JP2023130030A - Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory - Google Patents

Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory Download PDF

Info

Publication number
JP2023130030A
JP2023130030A JP2022034466A JP2022034466A JP2023130030A JP 2023130030 A JP2023130030 A JP 2023130030A JP 2022034466 A JP2022034466 A JP 2022034466A JP 2022034466 A JP2022034466 A JP 2022034466A JP 2023130030 A JP2023130030 A JP 2023130030A
Authority
JP
Japan
Prior art keywords
carbon fiber
refractory
graphite
mass
fiber fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022034466A
Other languages
Japanese (ja)
Inventor
圭佑 吉田
Keisuke Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022034466A priority Critical patent/JP2023130030A/en
Publication of JP2023130030A publication Critical patent/JP2023130030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a graphite-containing refractory which can obtain high durability even if it is used under a condition that temperature rise and temperature fall are repeated over a long period, like a lining refractory such as a converter and a molten iron preliminary treatment vessel, and can obtain high durability even if it is used under a condition that an internal temperature gradient is extremely large, like a tuyere brick of a converter.SOLUTION: Carbon fiber fabrics B formed by knitting carbon fiber bundles b are knitted are embedded inside a refractory body A, the carbon fiber fabrics B contain an adhesive component c in the carbon fiber bundles b, an interval of the neighboring carbon fiber bundles b in the same direction which are adhered to or in closely contact with the refractory body A through the adhesive component c and constitute the carbon fiber fabrics B is larger than a maximum particle diameter of an aggregate constituting the refractory body A, and in a refractory cross section in a plane direction of the carbon fiber fabrics B, an area ratio occupied by the carbon fiber fabrics B to the refractory cross-sectional area is 20% or more.SELECTED DRAWING: Figure 1

Description

本発明は、炭素繊維束を編み込んだ炭素繊維織物を耐火物本体の内部に配置した黒鉛含有耐火物、およびこの黒鉛含有耐火物を施工した製鉄容器(転炉、溶銑予備処理容器、取鍋容器)に関するものである。 The present invention relates to a graphite-containing refractory in which a carbon fiber fabric woven with carbon fiber bundles is placed inside a refractory body, and a steelmaking container (converter, hot metal pretreatment container, ladle container, etc.) constructed with this graphite-containing refractory. ).

製鉄所において製銑工程や製鋼工程で使用される設備(精錬容器、搬送容器などの製鉄容器)は、高温下で長期間の使用に耐えられるように耐火物が内張り施工されている。一般に、精錬工程で使用される転炉の内張りにはマグネシア・カーボン質耐火物が使用され、溶銑予備処理工程で使用されるトピードや高炉鍋の内張りにはアルミナ・炭化珪素・カーボン質耐火物が使用される。
これらの精錬容器や搬送容器で内張りに使用される耐火物は、装入物による機械的衝撃、溶鋼や溶融スラグの撹拌による摩耗、溶融スラグによるスラグ浸食、操業中の急激な温度変化などが生じる非常に過酷な条件下で使用される。このため、安定した操業を行うためにも、そのような過酷な条件に耐えられる耐用性の高い耐火物を使用する必要がある。
Equipment used in ironmaking and steelmaking processes at steel plants (steelmaking containers such as refining containers and transport containers) are lined with refractories so that they can withstand long-term use at high temperatures. Generally, magnesia/carbon refractories are used for the lining of converters used in the refining process, and alumina/silicon carbide/carbon refractories are used for the lining of torpedoes and blast furnace pots used in the hot metal pretreatment process. used.
The refractories used as linings in these refining vessels and transport vessels are subject to mechanical shock from the charges, abrasion from agitation of molten steel and molten slag, slag erosion from molten slag, and rapid temperature changes during operation. Used under extremely harsh conditions. Therefore, in order to perform stable operations, it is necessary to use highly durable refractories that can withstand such harsh conditions.

特に、転炉の羽口部を構成する羽口煉瓦は、内部に常温のガス(酸素や冷却用炭化水素ガスなど)が流れており、炉内に近い部位では内面が常温のガスにより冷却され、外面は炉内の溶鋼からの伝熱による高温に曝されるため、羽口煉瓦内の熱勾配は極めて大きく、しかも転炉の1チャージ分の吹錬が終わる度に、溶鋼を排出することによる温度低下が生じ、大きな熱変動が繰り返される。転炉に設置される羽口煉瓦は、使用頻度が2500~4000チャージ程度にも達し、この1チャージ毎に上記のような大きな熱勾配を生じる状況と大きな熱変動が繰り返されるという極めて過酷な条件で使用されるため、このような条件での使用に耐え得る高い耐用性が必要である。
また、羽口煉瓦以外の転炉内張り耐火物(転炉内壁を構成する煉瓦)も、上述したような大きな熱変動が繰り返される非常に過酷な条件で使用されるため、羽口煉瓦ほどではないが、高い耐用性が求められる。
また、同様に、トピードや高炉鍋などの溶銑予備処理容器、取鍋容器などの内張り耐火物も、大きな熱変動が繰り返される非常に過酷な条件で使用されるため、高い耐用性が求められる。
In particular, the tuyere bricks that make up the tuyeres of a converter have room-temperature gas (oxygen, cooling hydrocarbon gas, etc.) flowing inside them, and the inner surface of the parts near the furnace are cooled by the room-temperature gas. Since the outer surface is exposed to high temperatures due to heat transfer from the molten steel in the furnace, the thermal gradient inside the tuyere bricks is extremely large, and moreover, the molten steel must be discharged every time one charge of blowing is completed in the converter. This causes the temperature to drop, causing repeated large thermal fluctuations. The tuyere bricks installed in the converter are used frequently for about 2,500 to 4,000 charges, and are subject to extremely harsh conditions in which the large thermal gradient and large thermal fluctuations described above are repeated for each charge. Because it is used under such conditions, it must have high durability to withstand use under such conditions.
In addition, converter lining refractories other than tuyere bricks (bricks that make up the inner walls of converters) are used under extremely harsh conditions with repeated large thermal fluctuations as described above, so they are not as effective as tuyere bricks. However, high durability is required.
Similarly, refractory linings such as hot metal pretreatment containers such as torpedoes and blast furnace ladle, and ladle containers are required to have high durability because they are used under extremely harsh conditions where large thermal fluctuations are repeated.

耐火物の耐用性を高める技術として、特許文献1には、高強度繊維束に合成樹脂やピッチなどを浸透(含浸)させたものに、熱処理などの硬化処理を施すことにより得られた棒状または網状の固化体を、耐火物の内部に配置することが記載されており、高強度繊維束の固化体が形状を崩すことなく耐火物の内部に配置されているので、耐火物の機械的強度と耐スポール性を高められるとしている。
また、特許文献2には、耐火物の表面の一部または全体に、耐火物よりも引張強度が高い繊維からなる一方向の束あるいは織物を耐熱性の接着剤で接着させることが記載されており、この技術により、従来よりも耐火物を高強度のまま長時間保持できるとともに、耐火物の引張強度を改善でき、亀裂発生や破壊を抑制でき、耐火物の寿命や信頼性を向上できるとしている。具体的には、鉄鋼の連続鋳造工程に使用されるロングノズル、浸漬ノズル、スライディングノズルといった内部を溶鋼が流通するノズルに対し、その外面を拘束する方向に繊維の束あるいは織物をフェノール樹脂により接着し、その表面に酸化防止下地層や酸化防止層を配置することが記載されている。これらのノズルでは、内部を溶鋼が流通するときに外面側へ熱膨張するのを前記繊維の束や織物で拘束し、ノズルを構成する耐火物に圧縮応力を生じさせ、亀裂の発生や破壊を抑制しているものと考えられる。
As a technique for increasing the durability of refractories, Patent Document 1 describes a rod-shaped or It is described that a net-like solidified body is placed inside the refractory, and since the solidified body of high-strength fiber bundles is placed inside the refractory without losing its shape, the mechanical strength of the refractory is improved. It is said to improve spall resistance.
Further, Patent Document 2 describes that a unidirectional bundle or fabric made of fibers having a higher tensile strength than the refractory is adhered to a part or the entire surface of the refractory using a heat-resistant adhesive. This technology allows refractories to maintain higher strength for longer periods than before, improves the tensile strength of refractories, suppresses cracking and destruction, and extends the lifespan and reliability of refractories. There is. Specifically, fiber bundles or fabrics are bonded using phenolic resin in a direction that constrains the outer surface of nozzles through which molten steel flows, such as long nozzles, immersion nozzles, and sliding nozzles used in the continuous steel casting process. However, it is described that an oxidation-preventing base layer or an oxidation-preventing layer is provided on the surface. In these nozzles, when molten steel flows inside, thermal expansion toward the outside is restrained by the fiber bundles or fabrics, which creates compressive stress in the refractory material that makes up the nozzle, preventing cracking and destruction. It is thought that it is being suppressed.

特開2005-320196号公報Japanese Patent Application Publication No. 2005-320196 特開2007-106618号公報Japanese Patent Application Publication No. 2007-106618

しかしながら、本発明者らが検討した結果、炭素繊維を特許文献1、2に示すような形態で耐火物に配置しても、上述したような過酷な条件に曝される製鉄容器(転炉や溶銑予備処理容器など)に用いる耐火物としては十分な耐用性が得られないことが判った。
また、特許文献1に記載の技術は、高強度繊維束を樹脂やピッチなどで固化させた棒状または網状の固化体を耐火物内に配置するものであるため、耐火物原料を圧縮成型や流し込みにより成型または施工する際に、固化体が抵抗となって耐火物原料の均一な圧縮や流入が妨げられる結果、耐火物の強度や破壊エネルギーが低下し、耐火物の耐用性が低下するという問題がある。
However, as a result of studies conducted by the present inventors, even if carbon fibers are arranged in refractories in the form shown in Patent Documents 1 and 2, steelmaking containers (such as converters and It was found that sufficient durability could not be obtained as a refractory for use in hot metal pretreatment containers, etc.
In addition, the technology described in Patent Document 1 places a rod-shaped or net-shaped solidified body of high-strength fiber bundles solidified with resin, pitch, etc. in a refractory, so the refractory raw material is compression molded or poured. During molding or construction, the solidified material acts as resistance and prevents the uniform compression and inflow of refractory raw materials, resulting in a decrease in the strength and fracture energy of the refractory, and a decrease in the durability of the refractory. There is.

また、特許文献2に記載のノズルが使用される連続鋳造工程では、転炉で吹錬された複数チャージ分の溶鋼を連続的に鋳造するため、使用されるノズルの温度変化のサイクルは転炉や溶銑予備処理容器などの内張り耐火物に較べれば長く、またノズルの外面は下方に位置する下流側の容器に貯留される溶鋼からの輻射を受けるため、ノズル内を流れる溶鋼との温度差はそれほど大きなものではない。これに対して、転炉や溶銑予備処理容器などの内張り耐火物(特に転炉の羽口部を構成する羽口煉瓦)は、上述したように非常に過酷な条件で使用されるものであり、本発明者らが検討したところによれば、特許文献2に記載の技術では、そのような耐火物の耐用性を十分に高めることができないことが判った。 In addition, in the continuous casting process in which the nozzle described in Patent Document 2 is used, multiple charges of molten steel blown in a converter are continuously cast, so the temperature change cycle of the nozzle used is The outer surface of the nozzle receives radiation from the molten steel stored in the downstream container located below, so the temperature difference between the molten steel flowing inside the nozzle and the molten steel flowing inside the nozzle is It's not that big. On the other hand, the refractory linings of converters and hot metal pretreatment vessels (particularly the tuyere bricks that make up the tuyeres of converters) are used under extremely harsh conditions as mentioned above. According to the studies conducted by the present inventors, it was found that the technique described in Patent Document 2 cannot sufficiently increase the durability of such refractories.

したがって本発明の目的は、以上のような従来技術の課題を解決し、転炉や溶銑予備処理容器などの内張り耐火物のように長期間にわたって昇温と降温が繰り返される条件で使用される場合でも高い耐用性が得られ、また、特に転炉の羽口煉瓦のように内部の温度勾配が非常に大きい条件で使用される場合でも高い耐用性が得られる黒鉛含有耐火物を提供することにある。また、本発明の他の目的は、そのような高い耐用性を有する黒鉛含有耐火物を備えた製鉄容器を提供することにある。 Therefore, it is an object of the present invention to solve the problems of the prior art as described above, and to solve the problems of the prior art when used under conditions where temperature rises and falls are repeated over a long period of time, such as lined refractories of converters and hot metal pretreatment vessels. To provide a graphite-containing refractory that can obtain high durability even when used under conditions with a very large internal temperature gradient, such as the tuyere bricks of a converter. be. Another object of the present invention is to provide a steelmaking container equipped with a graphite-containing refractory having such high durability.

本発明者らは、上記課題を解決するために検討を重ねた結果、耐火物の内部に特定の炭素繊維織物を所定の形態で埋設すること、好ましくは炭素繊維織物を構成する炭素繊維の繊維径や本数、さらには耐火物断面における炭素繊維の存在密度を最適化することにより、従来技術に較べて耐火物の破壊エネルギーが大幅に向上し、上述したような極めて厳しい使用環境でも高い耐用性が得られることを見出した。
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
As a result of repeated studies in order to solve the above problems, the present inventors have discovered that a specific carbon fiber fabric can be embedded in a predetermined form inside a refractory, preferably carbon fibers constituting the carbon fiber fabric. By optimizing the diameter, number, and density of carbon fibers in the cross section of the refractory, the fracture energy of the refractory is greatly improved compared to conventional technology, resulting in high durability even in the extremely harsh usage environments mentioned above. It was found that it was possible to obtain
The present invention was made based on such knowledge and has the following gist.

[1]黒鉛を含有する耐火物本体(A)の内部に、炭素繊維束(b)を2方向以上に編み込んだ炭素繊維織物(B)が埋設された黒鉛含有耐火物であって、
炭素繊維織物(B)は、炭素繊維束(b)内に接着剤成分(c)を含むとともに、耐火物本体(A)に対して接着剤成分(c)を介して接着または密着し、
炭素繊維織物(B)を構成する同じ方向の炭素繊維束(b)は、隣り合う炭素繊維束(b)の間隔が耐火物本体(A)を構成する骨材の最大粒径よりも大きく、
炭素繊維織物(B)の面方向での耐火物断面において、耐火物断面積に対する炭素繊維織物(B)の占める面積割合が20%以上であることを特徴とする黒鉛含有耐火物。
[1] A graphite-containing refractory in which a carbon fiber fabric (B) in which carbon fiber bundles (b) are woven in two or more directions is embedded inside a graphite-containing refractory body (A),
The carbon fiber fabric (B) contains an adhesive component (c) in the carbon fiber bundle (b), and is adhered or adhered to the refractory body (A) via the adhesive component (c),
The carbon fiber bundles (b) in the same direction constituting the carbon fiber fabric (B) have an interval between adjacent carbon fiber bundles (b) larger than the maximum particle size of the aggregate constituting the refractory body (A),
A graphite-containing refractory characterized in that, in a cross-section of the refractory in the plane direction of the carbon fiber fabric (B), the area ratio of the carbon fiber fabric (B) to the cross-sectional area of the refractory is 20% or more.

[2]上記[1]の黒鉛含有耐火物において、耐火物本体(A)の内部に、炭素繊維織物(B)が耐火物稼動面と直交する方向に沿って埋設されたことを特徴とする黒鉛含有耐火物。
[3]上記[1]または[2]の黒鉛含有耐火物において、炭素繊維織物(B)の厚さが0.1mm以上3mm以下であることを特徴とする黒鉛含有耐火物。
[4]上記[1]~[3]のいずれかの黒鉛含有耐火物において、耐火物本体(A)の内部に、炭素繊維織物(B)が間隔をおいて2層以上埋設されたことを特徴とする黒鉛含有耐火物。
[5]上記[4]の黒鉛含有耐火物において、2層以上の炭素繊維織物(B)が間隔をおいて並列状に埋設され、隣り合う炭素繊維織物(B)の間隔が10mm以上であることを特徴とする黒鉛含有耐火物。
[2] The graphite-containing refractory of [1] above is characterized in that the carbon fiber fabric (B) is embedded inside the refractory body (A) along a direction perpendicular to the operating surface of the refractory. Graphite-containing refractories.
[3] The graphite-containing refractory according to [1] or [2] above, wherein the thickness of the carbon fiber fabric (B) is 0.1 mm or more and 3 mm or less.
[4] In any of the graphite-containing refractories set forth in [1] to [3] above, two or more layers of carbon fiber fabric (B) are buried at intervals within the refractory body (A). Characteristic graphite-containing refractories.
[5] In the graphite-containing refractory of [4] above, two or more layers of carbon fiber fabrics (B) are buried in parallel at intervals, and the spacing between adjacent carbon fiber fabrics (B) is 10 mm or more. A graphite-containing refractory characterized by:

[6]上記[1]~[5]のいずれかの黒鉛含有耐火物において、炭素繊維織物(B)を構成する同じ方向の炭素繊維束(b)は、隣り合う炭素繊維束(b)の間隔が3mm超であることを特徴とする黒鉛含有耐火物。
[7]上記[1]~[6]のいずれかの黒鉛含有耐火物において、炭素繊維織物(B)を構成する炭素繊維束(b)の幅が1mm超15mm以下であることを特徴とする黒鉛含有耐火物。
[8]上記[1]~[7]のいずれかの黒鉛含有耐火物において、接着剤成分(c)は、残炭率が6質量%以上80質量%以下の有機物であることを特徴とする黒鉛含有耐火物。
[6] In any of the graphite-containing refractories according to [1] to [5] above, the carbon fiber bundles (b) in the same direction constituting the carbon fiber fabric (B) are different from the adjacent carbon fiber bundles (b). A graphite-containing refractory characterized by a spacing of more than 3 mm.
[7] The graphite-containing refractory according to any one of [1] to [6] above, characterized in that the width of the carbon fiber bundle (b) constituting the carbon fiber fabric (B) is more than 1 mm and less than 15 mm. Graphite-containing refractories.
[8] In the graphite-containing refractory according to any one of [1] to [7] above, the adhesive component (c) is an organic substance with a residual carbon content of 6% by mass or more and 80% by mass or less. Graphite-containing refractories.

[9]上記[1]~[8]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、黒鉛原料の含有量が1質量%以上80質量%以下であることを特徴とする黒鉛含有耐火物。
[10]上記[1]~[9]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、マグネシア原料の含有量が20質量%以上99質量%以下であることを特徴とする黒鉛含有耐火物。
[11]上記[1]~[10]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、アルミナ原料の含有量が10質量%以上95質量%以下であることを特徴とする黒鉛含有耐火物。
[12]上記[1]~[9]、[11]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、シリカ原料の含有量が1質量%以上50質量%以下であることを特徴とする黒鉛含有耐火物。
[9] In the graphite-containing refractory according to any one of [1] to [8] above, the refractory body (A) is characterized in that the content of graphite raw material is 1% by mass or more and 80% by mass or less. Graphite-containing refractories.
[10] In the graphite-containing refractory according to any one of [1] to [9] above, the refractory body (A) is characterized in that the content of magnesia raw material is 20% by mass or more and 99% by mass or less. Graphite-containing refractories.
[11] In the graphite-containing refractory according to any one of [1] to [10] above, the refractory body (A) is characterized in that the content of the alumina raw material is 10% by mass or more and 95% by mass or less. Graphite-containing refractories.
[12] In the graphite-containing refractories according to any of [1] to [9] and [11] above, the refractory body (A) has a silica raw material content of 1% by mass or more and 50% by mass or less. A graphite-containing refractory characterized by:

[13]上記[11]または[12]の黒鉛含有耐火物において、耐火物本体(A)は、炭化ケイ素原料の含有量が1質量%以上であることを特徴とする黒鉛含有耐火物。
[14]上記[1]~[13]のいずれかの黒鉛含有耐火物において、耐火物本体(A)は、使用済み耐火物を粉砕した耐火物屑を、耐火物原料として10質量%以上90質量%以下含有することを特徴とする黒鉛含有耐火物。
[15]上記[1]~[14]のいずれかの黒鉛含有耐火物を備えることを特徴とする転炉。
[16]上記[1]~[14]のいずれかの黒鉛含有耐火物を備えることを特徴とする溶銑予備処理容器。
[17]上記[1]~[14]のいずれかの黒鉛含有耐火物を備えることを特徴とする取鍋容器。
[13] The graphite-containing refractory according to [11] or [12] above, wherein the refractory body (A) has a silicon carbide raw material content of 1% by mass or more.
[14] In the graphite-containing refractory according to any one of [1] to [13] above, the refractory body (A) is made of refractory scrap obtained by pulverizing used refractories and contains 10% by mass or more of 90% by mass as a refractory raw material. A graphite-containing refractory characterized by containing less than % by mass.
[15] A converter comprising the graphite-containing refractory according to any one of [1] to [14] above.
[16] A hot metal pretreatment vessel characterized by comprising the graphite-containing refractory according to any one of [1] to [14] above.
[17] A ladle container comprising the graphite-containing refractory according to any one of [1] to [14] above.

本発明の黒鉛含有耐火物は、高い破壊エネルギーを有するため、転炉や溶銑予備処理容器の内張り耐火物のように長期間にわたって昇温と降温が繰り返される条件下で使用しても高い耐用性が得られ、また、特に転炉の羽口煉瓦のように内部の温度勾配が非常に大きい条件で使用される場合でも高い耐用性が得られる。 Since the graphite-containing refractory of the present invention has high fracture energy, it has high durability even when used under conditions where the temperature is repeatedly raised and lowered over a long period of time, such as in the refractory lining of converters and hot metal pretreatment vessels. In addition, high durability can be obtained especially when used in conditions where the internal temperature gradient is extremely large, such as in converter tuyere bricks.

本発明の黒鉛含有耐火物の一実施形態を模式的に示すものであり、図1(ア)は側面図、図1(イ)は図1(ア)中のI-I線に沿う断面図(耐火物稼働面に平行な断面図)One embodiment of the graphite-containing refractory of the present invention is schematically shown, and FIG. 1(A) is a side view, and FIG. 1(B) is a sectional view taken along line II in FIG. 1(A). (Cross-sectional view parallel to the refractory operating surface) 図1(ア)中のII-II線に沿う断面図(炭素繊維織物Bの面方向での耐火物断面図)A cross-sectional view along the II-II line in Figure 1 (A) (a cross-sectional view of the refractory in the plane direction of the carbon fiber fabric B) 本発明の黒鉛含有耐火物の製造工程の一例を示すフロー図A flow diagram showing an example of the manufacturing process of the graphite-containing refractory of the present invention 実施例における黒鉛含有耐火物の曲げ強度の測定方法を示すもので、図4(ア)は3点曲げ強度試験の実施状況を模式的に示す説明図、図4(イ)は図4(ア)の試験片の端面を模式的に示す説明図This figure shows a method for measuring the bending strength of graphite-containing refractories in Examples, and FIG. 4 (A) is an explanatory diagram schematically showing the implementation status of a three-point bending strength test, and FIG. ) is an explanatory diagram schematically showing the end face of a test piece. 実施例において、3点曲げ強度試験で得られた荷重-変位曲線から求められる破壊エネルギーの一例を示す図面A drawing showing an example of the fracture energy determined from the load-displacement curve obtained in the three-point bending strength test in the example. 実施例における黒鉛含有耐火物の耐溶損性の評価試験方法を示すもので、図6(A)は試験の実施状況を試験炉および筒状サンプルを縦断面した状態で模式的に示す説明図、図6(B)は図6(A)に示される筒状サンプルの平面図、図6(C)は図6(A),(B)に示す筒状サンプルを構成する試験片の1つを示す斜視図This shows a test method for evaluating the erosion resistance of graphite-containing refractories in Examples, and FIG. 6(A) is an explanatory diagram schematically showing the test implementation status in a longitudinal section of a test furnace and a cylindrical sample. FIG. 6(B) is a plan view of the cylindrical sample shown in FIG. 6(A), and FIG. 6(C) is a plan view of one of the test pieces constituting the cylindrical sample shown in FIGS. 6(A) and (B). Perspective view shown

本発明の黒鉛含有耐火物は、黒鉛を含有する耐火物本体Aの内部に、特定の条件で炭素繊維織物Bが埋設(配置)された黒鉛含有耐火物である。
図1および図2は、本発明の黒鉛含有耐火物の一実施形態を模式的に示すもので、図1(ア)は側面図、図1(イ)は図1(ア)中のI-I線に沿う断面図(耐火物稼働面に平行な断面図)であり、xが耐火物の稼動面(yが反稼動面)である。また、図2は、図1(ア)中のII-II線に沿う断面図(炭素繊維織物Bの面方向での耐火物断面図)である。この実施形態の黒鉛含有耐火物では、耐火物本体Aの内部に間隔をおいて3層の炭素繊維織物Bが埋設されている。
The graphite-containing refractory of the present invention is a graphite-containing refractory in which a carbon fiber fabric B is embedded (arranged) inside a refractory body A containing graphite under specific conditions.
Figures 1 and 2 schematically show an embodiment of the graphite-containing refractory of the present invention, with Figure 1 (A) being a side view and Figure 1 (B) being I- It is a cross-sectional view along the I line (a cross-sectional view parallel to the working surface of the refractory), where x is the working surface of the refractory (y is the counter-working surface). Further, FIG. 2 is a cross-sectional view (a refractory cross-sectional view in the plane direction of the carbon fiber fabric B) taken along the line II-II in FIG. 1(A). In the graphite-containing refractory of this embodiment, three layers of carbon fiber fabric B are embedded within a refractory body A at intervals.

以下、炭素繊維織物Bの構成とその埋設条件(形態)について説明する。
図2に示すように、炭素繊維織物Bは、炭素繊維束bを2方向以上に編み込む(すなわち2方向以上に配向させて編み込む)ことにより構成されるシート状の部材(織物)である。炭素繊維束bの配向数は任意であるが、本実施形態の炭素繊維織物Bは、炭素繊維束bを直交する2方向に配向させて編み込むことで構成されている。なお、炭素繊維束bの配向方向が1方向の場合には炭素繊維織物を形成できないため、炭素繊維織物を埋設した黒鉛含有耐火物が得られない。
炭素繊維織物Bは、耐火物本体Aの内部に埋設(配置)されるが、図2中の「炭素繊維束bの幅方向拡大断面図」に示すように、その炭素繊維束b内に接着剤成分cを含むとともに、耐火物本体Aに対して接着剤成分cを介して接着または密着した状態で埋設(配置)される。
Hereinafter, the structure of the carbon fiber fabric B and its embedding conditions (form) will be explained.
As shown in FIG. 2, the carbon fiber fabric B is a sheet-like member (woven fabric) formed by weaving carbon fiber bundles b in two or more directions (that is, oriented in two or more directions and knitting). Although the number of orientations of the carbon fiber bundles b is arbitrary, the carbon fiber fabric B of this embodiment is constructed by orienting the carbon fiber bundles b in two orthogonal directions and weaving them together. Note that if the carbon fiber bundle b is oriented in one direction, a carbon fiber fabric cannot be formed, and therefore a graphite-containing refractory in which a carbon fiber fabric is embedded cannot be obtained.
The carbon fiber fabric B is buried (arranged) inside the refractory body A, but as shown in the "enlarged cross-sectional view in the width direction of the carbon fiber bundle b" in FIG. It contains the agent component c and is embedded (arranged) in the refractory body A in a state where it is adhered or in close contact with the refractory body A via the adhesive component c.

ここで、炭素繊維織物Bは、これを構成する炭素繊維束bが束内に接着剤成分cを含むことにより束として一体化されるとともに、耐火物本体Aに対して接着剤成分cを介して接着または密着することで炭素繊維が耐火物と一体化することにより、亀裂の発生を抑制できる高い破壊エネルギーが得られる。特に、接着剤成分cとなる接着剤として粘着性を有する有機物(有機樹脂液など)を用いた場合には、接着剤(粘着性付与剤)によって炭素繊維に粘着性が付与されることにより炭素繊維束bが束ねられるとともに、耐火物を成形した際に、耐火物と炭素繊維との密着を良くすることができ、亀裂などの欠陥の抑制により有効である。
なお、接着剤成分cの好ましい条件については、後に詳述する。
Here, the carbon fiber fabric B is integrated as a bundle by the carbon fiber bundle b containing the adhesive component c in the bundle, and is also bonded to the refractory body A through the adhesive component c. By adhering or coming into close contact with the refractory, the carbon fibers are integrated with the refractory, which provides high fracture energy that can suppress the occurrence of cracks. In particular, when a sticky organic substance (organic resin liquid, etc.) is used as the adhesive component c, the adhesive (tackifier) imparts tackiness to the carbon fibers, causing the carbon fibers to become sticky. In addition to bundling the fiber bundles b, it is possible to improve the adhesion between the refractory and the carbon fibers when the refractory is formed, which is more effective in suppressing defects such as cracks.
Note that preferable conditions for the adhesive component c will be detailed later.

耐火物本体Aの内部における炭素繊維織物Bの配置形態は任意であり、特別な制限はないが、操業時、亀裂発生原因である引張応力は耐火物の長手方向に発生することから、一方向に沿って直線状に配置(埋設)することが好ましく、特に、耐火物稼動面xと直交する方向に沿って配置(埋設)されることが好ましい。なお、炭素繊維織物Bは重ね合わせた2枚以上の織物で構成してもよい。
耐火物本体Aの内部に埋設される炭素繊維織物Bは、その端部が耐火物本体Aの表面に露出していてもよいし、露出していなくてもよい。また、後者の場合、耐火物の稼動面x側においては、炭素繊維織物Bの端部と稼動面x間の距離はなるべく小さいことが好ましいが、反稼動面y側においては、炭素繊維織物Bの端部と反稼動面y間の距離はある程度大きくてもよい。これは、使用終了時にも残存することが想定される耐火物の反稼働面y側の部分には、炭素繊維織物Bが埋設されている必要がないからである。
The arrangement of the carbon fiber fabric B inside the refractory body A is arbitrary and there are no special restrictions, but since the tensile stress that causes cracks is generated in the longitudinal direction of the refractory during operation, it is preferable to place it in one direction. It is preferable to arrange (buried) linearly along the direction, and particularly preferably to arrange (buried) along the direction orthogonal to the refractory operating surface x. Note that the carbon fiber fabric B may be composed of two or more fabrics stacked one on top of the other.
The ends of the carbon fiber fabric B buried inside the refractory body A may or may not be exposed on the surface of the refractory body A. In the latter case, on the working surface x side of the refractory, it is preferable that the distance between the end of the carbon fiber fabric B and the working surface x is as small as possible; The distance between the end of y and the counter-movement surface y may be large to some extent. This is because the carbon fiber fabric B does not need to be buried in the portion on the non-working surface y side of the refractory, which is expected to remain even after the end of use.

炭素繊維織物Bを構成する同じ方向の炭素繊維束b(同じ方向に編み込まれた炭素繊維束b)は、隣り合う炭素繊維束bどうしの間隔L(図2のL,L)が耐火物本体Aを構成する骨材の最大粒径よりも大きくなるよう編み込まれている。このように炭素繊維束bの間隔L(L,L)を骨材原料の最大粒径より大きくすることで、炭素繊維織物と骨材原料の絡みを良くすることができ、成形時にラミネーションを起こすことなく破壊エネルギーを高く維持することができる。ここで、炭素繊維束bどうし間隔Lとは、図2にL,Lとして示すように炭素繊維束bの外面間の距離である。
また、隣り合う炭素繊維束bどうしの間隔L(図2のL,L)は3mm超であることが好ましい。これにより、上述したような粗大粒子だけでなく微小粒子とも炭素繊維織物Bとの絡みを良くすることができ、また、成形時にラミネーションと呼ばれる炭素繊維束に起因する剥離を起こし難くできる。なお、この間隔L(図2のL,L)の上限は特にないが、下記する炭素繊維の存在密度との関係などからして、一般には50mm程度を上限することが好ましい。
Carbon fiber bundles b in the same direction (carbon fiber bundles b woven in the same direction) constituting the carbon fiber fabric B have a distance L between adjacent carbon fiber bundles b (L 1 , L 2 in FIG. 2) that is fireproof. It is woven so that the particle size is larger than the maximum particle size of the aggregate that makes up the main body A. By making the interval L (L 1 , L 2 ) between the carbon fiber bundles b larger than the maximum particle size of the aggregate raw material in this way, it is possible to improve the intertwining of the carbon fiber fabric and the aggregate raw material, and the lamination is prevented during molding. It is possible to maintain high destructive energy without causing damage. Here, the distance L between the carbon fiber bundles b is the distance between the outer surfaces of the carbon fiber bundles b, as shown as L 1 and L 2 in FIG. 2 .
Moreover, it is preferable that the interval L (L 1 , L 2 in FIG. 2) between adjacent carbon fiber bundles b is more than 3 mm. This allows not only the above-mentioned coarse particles but also fine particles to be entangled with the carbon fiber fabric B, and also to prevent peeling caused by carbon fiber bundles called lamination during molding. Although there is no particular upper limit to the distance L (L 1 , L 2 in FIG. 2), it is generally preferable to set the upper limit to about 50 mm, considering the relationship with the density of carbon fibers described below.

また、炭素繊維織物Bは、その面方向での耐火物断面において、耐火物断面積に対する炭素繊維織物Bの占める面積割合が20%以上となるように、耐火物本体Aの内部に埋設(配置)される。ここで、炭素繊維織物Bの占める面積とは、図2に示すw1×w2で求められる面積である。このように耐火物断面積に対する炭素繊維織物Bの面積割合を20%以上とすることで、破壊エネルギーが高められ、亀裂伸展を適切に抑制することができる。また、このような観点から、耐火物断面積に対する炭素繊維織物Bの面積割合は40%以上とすることがより好ましい。 In addition, the carbon fiber fabric B is buried (arranged) inside the refractory body A so that the area ratio of the carbon fiber fabric B to the cross-sectional area of the refractory is 20% or more in the cross section of the refractory in the plane direction. ) to be done. Here, the area occupied by the carbon fiber fabric B is the area determined by w1×w2 shown in FIG. By setting the area ratio of the carbon fiber fabric B to the cross-sectional area of the refractory to 20% or more in this way, fracture energy can be increased and crack extension can be appropriately suppressed. Moreover, from such a viewpoint, it is more preferable that the area ratio of the carbon fiber fabric B to the cross-sectional area of the refractory is 40% or more.

炭素繊維織物Bは、厚さが小さすぎると破壊エネルギーが上昇しにくいため、亀裂進展抑制効果が相対的に低くなる。一方、厚さが大きすぎると、炭素繊維織物Bを構成する炭素繊維束bが成形時にスプリングバック(圧縮後の反発)を起こし易くなる。このため、炭素繊維織物Bの厚さは0.1mm以上3mm以下とすることが好ましい。
また、本実施形態の黒鉛含有耐火物のように、炭素繊維織物Bは、耐火物本体Aの厚さに応じて、厚さ方向で間隔をおいて2層以上埋設(配置)されることが好ましい。通常、この場合には、2層以上の炭素繊維織物Bが間隔をおいて並列状に埋設される。このように、耐火物本体Aの厚さに応じて、炭素繊維織物Bを複数層埋設することで、破壊エネルギーの上昇による亀裂伸展抑制効果をより適切に得ることができる。
また、2層以上の炭素繊維織物Bが間隔をおいて並列状に埋設される場合、隣り合う炭素繊維織物Bの間隔が小さすぎると成形時にスプリングバックを起こし易くなるため、隣り合う炭素繊維織物Bどうしの間隔は10mm以上とすることが好ましい。ここで、隣り合う炭素繊維織物Bどうしの間隔とは、炭素繊維織物Bの外面間の距離である。
If the thickness of the carbon fiber fabric B is too small, the fracture energy will be difficult to increase, and the effect of suppressing crack growth will be relatively low. On the other hand, if the thickness is too large, the carbon fiber bundles b constituting the carbon fiber fabric B tend to cause springback (repulsion after compression) during molding. Therefore, the thickness of the carbon fiber fabric B is preferably 0.1 mm or more and 3 mm or less.
Further, like the graphite-containing refractory of this embodiment, the carbon fiber fabric B may be buried (arranged) in two or more layers at intervals in the thickness direction, depending on the thickness of the refractory body A. preferable. Usually, in this case, two or more layers of carbon fiber fabric B are buried in parallel at intervals. In this way, by embedding a plurality of layers of carbon fiber fabric B depending on the thickness of the refractory body A, it is possible to more appropriately obtain the effect of suppressing crack extension due to an increase in fracture energy.
In addition, when two or more layers of carbon fiber fabrics B are buried in parallel at intervals, if the interval between adjacent carbon fiber fabrics B is too small, springback is likely to occur during molding. It is preferable that the interval between B is 10 mm or more. Here, the distance between adjacent carbon fiber fabrics B is the distance between the outer surfaces of the carbon fiber fabrics B.

また、炭素繊維織物Bを構成する炭素繊維束bは、幅wが1mm超15mm以下であることが好ましい。ここで、炭素繊維束bの幅wとは、図2に示すように、炭素繊維束bの幅方向断面における長辺又は長径の長さ(但し、幅方向断面が4角形又は円形の場合は1辺の長さ又は直径)を指す。炭素繊維束bの幅wが1mm超であることにより、同じ本数の炭素繊維を用いる場合の炭素繊維束bの編み込み数を少なくできるので、炭素繊維束bの編み込みに伴う炭素繊維織物Bの嵩張りを抑えることができ、且つ、炭素繊維織物特有の引張強度を活かすことができる。一方、炭素繊維束bの幅wが15mm以下であることにより、耐火物本体Aに用いる原料のうちの粗粒材と炭素繊維束bが干渉したり、炭素繊維束b自体の溶損が耐火物の溶損の引き金となったりすることを軽減できる。 Moreover, it is preferable that the width w of the carbon fiber bundle b constituting the carbon fiber fabric B is more than 1 mm and less than or equal to 15 mm. Here, the width w of the carbon fiber bundle b is the length of the long side or major axis of the carbon fiber bundle b in the cross section in the width direction (however, if the cross section in the width direction is rectangular or circular, refers to the length of one side or diameter). By setting the width w of the carbon fiber bundle b to be more than 1 mm, the number of weaves of the carbon fiber bundle b can be reduced when using the same number of carbon fibers, so that the bulk of the carbon fiber fabric B due to weaving of the carbon fiber bundle b can be reduced. Tension can be suppressed and the tensile strength unique to carbon fiber fabrics can be utilized. On the other hand, since the width w of the carbon fiber bundle b is 15 mm or less, the carbon fiber bundle b may interfere with the coarse grain material of the raw material used for the refractory body A, or the carbon fiber bundle b itself may be damaged by fire. It can reduce the possibility of things becoming a trigger for melting and damage.

本発明で使用する炭素繊維織物は、炭素繊維を束に纏めた炭素繊維束を編み込んだものであり、通常は、1mあたりの質量(ただし、その炭素繊維織物が重ね合わせた2枚以上の織物で構成される場合には、重ね合わせた複数枚の織物の合計質量)が40~1300g程度、炭素繊維の繊維径が1~45μm程度、炭素繊維束の1束あたりの炭素繊維の本数が1000~300000本程度のものが用いられる。また、耐火物本体A内に配置される炭素繊維の本数(存在密度)が少なすぎると、耐火物原料と炭素繊維束との接触面積が小さくなって本発明の効果が相対的に低下し、一方、炭素繊維の本数(存在密度)が多くなりすぎると、成形時に炭素繊維束がスプリングバックを起こし易くなるので、耐火物本体A内に配置される炭素繊維の本数(存在密度)は適度な範囲とすることが好ましい。具体的には、通常、炭素繊維織物Bは、炭素繊維織物Bの面方向と直交する方向での耐火物断面(通常、黒鉛含有耐火物の稼働面xと平行な耐火物断面)における、炭素繊維織物Bを構成する炭素繊維の存在密度(埋設密度)が10~2000本/mm程度になるように、耐火物本体Aの内部に埋設することが好ましい。 The carbon fiber fabric used in the present invention is one in which carbon fiber bundles of carbon fibers are woven into bundles, and usually has a mass per 1 m 2 (however, the carbon fiber fabric has a mass of two or more stacked In the case of a woven fabric, the total mass of multiple stacked woven fabrics is approximately 40 to 1,300 g, the fiber diameter of the carbon fibers is approximately 1 to 45 μm, and the number of carbon fibers per carbon fiber bundle is approximately 40 to 1,300 g. Approximately 1,000 to 300,000 pieces are used. Furthermore, if the number (density) of carbon fibers arranged in the refractory body A is too small, the contact area between the refractory raw material and the carbon fiber bundle becomes small, and the effect of the present invention is relatively reduced. On the other hand, if the number of carbon fibers (density of presence) becomes too large, the carbon fiber bundle is likely to cause springback during molding, so the number of carbon fibers (density of presence) arranged in the refractory body A should be adjusted to an appropriate level. It is preferable to set it as a range. Specifically, the carbon fiber fabric B usually contains carbon in a refractory cross section in a direction perpendicular to the surface direction of the carbon fiber fabric B (usually a refractory cross section parallel to the working surface x of the graphite-containing refractory). It is preferable that the carbon fibers constituting the fiber fabric B are buried inside the refractory body A so that the existing density (embedding density) is about 10 to 2000 fibers/mm 2 .

以上のように、本発明において耐火物本体Aの内部に埋設(配置)される炭素繊維織物Bは、隣り合う炭素繊維束bの間隔が耐火物本体Aを構成する骨材の最大粒径よりも大きく、且つ、炭素繊維織物Bの面方向での耐火物断面において、耐火物断面積に対する炭素繊維織物Bの占める面積割合が20%以上であることが必要であるが、さらに、(i)炭素繊維織物Bの厚さが0.1mm以上3mm以下であること、(ii)炭素繊維織物Bを構成する炭素繊維束bの幅が1mm超15mm以下であること、などの条件を満たすことにより、耐火物原料と炭素繊維織物の密着性がさらに高まるため、成形時に耐火物(れんが)が緻密化し易く、破壊エネルギーが大幅に上昇することに加え、高温下に曝した際の耐火物内部から抜けるガス量を抑制できるため亀裂の発生を抑制できる。 As described above, in the present invention, the carbon fiber fabric B buried (arranged) inside the refractory body A is such that the distance between adjacent carbon fiber bundles b is smaller than the maximum particle diameter of the aggregate constituting the refractory body A. (i) By satisfying the following conditions: the thickness of the carbon fiber fabric B is 0.1 mm or more and 3 mm or less; (ii) the width of the carbon fiber bundle b constituting the carbon fiber fabric B is more than 1 mm and less than 15 mm; , as the adhesion between the refractory raw material and the carbon fiber fabric further increases, the refractory (bricks) tends to become denser during molding, and the fracture energy increases significantly. Since the amount of gas escaping can be suppressed, the occurrence of cracks can be suppressed.

接着剤成分cは、有機樹脂などの有機物または/およびアルミナ、シリカなどの無機微粒子が好ましく、有機物の場合には、残炭率が6質量%以上80質量%以下のものが好ましい。
耐火物は、その使用時(実機稼働時)に、内部まで500℃以上(JIS K6910では900℃で測定する)の高温になる。このとき、黒鉛含有耐火物のように内部には酸素がほとんどない環境であっても、接着剤成分cが有機物である場合、炭素繊維織物に付着した接着剤の一部は分解や蒸発によってガス化して耐火物の外に散逸してしまう。残炭率は、接着剤のうち、ガス化散逸せずに残存する重量の比率の指標となると思われ、接着剤の種類や品質によって異なる。本発明において、接着剤の残炭率が、炭素繊維織物を用いた黒鉛含有耐火物が実使用環境である高温に晒された時の破壊エネルギーに影響するとの着想を得て調査したところ、残炭率が6~80質量%である接着剤(有機物)を使用すると、破壊エネルギーが高くなりやすいことが判った。これは、そのような特定の残炭率の接着剤(有機物)を使用すると、耐火物原料(耐火物本体A)と炭素繊維織物Bの密着性が高まるため、成形時に耐火物煉瓦が緻密化し易くなることに加え、高温に曝されると耐火物内部から抜け出るガス量を抑制できるため、亀裂の発生を抑制でき、破壊エネルギーが上昇するためであると考えられる。
また、本発明において、接着剤成分cがアルミナやシリカなどの無機微粒子である場合にも、高い破壊エネルギーが得られることが判った。これは、無機微粒子(特に無機ゾル由来の無機微粒子)を使用した場合にも、耐火物原料(耐火物本体A)と炭素繊維織物Bの密着性が高まるため、成形時に耐火物煉瓦が緻密化し易くなることに加え、使用時に高温に曝されると無機微粒子が焼結することで亀裂の発生を抑制でき、破壊エネルギーが上昇するためであると考えられる。
The adhesive component c is preferably an organic substance such as an organic resin or/and inorganic fine particles such as alumina or silica. In the case of an organic substance, the residual carbon content is preferably 6% by mass or more and 80% by mass or less.
When a refractory is used (in actual operation), the inside reaches a high temperature of 500°C or higher (measured at 900°C according to JIS K6910). At this time, even in environments where there is almost no oxygen inside, such as with graphite-containing refractories, if the adhesive component c is an organic substance, some of the adhesive attached to the carbon fiber fabric will decompose or evaporate into gas. and dissipates outside the refractory. The residual carbon percentage is considered to be an indicator of the proportion of the weight of the adhesive that remains without being gasified and dissipated, and varies depending on the type and quality of the adhesive. In the present invention, we conducted an investigation based on the idea that the residual carbon content of the adhesive affects the fracture energy when a graphite-containing refractory made of carbon fiber fabric is exposed to high temperatures, which is the actual usage environment. It has been found that when an adhesive (organic substance) with a charcoal content of 6 to 80% by mass is used, the fracture energy tends to increase. This is because when an adhesive (organic material) with such a specific carbon residual ratio is used, the adhesion between the refractory raw material (refractory body A) and the carbon fiber fabric B increases, which causes the refractory brick to become dense during molding. This is thought to be due to the fact that in addition to being easier to crack, it is possible to suppress the amount of gas escaping from the inside of the refractory when exposed to high temperatures, thereby suppressing the occurrence of cracks and increasing the fracture energy.
Furthermore, in the present invention, it has been found that high fracture energy can be obtained even when the adhesive component c is inorganic fine particles such as alumina or silica. This is because even when inorganic fine particles (particularly inorganic fine particles derived from inorganic sol) are used, the adhesion between the refractory raw material (refractory body A) and the carbon fiber fabric B increases, so the refractory brick becomes dense during molding. This is thought to be because, in addition to being easier to use, the inorganic fine particles are sintered when exposed to high temperatures during use, suppressing the occurrence of cracks and increasing fracture energy.

接着剤成分cが有機物の場合、その残炭率が6質量%未満では、高温下において耐火物内部から抜けるガス量が多くなり、気孔などの欠陥が多く生成されるため、破壊エネルギーが上昇しにくい。一方、残炭率が80質量%超では、高温下において耐火物内部から抜けるガス量が殆ど無くなり、耐火物が緻密化し過ぎて脆くなるため、破壊エネルギーが上昇しにくい。また、以上のような観点から、有機物の残炭率は20~80質量%が好ましく、40~80質量%がより好ましい。
接着剤成分cは、図2に示すように、炭素繊維の束の中(炭素繊維どうしの間隙)に存在(浸透)して炭素繊維束Bを束として一体化させ、且つ炭素繊維束Bの外表面を覆って炭素繊維束Bを耐火物本体Aに接着または密着させるものであるため、使用する接着剤は液体状であることが望ましい。また、接着剤成分cは高温下でも分解や蒸発をせずに残存する必要があるが、黒鉛含有耐火物に用いる場合は酸素による燃焼はほとんど起こらないので、酸素存在下での燃焼性に富む樹脂を用いることは可能である。これらの条件から、接着剤成分cは、有機樹脂(有機樹脂溶液由来の有機樹脂)、タールまたは/およびピッチ由来の有機物、有機糊由来の有機物、無機ゾル由来の無機微粒子の中から選ばれる1種以上(すなわち、これらのいずれか若しくはこれらの混合物)が適している。
When the adhesive component c is organic, if the residual carbon content is less than 6% by mass, the amount of gas that escapes from the inside of the refractory increases at high temperatures, and many defects such as pores are generated, resulting in an increase in fracture energy. Hateful. On the other hand, when the residual carbon content exceeds 80% by mass, the amount of gas escaping from the inside of the refractory at high temperatures is almost gone, and the refractory becomes too dense and brittle, making it difficult to increase the fracture energy. Further, from the above viewpoint, the residual carbon content of organic matter is preferably 20 to 80% by mass, more preferably 40 to 80% by mass.
As shown in FIG. 2, the adhesive component c exists (infiltrates) within the carbon fiber bundle (in the gaps between the carbon fibers), integrates the carbon fiber bundle B as a bundle, and Since the carbon fiber bundle B is to be adhered or brought into close contact with the refractory body A by covering the outer surface, it is desirable that the adhesive used be in a liquid state. In addition, adhesive component c needs to remain without decomposition or evaporation even at high temperatures, but when used in graphite-containing refractories, combustion due to oxygen hardly occurs, so it has high flammability in the presence of oxygen. It is possible to use resin. Based on these conditions, the adhesive component c is selected from organic resins (organic resins derived from organic resin solutions), organic substances derived from tar and/or pitch, organic substances derived from organic glue, and inorganic fine particles derived from inorganic sol. More than one species (ie, any of these or mixtures thereof) are suitable.

したがって、製造時に炭素繊維束に付着させる接着剤(粘着性付与剤)としては、例えば、有機樹脂(溶液)、ピッチ、タール、有機糊、無機ゾルなどが挙げられる。具体的には、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、熱硬化性ポリイミド樹脂(これらの有機樹脂の1種以上からなる樹脂溶液)、ピッチ、タール、でんぷん糊、アルミナゾル、シリカゾル、ジルコニアゾル、クロミアゾル、チタニアゾル、マグネシアゾル、カルシアゾル、イットリアゾルなどが挙げられ、これらの中から選ばれる1種以上を用いることができる。
また、製造時にこれらの接着剤の粘性を調整するために溶媒で薄めることもできるが、500℃以上の高温下では酸素が無くてもガス化する溶媒(たとえば、水)の使用は接着剤成分の重量に対して等量以下に抑えることが望ましい。
Therefore, examples of the adhesive (tackifier) to be applied to the carbon fiber bundle during production include organic resin (solution), pitch, tar, organic glue, and inorganic sol. Specifically, phenolic resin, epoxy resin, melamine resin, urea resin, alkyd resin, unsaturated polyester resin, polyurethane resin, thermosetting polyimide resin (resin solution consisting of one or more of these organic resins), pitch, Examples include tar, starch paste, alumina sol, silica sol, zirconia sol, chromia sol, titania sol, magnesia sol, calcia sol, and yttriazole, and one or more selected from these can be used.
Additionally, these adhesives can be diluted with a solvent to adjust their viscosity during manufacturing, but the use of solvents (e.g., water) that gasify even in the absence of oxygen at high temperatures of 500°C or higher is not recommended for adhesive components. It is desirable to keep the amount equal to or less than the weight of the

次に、耐火物本体Aの組成について説明する。
耐火物本体Aは、黒鉛原料を1質量%以上80質量%以下含有することが好ましい。黒鉛原料の含有量を1質量%以上とすることにより、黒鉛含有耐火物の耐割れ性を確保できるとともに、耐火物内部の炭素繊維の酸化消失を抑制することができる。一方、黒鉛原料の含有量を80質量%以下とすることにより、耐火物表面の黒鉛原料の酸化消失を抑制することができる。黒鉛(カーボン原料)としては、一般に鱗状黒鉛などが用いられる。このように耐火物本体Aが黒鉛原料を1~80質量%含有する耐火物としては、例えば、マグネシアおよびカーボンを主成分とする耐火物であるマグネシア・カーボン質耐火物(マグネシア原料を骨材とした黒鉛含有耐火物)、アルミナ、炭化珪素、シリカおよびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・シリカ・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)、アルミナ、炭化珪素およびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)、シリカ、炭化珪素およびカーボンを主成分とする耐火物であるシリカ・炭化珪素・カーボン質耐火物(シリカ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)、アルミナ・炭化珪素・シリカ・カーボン質耐火物などにおいて骨材原料の一部に耐火物屑を用いた耐火物などが挙げられる。
Next, the composition of the refractory body A will be explained.
It is preferable that the refractory body A contains graphite raw material in an amount of 1% by mass or more and 80% by mass or less. By setting the content of the graphite raw material to 1% by mass or more, the cracking resistance of the graphite-containing refractory can be ensured, and the oxidation loss of carbon fibers inside the refractory can be suppressed. On the other hand, by controlling the content of the graphite raw material to 80% by mass or less, oxidation loss of the graphite raw material on the surface of the refractory can be suppressed. As the graphite (carbon raw material), scaly graphite or the like is generally used. Examples of refractories in which the refractory body A contains 1 to 80% by mass of graphite raw materials include, for example, magnesia-carbon refractories, which are refractories whose main components are magnesia and carbon (magnesia raw materials are used as aggregates). Alumina, silicon carbide, silica, and carbon refractories, which are refractories whose main components are alumina, silicon carbide, silica, and carbon (refractories containing alumina, silicon carbide, and silica) Graphite-containing refractories), alumina, silicon carbide, and carbon-based refractories, which are refractories whose main components are alumina, silicon carbide, and carbon (graphite-containing refractories using alumina raw materials and silicon carbide raw materials as aggregates), silica, Silica/silicon carbide/carbon refractories (silica raw materials, graphite-containing refractories using silicon carbide raw materials as aggregates), alumina/silicon carbide/silica/carbon refractories, which are refractories whose main components are silicon carbide and carbon. Examples include refractories that use refractory waste as part of the aggregate raw material.

一般に、精錬工程において使用される転炉の内張り(羽口部を含む)には、マグネシアおよびカーボンを主成分とする耐火物であるマグネシア・カーボン質耐火物(マグネシア原料を骨材とした黒鉛含有耐火物)が使用される。耐火物本体Aがマグネシア・カーボン質耐火物の場合、耐火物本体Aは、マグネシア原料を20質量%以上99質量%以下含有することが好ましく、これにより熱スポーリングによる割れが抑制され、且つFeOを多く含む転炉スラグの浸食にも耐えられる耐食性を有する耐火物とすることができる。なお、マグネシア原料としては、マグネシア濃度が90質量%以上の高純度のマグネシア原料を用いることが好ましい。 In general, the lining (including the tuyeres) of converters used in the refining process is made of magnesia-carbon refractories, which are refractories whose main components are magnesia and carbon. refractories) are used. When the refractory body A is a magnesia-carbon refractory, the refractory body A preferably contains 20% by mass or more and 99% by mass or less of magnesia raw material, thereby suppressing cracking due to thermal spalling, and It can be made into a refractory that has corrosion resistance that can withstand the erosion of converter slag containing a large amount of. As the magnesia raw material, it is preferable to use a highly purified magnesia raw material having a magnesia concentration of 90% by mass or more.

また、一般に、溶銑予備処理工程において使用される溶銑予備処理容器(トピード、高炉鍋など)の内張りにはアルミナ、炭化珪素およびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・カーボン質耐火物(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)や、アルミナ、炭化珪素、シリカおよびカーボンを主成分とする耐火物であるアルミナ・炭化珪素・シリカ・カーボン質耐火物(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)などが使用される。
耐火物本体Aがアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、アルミナ原料を10質量%以上95質量%以下含有することが好ましく、これにより溶銑予備処理スラグに対する高い耐食性が得られ、且つ熱スポーリングによる亀裂の発生をさらに抑制することができる。なお、アルミナ原料としては、アルミナ濃度が70質量%以上の高純度のアルミナ原料を用いることが好ましい。
In general, the lining of hot metal pretreatment containers (torpedo, blast furnace pot, etc.) used in the hot metal pretreatment process is made of alumina, silicon carbide, and carbon refractories, which are refractories whose main components are alumina, silicon carbide, and carbon. Alumina, silicon carbide, silica, and carbon refractories (alumina, silicon carbide, silica, and carbon refractories), which are refractories whose main components are alumina, silicon carbide, silica, and carbon raw materials, silicon carbide raw materials, graphite-containing refractories using silica raw materials as aggregates), etc. are used.
When the refractory body A is an alumina/silicon carbide/carbon refractory or an alumina/silicon carbide/silica/carbon refractory, it is preferable that the alumina raw material is contained in an amount of 10% by mass or more and 95% by mass or less. High corrosion resistance against treated slag can be obtained, and the occurrence of cracks due to thermal spalling can be further suppressed. As the alumina raw material, it is preferable to use a high purity alumina raw material with an alumina concentration of 70% by mass or more.

さらに、耐火物本体Aがアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、炭化珪素原料を1質量%以上含有することが好ましい。炭化珪素原料を1質量%以上含有することにより、大気雰囲気下における黒鉛の酸化を抑制できるので、高耐割れ性を維持できる。なお、炭化珪素原料としては、炭化珪素濃度が80質量%以上の高純度の炭化珪素原料を用いることが好ましい。
また、耐火物本体Aがアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合、シリカ原料を1質量%以上50質量%以下含有することが好ましく、これにより高耐割れ性と高耐溶損性を両立できる。
Furthermore, when the refractory body A is an alumina/silicon carbide/carbon refractory or an alumina/silicon carbide/silica/carbon refractory, it is preferable to contain 1% by mass or more of the silicon carbide raw material. By containing 1% by mass or more of the silicon carbide raw material, oxidation of graphite in the atmosphere can be suppressed, so that high cracking resistance can be maintained. Note that as the silicon carbide raw material, it is preferable to use a highly purified silicon carbide raw material having a silicon carbide concentration of 80% by mass or more.
In addition, when the refractory body A is made of alumina, silicon carbide, silica, or carbon refractory, it is preferable that the silica raw material is contained in an amount of 1% by mass or more and 50% by mass or less, thereby achieving high cracking resistance and high erosion resistance. I can do both.

転炉の内張りに使用するマグネシア・カーボン質耐火物は、装入物による機械的衝撃、溶鋼および溶融スラグの撹拌による摩耗、溶融スラグによるスラグ浸食および転炉操業中の急激な温度変化など、非常に過酷な条件下で使用される。このため、安定した操業を行うためにも過酷な条件に耐える耐用性の高いマグネシア・カーボン質耐火物を使用することが好ましい。同様に、トピードや高炉鍋などの溶銑予備処理容器の内張りに使用するアルミナ・炭化珪素・カーボン質耐火物やアルミナ・炭化珪素・シリカ・カーボン質耐火物も非常に過酷な条件下で使用されることから、これらの条件に耐えられる耐火物を使用することが好ましい。本発明によれば、これら非常に過酷な条件下で使用される黒鉛含有耐火物の破壊エネルギーが、従来の黒鉛含有耐火物と比較して大幅に向上するため、高い耐用性が得られる。 The magnesia-carbon refractories used for the lining of converters are susceptible to extremes such as mechanical impact from the charge, abrasion due to agitation of molten steel and molten slag, slag erosion due to molten slag, and rapid temperature changes during converter operation. used under harsh conditions. Therefore, in order to ensure stable operation, it is preferable to use magnesia-carbon refractories, which have high durability and can withstand harsh conditions. Similarly, alumina/silicon carbide/carbon refractories and alumina/silicon carbide/silica/carbon refractories used for lining hot metal pretreatment vessels such as topedoes and blast furnace pots are used under extremely harsh conditions. Therefore, it is preferable to use a refractory that can withstand these conditions. According to the present invention, the fracture energy of graphite-containing refractories used under these extremely harsh conditions is significantly improved compared to conventional graphite-containing refractories, so that high durability can be obtained.

また、耐火物本体Aがシリカ、炭化珪素およびカーボンを主成分とする耐火物であるシリカ・炭化珪素・カーボン質耐火物の場合、炭化珪素原料を1質量%以上、シリカ原料を1質量%以上50質量%以下含有することが好ましく、これにより高耐割れ性と高耐溶損性を両立できる。炭化珪素原料を1質量%以上含有することにより、大気雰囲気下における黒鉛の酸化を抑制できるので、高耐割れ性を維持できる。なお、炭化珪素原料としては、炭化珪素濃度が80質量%以上の高純度の炭化珪素原料を用いることが好ましい。 In addition, if the refractory body A is a silica/silicon carbide/carbon refractory, which is a refractory whose main components are silica, silicon carbide, and carbon, the silicon carbide raw material is 1% by mass or more, and the silica raw material is 1% by mass or more. The content is preferably 50% by mass or less, thereby achieving both high cracking resistance and high erosion resistance. By containing 1% by mass or more of the silicon carbide raw material, oxidation of graphite in the atmosphere can be suppressed, so that high cracking resistance can be maintained. Note that as the silicon carbide raw material, it is preferable to use a highly purified silicon carbide raw material having a silicon carbide concentration of 80% by mass or more.

ここで、アルミナ原料としては、例えば、バン土頁岩、ホワイトアルミナ、ブラウンアルミナなどの1種以上が用いられる。また、炭化珪素原料としては、例えば、緑色炭化ケイ素、黒色炭化ケイ素などの1種以上が用いられる。また、シリカ原料としては、例えば、ろう石、ムライトなどの1種以上が用いられる。
黒鉛含有耐火物は、製鉄容器からの放熱量を抑制しながら、耐用性を高くすることを目的として、さらに金属粉末原料を含有(配合)することができる。金属粉末原料としては、例えば、金属Si、金属Al、金属Al-Si、AlSiC、BCなどが挙げられ、これらの1種以上を含有させることができる。金属粉末原料の含有量は特に規定しないが、通常、1~5質量%程度が好ましい。金属粉末原料の含有量(配合量)が1質量%未満では、金属粉末原料を配合することによる耐用性の向上効果が十分に得られず、一方、5質量%を超えると、強度が高くなりすぎるため、実機で使用した際に亀裂が発生し易くなって煉瓦が割れ易くなり、実機での使用回数が低下するおそれがある。
Here, as the alumina raw material, for example, one or more types of aluminum shale, white alumina, brown alumina, etc. are used. Further, as the silicon carbide raw material, for example, one or more types of green silicon carbide, black silicon carbide, etc. are used. Further, as the silica raw material, for example, one or more types of waxite, mullite, etc. are used.
The graphite-containing refractory can further contain (mix) a metal powder raw material for the purpose of increasing durability while suppressing the amount of heat released from the steel container. Examples of the metal powder raw material include metal Si, metal Al, metal Al-Si, Al 4 SiC 4 and B 4 C, and one or more of these can be contained. The content of the metal powder raw material is not particularly limited, but is usually preferably about 1 to 5% by mass. If the content (amount) of the metal powder raw material is less than 1% by mass, the effect of improving durability by blending the metal powder raw material cannot be sufficiently obtained, while on the other hand, if it exceeds 5% by mass, the strength will increase. If this is too high, cracks may easily occur when used in an actual machine, making the bricks more likely to break, which may reduce the number of times the brick can be used in an actual machine.

耐火物本体Aは、骨材原料として使用済み耐火物を粉砕した耐火物屑を10質量%以上90質量%以下程度含有することができる。特に、耐火物本体Aがアルミナ・炭化珪素・カーボン質耐火物(さらにシリカ原料を含有するアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合を含む。以下同様)の場合には、使用済みのアルミナ・炭化珪素・カーボン質耐火物(さらにシリカ原料を含有するアルミナ・炭化珪素・シリカ・カーボン質耐火物の場合を含む。以下同様)を粉砕して得られた耐火物屑を骨材原料として好適に用いることができる。
このように耐火物屑を含有する場合、耐火物原料の残部は未使用の原料(バージン原料)である。
The refractory body A can contain approximately 10% by mass or more and 90% by mass or less of refractory waste obtained by crushing used refractories as an aggregate raw material. In particular, if the refractory body A is an alumina, silicon carbide, or carbon refractory (including alumina, silicon carbide, silica, or carbon refractories containing silica raw materials; the same shall apply hereinafter), the used Refractory waste obtained by crushing alumina, silicon carbide, and carbon refractories (including alumina, silicon carbide, silica, and carbon refractories containing silica raw materials; the same shall apply hereinafter) is used as an aggregate raw material. It can be suitably used.
When refractory waste is contained in this manner, the remainder of the refractory raw material is an unused raw material (virgin raw material).

アルミナ・炭化珪素・カーボン質耐火物からなる耐火物本体Aにおいて、使用済みのアルミナ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑の含有量を10質量%以上90質量%以下とした場合、バージン原料のみを使用した黒鉛含有耐火物と同程度の耐割れ性および耐溶損性が得られる。その理由は、耐火物屑原料はバージン原料と比較して純度が低いが、耐火物屑原料とバージン原料を併用することにより、耐火物屑原料中のAl成分が有する耐溶損性の大幅な低下を抑制できることが挙げられる。ただし、耐火物屑の含有量を90質量%超とした場合には、バージン原料の含有量が少な過ぎるため、耐火物屑原料中のAl成分が有する耐食性の大幅な低下を抑制できない。また、耐火物屑の含有量を10質量%未満とした場合、耐火物屑の再利用率が低過ぎるため、産業廃棄物としての耐火物屑処理費用が大幅に上がる。 In the refractory body A made of alumina, silicon carbide, and carbonaceous refractories, the content of refractory waste obtained by crushing used alumina, silicon carbide, and carbonaceous refractories is 10% by mass or more and 90% by mass. In the case of the following, cracking resistance and erosion resistance comparable to that of a graphite-containing refractory using only virgin raw materials can be obtained. The reason for this is that refractory scrap raw materials have lower purity than virgin raw materials, but by using the refractory scrap raw materials and virgin raw materials together, the corrosion resistance of the Al 2 O 3 components in the refractory scrap raw materials can be improved. One example is that it is possible to suppress a significant decline. However, when the content of refractory scrap is more than 90% by mass, the content of virgin raw material is too small, so it is not possible to suppress a significant decrease in the corrosion resistance of the Al 2 O 3 components in the refractory scrap raw material. . Moreover, when the content of refractory scraps is less than 10% by mass, the reuse rate of the refractory scraps is too low, and the cost of processing the refractory scraps as industrial waste increases significantly.

次に、本発明の黒鉛含有耐火物の製造方法について説明する。
図3は、本発明の黒鉛含有耐火物の製造工程の一例を示している。この製造工程では、耐火物原料に適量のバインダーを加えて混練し、その混練物を、所定の接着剤を炭素繊維束の内部に浸透(含浸)させ且つ外表面にも付着させた炭素繊維織物とともに型に充填してプレス成形を行い、耐火物成形品を得る。バインダーとしては、例えば、フェノールレジン(主剤)+ヘキサミン(硬化剤)、カーボンボンド、セラミックボンドなどが用いられる。
耐火物原料の混練物を、炭素繊維織物(接着剤を炭素繊維束の内部に浸透(含浸)させ且つ外表面にも付着させた炭素繊維織物。以下同様)とともに型に充填する方法としては、例えば、一定量の混練物を型に装入した後に炭素繊維織物を配置(装入)し、さらに一定量の混練物を型に装入する方法がある。したがって、この方法で図1のように複数層の炭素繊維織物Bが耐火物本体Aの内部に埋設された黒鉛含有耐火物を製造するには、型に一定量の混練物を装入した後、その上に炭素繊維織物を配置する工程と、その上に一定量の混練物を装入する工程を繰り返し行う。
Next, a method for producing a graphite-containing refractory of the present invention will be explained.
FIG. 3 shows an example of the manufacturing process of the graphite-containing refractory of the present invention. In this manufacturing process, an appropriate amount of binder is added and kneaded to the refractory raw material, and the kneaded material is used to infiltrate (impregnate) the inside of the carbon fiber bundle with a specified adhesive and also adhere to the outer surface of the carbon fiber fabric. The mixture is then filled into a mold and press-molded to obtain a refractory molded product. As the binder, for example, phenol resin (base resin) + hexamine (curing agent), carbon bond, ceramic bond, etc. are used.
A method of filling a kneaded material of refractory raw material into a mold together with a carbon fiber fabric (a carbon fiber fabric in which an adhesive is infiltrated (impregnated) into the inside of the carbon fiber bundle and also adhered to the outer surface; the same applies hereinafter) is as follows: For example, there is a method in which a certain amount of the kneaded material is charged into a mold, a carbon fiber fabric is placed (charged), and a certain amount of the kneaded material is further charged into the mold. Therefore, in order to manufacture a graphite-containing refractory in which multiple layers of carbon fiber fabric B are embedded inside the refractory body A as shown in Fig. 1 using this method, after charging a certain amount of kneaded material into the mold, , the step of placing the carbon fiber fabric thereon, and the step of charging a certain amount of the kneaded material thereon are repeated.

また、炭素繊維織物に接着剤(粘着性付与剤)を浸透(含浸)・付着させるには、例えば、接着剤を構成する樹脂(樹脂溶液)や無機ゾルなどに炭素繊維織物を浸漬したり、接着剤を構成する樹脂(樹脂溶液)や無機ゾルなどを炭素繊維織物に散布したりすることにより、接着剤を炭素繊維織物に浸透・付着させ、この接着剤が浸透・付着したままの炭素繊維織物を、上記のような要領で混練物とともに型に装入する。ここで、炭素繊維織物に浸透・付着した接着剤は、炭素繊維織物を混練物に配置する際にある程度硬化または固化が進んだ状態であっても、炭素繊維織物と耐火物(混練物)が接着または密着できるような粘着性を有する状態(いわゆる生乾きの状態)であればよい。また、他の方法としては、予め炭素繊維束内に接着剤を含浸させた後、硬化または固化させた炭素繊維織物を用意し、混練物に配置する際に、改めて炭素繊維織物の外表面に接着剤を付着させるようにしてもよい。 In addition, in order to infiltrate (impregnate) and adhere an adhesive (tackifying agent) to a carbon fiber fabric, for example, the carbon fiber fabric may be immersed in a resin (resin solution) or an inorganic sol that constitutes the adhesive. By spraying the resin (resin solution) or inorganic sol that makes up the adhesive onto the carbon fiber fabric, the adhesive penetrates and adheres to the carbon fiber fabric, and the carbon fiber with this adhesive permeating and adhering to it. The woven fabric is charged into a mold together with the kneaded material in the manner described above. Here, even if the adhesive that has penetrated and adhered to the carbon fiber fabric has been cured or solidified to some extent when the carbon fiber fabric is placed in the kneaded material, the carbon fiber fabric and the refractory (kneaded material) may Any state is sufficient as long as it has adhesiveness that allows for adhesion or close contact (so-called half-dried state). Another method is to prepare a carbon fiber fabric that has been cured or solidified after impregnating the carbon fiber bundle with an adhesive in advance, and then applying the adhesive to the outer surface of the carbon fiber fabric when placing it in the kneaded material. An adhesive may also be applied.

プレス成形は、金型内で一方向に圧縮する一般的な金型プレス成形を行うことができるが、液体を用いて全方向から均等に圧力を加えるCIP成形を行ってもよい。部位によって厚さが異なる形状など、一方向の圧縮では均等な圧力を加えることが難しい形状に対しては、CIP成形を用いることによって部位による圧縮度の偏りが軽減されるので望ましい。
また、成形工程は、プレス成形以外の成形法で行ってもよい。プレス成形以外の成形法としては、例えば、流し込みによる成形があり、その1つに、鍋やタンディッシュなどの稼働面である施工部位に内枠を設置し、この内枠に不定形耐火物(耐火物原料)を流し込み、乾燥(乾燥工程)・固化させた後に内枠を除去する方法がある。また、施工部位に流し込むのではなく、耐火物形状の型枠内に不定形耐火物(耐火物原料)を流し込み、乾燥(乾燥工程)・固化させた後に型枠から取り出した耐火物を、施工部位まで運搬して施工する方法もあり、この方法は施工部位への耐火物施工の手間はかかるものの、型枠内に不定形耐火物を流し込む際の炭素繊維織物の埋設や固化時の温度管理が容易であるので望ましい。これらの流し込みによる成形法では、上述した内枠や型枠内に炭素繊維織物を配置した上で、内枠や型枠内に不定形耐火物(耐火物原料)を流し込み、乾燥(乾燥工程)・固化させる。
Press molding can be performed by general mold press molding in which compression is performed in one direction within a mold, but CIP molding in which pressure is applied evenly from all directions using a liquid may also be performed. For shapes where it is difficult to apply uniform pressure by unidirectional compression, such as shapes where the thickness varies depending on the part, CIP molding is desirable because it reduces the unevenness in the degree of compression depending on the part.
Further, the molding step may be performed by a molding method other than press molding. Forming methods other than press molding include, for example, pouring. One of these methods is to install an inner frame at the construction site, which is the working surface of a pot or tundish, and to inject monolithic refractories ( There is a method in which the inner frame is removed after pouring refractory materials (refractory raw materials), drying (drying process) and solidifying. In addition, instead of pouring it into the construction site, monolithic refractories (refractory raw materials) are poured into the refractory-shaped formwork, dried (drying process), solidified, and then removed from the formwork. There is also a method of transporting the refractory to the construction site, and although this method requires more time and effort to install the refractory at the construction site, it is easier to embed the carbon fiber fabric when pouring the monolithic refractory into the formwork and to control the temperature during solidification. This is desirable because it is easy. In these molding methods by pouring, the carbon fiber fabric is placed inside the inner frame or formwork described above, and then the monolithic refractory (refractory raw material) is poured into the inner frame or formwork and dried (drying process).・Solidify.

以上のようにして得られた耐火物成型品を乾燥させる。この乾燥は耐火物成型品の乾燥(キュアリング)を目的として、通常、200~230℃程度で行われる。
また、上述したような流し込みによる成形で得られる耐火物成形体については、施工部位に設置された内枠や他の場所に設置された型枠に保持された耐火物成形体を加熱バーナなどの加熱手段で加熱することにより、乾燥・固化させる。その後、内枠の除去や型枠からの取り出しが行われる。
The refractory molded product obtained as described above is dried. This drying is usually carried out at about 200 to 230°C for the purpose of drying (curing) the refractory molded product.
In addition, for refractory molded bodies obtained by casting as described above, the refractory molded bodies held in the inner frame installed at the construction site or the formwork installed at other locations are heated using a heating burner, etc. It is dried and solidified by heating with a heating means. After that, the inner frame is removed and the mold is taken out.

以上により、耐火物本体Aの内部に炭素繊維織物Bが所定の条件で配置(埋設)された黒鉛含有耐火物であって、炭素繊維織物Bが、炭素繊維束b内に接着剤成分cを含むとともに、耐火物本体Aに対して接着剤成分cを介して接着または密着した本発明の黒鉛含有耐火物が得られる。
本発明の黒鉛含有耐火物は、種々の設備や容器の耐火物として使用できるが、なかでも製鉄所内で使用される製鉄容器(精錬容器や搬送容器)の内張り耐火物として好適である。本発明の黒鉛含有耐火物が内張り用として好適に適用できる製鉄容器としては、転炉、トピードカーや高炉鍋などの溶銑予備処理容器、取鍋容器などが挙げられる。また、それらのなかでも、特に過酷な使用環境である転炉の内張り耐火物として好適であり、そのなかでも羽口部を構成する羽口煉瓦として特に好適である。
As described above, the carbon fiber fabric B is a graphite-containing refractory in which the carbon fiber fabric B is placed (embedded) inside the refractory body A under predetermined conditions, and the carbon fiber fabric B has the adhesive component c in the carbon fiber bundle b. The graphite-containing refractory of the present invention is obtained which is adhered or adhered to the refractory main body A via the adhesive component c.
The graphite-containing refractory of the present invention can be used as a refractory for various equipment and containers, and is particularly suitable as a lining refractory for steelmaking containers (refining containers and transportation containers) used in steel plants. Examples of iron-making containers to which the graphite-containing refractory of the present invention can be suitably applied as a lining include hot metal pretreatment containers such as converters, torpedo cars, and blast furnace ladle, ladle containers, and the like. Moreover, among these, it is suitable as a lining refractory for a converter, which is used in a particularly harsh environment, and among these, it is particularly suitable as a tuyere brick constituting a tuyere portion.

転炉に使用するマグネシア・カーボン質耐火物(マグネシア原料を骨材とした黒鉛含有耐火物)について、マグネシア・カーボン質原料の配合を検討するため、表1に示すような原料配合でマグネシア原料を骨材とした耐火物成形品、すなわち、炭素繊維織物を埋設しない黒鉛含有耐火物を製作した。耐火物原料を混練・成形するにあたり、バインダーとして、耐火物原料に対する外掛けでフェノールレジンを3質量%、ヘキサミンを0.3質量%配合した。製作した黒鉛含有耐火物について、耐溶損性と耐割れ性をそれぞれ以下の方法で評価した。その結果を表1に併せて示す。 In order to study the composition of magnesia/carbonaceous raw materials for magnesia/carbonaceous refractories (graphite-containing refractories using magnesia raw materials as aggregate) used in converters, magnesia raw materials were mixed with the raw material composition shown in Table 1. We produced a refractory molded product using aggregate, that is, a graphite-containing refractory without embedded carbon fiber fabric. When kneading and molding the refractory raw material, 3% by mass of phenol resin and 0.3% by mass of hexamine were added as binders to the refractory raw material. The produced graphite-containing refractories were evaluated for erosion resistance and cracking resistance using the following methods. The results are also shown in Table 1.

耐溶損性については、図6(試験方法)に示すとおり、高周波誘導炉を用いた内張り分け法で溶損量を測定し、その溶損量に基づき評価した。内張り分け法による試験では、試験温度を1650℃、温度保持時間を4時間として表2に示す組成の合成スラグを1時間毎に投入し、冷却後に稼働面の溶損量を測定した。そして、その溶損量から表1中の配合例1-4の溶損量を100とした溶損指数を求めた。なお、図6(A)は試験の実施状況を試験炉および筒状サンプルを縦断面した状態で模式的に示す説明図、図6(B)は図6(A)に示される筒状サンプルの平面図、図6(C)は図6(A),(B)に示す筒状サンプルを構成する試験片の1つを示す斜視図である。
耐割れ性については、150mm×150mm×300mmの試料の長手方向の動弾性率EをJIS R1605に示された超音波パルス法に従って測定した後、1500℃×10分間の加熱、5分間の水冷、10分間の大気冷却を1サイクルとした工程を3回繰り返し、この3回の工程の終了後に再び上記方法で動弾性率Eを測定し、試験前後での動弾性率の変化率E/Eを指標として評価した。
Regarding the erosion resistance, as shown in FIG. 6 (test method), the amount of erosion was measured by the lining method using a high-frequency induction furnace, and the evaluation was made based on the amount of erosion. In the test using the lining method, the test temperature was 1650°C, the temperature holding time was 4 hours, synthetic slag having the composition shown in Table 2 was introduced every hour, and after cooling, the amount of erosion on the operating surface was measured. Then, from the amount of erosion, an erosion index was determined, with the amount of erosion of Formulation Example 1-4 in Table 1 set as 100. In addition, FIG. 6(A) is an explanatory diagram schematically showing the test implementation status in a longitudinal section of the test furnace and the cylindrical sample, and FIG. 6(B) is an illustration of the cylindrical sample shown in FIG. 6(A). The plan view and FIG. 6(C) are perspective views showing one of the test pieces constituting the cylindrical sample shown in FIGS. 6(A) and 6(B).
For cracking resistance, the dynamic elastic modulus E 0 in the longitudinal direction of a 150 mm x 150 mm x 300 mm sample was measured according to the ultrasonic pulse method specified in JIS R1605, and then heated at 1500°C for 10 minutes and cooled in water for 5 minutes. , the process of 10 minutes of atmospheric cooling as one cycle was repeated three times, and after the completion of these three steps, the dynamic elastic modulus E3 was measured again using the above method, and the rate of change in the dynamic elastic modulus E3 before and after the test was / E0 was used as an index for evaluation.

表1の配合例1-2~配合例1-8に示す通り、黒鉛含有量を1質量%以上80質量%以下、マグネシア原料の含有量を20質量%以上99質量%以下とした場合、耐溶損性と耐割れ性は殆ど一定であったが、配合例1-1に示す通り、黒鉛含有量を1質量%未満とした場合には耐割れ性が大幅に低下している。また、配合例1-9に示す通り、マグネシア原料の含有量を20質量%未満とした場合には耐溶損性が大幅に低下している。これらのことから、黒鉛含有耐火物の耐割れ性を確保するためには黒鉛含有量は1質量%以上とすることが好ましく、また、マグネシア・カーボン質原料の配合において、耐溶損性と耐割れ性を両立させるためには、黒鉛含有量を1質量%以上80質量%以下、マグネシア原料の含有量を20質量%以上99質量%以下とするのが好ましいことが判る。 As shown in Formulation Examples 1-2 to 1-8 in Table 1, when the graphite content is 1% by mass or more and 80% by mass or less, and the magnesia raw material content is 20% by mass or more and 99% by mass or less, The breakage resistance and cracking resistance were almost constant, but as shown in Formulation Example 1-1, when the graphite content was less than 1% by mass, the cracking resistance significantly decreased. Further, as shown in Formulation Example 1-9, when the content of the magnesia raw material is less than 20% by mass, the erosion resistance is significantly reduced. For these reasons, in order to ensure the cracking resistance of graphite-containing refractories, it is preferable that the graphite content be 1% by mass or more. It can be seen that in order to achieve both properties, it is preferable that the graphite content be 1% by mass or more and 80% by mass or less, and the content of the magnesia raw material be 20% by mass or more and 99% by mass or less.

耐火物本体Aの内部に炭素繊維織物を埋設(配置)した発明例および比較例の黒鉛含有耐火物を図3に示す手順で製造した。その際、事前に接着剤であるフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、炭素繊維束の内外にフェノール樹脂(樹液溶液)が浸透・付着した炭素繊維織物を耐火物本体に埋設した。この製造された黒鉛含有耐火物は、図1に示すように耐火物本体Aの長手方向に沿って炭素繊維織物Bが埋設(炭素繊維織物Bが複数層の場合には並列状に等間隔で埋設)され、炭素繊維織物Bは、これを構成する炭素繊維束b内に接着剤成分cを含むとともに、耐火物本体Aに対して接着剤成分cを介して接着または密着したものである。耐火物原料を混練・成形するにあたり、バインダーとして、耐火物原料に対する外掛けでフェノールレジンを3質量%、ヘキサミンを0.3質量%配合した。製造された黒鉛含有耐火物について、曲げ強度、破壊エネルギー、耐溶損性、耐割れ性を、それぞれ以下の方法で評価した。 Graphite-containing refractories of invention examples and comparative examples in which carbon fiber fabrics were embedded (arranged) inside the refractory body A were manufactured according to the procedure shown in FIG. 3. At that time, the carbon fiber fabric was dipped in phenolic resin (resin solution) as an adhesive in advance, and the carbon fiber fabric, with the phenol resin (sap solution) permeating and adhering to the inside and outside of the carbon fiber bundle, was embedded in the refractory body. . This produced graphite-containing refractory has carbon fiber fabrics B embedded along the longitudinal direction of the refractory body A (if the carbon fiber fabrics B are multiple layers, they are arranged in parallel at equal intervals), as shown in Figure 1. The carbon fiber fabric B contains an adhesive component c in the carbon fiber bundle b constituting it, and is adhered or adhered to the refractory body A via the adhesive component c. When kneading and molding the refractory raw material, 3% by mass of phenol resin and 0.3% by mass of hexamine were added as binders to the refractory raw material. The produced graphite-containing refractories were evaluated for bending strength, fracture energy, erosion resistance, and cracking resistance using the following methods.

曲げ強度については、図4(試験方法)に示すとおり、耐火物本体の内部に、その長手方向に沿って炭素繊維織物を埋設(炭素繊維織物が複数層の場合には並列状に等間隔で埋設)した試験片(試験片サイズ:150mm×150mm×300mm)を用い、中心間距離を100mm、荷重印加速度を0.5mm/minとし、JIS R2213に記載された3点曲げ試験方法に準拠して測定した。なお、図4(ア)は3点曲げ強度試験の実施状況を模式的に示す説明図、図4(イ)は図4(ア)の試験片の端面を模式的に示す説明図である。
破壊エネルギーについては、図5に示すとおり、3点曲げ強度試験で得られた荷重-変位曲線において第1ピーク値を示した位置を基準とし、基準位置から変位1mmの範囲の面積とした。
Regarding bending strength, as shown in Figure 4 (test method), carbon fiber fabrics were buried inside the refractory body along its longitudinal direction (if there were multiple layers of carbon fiber fabrics, they were placed in parallel at equal intervals). Using a test piece (specimen size: 150 mm x 150 mm x 300 mm) that had been buried), the distance between centers was 100 mm, the load application acceleration was 0.5 mm/min, and the test was conducted in accordance with the three-point bending test method described in JIS R2213. It was measured using Note that FIG. 4(A) is an explanatory diagram schematically showing the implementation status of the three-point bending strength test, and FIG. 4(B) is an explanatory diagram schematically showing the end face of the test piece in FIG. 4(A).
Regarding the fracture energy, as shown in FIG. 5, the position where the first peak value was shown in the load-displacement curve obtained in the three-point bending strength test was used as a reference, and the area within a range of 1 mm displacement from the reference position was taken as the area.

また、耐割れ性と耐溶損性については、上述した方法で評価したが、耐割れ性を評価する試験片としては、耐火物本体の内部に、その長手方向に沿って炭素繊維織物を埋設(炭素繊維織物が複数層の場合には並列状に等間隔で埋設)したものを用いた。また、耐溶損性を評価する試験片としては、スラグや溶鋼に接する面(耐火物の稼動面x)に垂直に炭素繊維織物が埋設(炭素繊維織物が複数層の場合には並列状に等間隔で埋設)されたものを用いた。
なお、耐火物れんがの特性の総合評価については、破壊エネルギーが15kJ/m以上、耐割れ性が0.50E/E以上の場合を“優”(評価:◎)、破壊エネルギーが10kJ/m以上15kJ/m未満、耐割れ性が0.40E/E以上0.50E/E未満の場合を“良”(評価:〇)、破壊エネルギーが10kJ/m未満、耐割れ性が0.40E/E未満の場合、または炭素繊維織物の形成不可の場合を“劣”(評価×)とした。
In addition, cracking resistance and erosion resistance were evaluated using the methods described above, but as test pieces for evaluating cracking resistance, a carbon fiber fabric was embedded inside the refractory body along its longitudinal direction ( In the case of multiple layers of carbon fiber fabric, those embedded in parallel at equal intervals were used. In addition, as a test piece for evaluating erosion resistance, a carbon fiber fabric was buried perpendicularly to the surface in contact with slag or molten steel (the working surface (buried at intervals) were used.
Regarding the comprehensive evaluation of the properties of refractory bricks, when the fracture energy is 15 kJ/m2 or more and the cracking resistance is 0.50E3 /E0 or more, it is "excellent" (rating: ◎), and when the fracture energy is 10 kJ / m2 or more and less than 15kJ/ m2 , cracking resistance is 0.40E3 / E0 or more and less than 0.50E3 / E0 is "good" (rating: ○), and fracture energy is less than 10kJ/ m2 . If the cracking resistance was less than 0.40E 3 /E 0 or if a carbon fiber fabric could not be formed, it was rated “poor” (evaluation ×).

表3~表9に、発明例および比較例の炭素繊維含有マグネシア・カーボン質れんが(耐火物本体の内部に炭素繊維織物が埋設された黒鉛含有耐火物)の構成と特性(曲げ強度、破壊エネルギー、耐溶損性、耐割れ性)を示す。
これらの実施例では、耐火物本体を表1の配合例1-4の組成とし、耐火物本体Aを構成する骨材(マグネシア原料)の最大粒径を3mmとした。
まず、表3の実施例は、耐火物本体の内部に埋設される炭素繊維織物について、炭素繊維織物を構成する炭素繊維束の配向方向数(炭素繊維束を編み込む方向の数)と、耐火物断面積に対する炭素繊維織物の占有面積率(炭素繊維織物の面方向での耐火物断面において、耐火物断面積に対する炭素繊維織物の占める面積割合)が炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
Tables 3 to 9 show the composition and characteristics (bending strength, fracture energy, , erosion resistance, cracking resistance).
In these Examples, the refractory main body had the composition of Formulation Examples 1-4 in Table 1, and the maximum particle size of the aggregate (magnesia raw material) constituting the refractory main body A was 3 mm.
First, the example in Table 3 shows the number of orientation directions of carbon fiber bundles constituting the carbon fiber fabric (the number of directions in which carbon fiber bundles are woven) and the number of orientation directions of the carbon fiber bundles constituting the carbon fiber fabric, and the number of directions in which the carbon fiber bundles are woven, and The area ratio of the carbon fiber fabric to the cross-sectional area (the area ratio of the carbon fiber fabric to the cross-sectional area of the refractory in the refractory cross section in the plane direction of the carbon fiber fabric) is the bending strength of the carbon fiber-containing magnesia/carbon brick. The effect on fracture energy and cracking resistance was investigated.

発明例1-1~発明例1-5が示す通り、耐火物断面積に対する炭素繊維織物の占有面積率が20%以上の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”または“良”であった。
一方、比較例1-1が示す通り、耐火物断面積に対する炭素繊維織物の占有面積率が20%未満の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“劣”であった。
また、比較例1-2が示す通り、炭素繊維束を1方向のみに配向させた場合、炭素繊維織物を形成できないため、炭素繊維織物を埋設したれんがを製造できなかった。
As shown in Invention Examples 1-1 to 1-5, when the area ratio of the carbon fiber fabric to the cross-sectional area of the refractory is 20% or more, the characteristics of the carbon fiber-containing magnesia/carbon brick are evaluated as "Excellent". Or it was “good”.
On the other hand, as shown in Comparative Example 1-1, when the area ratio of the carbon fiber fabric to the cross-sectional area of the refractory was less than 20%, the characteristics of the carbon fiber-containing magnesia-carbon brick were evaluated as "poor."
Further, as shown in Comparative Example 1-2, when carbon fiber bundles were oriented in only one direction, a carbon fiber fabric could not be formed, and therefore a brick in which a carbon fiber fabric was embedded could not be manufactured.

これらのことから、炭素繊維束を2方向以上に編み込んだ炭素繊維織物を耐火物本体に埋設し、且つ、耐火物断面積に対する炭素繊維織物の占有面積率を20%以上とすれば、炭素繊維含有マグネシア・カーボン質れんがの破壊エネルギーと耐割れ性が高まることが分かった。また、耐火物断面積に対する炭素繊維織物の占有面積率を40%以上とすれば、炭素繊維含有マグネシア・カーボン質れんがの破壊エネルギーと耐割れ性がより高まることが分かった。 From these facts, if a carbon fiber fabric in which carbon fiber bundles are woven in two or more directions is embedded in a refractory body, and the area ratio of the carbon fiber fabric to the cross-sectional area of the refractory is 20% or more, the carbon fiber It was found that the fracture energy and cracking resistance of the magnesia-carbon bricks were increased. Furthermore, it has been found that when the area ratio of the carbon fiber fabric to the cross-sectional area of the refractory is set to 40% or more, the fracture energy and cracking resistance of the carbon fiber-containing magnesia-carbon brick are further increased.

表4の実施例は、耐火物本体の内部に埋設される炭素繊維織物の厚さが炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
発明例1-3および発明例2-2~2-4が示す通り、炭素繊維織物の厚さが0.1mm以上3mm以下の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”であった。
一方、発明例2-1および発明例2-5が示す通り、炭素繊維織物の厚さが0.1mm未満または3mm超の場合、炭素繊維含有マグネシア・カーボン質れんがの特性は、発明例1-3および発明例2-2~2-4に比べて若干低下した。
以上のことから、炭素繊維織物の厚さを0.1mm以上3mm以下とすれば、炭素繊維含有マグネシア・カーボン質れんがの破壊エネルギーと耐割れ性を特に高く維持できることが分かった。
The example shown in Table 4 investigates the effect of the thickness of the carbon fiber fabric embedded inside the refractory body on the bending strength, fracture energy, and cracking resistance of carbon fiber-containing magnesia/carbon bricks. .
As shown in Invention Example 1-3 and Invention Examples 2-2 to 2-4, when the thickness of the carbon fiber fabric is 0.1 mm or more and 3 mm or less, the characteristics of the carbon fiber-containing magnesia/carbon brick are evaluated as "excellent.""Met.
On the other hand, as shown in Invention Example 2-1 and Invention Example 2-5, when the thickness of the carbon fiber fabric is less than 0.1 mm or more than 3 mm, the characteristics of the carbon fiber-containing magnesia/carbonaceous brick are the same as Invention Example 1- 3 and invention examples 2-2 to 2-4.
From the above, it was found that when the thickness of the carbon fiber fabric is set to 0.1 mm or more and 3 mm or less, the fracture energy and cracking resistance of the carbon fiber-containing magnesia carbon brick can be maintained particularly high.

表5の実施例は、耐火物本体の内部に埋設される炭素繊維織物について、炭素繊維束の幅wが炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
発明例1-3、発明例3-2~発明例3-5が示す通り、炭素繊維束の幅wが1mm超15mm以下の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”であった。
一方、発明例3-1が示す通り、炭素繊維束の幅wが1mmの場合、炭素繊維含有マグネシア・カーボン質れんがの特性は若干低下した。また、発明例3-6が示す通り、炭素繊維束の幅wが15mm超の場合も、炭素繊維含有マグネシア・カーボン質れんがの特性は若干低下した。
The example in Table 5 shows the influence of the width w of carbon fiber bundles on the bending strength, fracture energy, and cracking resistance of carbon fiber-containing magnesia/carbonaceous bricks for carbon fiber fabrics buried inside the refractory body. This is what I researched.
As shown in Invention Example 1-3, Invention Example 3-2 to Invention Example 3-5, when the width w of the carbon fiber bundle is more than 1 mm and less than 15 mm, the characteristics of the carbon fiber-containing magnesia/carbon brick are evaluated as "excellent". "Met.
On the other hand, as shown in Invention Example 3-1, when the width w of the carbon fiber bundle was 1 mm, the characteristics of the carbon fiber-containing magnesia carbon brick were slightly degraded. Furthermore, as shown in Invention Example 3-6, when the width w of the carbon fiber bundle was more than 15 mm, the characteristics of the carbon fiber-containing magnesia-carbon brick were slightly degraded.

表6の実施例は、耐火物本体の内部に埋設される炭素繊維織物の層数(埋設層数)が炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
発明例1-3および発明例5-2~発明例5-4が示す通り、炭素繊維織物の埋設層数を2層以上とした場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”であった。
一方、発明例5-1が示す通り、炭素繊維織物の埋設層数が1層の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“良”であった。
以上のことから、炭素繊維織物の埋設層数を1層とすると炭素繊維含有マグネシア・カーボン質れんがは優れた特性を示し、2層以上とするとさらに優れた特性を示すことが分かった。
The example in Table 6 shows the effect of the number of layers of carbon fiber fabric buried inside the refractory body (the number of buried layers) on the bending strength, fracture energy, and cracking resistance of carbon fiber-containing magnesia/carbon bricks. This is what I researched.
As shown in Invention Example 1-3 and Invention Examples 5-2 to 5-4, when the number of embedded layers of carbon fiber fabric is two or more, the evaluation of the characteristics of the carbon fiber-containing magnesia/carbon brick is “ It was excellent.
On the other hand, as shown in Invention Example 5-1, when the number of buried layers of the carbon fiber fabric was one, the evaluation of the characteristics of the carbon fiber-containing magnesia carbon brick was "good".
From the above, it was found that the carbon fiber-containing magnesia/carbonaceous brick exhibits excellent properties when the number of buried layers of the carbon fiber fabric is one, and even better properties when the number of embedded layers is two or more.

表7の実施例は、耐火物本体の内部に2層以上埋設される炭素繊維織物の埋設間隔(隣り合う炭素繊維織物の間隔)が炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
発明例1-3および発明例6-2~発明例6-5が示す通り、炭素繊維織物の埋設間隔を10mm以上とした場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”であった。一方、発明例6-1が示す通り、炭素繊維織物の埋設間隔が10mm未満の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“良”であった。
以上のことから、炭素繊維織物の埋設間隔を10mm以上とすると炭素繊維含有マグネシア・カーボン質れんがは特に優れた特性を示すことが分かった。
The examples in Table 7 show that the distance between two or more layers of carbon fiber fabrics (the distance between adjacent carbon fiber fabrics) is the bending strength and fracture energy of the carbon fiber-containing magnesia/carbonaceous brick. The effect on cracking resistance was investigated.
As shown in Invention Example 1-3 and Invention Examples 6-2 to 6-5, when the carbon fiber fabric is buried at a spacing of 10 mm or more, the characteristics of the carbon fiber-containing magnesia/carbon brick are evaluated as "Excellent". Met. On the other hand, as shown in Invention Example 6-1, when the carbon fiber fabric was embedded at a spacing of less than 10 mm, the characteristics of the carbon fiber-containing magnesia-carbon brick were evaluated as "good".
From the above, it was found that the carbon fiber-containing magnesia-carbon brick exhibits particularly excellent properties when the carbon fiber fabric is buried at a spacing of 10 mm or more.

表8の実施例は、耐火物本体の内部に埋設される炭素繊維織物について、同じ方向に編み込まれた炭素繊維束であって、隣り合う炭素繊維束どうしの間隔Lが炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
発明例1-3および発明例7-1が示す通り、隣り合う炭素繊維束どうしの間隔Lが耐火物本体を構成する骨材の最大粒径(3mm)よりも大きい場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”であった。一方、比較例7-1が示す通り、隣り合う炭素繊維束どうしの間隔Lが耐火物本体を構成する骨材の最大粒径(3mm)以下の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“劣”であった。なお、発明例1-3および発明例7-1は、「隣り合う炭素繊維束どうしの間隔Lが3mm超である」という本発明の好ましい条件も満足している。
以上のことから、炭素繊維織物の隣り合う炭素繊維束どうしの間隔Lを耐火物本体を構成する骨材の最大粒径よりも大きくすると炭素繊維含有マグネシア・カーボン質れんがは特に優れた特性を示すことが分かった。
The examples in Table 8 are carbon fiber bundles woven in the same direction with respect to the carbon fiber fabric buried inside the refractory body, and the distance L between adjacent carbon fiber bundles is carbon fiber-containing magnesia carbon. This study investigated the effects on the bending strength, fracture energy, and cracking resistance of bricks.
As shown in Invention Example 1-3 and Invention Example 7-1, when the distance L between adjacent carbon fiber bundles is larger than the maximum particle size (3 mm) of the aggregate constituting the refractory body, carbon fiber-containing magnesia The evaluation of the properties of the carbon brick was "excellent". On the other hand, as shown in Comparative Example 7-1, when the distance L between adjacent carbon fiber bundles is equal to or less than the maximum particle size (3 mm) of the aggregate constituting the refractory body, the characteristics of the carbon fiber-containing magnesia/carbon brick The evaluation was "poor". Incidentally, Invention Example 1-3 and Invention Example 7-1 also satisfy the preferred condition of the present invention that "the distance L between adjacent carbon fiber bundles is more than 3 mm."
From the above, when the distance L between adjacent carbon fiber bundles of the carbon fiber fabric is made larger than the maximum particle size of the aggregate constituting the refractory body, the carbon fiber-containing magnesia/carbonaceous brick exhibits particularly excellent properties. That's what I found out.

表9の実施例は、炭素繊維織物を構成する炭素繊維束の束内に含まれ、且つ炭素繊維織物を耐火物本体に接着または密着させる接着剤成分(フェノール樹脂)の残炭率が炭素繊維含有マグネシア・カーボン質れんがの曲げ強度および破壊エネルギー・耐割れ性に及ぼす影響を調べたものである。
発明例1-3、発明例8-2および発明例8-3が示す通り、接着剤成分の残炭率が6%以上80%以下の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“優”であった。一方、発明例8-1が示す通り、接着剤成分の残炭率が6%未満の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“良”であった。また、発明例8-4が示す通り、接着剤成分の残炭率が80%超の場合、炭素繊維含有マグネシア・カーボン質れんがの特性の評価は“良”であった。
以上のことから、炭素繊維織物の炭素繊維束内に含ませ、且つ炭素繊維織物を耐火物本体に対して接着または密着させる接着剤成分として有機物を用いる場合、残炭率が6%以上80%以下の接着剤成分を用いると炭素繊維含有マグネシア・カーボン質れんがは特に優れた特性を示すことが分かった。
The examples in Table 9 show that the residual carbon content of the adhesive component (phenol resin) that is contained in the bundle of carbon fiber bundles constituting the carbon fiber fabric and that adheres or adheres the carbon fiber fabric to the refractory main body is This study investigated the effects on the bending strength, fracture energy, and cracking resistance of magnesia-carbon bricks.
As shown in Invention Example 1-3, Invention Example 8-2, and Invention Example 8-3, when the residual carbon percentage of the adhesive component is 6% or more and 80% or less, evaluation of the characteristics of carbon fiber-containing magnesia/carbon bricks was “excellent”. On the other hand, as shown in Invention Example 8-1, when the residual carbon content of the adhesive component was less than 6%, the characteristics of the carbon fiber-containing magnesia-carbon brick were evaluated as "good". Further, as shown in Invention Example 8-4, when the residual carbon content of the adhesive component was over 80%, the characteristics of the carbon fiber-containing magnesia-carbon brick were evaluated as "good".
From the above, when an organic substance is included in the carbon fiber bundle of the carbon fiber fabric and is used as an adhesive component for adhering or adhering the carbon fiber fabric to the refractory body, the residual carbon percentage is 6% or more and 80%. It has been found that carbon fiber-containing magnesia-carbon bricks exhibit particularly excellent properties when the following adhesive components are used.

溶銑予備処理容器などの内張りに使用するアルミナ原料、炭化珪素原料、シリカ原料を骨材とした炭素繊維含有黒鉛含有耐火物(耐火物れんが)についても同様の検討を行った。
表10の実施例は、溶銑予備処理容器の内張りに使用する炭素繊維含有アルミナ・シリカ・炭化珪素・カーボン質れんが(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、同じ方向に配向した隣り合う炭素繊維束の間隔を10mmとした炭素繊維織物をアルミナ・シリカ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に30mm間隔で並列状に埋設した。その際、事前に接着剤である残炭率:40質量%のフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、炭素繊維束の内外にフェノール樹脂(樹脂溶液)が浸透・付着した炭素繊維織物を耐火物本体に埋設した。この実施例では、耐火物本体を構成する骨材(アルミナ原料、炭化珪素原料、シリカ原料)の最大粒径を3mmとした。
A similar study was conducted on carbon fiber-containing graphite-containing refractories (refractory bricks) using alumina raw materials, silicon carbide raw materials, and silica raw materials as aggregates to be used for lining hot metal pretreatment containers.
The examples in Table 10 are about carbon fiber-containing alumina, silica, silicon carbide, and carbon bricks (graphite-containing refractories using alumina raw materials, silicon carbide raw materials, and silica raw materials as aggregates) used for lining hot metal pretreatment vessels. This study investigated the effects of its composition on the bending strength, fracture energy, cracking resistance, and erosion resistance of graphite-containing refractories.
In this example, carbon fiber fabrics with a spacing of 10 mm between adjacent carbon fiber bundles oriented in the same direction are buried in parallel at 30 mm intervals inside an alumina/silica/silicon carbide/carbon refractory (refractory body). did. At that time, the carbon fiber fabric is immersed in advance in a phenol resin (resin solution) with a residual carbon content of 40% by mass, which is an adhesive, and the carbon fibers with the phenol resin (resin solution) permeated and adhered to the inside and outside of the carbon fiber bundle. The fabric was embedded in the refractory body. In this example, the maximum particle size of the aggregate (alumina raw material, silicon carbide raw material, silica raw material) constituting the refractory body was set to 3 mm.

発明例9-2~発明例9-8が示す通り、アルミナ原料の含有量を10質量%以上95質量%以下、シリカ原料の含有量を1質量%以上50質量%以下、炭化珪素原料の含有量を1質量%以上、黒鉛含有量を1質量%以上80質量%以下とした場合、破壊エネルギーも高く、高耐割れ性と高耐溶損性を両立できた。
一方、発明例9-1が示す通り、アルミナ原料の含有量が10質量%未満、シリカ原料の含有量が1質量%未満、炭化珪素原料の含有量が1質量%未満、黒鉛含有量が80質量%超の場合には、破壊エネルギー・耐割れ性、耐溶損性がともに低下している。
As shown in Invention Examples 9-2 to 9-8, the content of alumina raw material is 10% by mass or more and 95% by mass or less, the content of silica raw material is 1% by mass or more and 50% by mass or less, and the content of silicon carbide raw material is When the amount was 1% by mass or more and the graphite content was 1% by mass or more and 80% by mass or less, the fracture energy was high and both high cracking resistance and high erosion resistance could be achieved.
On the other hand, as shown in Invention Example 9-1, the content of the alumina raw material is less than 10% by mass, the content of the silica raw material is less than 1% by mass, the content of the silicon carbide raw material is less than 1% by mass, and the graphite content is 80% by mass. When the content exceeds % by mass, both fracture energy, cracking resistance, and erosion resistance are reduced.

また、発明例9-9が示す通り、アルミナ原料の含有量が95質量%超、シリカ原料の含有量が1質量%未満、炭化珪素原料の含有量が1質量%未満、黒鉛含有量が1質量%未満の場合、熱スポーリングによる亀裂の発生を抑制できず、破壊エネルギー・耐割れ性が低下している。
以上のことから、炭素繊維含有アルミナ・シリカ・炭化珪素・カーボン質耐火物において、アルミナ原料の含有量を10質量%以上95質量%以下、シリカ原料の含有量を1質量%以上50質量%以下、炭化珪素原料の含有量を1質量%以上、黒鉛含有量を1質量%以上80質量%以下とすれば、高耐溶損性と高い破壊エネルギー・耐割れ性を両立できることが分かった。
Furthermore, as shown in Invention Example 9-9, the content of the alumina raw material is more than 95% by mass, the content of the silica raw material is less than 1% by mass, the content of the silicon carbide raw material is less than 1% by mass, and the graphite content is 1% by mass. If it is less than % by mass, the occurrence of cracks due to thermal spalling cannot be suppressed, resulting in a decrease in fracture energy and cracking resistance.
From the above, in carbon fiber-containing alumina/silica/silicon carbide/carbon refractories, the content of alumina raw materials should be 10% by mass or more and 95% by mass or less, and the content of silica raw materials should be 1% by mass or more and 50% by mass or less. It was found that if the content of the silicon carbide raw material is 1% by mass or more and the graphite content is 1% by mass or more and 80% by mass or less, high erosion resistance and high fracture energy/crack resistance can be achieved at the same time.

表11の実施例は、溶銑予備処理容器の内張りに使用する炭素繊維含有アルミナ・シリカ・炭化珪素・カーボン質れんが(アルミナ原料、炭化珪素原料、シリカ原料を骨材とした黒鉛含有耐火物)であって、骨材原料の一部として、使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物を粉砕して得られた耐火物屑を用いた黒鉛含有耐火物について、その耐火物屑含有量が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、同じ方向に配向した隣り合う炭素繊維束の間隔を10mmとした炭素繊維織物をアルミナ・シリカ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に30mm間隔で並列状に埋設した。その際、事前に接着剤である残炭率:40質量%のフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、炭素繊維束の内外にフェノール樹脂(樹脂溶液)が浸透・付着した炭素繊維織物を耐火物本体に埋設した。この実施例では、耐火物本体を構成する骨材(アルミナ原料、炭化珪素原料、シリカ原料)の最大粒径を3mmとした。
The examples in Table 11 are carbon fiber-containing alumina/silica/silicon carbide/carbon bricks (graphite-containing refractories using alumina raw materials, silicon carbide raw materials, and silica raw materials as aggregates) used for lining hot metal pretreatment vessels. Regarding graphite-containing refractories that use refractory scraps obtained by crushing used alumina, silica, silicon carbide, and carbonaceous refractories as part of the aggregate raw material, the refractory scrap content is This study investigated the effects of refractories on the bending strength, fracture energy, cracking resistance, and erosion resistance of graphite-containing refractories.
In this example, carbon fiber fabrics with a spacing of 10 mm between adjacent carbon fiber bundles oriented in the same direction are buried in parallel at 30 mm intervals inside an alumina/silica/silicon carbide/carbon refractory (refractory body). did. At that time, the carbon fiber fabric is immersed in advance in a phenol resin (resin solution) with a residual carbon content of 40% by mass, which is an adhesive, and the carbon fibers with the phenol resin (resin solution) permeated and adhered to the inside and outside of the carbon fiber bundle. The fabric was embedded in the refractory body. In this example, the maximum particle size of the aggregate (alumina raw material, silicon carbide raw material, silica raw material) constituting the refractory body was set to 3 mm.

発明例10-1~発明例10-3に示す通り、耐火物屑の含有量を10質量%以上90質量%以下とした場合、表10に示したバージン原料のみを使用した黒鉛含有耐火物と同程度の破壊エネルギー・耐割れ性および耐溶損性が得られている。
一方、発明例10-4に示す通り、耐火物屑の含有量が90質量%超の場合、破壊エネルギー・耐割れ性と耐溶損性が低下した。
以上のことから、使用済みのアルミナ・シリカ・炭化珪素・カーボン質耐火物屑を粉砕して得られた耐火物屑を骨材原料とした炭素繊維含有黒鉛含有耐火物に関して、耐火物屑の含有量を10質量%以上90質量%以下とすれば、破壊エネルギーを高く維持でき、さらに、バージン原料のみを使用した黒鉛含有耐火物と同程度の耐割れ性および耐溶損性を有することが分かった。
As shown in Invention Examples 10-1 to 10-3, when the content of refractory waste is 10% by mass or more and 90% by mass or less, graphite-containing refractories using only the virgin raw materials shown in Table 10 and Similar fracture energy, cracking resistance, and erosion resistance were obtained.
On the other hand, as shown in Invention Example 10-4, when the content of refractory debris exceeded 90% by mass, fracture energy, cracking resistance, and erosion resistance decreased.
From the above, regarding carbon fiber-containing graphite-containing refractories made from refractory scraps obtained by crushing used alumina, silica, silicon carbide, and carbonaceous refractory scraps as an aggregate raw material, the content of refractory scraps It was found that if the amount is 10% by mass or more and 90% by mass or less, fracture energy can be maintained high, and furthermore, it has cracking resistance and erosion resistance comparable to graphite-containing refractories using only virgin raw materials. .

表12の実施例は、炭素繊維含有アルミナ・炭化珪素・カーボン質れんが(アルミナ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、同じ方向に配向した隣り合う炭素繊維束の間隔を10mmとした炭素繊維織物をアルミナ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に30mm間隔で並列状に埋設した。その際、事前に接着剤である残炭率:40質量%のフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、炭素繊維束の内外にフェノール樹脂(樹脂溶液)が浸透・付着した炭素繊維織物を耐火物本体に埋設した。この実施例では、耐火物本体を構成する骨材(アルミナ原料、炭化珪素原料)の最大粒径を3mmとした。
The examples in Table 12 are for carbon fiber-containing alumina/silicon carbide/carbon bricks (graphite-containing refractories using alumina raw materials and silicon carbide raw materials as aggregates), and their compositions are based on the bending strength and fracture energy of graphite-containing refractories.・The effect on cracking resistance and erosion resistance was investigated.
In this example, carbon fiber fabrics with a spacing of 10 mm between adjacent carbon fiber bundles oriented in the same direction were embedded in parallel at 30 mm intervals inside an alumina/silicon carbide/carbon refractory (refractory body). At that time, the carbon fiber fabric is immersed in advance in a phenol resin (resin solution) with a residual carbon content of 40% by mass, which is an adhesive, and the carbon fibers with the phenol resin (resin solution) permeated and adhered to the inside and outside of the carbon fiber bundle. The fabric was embedded in the refractory body. In this example, the maximum particle size of the aggregate (alumina raw material, silicon carbide raw material) constituting the refractory body was set to 3 mm.

発明例11-2~発明例11-4が示す通り、アルミナ原料の含有量を10質量%以上95質量%以下、黒鉛含有量を1質量%以上80質量%以下とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
一方、発明例11-1が示す通り、アルミナ原料の含有量が10質量%未満、黒鉛含有量が80質量%超の場合、破壊エネルギー・耐割れ性、耐溶損性が低下している。また、発明例11-5が示す通り、アルミナ原料の含有量が95質量%超、黒鉛含有量が1質量%未満の場合、破壊エネルギー・耐割れ性が低下している。
以上のことから、炭素繊維含有アルミナ・炭化珪素・カーボン質耐火物において、アルミナ原料の含有量を10質量%以上95質量%以下、黒鉛含有量を1質量%以上80質量%以下とすれば、高い破壊エネルギー・耐割れ性と耐溶損性が得られることが分かった。
As shown in Invention Examples 11-2 to 11-4, when the alumina raw material content is 10% by mass or more and 95% by mass or less and the graphite content is 1% by mass or more and 80% by mass or less, high bending strength and Good fracture energy, cracking resistance, and erosion resistance are achieved.
On the other hand, as shown in Invention Example 11-1, when the alumina raw material content is less than 10% by mass and the graphite content is more than 80% by mass, fracture energy, cracking resistance, and erosion resistance are reduced. Further, as shown in Invention Example 11-5, when the alumina raw material content is more than 95% by mass and the graphite content is less than 1% by mass, the fracture energy and cracking resistance are reduced.
From the above, in carbon fiber-containing alumina/silicon carbide/carbon refractories, if the alumina raw material content is 10% by mass or more and 95% by mass or less, and the graphite content is 1% by mass or more and 80% by mass or less, It was found that high fracture energy, cracking resistance, and erosion resistance can be obtained.

表13の実施例は、炭素繊維含有シリカ・炭化珪素・カーボン質れんが(シリカ原料、炭化珪素原料を骨材とした黒鉛含有耐火物)について、その組成が黒鉛含有耐火物の曲げ強度、破壊エネルギー・耐割れ性、および耐溶損性に及ぼす影響を調べたものである。
この実施例では、同じ方向に配向した隣り合う炭素繊維束の間隔を10mmとした炭素繊維織物をシリカ・炭化珪素・カーボン質耐火物(耐火物本体)の内部に30mm間隔で並列状に埋設した。その際、事前に接着剤である残炭率:40質量%のフェノール樹脂(樹脂溶液)に炭素繊維織物を浸漬し、炭素繊維束の内外にフェノール樹脂(樹脂溶液)が浸透・付着した炭素繊維織物を耐火物本体に埋設した。この実施例では、耐火物本体を構成する骨材(シリカ原料、炭化珪素原料)の最大粒径を3mmとした。
The examples in Table 13 are for carbon fiber-containing silica/silicon carbide/carbon bricks (graphite-containing refractories using silica raw materials and silicon carbide raw materials as aggregates), and their compositions are based on the bending strength and fracture energy of graphite-containing refractories.・The effect on cracking resistance and erosion resistance was investigated.
In this example, carbon fiber fabrics with a spacing of 10 mm between adjacent carbon fiber bundles oriented in the same direction were buried in parallel at 30 mm intervals inside a silica/silicon carbide/carbon refractory (refractory body). At that time, the carbon fiber fabric is immersed in advance in a phenol resin (resin solution) with a residual carbon content of 40% by mass, which is an adhesive, and the carbon fibers with the phenol resin (resin solution) permeated and adhered to the inside and outside of the carbon fiber bundle. The fabric was embedded in the refractory body. In this example, the maximum particle size of the aggregate (silica raw material, silicon carbide raw material) constituting the refractory body was set to 3 mm.

発明例12-2~発明例12-4が示す通り、シリカ原料の含有量を1質量%以上50質量%以下とした場合、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られている。
一方、発明例12-1が示す通り、シリカ原料の含有量を1質量%未満とした場合、破壊エネルギー・耐割れ性が低下している。
また、発明例12-5が示す通り、シリカ原料の含有量を50質量%超とした場合、熱スポーリングによる亀裂の発生を抑制できず、破壊エネルギー・耐割れ性が低下している。
以上のことから、炭素繊維含有シリカ・炭化珪素・カーボン質耐火物において、シリカ原料の含有量を1質量%以上50質量%以下とすれば、高い曲げ強度および破壊エネルギー・耐割れ性と耐溶損性が得られることが分かった。
As shown in Invention Examples 12-2 to 12-4, when the content of the silica raw material is 1% by mass or more and 50% by mass or less, high bending strength, fracture energy/cracking resistance, and erosion resistance are obtained. ing.
On the other hand, as shown in Invention Example 12-1, when the content of the silica raw material is less than 1% by mass, the fracture energy and cracking resistance are reduced.
Further, as shown in Invention Example 12-5, when the content of the silica raw material is more than 50% by mass, the generation of cracks due to thermal spalling cannot be suppressed, and the fracture energy and cracking resistance are reduced.
From the above, in carbon fiber-containing silica/silicon carbide/carbon refractories, if the content of silica raw material is 1% by mass or more and 50% by mass or less, high bending strength, fracture energy, cracking resistance, and erosion resistance are achieved. I found out that I can get sex.

表14に、発明例1-3の本発明れんが(マグネシア原料を骨材とした黒鉛含有耐火物)と炭素繊維織物を埋設していない従来れんがを転炉の羽口に施工し、損耗速度を評価した結果を示す。従来れんがは、炭素繊維織物を埋設していない点を除き、発明例1-3の本発明れんがと同じ組成および製法のれんがである。表14に示す通り、本発明れんがの損耗速度は従来れんがと比較して50%以上低減した。
表15に、発明例1-3の本発明れんが(マグネシア原料を骨材とした黒鉛含有耐火物)と炭素繊維織物を埋設していない従来れんがを取鍋のスラグラインの側壁部に施工し、損耗速度を評価した結果を示す。従来れんがは、炭素繊維織物を埋設していない点を除き、発明例1-3の本発明れんがと同じ組成および製法のれんがである。表15に示す通り、本発明れんがの損耗速度は従来れんがと比較して50%以上低減した。
Table 14 shows that the present invention bricks of Invention Examples 1-3 (graphite-containing refractories using magnesia raw material as aggregate) and conventional bricks without embedded carbon fiber fabrics were installed at the tuyere of a converter, and the wear rate was measured. The results of the evaluation are shown. The conventional brick is a brick having the same composition and manufacturing method as the present invention brick of Invention Example 1-3, except that the carbon fiber fabric is not embedded. As shown in Table 14, the wear rate of the bricks of the present invention was reduced by more than 50% compared to the conventional bricks.
Table 15 shows that the present invention bricks of Invention Examples 1-3 (graphite-containing refractories using magnesia raw material as aggregate) and conventional bricks without embedded carbon fiber fabrics were constructed on the side wall of the slag line of the ladle. The results of evaluating the wear rate are shown. The conventional brick is a brick having the same composition and manufacturing method as the present invention brick of Invention Example 1-3, except that the carbon fiber fabric is not embedded. As shown in Table 15, the wear rate of the bricks of the present invention was reduced by more than 50% compared to the conventional bricks.

表16に、発明例9-5の本発明れんが(アルミナ原料、炭化ケイ素原料、シリカ原料を骨材とした黒鉛含有耐火物)と炭素繊維織物を埋設していない従来れんがを溶銑予備処理容器である高炉鍋の側壁に施工し、損耗速度を評価した結果を示す。従来れんがは、炭素繊維織物を埋設していない点を除き、発明例9-5の本発明れんがと同じ組成および製法のれんがである。表16に示す通り、本発明れんがの損耗速度は従来れんがと比較して約20%~30%低減した。
表14~表16に示される通り、本発明れんがを転炉や取鍋、溶銑予備処理容器に適用した場合、実機損耗速度を大幅に低減できることが分かった。
Table 16 shows that the brick of the present invention of Invention Example 9-5 (graphite-containing refractory using alumina raw material, silicon carbide raw material, and silica raw material as aggregate) and the conventional brick without embedded carbon fiber fabric were placed in a hot metal pretreatment container. This shows the results of evaluating the rate of wear and tear applied to the side wall of a certain blast furnace pot. The conventional brick is a brick having the same composition and manufacturing method as the brick of the present invention of Invention Example 9-5, except that the carbon fiber fabric is not embedded. As shown in Table 16, the wear rate of the bricks of the present invention was reduced by about 20% to 30% compared to conventional bricks.
As shown in Tables 14 to 16, it was found that when the bricks of the present invention were applied to converters, ladles, and hot metal pretreatment vessels, the wear rate of actual equipment could be significantly reduced.

Figure 2023130030000002
Figure 2023130030000002

Figure 2023130030000003
Figure 2023130030000003

Figure 2023130030000004
Figure 2023130030000004

Figure 2023130030000005
Figure 2023130030000005

Figure 2023130030000006
Figure 2023130030000006

Figure 2023130030000007
Figure 2023130030000007

Figure 2023130030000008
Figure 2023130030000008

Figure 2023130030000009
Figure 2023130030000009

Figure 2023130030000010
Figure 2023130030000010

Figure 2023130030000011
Figure 2023130030000011

Figure 2023130030000012
Figure 2023130030000012

Figure 2023130030000013
Figure 2023130030000013

Figure 2023130030000014
Figure 2023130030000014

Figure 2023130030000015
Figure 2023130030000015

Figure 2023130030000016
Figure 2023130030000016

Figure 2023130030000017
Figure 2023130030000017

A 耐火物本体
B 炭素繊維織物
c 接着剤成分
b 炭素繊維束
x 耐火物稼動面
y 反稼動面
A Refractory main body B Carbon fiber fabric c Adhesive component b Carbon fiber bundle x Refractory moving surface y Non-moving surface

Claims (17)

黒鉛を含有する耐火物本体(A)の内部に、炭素繊維束(b)を2方向以上に編み込んだ炭素繊維織物(B)が埋設された黒鉛含有耐火物であって、
炭素繊維織物(B)は、炭素繊維束(b)内に接着剤成分(c)を含むとともに、耐火物本体(A)に対して接着剤成分(c)を介して接着または密着し、
炭素繊維織物(B)を構成する同じ方向の炭素繊維束(b)は、隣り合う炭素繊維束(b)の間隔が耐火物本体(A)を構成する骨材の最大粒径よりも大きく、
炭素繊維織物(B)の面方向での耐火物断面において、耐火物断面積に対する炭素繊維織物(B)の占める面積割合が20%以上であることを特徴とする黒鉛含有耐火物。
A graphite-containing refractory in which a carbon fiber fabric (B) in which carbon fiber bundles (b) are woven in two or more directions is embedded inside a graphite-containing refractory body (A),
The carbon fiber fabric (B) contains an adhesive component (c) in the carbon fiber bundle (b), and is adhered or adhered to the refractory body (A) via the adhesive component (c),
The carbon fiber bundles (b) in the same direction constituting the carbon fiber fabric (B) have an interval between adjacent carbon fiber bundles (b) larger than the maximum particle size of the aggregate constituting the refractory body (A),
A graphite-containing refractory characterized in that, in a cross-section of the refractory in the plane direction of the carbon fiber fabric (B), the area ratio of the carbon fiber fabric (B) to the cross-sectional area of the refractory is 20% or more.
耐火物本体(A)の内部に、炭素繊維織物(B)が耐火物稼動面と直交する方向に沿って埋設されたことを特徴とする請求項1に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 1, characterized in that the carbon fiber fabric (B) is embedded inside the refractory main body (A) along a direction perpendicular to the operating surface of the refractory. 炭素繊維織物(B)の厚さが0.1mm以上3mm以下であることを特徴とする請求項1または2に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 1 or 2, wherein the carbon fiber fabric (B) has a thickness of 0.1 mm or more and 3 mm or less. 耐火物本体(A)の内部に、炭素繊維織物(B)が間隔をおいて2層以上埋設されたことを特徴とする請求項1~3のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 3, characterized in that two or more layers of carbon fiber fabric (B) are embedded at intervals within the refractory body (A). 2層以上の炭素繊維織物(B)が間隔をおいて並列状に埋設され、隣り合う炭素繊維織物(B)の間隔が10mm以上であることを特徴とする請求項4に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 4, characterized in that two or more layers of carbon fiber fabrics (B) are buried in parallel at intervals, and the interval between adjacent carbon fiber fabrics (B) is 10 mm or more. thing. 炭素繊維織物(B)を構成する同じ方向の炭素繊維束(b)は、隣り合う炭素繊維束(b)の間隔が3mm超であることを特徴とする請求項1~5のいずれかに記載の黒鉛含有耐火物。 According to any one of claims 1 to 5, wherein the carbon fiber bundles (b) in the same direction constituting the carbon fiber fabric (B) have an interval between adjacent carbon fiber bundles (b) of more than 3 mm. graphite-containing refractories. 炭素繊維織物(B)を構成する炭素繊維束(b)の幅が1mm超15mm以下であることを特徴とする請求項1~6のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 6, wherein the carbon fiber bundle (b) constituting the carbon fiber fabric (B) has a width of more than 1 mm and less than 15 mm. 接着剤成分(c)は、残炭率が6質量%以上80質量%以下の有機物であることを特徴とする請求項1~7のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 7, wherein the adhesive component (c) is an organic substance having a residual carbon content of 6% by mass or more and 80% by mass or less. 耐火物本体(A)は、黒鉛原料の含有量が1質量%以上80質量%以下であることを特徴とする請求項1~8のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 8, wherein the refractory body (A) has a graphite raw material content of 1% by mass or more and 80% by mass or less. 耐火物本体(A)は、マグネシア原料の含有量が20質量%以上99質量%以下であることを特徴とする請求項1~9のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 9, wherein the refractory body (A) has a magnesia raw material content of 20% by mass or more and 99% by mass or less. 耐火物本体(A)は、アルミナ原料の含有量が10質量%以上95質量%以下であることを特徴とする請求項1~10のいずれかに記載の黒鉛含有耐火物。 The graphite-containing refractory according to any one of claims 1 to 10, wherein the refractory body (A) has an alumina raw material content of 10% by mass or more and 95% by mass or less. 耐火物本体(A)は、シリカ原料の含有量が1質量%以上50質量%以下であることを特徴とする請求項1~9、11のいずれかに記載の黒鉛含有耐火物。 12. The graphite-containing refractory according to claim 1, wherein the refractory body (A) has a silica raw material content of 1% by mass or more and 50% by mass or less. 耐火物本体(A)は、炭化ケイ素原料の含有量が1質量%以上であることを特徴とする請求項11または12に記載の黒鉛含有耐火物。 The graphite-containing refractory according to claim 11 or 12, wherein the refractory main body (A) has a silicon carbide raw material content of 1% by mass or more. 耐火物本体(A)は、使用済み耐火物を粉砕した耐火物屑を、耐火物原料として10質量%以上90質量%以下含有することを特徴とする請求項1~13いずれかに記載の黒鉛含有耐火物。 Graphite according to any one of claims 1 to 13, characterized in that the refractory body (A) contains refractory scrap obtained by pulverizing used refractories from 10% by mass to 90% by mass as a refractory raw material. Containing refractories. 請求項1~14のいずれかに記載の黒鉛含有耐火物を備えることを特徴とする転炉。 A converter comprising the graphite-containing refractory according to any one of claims 1 to 14. 請求項1~14のいずれかに記載の黒鉛含有耐火物を備えることを特徴とする溶銑予備処理容器。 A hot metal pretreatment vessel comprising the graphite-containing refractory according to any one of claims 1 to 14. 請求項1~14のいずれかに記載の黒鉛含有耐火物を備えることを特徴とする取鍋容器。 A ladle container comprising the graphite-containing refractory according to any one of claims 1 to 14.
JP2022034466A 2022-03-07 2022-03-07 Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory Pending JP2023130030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022034466A JP2023130030A (en) 2022-03-07 2022-03-07 Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022034466A JP2023130030A (en) 2022-03-07 2022-03-07 Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory

Publications (1)

Publication Number Publication Date
JP2023130030A true JP2023130030A (en) 2023-09-20

Family

ID=88024825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022034466A Pending JP2023130030A (en) 2022-03-07 2022-03-07 Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory

Country Status (1)

Country Link
JP (1) JP2023130030A (en)

Similar Documents

Publication Publication Date Title
AU2008354499B2 (en) Hot gunning repair mix
US11629916B2 (en) Graphite-containing refractory and method of producing graphite-containing refractory
JP4583795B2 (en) Refractory for dry vibration construction containing MgO-C brick waste
JP4855339B2 (en) Amorphous refractories and methods for producing refractories
JP2023130030A (en) Graphite-containing refractory, and iron-making vessel having the graphite-containing refractory
JP2023130033A (en) Method for manufacturing graphite-containing refractory
CA2310431C (en) Refractory batch, in particular for the production of a shaped body, and process for producing the shaped body
JP2023149344A (en) Graphite-containing refractory
JP2023149350A (en) Manufacturing method of graphite-containing refractory
JP2023166933A (en) Manufacturing method of refractory containing graphite
JP2023166932A (en) Graphite-containing refractory
JP4945257B2 (en) Refractory
JP2004002171A (en) Refractory reinforced with bar-shaped molding consisting of inorganic fiber and its manufacturing method
CN113683426A (en) Baking-free high-strength metal ceramic composite material and preparation method and application thereof
JP6974801B2 (en) Graphite-containing refractory
JP2023089721A (en) Graphite-containing refractory and method of producing the same
JP4456443B2 (en) Pitch-containing difficult adhesion continuous casting nozzle
Jiang et al. Strengthening mechanism of Al2O3–ZrO2–C sliding plate material by existence modes of in-situ generated β-SiC whiskers
JP6957544B2 (en) Method for manufacturing graphite-containing refractory
JP4527906B2 (en) Carbon-containing amorphous refractory and its wet spraying method
JP6978677B2 (en) Refractory lining for secondary refractory equipment with decompression
JP3781363B2 (en) Method for closing a furnace opening using a rod-shaped molded body made of inorganic fibers
JP4533052B2 (en) Non-adhesive continuous casting nozzle
Gugliani Study the Effect of Graphite and Nano Carbon on Corrosion and Spalling resistance of the Zirconia-Graphite Refractory
JP5556043B2 (en) Refractory material excellent in spalling resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231024