本未満の場合には、炭素繊維織物1mあたりの質量が40g未満、耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度(埋設密度)が10本/mm未満となり、炭素繊維織物が薄過ぎるため、高い曲げ強度および破壊エネルギー・耐割れ性は得られない。
また、比較例2-2が示す通り、炭素繊維束を構成する炭素繊維の繊維径が45μm超、炭素繊維束の1束あたりの炭素繊維数(本数)が300000本超の場合、炭素繊維織物1mあたりの質量が1300g超、耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が2000本/mm超となり、炭素繊維織物を埋設させた状態で耐火物原料(マグネシア・カーボン質原料)を成形する際に、成形体の側面に亀裂が発生して炭素繊維織物がはみ出し、成形が困難であった。この要因としては、炭素繊維織物を構成する炭素繊維束が太過ぎたために、炭素繊維織物が分厚くなり、炭素繊維織物と耐火物原料との絡みが悪く、成形する際にスプリングバックが発生し易いことが挙げられる。さらに、比較例2-3が示す通り、炭素繊維束を1方向に配向させただけでは炭素繊維織物を形成することができないため、炭素繊維織物を埋設した黒鉛含有耐火物の製造は不可能であった。
On the other hand, as shown in Comparative Example 2-1, when the fiber diameter of the carbon fibers constituting the carbon fiber bundle is less than 1 μm and the number (number) of carbon fibers per carbon fiber bundle is less than 1000, The mass of fiber fabric per 1m2 is less than 40g, the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory (embedded density) is less than 10 fibers/ mm2 , and the carbon fiber fabric is too thin, resulting in high bending. Strength, fracture energy, and cracking resistance cannot be obtained.
Furthermore, as shown in Comparative Example 2-2, when the fiber diameter of the carbon fibers constituting the carbon fiber bundle is more than 45 μm and the number of carbon fibers (number) per carbon fiber bundle is more than 300,000, carbon fiber fabric The mass per 1 m2 is over 1,300 g, the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory is over 2,000 fibers/ mm2 , and the refractory raw material (magnesia carbon When molding the raw material), cracks occurred on the sides of the molded product, causing the carbon fiber fabric to protrude, making molding difficult. The reason for this is that the carbon fiber bundles that make up the carbon fiber fabric are too thick, resulting in a thick carbon fiber fabric and poor intertwining between the carbon fiber fabric and the refractory raw material, which tends to cause springback during molding. This can be mentioned. Furthermore, as shown in Comparative Example 2-3, it is not possible to form a carbon fiber fabric simply by orienting carbon fiber bundles in one direction, and therefore it is impossible to manufacture graphite-containing refractories with embedded carbon fiber fabrics. there were.

以上のことから、耐火物本体に埋設する炭素繊維織物の1mあたりの質量を40~1300gとし、耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度を10~2000本/mmとすることにより、成形可能で且つ高い曲げ強度および破壊エネルギー・耐割れ性を有する黒鉛含有耐火物が得られることが分かる。また、炭素繊維織物の1mあたりの質量を40~1300gとするためには、炭素繊維束を構成する炭素繊維の繊維径を1~45μm、炭素繊維束の1束あたりの炭素繊維数(本数)を1000~300000本とすることが好ましいことが分かる。 From the above, the mass of the carbon fiber fabric buried in the refractory body per 1 m 2 is set at 40 to 1300 g, and the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory is set at 10 to 2000 fibers/mm 2 . It can be seen that by doing so, a graphite-containing refractory that is moldable and has high bending strength, fracture energy, and cracking resistance can be obtained. In addition, in order to make the mass of carbon fiber fabric 40 to 1300 g per 1 m 2 , the fiber diameter of the carbon fibers constituting the carbon fiber bundle should be 1 to 45 μm, and the number of carbon fibers per carbon fiber bundle (number of carbon fibers) should be 1 to 45 μm. ) is preferably 1,000 to 300,000.

表4の実施例は、炭素繊維織物を構成する炭素繊維束どうしの間隔(同じ方向に編み込まれた炭素繊維束どうしの間隔)が黒鉛含有耐火物の曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が、それぞれ3mm、5mm、10mm、20mm、30mmの間隔で編み込まれた1mあたりの質量が110~1120gの炭素繊維織物を用意し、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が200~2000本/mmとなるようにマグネシア・カーボン質耐火物(耐火物本体)の内部に埋設した。マグネシア・カーボン質耐火物は、表1の発明配合例1-3の組成を有するものを用いた。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(マグネシア)の最大粒径は5mm未満である。
The examples in Table 4 show that the spacing between carbon fiber bundles constituting a carbon fiber fabric (the spacing between carbon fiber bundles woven in the same direction) affects the bending strength, fracture energy, and cracking resistance of graphite-containing refractories. This is a study of the impact.
In this example, carbon fiber bundles with a diameter of 7 μm and a number of carbon fibers (number) of 75,000 per bundle were woven in lengths of 1 m at intervals of 3 mm, 5 mm, 10 mm, 20 mm, and 30 mm, respectively. Prepare a carbon fiber fabric with a mass of 110 to 1120 g per 2 , and use magnesia carbon material so that the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory is 200 to 2000 fibers/mm 2 . It was buried inside the refractory (refractory body). The magnesia-carbon refractory used had the composition of Invention Blend Example 1-3 in Table 1. The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (magnesia) constituting the refractory body is less than 5 mm.

発明例2-4および発明例3-2~発明例3-4が示す通り、炭素繊維織物を構成する炭素繊維束どうしの間隔(編み込み間隔)を3mm超とした場合、炭素繊維織物と耐火物原料(マグネシア・カーボン質原料)との絡みが良く、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。
一方、発明例3-1が示す通り、炭素繊維織物を構成する炭素繊維束どうしの間隔(編み込み間隔)を3mm以下とした場合、炭素繊維織物と耐火物原料との絡みが悪く、発明例3-2~発明例3-4よりも曲げ強度および破壊エネルギー・耐割れ性は低下している。
以上のことから、炭素繊維織物を構成する炭素繊維束どうしの間隔(編み込み間隔)を3mm超にすれば、炭素繊維織物と耐火物原料の絡みが良く、高い曲げ強度および破壊エネルギー・耐割れ性を有する黒鉛含有耐火物が得られることが分かった。
As shown in Invention Example 2-4 and Invention Examples 3-2 to 3-4, when the distance between the carbon fiber bundles constituting the carbon fiber fabric (weaving interval) is more than 3 mm, the carbon fiber fabric and the refractory It has good intertwining with the raw materials (magnesia/carbonaceous raw materials) and has high bending strength, fracture energy, and cracking resistance.
On the other hand, as shown in Invention Example 3-1, when the interval between the carbon fiber bundles constituting the carbon fiber fabric (weave interval) is set to 3 mm or less, the carbon fiber fabric and the refractory raw material are not entangled, and Invention Example 3 -2 to Invention Examples 3-4, the bending strength, fracture energy, and cracking resistance are lower.
From the above, if the spacing between the carbon fiber bundles that make up the carbon fiber fabric (weave spacing) is set to more than 3 mm, the carbon fiber fabric and the refractory material will be intertwined well, resulting in high bending strength, fracture energy, and cracking resistance. It has been found that a graphite-containing refractory having the following properties can be obtained.

表5の実施例は、炭素繊維織物に接着剤による事前処理を施すことが黒鉛含有耐火物の曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が335gの炭素繊維織物を用い、この炭素繊維織物を各種の接着剤(溶液)に浸漬し、この接着剤(溶液)が付着した炭素繊維織物を耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が610本/mmとなるようにマグネシア・カーボン質耐火物(耐火物本体)の内部に埋設した。また、一部の発明例では、炭素繊維織物を接着剤(溶液)を付着させることなく、上記と同様の存在密度でマグネシア・カーボン質耐火物(耐火物本体)の内部に埋設した。マグネシア・カーボン質耐火物は、表1の発明配合例1-3の組成を有するものを用いた。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。耐火物本体を構成する骨材(マグネシア)の最大粒径は5mm未満である。
In the example shown in Table 5, the influence of pre-treatment of carbon fiber fabric with an adhesive on the bending strength, fracture energy, and cracking resistance of graphite-containing refractories was investigated.
In this example, a carbon fiber fabric with a mass of 335 g per 1 m 2 is made of carbon fiber bundles with a carbon fiber diameter of 7 μm and a carbon fiber number (number) of 75,000 per bundle, woven at intervals of 10 mm. The carbon fiber fabric is immersed in various adhesives (solutions), and the carbon fiber fabric to which the adhesive (solution) is attached has a density of 610 carbon fibers in the cross section of the refractory parallel to the working surface of the refractory. It was buried inside a magnesia-carbon refractory (refractory body) so that the refractory was refractory/mm 2 . Furthermore, in some invention examples, carbon fiber fabrics were embedded inside magnesia-carbon refractories (refractory body) at the same density as above without adhering adhesive (solution). The magnesia-carbon refractory used had the composition of Invention Blend Example 1-3 in Table 1. The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. The maximum particle size of the aggregate (magnesia) constituting the refractory body is less than 5 mm.

発明例2-4および発明例4-1~発明例4-10に示す通り、接着剤を付着させた炭素繊維織物を埋設した場合、炭素繊維間の密着性ならびに炭素繊維織物と耐火物原料との密着性が向上するため、発明例4-11に示すような炭素繊維織物に接着剤を付着させなかった場合と比較して曲げ強度および破壊エネルギー・耐割れ性は高くなっている。また、発明例4-6~発明例4-10に示す通り、2種類の接着剤を付着させた炭素繊維織物を埋設した場合、密着性がより向上するため、特に高い曲げ強度および破壊エネルギー・耐割れ性が得られている。
以上のことから、炭素繊維織物をフェノール樹脂などの接着剤を付着させた上で耐火物本体に埋設すると、高い曲げ強度および破壊エネルギー・耐割れ性を有する黒鉛含有耐火物が得られることが分かった。
As shown in Invention Example 2-4 and Invention Examples 4-1 to 4-10, when a carbon fiber fabric to which an adhesive is attached is buried, the adhesion between the carbon fibers and the relationship between the carbon fiber fabric and the refractory raw material decrease. Since the adhesion of the carbon fiber fabric is improved, the bending strength and fracture energy/crack resistance are higher than when no adhesive is attached to the carbon fiber fabric as shown in Invention Example 4-11. In addition, as shown in Invention Examples 4-6 to 4-10, when carbon fiber fabrics with two types of adhesives are embedded, the adhesion is further improved, resulting in particularly high bending strength and fracture energy. Cracking resistance has been achieved.
From the above, it was found that graphite-containing refractories with high bending strength, fracture energy, and cracking resistance can be obtained by attaching adhesives such as phenolic resin to carbon fiber fabrics and embedding them in the refractory body. Ta.

表6の実施例は、炭素繊維織物1層あたりの織物の枚数および炭素繊維織物の埋設層数が黒鉛含有耐火物の曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が335~1050gの炭素繊維織物を用い、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が610~1900本/mmとなるように、且つ炭素繊維織物1層あたりの織物の枚数と炭素繊維織物の埋設層数を変更してマグネシア・カーボン質耐火物(耐火物本体)の内部に埋設した。マグネシア・カーボン質耐火物は、表1の発明配合例1-3の組成を有するものを用いた。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(マグネシア)の最大粒径は5mm未満である。
In the example shown in Table 6, the influence of the number of fabrics per layer of carbon fiber fabric and the number of embedded layers of carbon fiber fabric on the bending strength, fracture energy, and cracking resistance of graphite-containing refractories was investigated.
In this example, carbon fiber bundles with a fiber diameter of 7 μm and 75,000 carbon fibers per bundle are woven at intervals of 10 mm. Carbon fibers with a mass of 335 to 1050 g per 1 m 2 are used. A fiber fabric is used, and the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory is 610 to 1900 fibers/ mm2 , and the number of fabrics per layer of carbon fiber fabric and the carbon fibers are The number of buried layers of the fabric was changed and the fabric was buried inside the magnesia-carbon refractory (refractory body). The magnesia-carbon refractory used had the composition of Invention Blend Example 1-3 in Table 1. A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (magnesia) constituting the refractory body is less than 5 mm.

発明例2-4および発明例5-1~発明例5-4に示す通り、炭素繊維織物1層あたりの織物の枚数や炭素繊維織物の埋設層数に関わりなく、高い曲げ強度および破壊エネルギー・耐割れ性が得られている。ただし、炭素繊維織物1層あたりの織物の枚数や炭素繊維織物の埋設層数が多い方が、若干ではあるが曲げ強度および破壊エネルギー・耐割れ性が高くなっている。
以上のことから、炭素繊維織物1層あたりの織物の枚数を1枚以上とし、炭素繊維織物を1層以上埋設すれば、高い曲げ強度および破壊エネルギー・耐割れ性を有する黒鉛含有耐火物が得られることが分かった。
As shown in Invention Example 2-4 and Invention Examples 5-1 to 5-4, regardless of the number of fabrics per layer of carbon fiber fabric or the number of buried layers of carbon fiber fabric, high bending strength and fracture energy Cracking resistance has been achieved. However, as the number of fabrics per layer of carbon fiber fabric and the number of embedded layers of carbon fiber fabric increase, the bending strength, fracture energy, and cracking resistance increase, albeit slightly.
From the above, if the number of fabrics per layer of carbon fiber fabric is one or more and one or more layers of carbon fiber fabric are embedded, a graphite-containing refractory with high bending strength, fracture energy, and cracking resistance can be obtained. I found out that it can be done.

表7の実施例は、耐火物本体の内部に間隔をおいて2層以上の炭素繊維織物を埋設する場合に、炭素繊維織物の層どうしの間隔(埋設間隔)が黒鉛含有耐火物の成形性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が44~513gの炭素繊維織物を用い、この炭素繊維織物を8mm、10mm、20mm、30mmの間隔でそれぞれマグネシア・カーボン質耐火物(耐火物本体)の内部に3層または5層埋設し、プレス成形による成形体に亀裂が発生しているか否かを調べた。マグネシア・カーボン質耐火物は、表1の発明配合例1-3の組成を有するものを用いた。炭素繊維織物の各層は1枚または3枚の織物で構成し、耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度は71~925本/mmとした。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(マグネシア)の最大粒径は5mm未満である。
The examples in Table 7 show that when two or more layers of carbon fiber fabric are buried at intervals inside the refractory body, the interval between the layers of the carbon fiber fabric (embedment interval) is the shapeability of the graphite-containing refractory. This study investigated the effect on
In this example, carbon fiber bundles with a fiber diameter of 7 μm and 75,000 carbon fibers per bundle are woven at intervals of 10 mm. Carbon fibers with a mass of 44 to 513 g per 1 m 2 Using fibrous fabrics, 3 or 5 layers of these carbon fiber woven fabrics are embedded inside a magnesia carbon refractory (refractory body) at intervals of 8 mm, 10 mm, 20 mm, and 30 mm, respectively, and cracks are removed in the press-formed product. We investigated whether this was occurring. The magnesia-carbon refractory used had the composition of Invention Blend Example 1-3 in Table 1. Each layer of the carbon fiber fabric was composed of one or three fabrics, and the density of carbon fibers in the cross section of the refractory parallel to the working surface of the refractory was 71 to 925 fibers/mm 2 . A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (magnesia) constituting the refractory body is less than 5 mm.

発明例2-4、発明例5-3、発明例5-4、発明例6-2、発明例6-3、発明例6-5~発明例6-8に示す通り、複数層の炭素繊維織物の層どうしの埋設間隔を10mm以上とした場合、プレス成形方向における炭素繊維織物の間隔が狭過ぎないため、成形時に炭素繊維織物を構成する炭素繊維束がスプリングバックを起さず、成形体には亀裂が発生しなかった。
一方、発明例6-1および発明例6-4に示す通り、複数層の炭素繊維織物の層どうしの埋設間隔を10mm未満とした場合、プレス成形方向における炭素繊維織物の間隔が狭過ぎるため、成形時に炭素繊維束がスプリングバックを起したため、成形体に亀裂が発生した。
以上のことから、複数層の炭素繊維織物を間隔をおいて埋設する場合に、亀裂を発生させずに耐火物を成形するためには、炭素繊維織物の層どうしの埋設間隔を10mm以上とすることが好ましいことが分かった。
As shown in Invention Example 2-4, Invention Example 5-3, Invention Example 5-4, Invention Example 6-2, Invention Example 6-3, Invention Example 6-5 to Invention Example 6-8, multiple layers of carbon fiber When the buried spacing between the layers of fabric is 10 mm or more, the spacing between the carbon fiber fabrics in the press-forming direction is not too narrow, so the carbon fiber bundles constituting the carbon fiber fabric do not spring back during molding, and the molded product No cracks occurred.
On the other hand, as shown in Invention Example 6-1 and Invention Example 6-4, when the embedded spacing between layers of multiple layers of carbon fiber fabric is less than 10 mm, the spacing between the carbon fiber fabrics in the press forming direction is too narrow. During molding, the carbon fiber bundle caused springback, which caused cracks in the molded product.
From the above, when burying multiple layers of carbon fiber fabrics at intervals, in order to form a refractory without causing cracks, the burying distance between layers of carbon fiber fabrics should be 10 mm or more. I found this to be preferable.

溶銑予備処理容器の内張りに使用するアルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物についても同様の検討を行った。
表8の実施例は、溶銑予備処理容器の内張りに使用するアルミナ・シリカ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が335gの炭素繊維織物を用い、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が610本/mmとなるようにアルミナ・シリカ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に埋設した。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(アルミナ原料、炭化珪素原料、シリカ原料)の最大粒径は5mm未満である。
A similar study was conducted on graphite-containing refractories whose aggregates are alumina raw materials, silicon carbide raw materials, and silica raw materials used for lining hot metal pretreatment vessels.
The examples in Table 8 are about alumina, silica, silicon carbide, and carbon refractories (graphite-containing refractories whose aggregates are alumina raw materials, silicon carbide raw materials, and silica raw materials) used for lining hot metal pretreatment vessels. This study investigated the effects of composition on the bending strength, fracture energy, cracking resistance, and erosion resistance of graphite-containing refractories.
In this example, a carbon fiber fabric with a mass of 335 g per 1 m 2 is made of carbon fiber bundles with a carbon fiber diameter of 7 μm and a carbon fiber number (number) of 75,000 per bundle, woven at intervals of 10 mm. This is applied inside the alumina, silica, silicon carbide, and carbon refractories (refractory body) so that the density of carbon fibers in the cross section of the refractory parallel to the refractory operating surface is 610 fibers/ mm2 . Buried. The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (alumina raw material, silicon carbide raw material, silica raw material) constituting the refractory body is less than 5 mm.

発明例7-1~発明例7-7が示す通り、アルミナ原料の含有量を10~95質量%、シリカ原料の含有量を1~50質量%、黒鉛含有量を1~80質量%とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
これに対して、比較例7-1が示す通り、アルミナ原料の含有量が10質量%未満、シリカ原料の含有量が1質量%未満、黒鉛含有量が80質量%超の場合には、破壊エネルギー、耐溶損性がともに大幅に低下している。
また、比較例7-2が示す通り、アルミナ原料の含有量が95質量%超、シリカ原料の含有量が1質量%未満、黒鉛含有量が1質量%未満の場合、熱スポーリングによる亀裂の発生を抑制できず、破壊エネルギー・耐割れ性が大幅に低下している。
以上のことから、アルミナ・シリカ・炭化珪素・カーボン質耐火物において、アルミナ原料の含有量を10~95質量%、シリカ原料の含有量を1~50質量%、黒鉛含有量を1~80質量%とすれば、高耐溶損性と高い破壊エネルギー・耐割れ性を両立できることが分かる。
As shown in Invention Examples 7-1 to 7-7, the content of the alumina raw material was 10 to 95% by mass, the content of the silica raw material was 1 to 50% by mass, and the graphite content was 1 to 80% by mass. In this case, high bending strength, fracture energy, cracking resistance, and erosion resistance are obtained.
On the other hand, as shown in Comparative Example 7-1, when the content of alumina raw material is less than 10% by mass, the content of silica raw material is less than 1% by mass, and the graphite content is more than 80% by mass, destruction occurs. Both energy and erosion resistance are significantly reduced.
Furthermore, as shown in Comparative Example 7-2, when the content of alumina raw material is more than 95% by mass, the content of silica raw material is less than 1% by mass, and the content of graphite is less than 1% by mass, cracks due to thermal spalling occur. The occurrence of cracking cannot be suppressed, and fracture energy and cracking resistance are significantly reduced.
From the above, in alumina, silica, silicon carbide, and carbon refractories, the alumina raw material content is 10 to 95 mass%, the silica raw material content is 1 to 50 mass%, and the graphite content is 1 to 80 mass%. %, it can be seen that both high erosion resistance and high fracture energy/crack resistance can be achieved.

表9の実施例は、溶銑予備処理容器の内張りに使用するアルミナ・シリカ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)であって、骨材原料の一部として、使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑を用いた黒鉛含有耐火物について、その耐火物屑含有量が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が335gの炭素繊維織物を用い、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が610本/mmとなるようにアルミナ・シリカ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に埋設した。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(アルミナ原料、炭化珪素原料、シリカ原料、使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物を粉砕した耐火物屑)の最大粒径は5mm未満である。
The examples in Table 9 are alumina, silica, silicon carbide, and carbon refractories (graphite-containing refractories using alumina raw materials, silicon carbide raw materials, and silica raw materials as aggregates) used for lining hot metal pretreatment vessels. , for graphite-containing refractories that use refractory scraps obtained by crushing used alumina, silica, silicon carbide, and carbonaceous refractories as part of the aggregate raw material, the refractory scrap content is graphite. This study investigated the effects on the bending strength, fracture energy, cracking resistance, and erosion resistance of the contained refractories.
In this example, a carbon fiber fabric with a mass of 335 g per 1 m 2 is made of carbon fiber bundles with a carbon fiber diameter of 7 μm and a carbon fiber number (number) of 75,000 per bundle, woven at intervals of 10 mm. This is applied inside the alumina, silica, silicon carbide, and carbon refractories (refractory body) so that the density of carbon fibers in the cross section of the refractory parallel to the refractory operating surface is 610 fibers/ mm2 . Buried. The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (alumina raw material, silicon carbide raw material, silica raw material, refractory waste obtained by crushing used alumina, silica, silicon carbide, carbonaceous refractory) that makes up the refractory body is less than 5 mm.

発明例8-1~発明例8-3が示す通り、耐火物屑の含有量を10~90質量%、シリカ原料の含有量を1質量%以上、黒鉛含有量を1~80質量%とした場合、表8に示したバージン原料のみを使用した黒鉛含有耐火物と同程度の破壊エネルギー・耐割れ性および耐溶損性が得られている。
これに対して、比較例8-1が示す通り、耐火物屑含有量が90質量%超、シリカ原料の含有量が1質量%未満、黒鉛含有量が1質量%未満の場合、破壊エネルギー・耐割れ性および耐溶損性が大幅に低下している。
以上のことから、アルミナ・シリカ・炭化珪素・カーボン質耐火物において、骨材原料の一部として使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑を用いた黒鉛含有耐火物については、耐火物屑の含有量を10~90質量%、シリカ原料の含有量を1質量%以上、黒鉛含有量を1~80質量%とすれば、破壊エネルギー・耐割れ性を高く維持でき、さらに、バージン原料のみを使用した黒鉛含有耐火物と同程度の耐溶損性を有することが分かる。
As shown in Invention Examples 8-1 to 8-3, the content of refractory waste was 10 to 90% by mass, the content of silica raw material was 1% by mass or more, and the graphite content was 1 to 80% by mass. In this case, fracture energy, cracking resistance, and erosion resistance comparable to those of graphite-containing refractories using only virgin raw materials shown in Table 8 were obtained.
On the other hand, as shown in Comparative Example 8-1, when the refractory waste content is more than 90% by mass, the silica raw material content is less than 1% by mass, and the graphite content is less than 1% by mass, the fracture energy Cracking resistance and erosion resistance are significantly reduced.
From the above, for alumina, silica, silicon carbide, and carbon refractories, refractory waste obtained by crushing used alumina, silica, silicon carbide, and carbon refractories as part of the aggregate raw material is Regarding the graphite-containing refractory used, if the content of refractory waste is 10 to 90% by mass, the content of silica raw material is 1% by mass or more, and the graphite content is 1 to 80% by mass, the fracture energy and resistance are It can be seen that the crackability can be maintained at a high level, and furthermore, it has the same level of erosion resistance as a graphite-containing refractory using only virgin raw materials.

表10の実施例は、アルミナ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が335gの炭素繊維織物を用い、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が610本/mmとなるようにアルミナ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に埋設した。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(アルミナ原料、炭化珪素原料)の最大粒径は5mm未満である。
The examples in Table 10 show the bending strength, fracture energy, and The effect on cracking resistance and erosion resistance was investigated.
In this example, a carbon fiber fabric with a mass of 335 g per 1 m 2 is made of carbon fiber bundles with a carbon fiber diameter of 7 μm and a carbon fiber number (number) of 75,000 per bundle, woven at intervals of 10 mm. This was buried inside the alumina/silicon carbide/carbon refractory (refractory body) so that the density of carbon fibers in the cross section of the refractory parallel to the operating surface of the refractory was 610 fibers/ mm2 . . The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (alumina raw material, silicon carbide raw material) constituting the refractory body is less than 5 mm.

発明例9-1~発明例9-3が示す通り、アルミナ原料の含有量を10~95質量%、黒鉛含有量を1~80質量%とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
これに対して、比較例9-1が示す通り、アルミナ原料の含有量が10質量%未満、黒鉛含有量が80質量%超の場合、破壊エネルギー、耐溶損性が大幅に低下している。また、比較例9-2が示す通り、アルミナ原料の含有量が95質量%超、黒鉛含有量が1質量%未満の場合、破壊エネルギー・耐割れ性が大幅に低下している。
以上のことから、アルミナ・炭化珪素・カーボン質耐火物において、アルミナ原料の含有量を10~95質量%、黒鉛含有量を1~80質量%とすれば、高い破壊エネルギー・耐割れ性と耐溶損性が得られることが分かる。
As shown in Invention Examples 9-1 to 9-3, when the alumina raw material content is 10 to 95% by mass and the graphite content is 1 to 80% by mass, high bending strength, fracture energy, and cracking resistance are achieved. and corrosion resistance.
On the other hand, as Comparative Example 9-1 shows, when the alumina raw material content is less than 10% by mass and the graphite content is more than 80% by mass, the fracture energy and erosion resistance are significantly reduced. Further, as shown in Comparative Example 9-2, when the alumina raw material content is more than 95% by mass and the graphite content is less than 1% by mass, the fracture energy and cracking resistance are significantly reduced.
From the above, in alumina/silicon carbide/carbon refractories, if the alumina raw material content is 10 to 95% by mass and the graphite content is 1 to 80% by mass, high fracture energy, cracking resistance, and melting resistance are achieved. It can be seen that damage loss can be obtained.

表11の実施例は、シリカ・炭化珪素・カーボン質耐火物(シリカ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、炭素繊維の繊維径を7μm、1束あたりの炭素繊維数(本数)を75000本とした炭素繊維束が10mmの間隔で編み込まれた1mあたりの質量が335gの炭素繊維織物を用い、これを耐火物稼働面と平行な耐火物断面における炭素繊維の存在密度が610本/mmとなるようにシリカ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に埋設した。炭素繊維織物の埋設層数は1層とし、それを1枚の織物で構成した。事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、このフェノール樹脂(樹脂溶液)が付着した炭素繊維織物を耐火物本体に埋設した。耐火物本体を構成する骨材(シリカ原料、炭化珪素原料)の最大粒径は5mm未満である。
The examples in Table 11 show that the composition of silica/silicon carbide/carbon refractories (graphite-containing refractories using silica raw materials and silicon carbide raw materials as aggregates) is the bending strength, fracture energy, and resistance of the graphite-containing refractories. The effect on cracking resistance and erosion resistance was investigated.
In this example, a carbon fiber fabric with a mass of 335 g per 1 m 2 is made of carbon fiber bundles with a carbon fiber diameter of 7 μm and a carbon fiber number (number) of 75,000 per bundle, woven at intervals of 10 mm. This was buried inside the silica/silicon carbide/carbon refractory (refractory body) so that the density of carbon fibers in the cross section of the refractory parallel to the refractory operating surface was 610 fibers/ mm2 . . The number of buried layers of the carbon fiber fabric was one, and it was composed of one fabric. A carbon fiber fabric was dipped in a phenol resin (resin solution) as an adhesive in advance, and the carbon fiber fabric to which the phenol resin (resin solution) was attached was embedded in the refractory body. The maximum particle size of the aggregate (silica raw material, silicon carbide raw material) constituting the refractory body is less than 5 mm.

発明例10-1および発明例10-2が示す通り、シリカ原料の含有量を1~50質量%、黒鉛含有量を1~80質量%とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
これに対して、比較例10-1が示す通り、シリカ原料の含有量を1質量%未満、黒鉛含有量を80質量%超とした場合、破壊エネルギー・耐割れ性が低下している。また、比較例10-2が示す通り、黒鉛含有量を80質量%超とした場合も破壊エネルギー・耐割れ性が低下している。
以上のことから、シリカ・炭化珪素・カーボン質耐火物において、シリカ原料の含有量を1~50質量%、黒鉛含有量を1~80質量%とすれば、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られることが分かる。
As shown in Invention Example 10-1 and Invention Example 10-2, when the silica raw material content is 1 to 50% by mass and the graphite content is 1 to 80% by mass, high bending strength and fracture energy/crack resistance are achieved. and corrosion resistance.
On the other hand, as shown in Comparative Example 10-1, when the silica raw material content is less than 1% by mass and the graphite content is more than 80% by mass, the fracture energy and cracking resistance are reduced. Furthermore, as shown in Comparative Example 10-2, the fracture energy and cracking resistance are also reduced when the graphite content exceeds 80% by mass.
From the above, in silica/silicon carbide/carbon refractories, if the silica raw material content is 1 to 50% by mass and the graphite content is 1 to 80% by mass, high bending strength, fracture energy, and cracking resistance can be achieved. It can be seen that good properties and corrosion resistance can be obtained.

Figure 2023166932000002
Figure 2023166932000002

Figure 2023166932000003
Figure 2023166932000003

Figure 2023166932000004
Figure 2023166932000004

Figure 2023166932000005
Figure 2023166932000005

Figure 2023166932000006
Figure 2023166932000006

Figure 2023166932000007
Figure 2023166932000007

Figure 2023166932000008
Figure 2023166932000008

Figure 2023166932000009
Figure 2023166932000009

Figure 2023166932000010
Figure 2023166932000010

Figure 2023166932000011
Figure 2023166932000011

Figure 2023166932000012
Figure 2023166932000012

A 耐火物本体
B 炭素繊維織物
b 炭素繊維束
x 耐火物稼動面
y 反稼動面
A Refractory body
B Carbon fiber fabric
b Carbon fiber bundle
x Refractory working surface
y Anti-movement surface

Claims (13)

黒鉛含有量が1~80質量%の耐火物本体(A)の内部に炭素繊維織物(B)が埋設された黒鉛含有耐火物であって、
炭素繊維織物(B)は1mあたりの質量が40~1300gであることを特徴とする黒鉛含有耐火物。
A graphite-containing refractory in which a carbon fiber fabric (B) is embedded inside a refractory body (A) having a graphite content of 1 to 80% by mass,
The carbon fiber fabric (B) is a graphite-containing refractory characterized by a mass of 40 to 1,300 g per 1 m 2 .
炭素繊維織物(B)は、炭素繊維束(b)が耐火物本体(A)を構成する骨材の最大粒径超の間隔で2方向以上に編み込まれた織物であり、
炭素繊維束(b)は、繊維径が1~45μmの炭素繊維を束に纏めたものであって、1束あたりの炭素繊維の本数が1000~300000本であり、
耐火物稼働面と平行な耐火物断面における、炭素繊維織物(B)を構成する炭素繊維の存在密度が10~2000本/mmであることを特徴とする請求項1に記載の黒鉛含有耐火物。
The carbon fiber fabric (B) is a fabric in which carbon fiber bundles (b) are woven in two or more directions at intervals exceeding the maximum particle size of the aggregate constituting the refractory body (A),
The carbon fiber bundle (b) is a bundle of carbon fibers with a fiber diameter of 1 to 45 μm, and the number of carbon fibers per bundle is 1000 to 300000,
The graphite-containing refractory according to claim 1, characterized in that the density of the carbon fibers constituting the carbon fiber fabric (B) in the cross section of the refractory parallel to the working surface of the refractory is 10 to 2000 fibers/mm 2 . thing.
耐火物本体(A)の内部に、耐火物稼動面と直交する方向に沿って炭素繊維織物(B)が埋設されたことを特徴とする請求項1に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 1, characterized in that a carbon fiber fabric (B) is embedded inside the refractory body (A) along a direction perpendicular to the refractory operating surface. 炭素繊維織物(B)は、同じ方向に編み込まれた炭素繊維束(b)どうしの間隔が3mm超であることを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 3, wherein the carbon fiber fabric (B) has carbon fiber bundles (b) woven in the same direction at intervals of more than 3 mm. 炭素繊維織物(B)が1枚または積層した2枚以上の織物で構成されることを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 3, wherein the carbon fiber fabric (B) is composed of one fabric or two or more laminated fabrics. 耐火物本体(A)の内部に、炭素繊維織物(B)が1層又は間隔をおいて2層以上埋設されることを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 3, characterized in that one layer or two or more layers of carbon fiber fabric (B) are embedded inside the refractory main body (A). . 耐火物本体(A)の内部に埋設された2層以上の炭素繊維織物(B)どうしの間隔が10mm以上であることを特徴とする請求項6に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 6, characterized in that the interval between two or more layers of carbon fiber fabric (B) embedded within the refractory body (A) is 10 mm or more. 炭素繊維織物(B)が耐火物本体(A)に対して接着剤成分を介して密着し、該接着剤成分は、有機樹脂、無機ゾル由来の無機微粒子、タールまたは/およびピッチ由来の有機物、有機糊由来の有機物の中から選ばれる1種以上であることを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The carbon fiber fabric (B) adheres to the refractory body (A) through an adhesive component, and the adhesive component includes organic resin, inorganic fine particles derived from inorganic sol, organic matter derived from tar and/or pitch, The graphite-containing refractory according to any one of claims 1 to 3, characterized in that the graphite-containing refractory is one or more selected from organic substances derived from organic glue. 耐火物本体(A)は、マグネシア濃度が90質量%以上のマグネシア原料を20~99質量%含有することを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 3, wherein the refractory body (A) contains 20 to 99% by mass of a magnesia raw material having a magnesia concentration of 90% by mass or more. 耐火物本体(A)は、アルミナ濃度が70質量%以上のアルミナ原料を10~95質量%含有することを特徴とする請求項1に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 1, wherein the refractory body (A) contains 10 to 95% by mass of an alumina raw material having an alumina concentration of 70% by mass or more. 耐火物本体(A)は、シリカ原料を1~50質量%含有することを特徴とする請求項1に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 1, wherein the refractory body (A) contains 1 to 50% by mass of silica raw material. 耐火物本体(A)は、炭化珪素濃度が80質量%以上の炭化珪素原料を1質量%以上含有することを特徴とする請求項10または11に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 10 or 11, wherein the refractory body (A) contains 1% by mass or more of a silicon carbide raw material having a silicon carbide concentration of 80% by mass or more. 耐火物本体(A)は、使用済み耐火物を粉砕した耐火物屑を10~90質量%含有することを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 3, wherein the refractory body (A) contains 10 to 90% by mass of refractory waste obtained by crushing used refractories.
JP2022077804A 2022-05-10 2022-05-10 Graphite-containing refractory Pending JP2023166932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022077804A JP2023166932A (en) 2022-05-10 2022-05-10 Graphite-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022077804A JP2023166932A (en) 2022-05-10 2022-05-10 Graphite-containing refractory

Publications (1)

Publication Number Publication Date
JP2023166932A true JP2023166932A (en) 2023-11-22

Family

ID=88836982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022077804A Pending JP2023166932A (en) 2022-05-10 2022-05-10 Graphite-containing refractory

Country Status (1)

Country Link
JP (1) JP2023166932A (en)

Similar Documents

Publication Publication Date Title
AU2008354499B2 (en) Hot gunning repair mix
US8349752B2 (en) Plate brick and production method therefor
CN100528807C (en) Ceramic batch and associated product for fireproof applications
US11629916B2 (en) Graphite-containing refractory and method of producing graphite-containing refractory
CN102941327B (en) Flexible continuously cast water gap and manufacturing method thereof
JP2023166932A (en) Graphite-containing refractory
JP2023166933A (en) Manufacturing method of refractory containing graphite
Chandra et al. Refractories and failures
CA2310431C (en) Refractory batch, in particular for the production of a shaped body, and process for producing the shaped body
CN113683426A (en) Baking-free high-strength metal ceramic composite material and preparation method and application thereof
JP2023130030A (en) Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory
JP2023149344A (en) Graphite-containing refractory
JP6974801B2 (en) Graphite-containing refractory
JP4945257B2 (en) Refractory
JP2023130033A (en) Method for manufacturing graphite-containing refractory
JP2023149350A (en) Manufacturing method of graphite-containing refractory
JP6419555B2 (en) Cast refractory
JP6957544B2 (en) Method for manufacturing graphite-containing refractory
Ouyang et al. Microstructures and Properties of Carbon Fibers and in-situ Whiskers Reinforced Mullite-Based Castable Composites
JP2023089721A (en) Graphite-containing refractory and method of producing the same
JP4527906B2 (en) Carbon-containing amorphous refractory and its wet spraying method
JPH10120471A (en) Repairing material for lining torpedo car by vibrating darby
JP5556043B2 (en) Refractory material excellent in spalling resistance and method for producing the same
JP2000351678A (en) Refractory material with excellent spalling resistance and erosion resistance
JP2001114572A (en) Refractory used for producing molten pig iron and molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231222