JP2020157476A - Gas barrier laminate and electronic device - Google Patents

Gas barrier laminate and electronic device Download PDF

Info

Publication number
JP2020157476A
JP2020157476A JP2017146343A JP2017146343A JP2020157476A JP 2020157476 A JP2020157476 A JP 2020157476A JP 2017146343 A JP2017146343 A JP 2017146343A JP 2017146343 A JP2017146343 A JP 2017146343A JP 2020157476 A JP2020157476 A JP 2020157476A
Authority
JP
Japan
Prior art keywords
layer
organic
gas barrier
organic layer
barrier laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017146343A
Other languages
Japanese (ja)
Inventor
大悟 澤木
Daigo Sawaki
大悟 澤木
勇也 元村
Yuya MOTOMURA
勇也 元村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2017146343A priority Critical patent/JP2020157476A/en
Priority to PCT/JP2018/020701 priority patent/WO2019021616A1/en
Publication of JP2020157476A publication Critical patent/JP2020157476A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a gas barrier laminate capable of preventing deterioration of an electronic device due to moisture, and an electronic device using the gas barrier laminate.SOLUTION: The problem is solved by a gas barrier laminate which has a support, an inorganic layer and an organic layer alternately laminated on the support and has one or more inorganic layers and one or more organic layers, and in which of the inorganic layers and the organic layers alternately laminated, the organic layer is most separated from the support, and the organic layer most separated from the support has a smaller area than the inorganic layer most separated from the support.SELECTED DRAWING: Figure 1

Description

本発明は、ガスバリア積層体、および、このガスバリア積層体を用いる電子デバイスに関する。 The present invention relates to a gas barrier laminate and an electronic device using the gas barrier laminate.

有機エレクトロルミネッセンス材料(有機EL(Electro Luminescence)材料)を用いる有機ELデバイス、および、太陽電池デバイス等の電子デバイスが、各種の用途に利用されている。 Organic EL devices that use organic electroluminescence materials (organic EL (Electro Luminescence) materials) and electronic devices such as solar cell devices are used for various purposes.

有機ELデバイス等の電子デバイスは、基材として、ガラス板および金属板等を用いている。しかしながら、近年では、電子デバイスにも、可撓性(フレキシブル性)が要求されている。
一方で、電子デバイスは、一般的に、水分に弱い。特に、有機ELデバイスおよび太陽電池デバイス、中でも特に有機ELデバイスは、非常に水分に弱い。
そのため、可撓性を要求される電子デバイスでは、ガスバリアフィルムを利用してモジュール化することが行われている。
An electronic device such as an organic EL device uses a glass plate, a metal plate, or the like as a base material. However, in recent years, electronic devices are also required to be flexible.
On the other hand, electronic devices are generally vulnerable to moisture. In particular, organic EL devices and solar cell devices, especially organic EL devices, are extremely sensitive to moisture.
Therefore, in electronic devices that require flexibility, modularization is performed using a gas barrier film.

例えば、特許文献1には、基板、有機電界発光素子、および、ガスバリアフィルムを、この順で有し、基板とガスバリアフィルムとを封止層で接着することによって、有機電界発光素子が封止された有機電界発光装置が記載されている。
この有機電界発光装置に記載されるガスバリアフィルムは、支持体(基材フィルム)と、少なくとも1層の無機層を含むバリア層とを有し、バリア層が支持体に対して有機電界発光素子側に位置し、さらに、封止層とバリア層との間にバリア保護層を有する。
For example, Patent Document 1 includes a substrate, an organic electroluminescent element, and a gas barrier film in this order, and the organic electroluminescent element is sealed by adhering the substrate and the gas barrier film with a sealing layer. An organic electroluminescent device is described.
The gas barrier film described in this organic electroluminescent device has a support (base film) and a barrier layer including at least one inorganic layer, and the barrier layer is on the organic electroluminescent element side with respect to the support. In addition, it has a barrier protective layer between the sealing layer and the barrier layer.

特開2015−179604号公報Japanese Unexamined Patent Publication No. 2015-179604

特許文献1に記載される有機電界発光装置のように、ガスバリアフィルムを用いてモジュール化することにより、水分による有機EL素子等の劣化を防止できる。
しかしながら、ガスバリアフィルムを用いてモジュール化した電子デバイスであっても、電子デバイスの構成、使用環境、および、ガスバリアフィルムの構成等によっては、水分による有機EL素子等の劣化を、十分に防止できない場合も多い。
By modularizing the organic electroluminescent device using a gas barrier film as in the organic electroluminescent device described in Patent Document 1, deterioration of the organic EL element or the like due to moisture can be prevented.
However, even if the electronic device is modularized using a gas barrier film, deterioration of the organic EL element or the like due to moisture cannot be sufficiently prevented depending on the configuration of the electronic device, the usage environment, the configuration of the gas barrier film, and the like. There are also many.

本発明の目的は、このような問題点を解決することにあり、電子デバイスに用いることにより、水分による電子デバイスの劣化を好適に防止できるガスバリア積層体、および、このガスバリア積層体を用いる電子デバイスを提供することにある。 An object of the present invention is to solve such a problem, and a gas barrier laminate capable of suitably preventing deterioration of the electronic device due to moisture by using it in an electronic device, and an electronic device using this gas barrier laminate. Is to provide.

本発明は、以下の構成によって課題を解決する。
[1] 支持体と、支持体の一方の面側に交互に積層される無機層および有機層と、を有し、
1層以上の無機層および1層以上の有機層を有し、かつ、交互に積層される無機層および有機層のうち、最も支持体と離間するのが有機層であり、
支持体と最も離間する有機層は、支持体と最も離間する無機層よりも、面積が小さいことを特徴とするガスバリア積層体。
[2] 支持体の主面と直交する方向から見た際に、支持体と最も離間する有機層が、支持体と最も離間する無機層に内包される、[1]に記載のガスバリア積層体。
[3] 無機層と、無機層の下地となる有機層との組み合わせを、1組以上有する、[1]または[2]に記載のガスバリア積層体。
[4] 無機層を2層以上有する、[1]〜[3]のいずれかに記載のガスバリア積層体。
[5] 支持体が樹脂フィルムである、[1]〜[4]のいずれかに記載のガスバリア積層体。
[6] 少なくとも一部において、支持体と最も離間する有機層の端面と、支持体と最も離間する無機層の端面との距離が、1〜10mmである、[1]〜[5]のいずれかに記載のガスバリア積層体。
[7] [1]〜[6]のいずれかに記載のガスバリア積層体と、
ガスバリア積層体の支持体と最も離間する有機層の上に形成される電子素子と、
電子素子を封止する封止基材と、
封止基材およびガスバリア積層体を接着する封止層と、を有することを特徴とする電子デバイス。
[8] 封止層の高さが1〜500μmである、[7]に記載の電子デバイス。
[9] 封止基材が、[1]〜[6]のいずれかに記載のガスバリア積層体である、[7]または[8]に記載の電子デバイス。
[10] 有機エレクトロルミネッセンスデバイス、または、太陽電池デバイスである、[7]〜[9]のいずれかに記載の電子デバイス。
[11] 有機エレクトロルミネッセンス照明装置である、[10]に記載の電子デバイス。
The present invention solves the problem by the following configuration.
[1] It has a support and inorganic layers and organic layers alternately laminated on one surface side of the support.
Of the inorganic layers and organic layers having one or more inorganic layers and one or more organic layers and being alternately laminated, the organic layer is the most separated from the support.
The organic layer most distant from the support is a gas barrier laminate having a smaller area than the inorganic layer most distant from the support.
[2] The gas barrier laminate according to [1], wherein the organic layer most distant from the support is included in the inorganic layer most distant from the support when viewed from a direction orthogonal to the main surface of the support. ..
[3] The gas barrier laminate according to [1] or [2], which has one or more sets of an inorganic layer and an organic layer as a base of the inorganic layer.
[4] The gas barrier laminate according to any one of [1] to [3], which has two or more inorganic layers.
[5] The gas barrier laminate according to any one of [1] to [4], wherein the support is a resin film.
[6] Any of [1] to [5], wherein the distance between the end face of the organic layer most distant from the support and the end face of the inorganic layer most distant from the support is 1 to 10 mm at least in part. The gas barrier laminate described in Crab.
[7] The gas barrier laminate according to any one of [1] to [6] and
An electronic device formed on an organic layer that is most distant from the support of the gas barrier laminate,
A sealing base material that seals electronic devices,
An electronic device comprising: a sealing layer for adhering a sealing base material and a gas barrier laminate.
[8] The electronic device according to [7], wherein the height of the sealing layer is 1 to 500 μm.
[9] The electronic device according to [7] or [8], wherein the sealing base material is the gas barrier laminate according to any one of [1] to [6].
[10] The electronic device according to any one of [7] to [9], which is an organic electroluminescence device or a solar cell device.
[11] The electronic device according to [10], which is an organic electroluminescence lighting device.

本発明によれば、電子デバイスに用いることにより、水分による電子デバイスの劣化を好適に防止できるガスバリア積層体、および、水分による劣化を防止できる電子デバイスを得ることができる。 According to the present invention, by using it for an electronic device, it is possible to obtain a gas barrier laminate capable of suitably preventing deterioration of the electronic device due to moisture and an electronic device capable of preventing deterioration due to moisture.

本発明のガスバリア積層体の一例を概念的に示す図である。It is a figure which conceptually shows an example of the gas barrier laminated body of this invention. 図1に示すガスバリア積層体を概念的に示す平面図である。It is a top view which conceptually shows the gas barrier laminated body shown in FIG. 本発明の電子デバイスの一例を概念的に示す図である。It is a figure which shows an example of the electronic device of this invention conceptually. 本発明のガスバリア積層体の別の例の平面図である。It is a top view of another example of the gas barrier laminated body of this invention. 本発明の電子デバイスの別の例を概念的に示す図である。It is a figure which conceptually shows another example of the electronic device of this invention. 従来の電子デバイスの一例を概念的に示す図である。It is a figure which conceptually shows an example of the conventional electronic device. 従来のガスバリア積層体を概念的に示す平面図である。It is a top view which conceptually shows the conventional gas barrier laminated body.

以下、本発明のガスバリア積層体および電子デバイスの実施形態について、図面に基づいて説明する。 Hereinafter, embodiments of the gas barrier laminate and the electronic device of the present invention will be described with reference to the drawings.

(ガスバリア積層体)
図1および図2に、本発明のガスバリア積層体の一例を概念的に示す。
図1は、本発明のガスバリア積層体(ガスバリアフィルム)を主面の面方向から見た概念図である。図2は、本発明のガスバリア積層体の平面図である。平面図とは、本発明のガスバリア積層体を、支持体12の主面と直交する方向から見た図である。
主面とは、シート状物(フィルム、板状物)の最大面である。また、本発明において、特に断りがない場合には、面積とは、主面の面積である。
(Gas barrier laminate)
1 and 2 show conceptually an example of the gas barrier laminate of the present invention.
FIG. 1 is a conceptual diagram of the gas barrier laminate (gas barrier film) of the present invention viewed from the surface direction of the main surface. FIG. 2 is a plan view of the gas barrier laminate of the present invention. The plan view is a view of the gas barrier laminated body of the present invention viewed from a direction orthogonal to the main surface of the support 12.
The main surface is the maximum surface of a sheet-like object (film, plate-like object). Further, in the present invention, unless otherwise specified, the area is the area of the main surface.

図1に示すガスバリア積層体10は、支持体12と、支持体12の一方の表面(主面)に形成される1層目の有機層14と、1層目の有機層14の表面に形成される1層目の無機層16と、1層目の無機層16の表面に形成される2層目の有機層14と、2層目の有機層14の表面に形成される2層目の無機層16と、2層目の無機層16の表面に形成される、支持体12と最も離間する有機層である保護有機層18と、を有する。
本発明のガスバリア積層体は、無機層と有機層とを交互に有し、また、交互に積層される有機層と無機層とにおいて、支持体から最も離間するのは有機層である。図示例においては、交互に積層される有機層と無機層とにおいて、支持体12と最も離間する有機層は、保護有機層18である。
また、支持体から最も離間する有機層は、無機層の中で最も支持体と離間する無機層よりも、面積が小さい。図示例においては、支持体12と最も離間する有機層である保護有機層18は、支持体12と最も離間する2層目の無機層16すなわち保護有機層18の形成面(下層)となる2層目の無機層16よりも、面積が小さい。
なお、本発明のガスバリア積層体では、は支持体12側を『下』、保護有機層18側を『上』とも言う。
The gas barrier laminate 10 shown in FIG. 1 is formed on the surface of the support 12, the first organic layer 14 formed on one surface (main surface) of the support 12, and the first organic layer 14. The first inorganic layer 16 to be formed, the second organic layer 14 formed on the surface of the first inorganic layer 16, and the second organic layer 14 formed on the surface of the second organic layer 14. It has an inorganic layer 16 and a protective organic layer 18 formed on the surface of the second inorganic layer 16 which is an organic layer most distant from the support 12.
The gas barrier laminate of the present invention has inorganic layers and organic layers alternately, and among the organic layers and inorganic layers that are alternately laminated, the organic layer is the most separated from the support. In the illustrated example, among the organic layers and the inorganic layers that are alternately laminated, the organic layer that is most distant from the support 12 is the protective organic layer 18.
Further, the organic layer most separated from the support has a smaller area than the inorganic layer most separated from the support among the inorganic layers. In the illustrated example, the protective organic layer 18, which is the organic layer most distant from the support 12, becomes the formation surface (lower layer) of the second inorganic layer 16, that is, the protective organic layer 18, which is the most distant from the support 12. The area is smaller than that of the inorganic layer 16 of the layer.
In the gas barrier laminate of the present invention, the support 12 side is also referred to as "lower" and the protective organic layer 18 side is also referred to as "upper".

図示例のガスバリア積層体10は、好ましい態様として、ガスバリア性を発現する無機層16と、この無機層16の下地となる有機層14との組み合わせを、1組以上、有する、有機無機積層型のガスバリア積層体である。
なお、図示例のガスバリア積層体10は、無機層16と下地となる有機層14との組み合わせを2組有し、その上に保護有機層18を有するものであるが、本発明は、これに限定はされない。
As a preferred embodiment, the gas barrier laminate 10 of the illustrated example is an organic-inorganic laminate type having one or more combinations of an inorganic layer 16 exhibiting gas barrier properties and an organic layer 14 as a base of the inorganic layer 16. It is a gas barrier laminate.
The gas barrier laminate 10 of the illustrated example has two sets of a combination of the inorganic layer 16 and the organic layer 14 as a base, and has the protective organic layer 18 on the combination. There is no limitation.

すなわち、本発明のガスバリア積層体は、無機層16と下地となる有機層14との組み合わせを1組有し、その上に保護有機層18を有する、支持体12・有機層14・無機層16・保護有機層18の層構成を有するものでもよい。
あるいは、本発明のガスバリア積層体は、無機層16と下地となる有機層14との組み合わせを3組有し、その上に保護有機層18を有する、支持体12・有機層14・無機層16・有機層14・無機層16・有機層14・無機層16・保護有機層18の層構成を有するものでもよい。さらに、本発明のガスバリア積層体は、無機層16と下地となる有機層14との組み合わせを4組以上有し、その上に保護有機層18を有するものでもよい。
下地となる有機層14と無機層16との組み合わせの数が多いほど、高いガスバリア性を得ることができ、下地となる有機層14と無機層16との組み合わせの数が2組以上であるのがより好ましい。
That is, the gas barrier laminate of the present invention has a support 12, an organic layer 14, and an inorganic layer 16 having one set of a combination of the inorganic layer 16 and the underlying organic layer 14 and the protective organic layer 18 on the combination. -It may have a layer structure of the protective organic layer 18.
Alternatively, the gas barrier laminate of the present invention has a support 12, an organic layer 14, and an inorganic layer 16 having three combinations of an inorganic layer 16 and an organic layer 14 as a base, and a protective organic layer 18 on the combination. It may have a layer structure of an organic layer 14, an inorganic layer 16, an organic layer 14, an inorganic layer 16, and a protective organic layer 18. Further, the gas barrier laminate of the present invention may have four or more combinations of the inorganic layer 16 and the underlying organic layer 14, and may have the protective organic layer 18 on the combination.
The larger the number of combinations of the underlying organic layer 14 and the inorganic layer 16, the higher the gas barrier property can be obtained, and the number of combinations of the underlying organic layer 14 and the inorganic layer 16 is two or more. Is more preferable.

また、本発明のガスバリア積層体は、支持体12と、最も支持体12に近接する1層目の無機層16との間に、有機層14を有さなくてもよい。図示例であれば、1層目の無機層16の下層に、下地となる1層目の有機層14を有さなくてもよい。
すなわち、例えば、本発明のガスバリア積層体は、支持体12・無機層16・保護有機層18の層構成を有するものでもよく、あるいは、支持体12・無機層16・有機層14・無機層16・保護有機層18の層構成を有するものでもよい。
Further, the gas barrier laminate of the present invention does not have to have the organic layer 14 between the support 12 and the first inorganic layer 16 closest to the support 12. In the illustrated example, the first organic layer 14 as a base may not be provided under the first inorganic layer 16.
That is, for example, the gas barrier laminate of the present invention may have a layer structure of a support 12, an inorganic layer 16, and a protective organic layer 18, or a support 12, an inorganic layer 16, an organic layer 14, and an inorganic layer 16. -It may have a layer structure of the protective organic layer 18.

すなわち、本発明のガスバリア積層体は、支持体の少なくとも一方の面側に、無機層と有機層とを交互に有し、かつ、交互に形成される無機層と有機層とのうち、最も支持体と離間するのが有機層であれば、各種の層構成が利用可能である。 That is, the gas barrier laminate of the present invention has inorganic layers and organic layers alternately on at least one surface side of the support, and is the most supported of the inorganic layers and organic layers formed alternately. Various layer configurations are available as long as the organic layer is separated from the body.

以下、本発明のガスバリア積層体10について、各構成要素の詳細について説明する。
<支持体>
支持体12は、各種のガスバリアフィルムおよび各種の積層型の機能性フィルム等において支持体として利用される、公知の樹脂製のシート状物(フィルム、板状物)を用いることができる。
Hereinafter, the details of each component of the gas barrier laminate 10 of the present invention will be described.
<Support>
As the support 12, a known resin sheet-like material (film, plate-like material) used as a support in various gas barrier films, various laminated functional films, and the like can be used.

支持体12の材料には、制限はなく、有機層14、無機層16および保護有機層18を形成可能であれば、各種の樹脂材料が利用できる。
支持体12の材料としては、例えば、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、環状オレフィン・コポリマー(COC)、シクロオレフィンポリマー(COP)、および、トリアセチルセルロース(TAC)等が挙げられる。
The material of the support 12 is not limited, and various resin materials can be used as long as the organic layer 14, the inorganic layer 16 and the protective organic layer 18 can be formed.
Examples of the material of the support 12 include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), and polyacrytonitrile (polyacrylic). PAN), Polyethylene (PI), Transparent Polyethylene, Polymethylmethacrylate Resin (PMMA), Polycarbonate (PC), Polyacrylate, Polymethacrylate, Polypropylene (PP), Polystyrene (PS), Acrylonitrile-butadiene-styrene copolymer ( ABS), cyclic olefin copolymer (COC), cycloolefin polymer (COP), triacetyl cellulose (TAC) and the like.

支持体12の厚さは、用途および材料等に応じて、適宜、設定できる。
支持体12の厚さは、ガスバリア積層体10の機械的強度を十分に確保する観点と、ガスバリア積層体10の可撓性(フレキシブル性)を確保し、かつ、軽量化および薄手化する観点とから、5〜150μmが好ましく、10〜100μmがより好ましい。
The thickness of the support 12 can be appropriately set according to the application, the material, and the like.
The thickness of the support 12 is determined from the viewpoint of sufficiently ensuring the mechanical strength of the gas barrier laminate 10 and the viewpoint of ensuring the flexibility of the gas barrier laminate 10 and reducing the weight and thickness. Therefore, 5 to 150 μm is preferable, and 10 to 100 μm is more preferable.

支持体12は、その表面に、機能層を有していてもよい。機能層としては、例えば、保護層、封止層、光反射層、反射防止層、遮光層、平坦化層、緩衝層、および、応力緩和層が挙げられる。 The support 12 may have a functional layer on its surface. Examples of the functional layer include a protective layer, a sealing layer, a light reflecting layer, an antireflection layer, a light shielding layer, a flattening layer, a buffer layer, and a stress relaxation layer.

<有機層および保護有機層>
有機層14および保護有機層18は、例えば、モノマー、ダイマーおよびオリゴマー等を重合(架橋、硬化)した有機化合物からなる層である。
<Organic layer and protective organic layer>
The organic layer 14 and the protected organic layer 18 are layers made of, for example, an organic compound obtained by polymerizing (crosslinking, curing) a monomer, a dimer, an oligomer, or the like.

無機層16の下層となる有機層14は、無機層16を適正に形成するための下地となる有機層14である。例えば、支持体12の表面に形成される1層目の有機層14は、支持体12の表面の凹凸および表面に付着する異物等を包埋して、1層目の無機層16の形成面を適正にして、適正に1層目の無機層16を形成することを可能にする。2層目の無機層16の下層となる2層目の有機層も、同様の作用を発現する。このような下地となる有機層14を有することによって、主にガスバリア性を発現する無機層16を、適正に形成することが可能になる。 The organic layer 14 that is the lower layer of the inorganic layer 16 is an organic layer 14 that is a base for properly forming the inorganic layer 16. For example, the first organic layer 14 formed on the surface of the support 12 embeds irregularities on the surface of the support 12, foreign matter adhering to the surface, and the like, and forms the surface of the first inorganic layer 16. Allows the formation of the first inorganic layer 16 properly. The second organic layer, which is the lower layer of the second inorganic layer 16, also exhibits the same action. By having such an organic layer 14 as a base, it becomes possible to appropriately form an inorganic layer 16 that mainly exhibits gas barrier properties.

また、交互に形成される有機層と無機層とにおいて、支持体12と最も離間する有機層である保護有機層18は、主に支持体12と最も離間する2層目の無機層16を保護するための有機層である。すなわち、保護有機層18は、下層の無機層16を保護するための有機層である。本発明のガスバリア積層体10は、このような保護有機層18を有することにより、無機層16の損傷を防止して、目的とするガスバリア性を維持できる。
なお、本発明のガスバリア積層体10において、保護有機層18は、交互に形成される有機層と無機層とのうち、支持体12と最も離間する無機層16、すなわち、自身の形成面となる下層の2層目の無機層16よりも、面積が小さい。この点に関しては、後に詳述する。
Further, in the alternately formed organic layer and the inorganic layer, the protective organic layer 18 which is the organic layer most separated from the support 12 mainly protects the second inorganic layer 16 which is the most separated from the support 12. It is an organic layer for That is, the protective organic layer 18 is an organic layer for protecting the lower inorganic layer 16. By having such a protective organic layer 18, the gas barrier laminate 10 of the present invention can prevent damage to the inorganic layer 16 and maintain the desired gas barrier property.
In the gas barrier laminate 10 of the present invention, the protective organic layer 18 is an inorganic layer 16 that is most distant from the support 12 among the organic layers and the inorganic layers that are alternately formed, that is, its own forming surface. The area is smaller than that of the second inorganic layer 16 of the lower layer. This point will be described in detail later.

なお、本発明のガスバリア積層体10において、無機層16の下地となる有機層14と、保護有機層18とは、基本的に同様のものである。従って、特に区別する必要がない場合を除いて、以下の説明は有機層14を代表例として行う。 In the gas barrier laminate 10 of the present invention, the organic layer 14 serving as the base of the inorganic layer 16 and the protective organic layer 18 are basically the same. Therefore, unless it is necessary to make a distinction, the following description will be given with the organic layer 14 as a representative example.

有機層14は、例えば、有機化合物(モノマー、ダイマー、トリマー、オリゴマー、および、ポリマー等)を含有する、有機層形成用組成物を硬化して形成される。有機層形成用組成物は、有機化合物を1種のみ含んでもよく、2種以上含んでもよい。
有機層14は、例えば、熱可塑性樹脂および有機ケイ素化合物等を含有する。熱可塑性樹脂は、例えば、ポリエステル、(メタ)アクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、および、アクリル化合物等が挙げられる。有機ケイ素化合物は、例えば、ポリシロキサンが挙げられる。
The organic layer 14 is formed by curing, for example, a composition for forming an organic layer containing an organic compound (monomer, dimer, trimmer, oligomer, polymer, etc.). The composition for forming an organic layer may contain only one type of organic compound, or may contain two or more types of organic compounds.
The organic layer 14 contains, for example, a thermoplastic resin, an organosilicon compound, and the like. The thermoplastic resin is, for example, polyester, (meth) acrylic resin, methacrylate-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, polyamideimide, polyetherimide, cellulose acylate, polyurethane. , Polyether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring-modified polycarbonate, alicyclic-modified polycarbonate, fluorene ring-modified polyester, acrylic compound and the like. Examples of the organosilicon compound include polysiloxane.

有機層14は、強度が優れる観点と、ガラス転移温度の観点とから、好ましくは、ラジカル硬化性化合物および/またはエーテル基を有するカチオン硬化性化合物の重合物を含む。
有機層14は、有機層14の屈折率を低くする観点から、好ましくは、(メタ)アクリレートのモノマー、オリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含む。有機層14は、屈折率を低くすることにより、透明性が高くなり、光透過性が向上する。
The organic layer 14 preferably contains a polymer of a radical curable compound and / or a cationic curable compound having an ether group from the viewpoint of excellent strength and the glass transition temperature.
From the viewpoint of lowering the refractive index of the organic layer 14, the organic layer 14 preferably contains a (meth) acrylic resin containing a polymer such as a (meth) acrylate monomer or an oligomer as a main component. By lowering the refractive index of the organic layer 14, the transparency is increased and the light transmittance is improved.

有機層14は、より好ましくは、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上の(メタ)アクリレートのモノマー、ダイマーおよびオリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含み、さらに好ましくは、3官能以上の(メタ)アクリレートのモノマー、ダイマーおよびオリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含む。また、これらの(メタ)アクリル樹脂を、複数用いてもよい。主成分とは、含有する成分のうち、最も含有質量比が大きい成分をいう。 The organic layer 14 is more preferably bifunctional or more, such as dipropylene glycol di (meth) acrylate (DPGDA), trimerol propanetri (meth) acrylate (TMPTA), and dipentaerythritol hexa (meth) acrylate (DPHA). Contains a (meth) acrylic resin containing a polymer such as a (meth) acrylate monomer, dimer and oligomer as a main component, and more preferably a polymer such as a trifunctional or higher functional (meth) acrylate monomer, dimer and oligomer. Contains (meth) acrylic resin containing. Moreover, you may use a plurality of these (meth) acrylic resins. The main component means the component having the largest content mass ratio among the contained components.

有機層形成用組成物は、有機化合物に加え、好ましくは、有機溶剤、界面活性剤、および、シランカップリング剤などを含む。 The composition for forming an organic layer preferably contains an organic solvent, a surfactant, a silane coupling agent and the like in addition to the organic compound.

有機層14が複数設けられる場合、すなわち、有機層14と無機層16との組み合わせを複数組有する場合には、各有機層14の材料は、同じでも異なってもよい。
有機層14および保護有機層18も、材料は、同じでも異なってもよい。
When a plurality of organic layers 14 are provided, that is, when a plurality of combinations of the organic layer 14 and the inorganic layer 16 are provided, the materials of the organic layers 14 may be the same or different.
The materials of the organic layer 14 and the protective organic layer 18 may be the same or different.

有機層14の厚さには、制限はなく、有機層形成用組成物に含まれる成分および用いられる支持体12等に応じて、適宜、設定できる。
有機層14の厚さは、0.5〜5μmが好ましく、1〜3μmがより好ましい。有機層14の厚さを0.5μm以上とすることにより、支持体12の表面の凹凸および表面に付着した異物等を包埋して、有機層14の表面を平坦化できる等の点で好ましい。有機層14の厚さを5μm以下とすることにより、有機層14のクラックを防止できる、ガスバリア積層体10の可撓性を高くできる、ガスバリア積層体10の薄手化および軽量化を図れる等の点で好ましい。
The thickness of the organic layer 14 is not limited and can be appropriately set according to the components contained in the composition for forming the organic layer, the support 12 used, and the like.
The thickness of the organic layer 14 is preferably 0.5 to 5 μm, more preferably 1 to 3 μm. By setting the thickness of the organic layer 14 to 0.5 μm or more, it is preferable in that the surface unevenness of the support 12 and foreign matter adhering to the surface can be embedded to flatten the surface of the organic layer 14. .. By making the thickness of the organic layer 14 5 μm or less, cracks in the organic layer 14 can be prevented, the flexibility of the gas barrier laminate 10 can be increased, and the gas barrier laminate 10 can be made thinner and lighter. Is preferable.

有機層14が複数設けられる場合、すなわち、有機層14と無機層16との組み合わせを複数組有する場合には、各有機層14の厚さは、同じでも異なってもよい。
有機層14および保護有機層18も、厚さは、同じでも異なってもよい。
When a plurality of organic layers 14 are provided, that is, when a plurality of combinations of the organic layer 14 and the inorganic layer 16 are provided, the thickness of each organic layer 14 may be the same or different.
The organic layer 14 and the protective organic layer 18 may also have the same or different thicknesses.

有機層14は、材料に応じた公知の方法で形成できる。
例えば、有機層14は、前述の有機層形成用組成物を塗布して、有機層形成用組成物を乾燥させる、塗布法で形成できる。塗布法による有機層14の形成では、必要に応じて、さらに、乾燥した有機層形成用組成物に、紫外線を照射することにより、有機層形成用組成物中の有機化合物を重合(架橋)させる。
The organic layer 14 can be formed by a known method depending on the material.
For example, the organic layer 14 can be formed by a coating method in which the above-mentioned composition for forming an organic layer is applied and the composition for forming an organic layer is dried. In the formation of the organic layer 14 by the coating method, if necessary, the dried organic layer forming composition is further irradiated with ultraviolet rays to polymerize (crosslink) the organic compounds in the organic layer forming composition. ..

有機層14は、いわゆるロール・トゥ・ロールによって形成できる。以下、「ロール・トゥ・ロール」を「RtoR」ともいう。
RtoRとは、長尺なシート状物を巻回してなるロールから、シート状物を送り出し、成膜対象シートを長手方向に搬送しつつ成膜を行い、成膜済のシート状物をロール状に巻回する製造方法である。RtoRを利用することで、高い生産性と生産効率が得られる。
The organic layer 14 can be formed by so-called roll-to-roll. Hereinafter, "roll to roll" is also referred to as "RtoR".
RtoR is a roll formed by winding a long sheet-like material, sending out the sheet-like material, performing film formation while transporting the sheet to be formed in the longitudinal direction, and rolling the film-formed sheet-like material. It is a manufacturing method that winds around. High productivity and production efficiency can be obtained by using RtoR.

<無機層>
無機層16は、無機化合物を含む薄膜であり、有機層14の表面に設けられる。ガスバリア積層体10では、無機層16が、主にガスバリア性を発現する。
無機層16は、有機層14の表面に設けられることにより、適正に成膜される。例えば、支持体12の表面には、凹凸および異物の影のような、無機化合物が着膜し難い領域がある。支持体12上に有機層14を設けることにより、無機化合物が着膜し難い領域が覆われる。そのため、支持体12の表面全面に、無機層16を隙間無く形成することが可能になる。この点に関しては、2層目以降の無機層16も同様である。
<Inorganic layer>
The inorganic layer 16 is a thin film containing an inorganic compound and is provided on the surface of the organic layer 14. In the gas barrier laminate 10, the inorganic layer 16 mainly exhibits gas barrier properties.
The inorganic layer 16 is appropriately formed by being provided on the surface of the organic layer 14. For example, on the surface of the support 12, there are regions where it is difficult for the inorganic compound to form a film, such as irregularities and shadows of foreign substances. By providing the organic layer 14 on the support 12, the region where the inorganic compound is difficult to form is covered. Therefore, the inorganic layer 16 can be formed on the entire surface of the support 12 without any gaps. In this respect, the same applies to the second and subsequent inorganic layers 16.

無機層16の材料には、制限はなく、ガスバリア性を発現する無機化合物からなる、公知のガスバリア層に用いられる無機化合物が、各種、利用可能である。
無機層16の材料としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化タンタル、酸化ジルコニウム、酸化チタン、酸化インジウムスズ(ITO)などの金属酸化物; 窒化アルミニウムなどの金属窒化物; 炭化アルミニウムなどの金属炭化物; 酸化ケイ素、酸化窒化ケイ素、酸炭化ケイ素、酸化窒化炭化ケイ素などのケイ素酸化物; 窒化ケイ素、窒化炭化ケイ素などのケイ素窒化物; 炭化ケイ素等のケイ素炭化物; これらの水素化物; これら2種以上の混合物; および、これらの水素含有物等、の無機化合物が挙げられる。また、これらの2種以上の混合物も、利用可能である。
特に、窒化ケイ素、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、および、これらの2種以上の混合物は、透明性が高く、かつ、優れたガスバリア性を発現できる点で、好適に利用される。中でも特に、優れたガスバリア性を発現できる点で、窒化ケイ素は、好適に利用される。
The material of the inorganic layer 16 is not limited, and various kinds of known inorganic compounds used for the gas barrier layer, which are composed of inorganic compounds exhibiting gas barrier properties, can be used.
Examples of the material of the inorganic layer 16 include metal oxides such as aluminum oxide, magnesium oxide, tantalum oxide, zirconium oxide, titanium oxide and indium tin oxide (ITO); metal nitrides such as aluminum nitride; and metals such as aluminum carbide. Carbides; Silicon oxides such as silicon oxide, silicon oxide, acid carbide, silicon nitride carbide; silicon nitrides such as silicon nitride and silicon nitride; silicon carbides such as silicon carbide; these hydrides; these two types Examples thereof include inorganic compounds such as the above mixtures; and these hydrogen-containing substances. Mixtures of two or more of these are also available.
In particular, silicon nitride, silicon oxide, silicon oxynitride, aluminum oxide, and a mixture of two or more of these are preferably used because they have high transparency and can exhibit excellent gas barrier properties. Among them, silicon nitride is preferably used because it can exhibit excellent gas barrier properties.

無機層16の厚さには、制限はなく、材料に応じて、目的とするガスバリア性を発現できる厚さを、適宜、設定できる。
無機層16の厚さは、10〜150nmが好ましく、12〜100nmがより好ましく、15〜75nmがさらに好ましい。
無機層16の厚さを10nm以上とすることにより、十分なガスバリア性能を安定して発現する無機層16が形成できる点で好ましい。また、無機層16は、一般的に脆く、厚過ぎると、割れ、ヒビ、および、剥がれ等を生じる可能性が有るが、無機層16の厚さを150nm以下とすることにより、割れが発生することを防止できる。
The thickness of the inorganic layer 16 is not limited, and the thickness capable of exhibiting the desired gas barrier property can be appropriately set according to the material.
The thickness of the inorganic layer 16 is preferably 10 to 150 nm, more preferably 12 to 100 nm, and even more preferably 15 to 75 nm.
By setting the thickness of the inorganic layer 16 to 10 nm or more, it is preferable in that the inorganic layer 16 that stably exhibits sufficient gas barrier performance can be formed. Further, the inorganic layer 16 is generally brittle, and if it is too thick, cracks, cracks, peeling, etc. may occur, but cracks occur when the thickness of the inorganic layer 16 is 150 nm or less. Can be prevented.

図示例のガスバリア積層体10のように、無機層16が複数設けられる場合には、各無機層16の厚さは、同じでも異なってもよい。 When a plurality of inorganic layers 16 are provided as in the gas barrier laminate 10 of the illustrated example, the thickness of each inorganic layer 16 may be the same or different.

無機層16は、材料に応じた公知の方法で形成できる。
例えば、CCP(Capacitively Coupled Plasma)−CVD(Chemical Vapor Deposition)およびICP(Inductively Coupled Plasm)−CVD等のプラズマCVD、原子層堆積法(ALD(Atomic Layer Deposition))、マグネトロンスパッタリングおよび反応性スパッタリング等のスパッタリング、ならびに、真空蒸着などの各種の気相成膜法が好適に挙げられる。
なお、無機層16も、RtoRで形成するのが好ましい。
The inorganic layer 16 can be formed by a known method depending on the material.
For example, plasma CVD such as CCP (Capacitively Coupled Plasma) -CVD (Chemical Vapor Deposition) and ICP (Inductively Coupled Plasm) -CVD, atomic layer deposition (ALD (Atomic Layer Deposition)), magnetron sputtering, reactive sputtering and the like. Various vapor deposition methods such as sputtering and vacuum vapor deposition are preferably used.
The inorganic layer 16 is also preferably formed by RtoR.

(電子デバイス(有機エレクトロルミネッセンス照明装置))
このような本発明のガスバリア積層体10は、好ましくは、電子デバイスを形成する基材として好適に用いられる。
図3に、本発明のガスバリア積層体10を用いる、本発明の電子デバイスの一例を概念的に示す。図3は、一例として、本発明の電子デバイスを、有機エレクトロルミネッセンス照明装置(有機EL(Electro Luminescence)照明装置)に利用した例である。
(Electronic device (organic electroluminescence lighting device))
Such a gas barrier laminate 10 of the present invention is preferably preferably used as a base material for forming an electronic device.
FIG. 3 conceptually shows an example of the electronic device of the present invention using the gas barrier laminate 10 of the present invention. FIG. 3 shows, as an example, an example in which the electronic device of the present invention is used in an organic electroluminescence illuminator (organic EL (Electro Luminescence) illuminator).

なお、本発明の電子デバイスは、有機EL照明装置24には限定はされない。
例えば、本発明の電子デバイスは、有機EL照明素子26に替えて太陽電池素子を有する、太陽電池(太陽電池デバイス)であってもよい。また、本発明の電子デバイスは、これ以外にも、有機ELディスプレイ等の有機EL照明装置以外の有機ELデバイス、電子ペーパ、および、量子ドットを用いる量子ドットデバイス等の公知の各種の電子デバイスに利用可能である。
中でも、本発明の電子デバイスは、有機EL照明装置および太陽電池には、好適に利用される。
The electronic device of the present invention is not limited to the organic EL lighting device 24.
For example, the electronic device of the present invention may be a solar cell (solar cell device) having a solar cell element instead of the organic EL lighting element 26. In addition, the electronic device of the present invention can be used for various known electronic devices such as organic EL devices other than organic EL lighting devices such as organic EL displays, electronic paper, and quantum dot devices using quantum dots. It is available.
Above all, the electronic device of the present invention is suitably used for an organic EL lighting device and a solar cell.

図3に示す有機EL照明装置24は、前述のガスバリア積層体10を基材として、保護有機層18の表面に有機EL照明素子26を形成し、保護有機層18を囲むように矩形の枠状の封止層28を設け、封止層28に封止基材30を接着することで、有機EL照明素子26を封止基材30で封止した構成を有するものである。
なお、有機EL照明装置24は、図示した部材以外にも、必要に応じて、パッシベーション膜および乾燥剤等、公知の有機EL照明装置(有機ELデバイス)が有する各種の部材を有してもよい。
また、有機EL照明装置24(本発明の電子デバイス)では、封止基材30側を『上』、支持体12側を『下』とも言う。
The organic EL lighting device 24 shown in FIG. 3 has an organic EL lighting element 26 formed on the surface of the protective organic layer 18 using the gas barrier laminate 10 as a base material, and has a rectangular frame shape so as to surround the protective organic layer 18. The organic EL lighting element 26 is sealed with the sealing base material 30 by providing the sealing layer 28 of the above and adhering the sealing base material 30 to the sealing layer 28.
In addition to the members shown in the figure, the organic EL lighting device 24 may include various members of a known organic EL lighting device (organic EL device), such as a passivation film and a desiccant, if necessary. ..
Further, in the organic EL lighting device 24 (the electronic device of the present invention), the sealing base material 30 side is also referred to as "upper" and the support 12 side is also referred to as "lower".

前述のように、本発明のガスバリア積層体10は、最も支持体12と離間する有機層である保護有機層18が、最も支持体12と離間する無機層である2層目の無機層16(保護有機層18の下層の無機層16)よりも面積が小さい。図示例においては、好ましい態様として、図2に示すように、平面図(支持体12の主面と直交する方向から見た場合)において、保護有機層18は、下層の無機層16に内包される。
有機EL照明装置24は、保護有機層18に有機EL照明素子26を形成している。また、封止層28は、保護有機層18および有機EL照明素子26を囲む枠体で、封止層28に載置するように、有機EL照明素子26を封止する封止基材30が接着される。
従って、図示例の有機EL照明装置24では、保護有機層18は、全ての端面を含めて外部に晒されていない。
本発明のガスバリア積層体10(有機EL照明装置24)は、このような構成を有することにより、水分による有機EL照明素子26の劣化を好適に防止している。
As described above, in the gas barrier laminate 10 of the present invention, the protective organic layer 18 which is the organic layer most separated from the support 12 is the second inorganic layer 16 which is the inorganic layer most separated from the support 12 ( The area is smaller than that of the inorganic layer 16) below the protective organic layer 18. In the illustrated example, as a preferred embodiment, as shown in FIG. 2, the protective organic layer 18 is included in the lower inorganic layer 16 in the plan view (when viewed from a direction orthogonal to the main surface of the support 12). Orthogonal.
The organic EL lighting device 24 forms an organic EL lighting element 26 on the protective organic layer 18. Further, the sealing layer 28 is a frame body surrounding the protective organic layer 18 and the organic EL lighting element 26, and the sealing base material 30 for sealing the organic EL lighting element 26 is placed on the sealing layer 28. Be glued.
Therefore, in the organic EL lighting device 24 of the illustrated example, the protective organic layer 18 is not exposed to the outside including all the end faces.
The gas barrier laminate 10 (organic EL lighting device 24) of the present invention preferably has such a configuration to prevent deterioration of the organic EL lighting element 26 due to moisture.

前述のように、保護有機層は、下層の無機層(無機層の中の最上層の無機層)を保護することにより、ガスバリア積層体が、所定のガスバリア性を発現し、かつ維持するために設けられる。
従って、通常は、図6および図7に示すガスバリア積層体10Aのように、保護有機層18Aは、下層の無機層16の全面を覆って形成される。
そのため、図6に示されるように、従来のガスバリア積層体を基材とする有機EL照明装置24Aは、保護有機層18Aの上に枠状の封止層28を形成し、封止層28に封止基材30を接着することで、封止基材30によって有機EL照明素子26を封止している。
従って、従来の有機EL照明装置24Aでは、保護有機層18Aの端面18eが、外部に剥き出しになっている。
As described above, the protective organic layer protects the lower inorganic layer (the uppermost inorganic layer in the inorganic layer) so that the gas barrier laminate exhibits and maintains a predetermined gas barrier property. It is provided.
Therefore, normally, the protective organic layer 18A is formed so as to cover the entire surface of the lower inorganic layer 16 as in the gas barrier laminate 10A shown in FIGS. 6 and 7.
Therefore, as shown in FIG. 6, in the conventional organic EL lighting device 24A based on the gas barrier laminate, a frame-shaped sealing layer 28 is formed on the protective organic layer 18A, and the sealing layer 28 is formed. By adhering the sealing base material 30, the organic EL lighting element 26 is sealed by the sealing base material 30.
Therefore, in the conventional organic EL lighting device 24A, the end face 18e of the protective organic layer 18A is exposed to the outside.

前述のように、保護有機層18Aは、下層の無機層16を保護するためのものである。無機層16は、例えば厚さが10〜150nm程度の薄く硬い膜である。このような無機層16の割れおよび剥離等を十分に防止するためには、保護有機層18Aには、ある程度の硬さが必要になる。
ところが、一般的に、薄く硬い無機層16を十分に保護できる硬さを有する有機層(有機材料からなる層)は、ガスバリア性が十分ではない。
そのため、保護有機層18Aの端面18eが外部に剥き出しになっている従来のガスバリア積層体10Aでは、保護有機層18Aの端面18eから水分が侵入して、有機EL照明素子26まで至ってしまい、この水分によって、有機EL照明素子26が劣化してしまう。特に、水分に弱い太陽電池および有機EL材料を用いる有機ELデバイス、中でも特に、有機ELデバイスでは、保護有機層18Aの端面18eから侵入する水分に起因する素子の劣化は、問題になる。
As described above, the protective organic layer 18A is for protecting the lower inorganic layer 16. The inorganic layer 16 is, for example, a thin and hard film having a thickness of about 10 to 150 nm. In order to sufficiently prevent such cracking and peeling of the inorganic layer 16, the protective organic layer 18A needs to have a certain degree of hardness.
However, in general, an organic layer (layer made of an organic material) having a hardness capable of sufficiently protecting a thin and hard inorganic layer 16 does not have sufficient gas barrier properties.
Therefore, in the conventional gas barrier laminate 10A in which the end face 18e of the protective organic layer 18A is exposed to the outside, moisture invades from the end face 18e of the protective organic layer 18A and reaches the organic EL lighting element 26, and this moisture As a result, the organic EL lighting element 26 deteriorates. In particular, in a solar cell and an organic EL device using an organic EL material that is sensitive to moisture, particularly in an organic EL device, deterioration of the element due to moisture invading from the end face 18e of the protective organic layer 18A becomes a problem.

保護有機層18Aが無ければ、保護有機層18Aの端面から侵入する水分による有機EL照明素子26の劣化は防止できる。
しかしながら、保護有機層18Aがないと、最表面で無機層16が剥き出しになるため、例えば、ロール状に巻き取った際、所定の形状に切断する際、および、ハンドリング等において、最表面の無機層16が損傷してしまい、ガスバリア積層体が、所定のガスバリア性を発現しなくなってしまう。
Without the protective organic layer 18A, deterioration of the organic EL lighting element 26 due to moisture entering from the end face of the protective organic layer 18A can be prevented.
However, without the protective organic layer 18A, the inorganic layer 16 is exposed on the outermost surface. Therefore, for example, when it is wound into a roll, when it is cut into a predetermined shape, and when it is handled, the inorganic layer on the outermost surface is inorganic. The layer 16 is damaged, and the gas barrier laminate does not exhibit a predetermined gas barrier property.

これに対して、本発明のガスバリア積層体10は、保護有機層18の面積が、下層の無機層16よりも小さい。好ましくは、図1および図2に示すように、平面図において、保護有機層18が、下層の無機層16に内包される。また、封止層28となる接着剤は、十分なガスバリア性を有するものが、各種、選択可能である。
そのため、本発明のガスバリア積層体10によれば、図3に示すように、保護有機層18の端面を封止層28の内側にして、好ましくは、保護有機層18を、下層の無機層16、封止層28および封止基材30によって内包できる。
従って、本発明のガスバリア積層体10、および、本発明のガスバリア積層体10を用いる本発明の有機EL照明装置24によれば、保護有機層18の端面から侵入する水分による有機EL照明素子26(電子素子)の劣化を防止して、有機EL照明装置(電子デバイス)の長寿命化を図ることができる。
On the other hand, in the gas barrier laminate 10 of the present invention, the area of the protective organic layer 18 is smaller than that of the lower inorganic layer 16. Preferably, as shown in FIGS. 1 and 2, the protective organic layer 18 is included in the lower inorganic layer 16 in the plan view. Further, as the adhesive to be the sealing layer 28, various adhesives having sufficient gas barrier properties can be selected.
Therefore, according to the gas barrier laminate 10 of the present invention, as shown in FIG. 3, the end face of the protective organic layer 18 is placed inside the sealing layer 28, and preferably the protective organic layer 18 is placed on the lower inorganic layer 16. , Can be encapsulated by the sealing layer 28 and the sealing substrate 30.
Therefore, according to the gas barrier laminated body 10 of the present invention and the organic EL lighting device 24 of the present invention using the gas barrier laminated body 10 of the present invention, the organic EL lighting element 26 due to moisture entering from the end face of the protective organic layer 18 ( It is possible to prevent deterioration of the electronic element) and extend the life of the organic EL lighting device (electronic device).

図示例のガスバリア積層体10は、好ましい態様として、平面図において、保護有機層18が下層の無機層16に内包されている。しかしながら、本発明は、これに限定はされず、保護有機層18が下層の無機層16よりも小さく、保護有機層18の端面の一部が、下層の無機層16の端面よりも面方向の内側に位置すればよい。
すなわち、本発明のガスバリア積層体10では、例えば、図4の左側に示す保護有機層18Bのように、1辺の端面のみが下層の無機層16の端面よりも内側に位置する構成でもよく、あるいは、図4の右側に示す保護有機層18Cのように、2辺の端面のみが下層の無機層16の端面よりも内側に位置する構成でもよい。
これらの構成であっても、図6および図7示すような、従来のガスバリア積層体10Aに比して、良好に、保護有機層の端面から侵入する水分に起因する有機EL照明素子26の劣化を防止できる。
In the gas barrier laminate 10 of the illustrated example, as a preferred embodiment, the protective organic layer 18 is included in the lower inorganic layer 16 in the plan view. However, the present invention is not limited to this, and the protective organic layer 18 is smaller than the lower inorganic layer 16, and a part of the end face of the protective organic layer 18 is in the plane direction with respect to the end face of the lower inorganic layer 16. It may be located inside.
That is, in the gas barrier laminate 10 of the present invention, for example, as in the protective organic layer 18B shown on the left side of FIG. 4, only one end face may be located inside the end face of the lower inorganic layer 16. Alternatively, as in the protective organic layer 18C shown on the right side of FIG. 4, only the end faces of the two sides may be located inside the end faces of the lower inorganic layer 16.
Even with these configurations, the deterioration of the organic EL lighting element 26 due to the moisture entering from the end face of the protective organic layer is better than that of the conventional gas barrier laminate 10A as shown in FIGS. 6 and 7. Can be prevented.

しかしながら、水分に起因する有機EL照明素子26の劣化防止の効果の点では、外部に剥き出しになる保護有機層の端面は、少ない方が好ましい。
従って、本発明のガスバリア積層体は、図4の右側に示す矩形の保護有機層18Cのように、保護有機層の少なくとも2辺の端面(全端面の50%以上)が、下層の無機層16の端面よりも内側に位置するのが好ましく、図1および図2に示すように、平面図において保護有機層18が下層の無機層16に内包される、すなわち、保護有機層18の全ての端面が下層の無機層16の端面よりも内側に位置するのがより好ましい。
また、本発明の電子デバイスは、保護有機層の少なくとも2辺の端面(全端面の50%以上)が面方向の内側になるように、封止層を設けるのが好ましく、有機EL照明装置24のように、保護有機層18を面方向で囲むように封止層28を設けて、封止基材30で封止するのがより好ましい。
However, in terms of the effect of preventing deterioration of the organic EL lighting element 26 due to moisture, it is preferable that the end face of the protective organic layer exposed to the outside is small.
Therefore, in the gas barrier laminate of the present invention, as in the rectangular protective organic layer 18C shown on the right side of FIG. 4, at least two end faces (50% or more of all end faces) of the protected organic layer are the lower inorganic layer 16 It is preferably located inside the end face of the protective organic layer 18, and as shown in FIGS. 1 and 2, the protective organic layer 18 is included in the lower inorganic layer 16 in the plan view, that is, all the end faces of the protective organic layer 18. Is more preferably located inside the end face of the lower inorganic layer 16.
Further, in the electronic device of the present invention, it is preferable to provide a sealing layer so that at least two end faces (50% or more of all end faces) of the protective organic layer are inside in the surface direction, and the organic EL lighting device 24 As described above, it is more preferable that the sealing layer 28 is provided so as to surround the protective organic layer 18 in the plane direction, and the protective organic layer 18 is sealed with the sealing base material 30.

ガスバリア積層体10において、保護有機層18が下層の無機層16よりも面積が小さければ、保護有機層18の端面と、下層の無機層16の端面との距離d(図1および図2参照)には、制限はない。
ここで、保護有機層18の端面から侵入する水分に起因する有機EL照明素子26の劣化防止の観点では、保護有機層18までの封止層28の厚さ(面方向のサイズ)を厚くできる点で、保護有機層18の端面と下層の無機層16の端面との距離dは、長い方が好ましい。その反面、保護有機層18の端面と下層の無機層16の端面との距離dが長いと、無機層16において、保護有機層18によって覆われない領域が多くなり、ハンドリング等の際に無機層16が損傷し易くなる。
以上の点を考慮すると、端面の少なくとも一部において、好ましくは面方向に50%以上の領域において、特に端面の全域において、保護有機層18の端面と下層の無機層16の端面との距離dが1〜10mmであるのが好ましく、1〜8mmであるのがより好ましく、1〜7mmであるのがさらに好ましい。
In the gas barrier laminate 10, if the area of the protective organic layer 18 is smaller than that of the lower inorganic layer 16, the distance d between the end face of the protective organic layer 18 and the end face of the lower inorganic layer 16 (see FIGS. 1 and 2). Has no restrictions.
Here, from the viewpoint of preventing deterioration of the organic EL lighting element 26 due to moisture entering from the end surface of the protective organic layer 18, the thickness (size in the plane direction) of the sealing layer 28 up to the protective organic layer 18 can be increased. In terms of points, the distance d between the end face of the protective organic layer 18 and the end face of the lower inorganic layer 16 is preferably long. On the other hand, if the distance d between the end face of the protective organic layer 18 and the end face of the lower inorganic layer 16 is long, the area of the inorganic layer 16 that is not covered by the protective organic layer 18 increases, and the inorganic layer is handled during handling or the like. 16 is easily damaged.
Considering the above points, the distance d between the end face of the protective organic layer 18 and the end face of the lower inorganic layer 16 in at least a part of the end face, preferably in a region of 50% or more in the plane direction, particularly in the entire end face. Is preferably 1 to 10 mm, more preferably 1 to 8 mm, and even more preferably 1 to 7 mm.

以下、本発明の有機EL照明装置24について、各構成要素の詳細について説明する。
<封止層>
有機EL照明装置24において、封止層28は、封止基材30を接着して、封止基材30によって有機EL照明素子26を封止するためのものである。具体的には、有機EL照明装置24において、有機EL照明素子26は、封止基材30と、封止層28と、ガスバリア積層体10とによって、封止されている。
Hereinafter, the details of each component of the organic EL lighting device 24 of the present invention will be described.
<Encapsulation layer>
In the organic EL lighting device 24, the sealing layer 28 is for adhering the sealing base material 30 and sealing the organic EL lighting element 26 by the sealing base material 30. Specifically, in the organic EL lighting device 24, the organic EL lighting element 26 is sealed by the sealing base material 30, the sealing layer 28, and the gas barrier laminate 10.

封止層28は、公知の有機ELデバイスにおいて、封止層、封止層、および、粘着層等として、封止基材の貼着に用いられる公知のものが、各種、利用可能である。
具体的には、封止層28の材料は、紫外線硬化性の樹脂が好ましく、より具体的には、紫外線硬化性エポキシ樹脂、および、紫外線硬化性アクリレート樹脂等が例示される。封止層28は、市販の接着剤も好適に利用可能であり、例えば、ナガセケムテックス社製のXNR5516等が例示される。
また、封止層28としては、接着シートまたは接着テープを用いてもよい。接着シートおよび接着テープは、市販品を含め、OCA(Optical Clear Adhesive)として知られるものが、広く利用可能である。
As the sealing layer 28, various known sealing layers, sealing layers, adhesive layers and the like used for attaching the sealing base material can be used in known organic EL devices.
Specifically, the material of the sealing layer 28 is preferably an ultraviolet curable resin, and more specifically, an ultraviolet curable epoxy resin, an ultraviolet curable acrylate resin, and the like are exemplified. A commercially available adhesive can also be preferably used as the sealing layer 28, and examples thereof include XNR5516 manufactured by Nagase ChemteX Corporation.
Further, as the sealing layer 28, an adhesive sheet or an adhesive tape may be used. As the adhesive sheet and adhesive tape, those known as OCA (Optical Clear Adhesive), including commercially available products, are widely available.

図示例においては、封止層28は、保護有機層18(有機EL照明素子26)を囲む枠状に設けられており、有機EL照明素子26が存在する領域は空間となっているが、本発明は、これに限定はされない。
すなわち、本発明の有機EL照明装置(電子デバイス)は、有機EL照明素子26、保護有機層18および保護有機層18の下層の無機層16と、封止基材30との間が、封止層によって充填されている構成でもよい。
ただ、有機EL照明装置24の光学特性および有機EL照明装置24の可撓性の点では、封止層28が保護有機層18を囲む枠状として、有機EL照明素子26が存在する領域は空間となっている、図3の構成の方が有利である。
また、封止層28が保護有機層18を囲む枠状である場合には、保護有機層18の端面と下層の無機層16の端面との距離d、および、封止層28の厚さ(面方向のサイズ)によっては、封止層28が、保護有機層18の面方向の端部を被覆してもよい。
In the illustrated example, the sealing layer 28 is provided in a frame shape surrounding the protective organic layer 18 (organic EL lighting element 26), and the region where the organic EL lighting element 26 exists is a space. The invention is not limited to this.
That is, in the organic EL lighting device (electronic device) of the present invention, the organic EL lighting element 26, the protective organic layer 18, and the inorganic layer 16 under the protective organic layer 18 are sealed between the sealing base material 30. It may be configured to be filled with layers.
However, in terms of the optical characteristics of the organic EL lighting device 24 and the flexibility of the organic EL lighting device 24, the sealing layer 28 forms a frame shape surrounding the protective organic layer 18, and the region where the organic EL lighting element 26 exists is a space. The configuration shown in FIG. 3 is more advantageous.
When the sealing layer 28 has a frame shape surrounding the protective organic layer 18, the distance d between the end face of the protective organic layer 18 and the end face of the lower inorganic layer 16 and the thickness of the sealing layer 28 ( Depending on the size in the plane direction), the sealing layer 28 may cover the end portion of the protective organic layer 18 in the plane direction.

水分による有機EL照明素子26の劣化防止の点で、封止層28は、ガスバリア性が高い方が好ましい。
具体的には、封止層28の材料は、500μm当たりの水蒸気透過率(500μm当たりの水蒸気透過係数)が1×10-1〜1×10-3g/(m2・day)であるのが好ましく、1×10-2〜1×10-3g/(m2・day)であるのがより好ましい。
また、封止層28は、水蒸気透過率が1×10-1〜1×10-3g/(m2・day)であるのが好ましく、1×10-2〜1×10-3g/(m2・day)であるのがより好ましい。
なお、封止層28が保護有機層18の面方向の端部を覆っている場合には、ここで言う封止層28の水蒸気透過率とは、封止層28の外側の端面から、保護有機層18の端面までの厚さにおける、封止層28の水蒸気透過率である。言い換えれば、封止層28が保護有機層18の面方向の端部を覆っている場合には、ここで言う封止層28の水蒸気透過率とは、封止層28の厚さを、封止層28の外側の端面から保護有機層18の端面までと見なした場合の、封止層28の水蒸気透過率である。
The sealing layer 28 preferably has a high gas barrier property in terms of preventing deterioration of the organic EL lighting element 26 due to moisture.
Specifically, the material of the sealing layer 28 has a water vapor permeability per 500 μm (water vapor permeability coefficient per 500 μm) of 1 × 10 -1 to 1 × 10 -3 g / (m 2 · day). Is preferable, and 1 × 10 −2 to 1 × 10 -3 g / (m 2 · day) is more preferable.
Further, the sealing layer 28 preferably has a water vapor permeability of 1 × 10 -1 to 1 × 10 -3 g / (m 2 · day), and is preferably 1 × 10 −2 to 1 × 10 -3 g /. It is more preferably (m 2 · day).
When the sealing layer 28 covers the end portion of the protective organic layer 18 in the surface direction, the water vapor transmittance of the sealing layer 28 referred to here is protected from the outer end surface of the sealing layer 28. It is the water vapor transmittance of the sealing layer 28 at the thickness up to the end face of the organic layer 18. In other words, when the sealing layer 28 covers the end portion of the protective organic layer 18 in the surface direction, the water vapor transmittance of the sealing layer 28 here means the thickness of the sealing layer 28. It is the water vapor transmittance of the sealing layer 28 when it is considered from the outer end face of the stop layer 28 to the end face of the protective organic layer 18.

封止層28は、封止基材30および無機層16よりも、ガスバリア性が低い。従って、水分による有機EL照明素子26の劣化防止の点では、封止層28の高さ(上下方向すなわち面方向と直交する方向のサイズ)は、低い方が有利である。その反面、封止層28を均一に塗布し、有機EL照明素子26を精密に封止するためには、封止層28は一定の高さを有するのが好ましい。
具体的には、封止層28の高さは、1〜500μmが好ましく、50〜400μmがより好ましく、100〜300μmがさらに好ましい。
The sealing layer 28 has a lower gas barrier property than the sealing base material 30 and the inorganic layer 16. Therefore, in terms of preventing deterioration of the organic EL lighting element 26 due to moisture, it is advantageous that the height of the sealing layer 28 (the size in the vertical direction, that is, the size in the direction orthogonal to the plane direction) is low. On the other hand, in order to uniformly apply the sealing layer 28 and precisely seal the organic EL lighting element 26, the sealing layer 28 preferably has a constant height.
Specifically, the height of the sealing layer 28 is preferably 1 to 500 μm, more preferably 50 to 400 μm, and even more preferably 100 to 300 μm.

<有機EL照明素子>
有機EL照明素子26は、有機EL照明装置(有機EL照明デバイス)に用いられる、公知の有機EL照明素子である。
一例として、有機EL照明素子26は、陽極、正孔注入層(ホール注入層)、正孔輸送層(ホール輸送層)、発光層、正孔ブロック層(正孔阻止層)、電子輸送層、電子注入層、および、陰極等を有する、有機EL照明装置を構成する、公知の有機EL照明素子(有機EL素子、有機EL発光素子)である。
<Organic EL lighting element>
The organic EL lighting element 26 is a known organic EL lighting element used in an organic EL lighting device (organic EL lighting device).
As an example, the organic EL lighting element 26 includes an anode, a hole injection layer (hole injection layer), a hole transport layer (hole transport layer), a light emitting layer, a hole block layer (hole blocking layer), an electron transport layer, and the like. It is a known organic EL lighting element (organic EL element, organic EL light emitting element) that constitutes an organic EL lighting device having an electron injection layer, a cathode, and the like.

<封止基材>
封止基材30も、公知の有機EL照明装置に用いられる、公知の封止基材である。
具体的には、イットリア安定化ジルコニア(YSZ)、および、ガラス(無アルカリガラス、ソーダライムガラス等)等からなるシート状物が例示される。
また、封止基材30としては、樹脂フィルムに、無機化合物からなるガスバリア層を形成してなる、ガスバリアフィルムも、好適に利用可能である。ガスバリア層としては、窒化ケイ素層、酸化ケイ素層、酸化窒化ケイ素層、および、酸化アルミニウム層等が例示される。封止基材30としてガスバリアフィルムを用いる場合には、ガスバリア層側を有機EL照明素子26に向けて、封止基材30による封止を行う。
<Encapsulating base material>
The sealing base material 30 is also a known sealing base material used in a known organic EL lighting device.
Specifically, a sheet-like material made of yttria-stabilized zirconia (YSZ), glass (non-alkali glass, soda lime glass, etc.) and the like is exemplified.
Further, as the sealing base material 30, a gas barrier film in which a gas barrier layer made of an inorganic compound is formed on a resin film can also be preferably used. Examples of the gas barrier layer include a silicon nitride layer, a silicon oxide layer, a silicon nitride layer, and an aluminum oxide layer. When a gas barrier film is used as the sealing base material 30, the sealing base material 30 is used to seal the gas barrier layer side toward the organic EL lighting element 26.

さらに、封止基材30としては、図1に示すガスバリア積層体10と同様の、ガスバリア性を発現する無機層と、この無機層の下地となる有機層との組み合わせを、1組以上、有する、有機無機積層型のガスバリアフィルムも、好適に利用可能である。なお、有機無機積層型のガスバリアフィルムは、通常、支持体と最も離間する層として、最上層の無機層を全面的に覆って、無機層を保護するための保護有機層を有する。
また、封止基材としては、図5にガスバリア積層体10を例示して概念的に示すように、本発明のガスバリア積層体も、より好適に利用可能である。
ここで、図3等に示されるような、封止層28が保護有機層18を囲む枠状に設けられており、有機EL照明素子26が存在する領域が空間となっている有機EL照明装置の場合に、有機層と無機層とを交互に積層した積層構造を有する封止基材30を用いる際には、保護有機層を有する通常の有機無機積層型のガスバリアフィルムではなく、本発明のガスバリア積層体、または、保護有機層を有さない有機無機積層型のガスバリアフィルムを用いるのが好ましい。
Further, the sealing base material 30 has one or more sets of an inorganic layer exhibiting gas barrier properties similar to the gas barrier laminate 10 shown in FIG. 1 and an organic layer serving as a base for the inorganic layer. , An organic-inorganic laminated gas barrier film can also be preferably used. The organic-inorganic laminated type gas barrier film usually has a protective organic layer for protecting the inorganic layer by completely covering the uppermost inorganic layer as a layer most distant from the support.
Further, as the sealing base material, the gas barrier laminate 10 of the present invention can be more preferably used as conceptually shown by exemplifying the gas barrier laminate 10 in FIG.
Here, as shown in FIG. 3 and the like, the sealing layer 28 is provided in a frame shape surrounding the protective organic layer 18, and the region where the organic EL lighting element 26 exists is an organic EL lighting device. In this case, when the sealing base material 30 having a laminated structure in which organic layers and inorganic layers are alternately laminated is used, instead of the usual organic-inorganic laminated type gas barrier film having a protective organic layer, the present invention It is preferable to use a gas barrier laminate or an organic-inorganic laminated gas barrier film having no protective organic layer.

(ガスバリア積層体および有機EL照明装置の作製)
まず、PETフィルム等の支持体12を用意して、支持体12の一方の表面に、前述のように有機層形成用組成物を用いる塗布法によって1層目の有機層14を形成する。なお、有機層形成用組成物の塗布は、バーコート法、グラビアコート法、および、ダイコート法等の公知の方法が利用可能である。次いで、CCP−CVD等のプラズマCVDによって、1層目の有機層14の表面に1層目の無機層16を形成する。なお、下地となる有機層14と無機層16との組み合わせを1組有するガスバリア積層体を作製する場合には、1層目の無機層16を形成した後に、下記と同様に保護有機層18を形成する。
次いで、同様にして、2層目の有機層14および2層目の無機層16を形成する。なお、下地となる有機層14と無機層16との組み合わせを3組以上有するガスバリア積層体を作製する場合には、同様の有機層14と無機層16との形成を、繰り返し行えばよい。
その後、保護有機層18を形成するための組成物(保護有機層形成用組成物)を2層目(最上層)の無機層16の全面に塗布し、同様に有機層を形成して、積層体とする。
これらの各層の形成は、RtoRを利用するのが好ましいのは、前述のとおりである。
(Manufacturing of gas barrier laminate and organic EL lighting device)
First, a support 12 such as a PET film is prepared, and the first organic layer 14 is formed on one surface of the support 12 by a coating method using the composition for forming an organic layer as described above. For the application of the composition for forming an organic layer, known methods such as a bar coating method, a gravure coating method, and a die coating method can be used. Next, the first inorganic layer 16 is formed on the surface of the first organic layer 14 by plasma CVD such as CCP-CVD. When preparing a gas barrier laminate having a set of a combination of the organic layer 14 and the inorganic layer 16 as a base, after forming the first inorganic layer 16, the protective organic layer 18 is formed in the same manner as described below. Form.
Then, in the same manner, the second organic layer 14 and the second inorganic layer 16 are formed. In the case of producing a gas barrier laminate having three or more combinations of the organic layer 14 and the inorganic layer 16 as a base, the same formation of the organic layer 14 and the inorganic layer 16 may be repeated.
Then, the composition for forming the protective organic layer 18 (composition for forming the protective organic layer) is applied to the entire surface of the inorganic layer 16 of the second layer (top layer), and the organic layer is formed in the same manner and laminated. The body.
As described above, it is preferable to utilize RtoR for the formation of each of these layers.

次いで、必要に応じて作製した積層体を所定の形状に切断した後、積層体の2層目の無機層16の上に形成した有機層の周辺部を除去して、平面図において下層の無機層16に内包される保護有機層18を形成して、本発明のガスバリア積層体10とする。
有機層の除去方法は、公知の方法が利用可能であるが、好ましくはエッチングが利用される。エッチングは、ドライエッチングおよびウエットエッチングの両方が利用可能であるが、無機層16と封止層28との密着性を良好にできる点で、ドライエッチングが好適に利用される。
Next, after cutting the laminated body produced as needed into a predetermined shape, the peripheral portion of the organic layer formed on the inorganic layer 16 of the second layer of the laminated body is removed, and the inorganic layer of the lower layer in the plan view is removed. The protective organic layer 18 included in the layer 16 is formed to form the gas barrier laminate 10 of the present invention.
As a method for removing the organic layer, a known method can be used, but etching is preferably used. Both dry etching and wet etching can be used for etching, but dry etching is preferably used in that the adhesion between the inorganic layer 16 and the sealing layer 28 can be improved.

ドライエッチングとは、反応性のガス、イオンまたはラジカル等によって、材料をエッチングする方法である。
ドライエッチングとしては、プラズマエッチング、イオンエッチング、および、集束イオンビームエッチング等の公知の方法が利用できる。
イオンエッチングは、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、および、これらの組合せを含む不活性ガス等で、固体表面をエッチングする方法である。異方性が高い垂直なエッチングが可能であり、エッチング形状の整った凹部を形成できることから、反応性イオンエッチング(RIE(Reactive Ion Etching))が好ましく利用され、アルゴンガスを用いたアルゴンイオンエッチングがさらに好ましく利用される。
Dry etching is a method of etching a material with a reactive gas, ions, radicals, or the like.
As the dry etching, known methods such as plasma etching, ion etching, and focused ion beam etching can be used.
Ion etching is a method of etching a solid surface with an inert gas containing helium (He), argon (Ar), neon (Ne), and a combination thereof. Reactive ion etching (RIE (Reactive Ion Etching)) is preferably used because vertical etching with high anisotropy is possible and recesses with a well-etched shape can be formed, and argon ion etching using argon gas is used. It is more preferably used.

なお、ガスバリア積層体10の製造においては、無機層16の表面全面に有機層形成用組成物を塗布して、エッチングによって周辺部を除去することで保護有機層18を形成するのではなく、平面図において無機層16に内包されるように有機層形成用組成物を塗布して、保護有機層18を形成してもよい。 In the production of the gas barrier laminate 10, the composition for forming an organic layer is applied to the entire surface of the inorganic layer 16 and the peripheral portion is removed by etching to form the protective organic layer 18 instead of forming a flat surface. In the figure, the composition for forming an organic layer may be applied so as to be encapsulated in the inorganic layer 16 to form the protective organic layer 18.

このようにしてガスバリア積層体10を形成したら、保護有機層18の上に、陽極、ホール注入層、ホール輸送層、発光層、正孔阻止層、電子輸送層、電子注入層、および、陰極等を形成して、有機EL照明素子26を形成する。
有機EL照明素子26を形成したら、例えば保護有機層18の下層の無機層16において剥き出しなっている周辺部に、封止層28となる接着剤を枠状に塗布する。その後、接着剤上に封止基材30を積層し、次いで、例えば紫外線を照射することによって接着剤を硬化して、封止層28によって無機層16(ガスバリア積層体10)と封止基材30とを接着して、有機EL照明装置24を作製する。
After the gas barrier laminate 10 is formed in this way, the anode, the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, the electron transport layer, the electron injection layer, the cathode and the like are formed on the protective organic layer 18. To form the organic EL illumination element 26.
After forming the organic EL lighting element 26, for example, an adhesive to be a sealing layer 28 is applied in a frame shape to a peripheral portion exposed in the inorganic layer 16 under the protective organic layer 18. After that, the sealing base material 30 is laminated on the adhesive, and then the adhesive is cured by, for example, irradiating with ultraviolet rays, and the sealing layer 28 forms the inorganic layer 16 (gas barrier laminate 10) and the sealing base material. The organic EL lighting device 24 is manufactured by adhering with 30.

以上、本発明のガスバリア積層体および電子デバイスについて詳細に説明したが、本発明は上記の態様に限定はされず、本発明の要旨を逸脱しない範囲において、種々、改良や変更を行ってもよい。 Although the gas barrier laminate and the electronic device of the present invention have been described in detail above, the present invention is not limited to the above aspects, and various improvements and changes may be made without departing from the gist of the present invention. ..

以下に実施例を挙げて本発明を具体的に説明する。本発明は、以下に示す具体例に限定されない。 The present invention will be specifically described below with reference to examples. The present invention is not limited to the specific examples shown below.

[実施例1]
<ガスバリア積層体の作製>
支持体として、厚さ100μmのPETフィルム(東洋紡社製、A4300)を用意した。
[Example 1]
<Preparation of gas barrier laminate>
As a support, a PET film having a thickness of 100 μm (manufactured by Toyobo Co., Ltd., A4300) was prepared.

TMPTA(ダイセル・オルネクス社製)を28.5g、紫外線重合開始剤(ランベルティ社製、ESACURE KTO46)を1.5g、および、2−ブタノン(和光純薬工業社製)を170g、混合し、有機層を形成するための有機層形成用組成物を調製した。有機層形成用組成物の固形分濃度は、15質量%であった。
調製した有機層形成用組成物を、用意した支持体の表面に塗布した。塗布は、ダイコーターを用い、機層の膜厚が1μmとなるように行った。塗布後、80℃のオーブンで3分間乾燥させた。次いで、窒素置換法により酸素濃度を0.1%としたチャンバー内で高圧水銀ランプの紫外線を照射(積算照射量約600mJ/cm2)することで有機層形成用組成物を硬化させて、有機層を形成した。
28.5 g of TMPTA (manufactured by Daicel Ornex), 1.5 g of an ultraviolet polymerization initiator (manufactured by Lamberti, ESACURE KTO46), and 170 g of 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed. A composition for forming an organic layer for forming an organic layer was prepared. The solid content concentration of the composition for forming an organic layer was 15% by mass.
The prepared organic layer forming composition was applied to the surface of the prepared support. The coating was carried out using a die coater so that the film thickness of the machine layer was 1 μm. After application, it was dried in an oven at 80 ° C. for 3 minutes. Next, the composition for forming an organic layer is cured by irradiating ultraviolet rays of a high-pressure mercury lamp (integrated irradiation amount of about 600 mJ / cm 2 ) in a chamber having an oxygen concentration of 0.1% by a nitrogen substitution method, and organically. A layer was formed.

形成した有機層の上に、無機層として、膜厚が40nmの窒化ケイ素膜を形成した。
無機層の形成は、CCP−CVD装置(サムコ社製)を用いて行った。原料ガスは、シランガス(流量160sccm:0℃、1気圧の標準状態、以下同様)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および、窒素ガス(流量240sccm)を用いた。成膜圧力は40Paとした。電源は周波数13.56MHzの高周波電源を用い、プラズマ励起電力を2.5kWとした。
以下、支持体と、この無機層(1層目の無機層)との間の有機層を、下地有機層とも言う。
A silicon nitride film having a film thickness of 40 nm was formed as an inorganic layer on the formed organic layer.
The formation of the inorganic layer was performed using a CCP-CVD apparatus (manufactured by SAMCO Corporation). As the raw material gas, silane gas (flow rate 160 sccm: 0 ° C., 1 atmospheric pressure standard state, the same applies hereinafter), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used. The film forming pressure was 40 Pa. A high-frequency power source having a frequency of 13.56 MHz was used as the power source, and the plasma excitation power was set to 2.5 kW.
Hereinafter, the organic layer between the support and the inorganic layer (first inorganic layer) is also referred to as an underlying organic layer.

TMPTA(ダイセル・オルネクス社製)を21.5g、KBM−5103(信越化学工業社製)を5.5g、KAYAMER PM−21(日本化薬社製)を1.0g、紫外線重合開始剤(ランベルティ社製、ESACURE KTO46)を1.5g、および、2−ブタノン(和光純薬工業社製)を170gを混合して、保護有機層を形成するための、保護有機層形成用組成物を調製した。有機層形成用組成物の固形分濃度は、15質量%であった。
無機層の上に、調製した保護有機層形成用組成物を用いて、先に形成した有機層と同様にして、厚さが1.5μmの保護有機層となる有機層を形成した。
これにより、支持体の表面に、有機層、無機層および保護有機層となる有機層を形成した積層体を作製した。
21.5 g of TMPTA (manufactured by Daicel Ornex), 5.5 g of KBM-5103 (manufactured by Shinetsu Chemical Industries, Ltd.), 1.0 g of KAYAMER PM-21 (manufactured by Nippon Kayaku Co., Ltd.), UV polymerization initiator (run) A composition for forming a protective organic layer for forming a protective organic layer is prepared by mixing 1.5 g of ESACURE KTO46 (manufactured by Berti) and 170 g of 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.). did. The solid content concentration of the composition for forming an organic layer was 15% by mass.
On the inorganic layer, the prepared composition for forming a protected organic layer was used to form an organic layer to be a protected organic layer having a thickness of 1.5 μm in the same manner as the previously formed organic layer.
As a result, a laminate in which an organic layer, an inorganic layer, and an organic layer serving as a protective organic layer were formed on the surface of the support was produced.

積層体を50×50mmに切断した。
その後、保護有機層となる有機層の周辺部全域(4辺全て)を、面方向に1mm、エッチングによって除去して、保護有機層を形成した。これにより、図2に示すような、平面図において、保護有機層が下層の無機層に内包される、ガスバリア積層体を作製した(図1および図2における距離d=1mm)。すなわち、このガスバリア積層体は、支持体・有機層(下地有機層)・無機層・保護有機層の層構成を有する。
ガスバリア積層体は、同じものを2枚、作製した。
作製したガスバリア積層体の水蒸気透過率を、カルシウム腐蝕法(特開2005−283561号公報に記載される方法)によって測定した。その結果、積層体の水蒸気透過率は、1×10-6g/(m2・day)であった。
The laminate was cut to 50 x 50 mm.
Then, the entire peripheral portion (all four sides) of the organic layer to be the protective organic layer was removed by etching 1 mm in the plane direction to form the protective organic layer. As a result, in a plan view as shown in FIG. 2, a gas barrier laminate in which the protective organic layer is encapsulated in the lower inorganic layer was produced (distance d = 1 mm in FIGS. 1 and 2). That is, this gas barrier laminate has a layer structure of a support, an organic layer (underlying organic layer), an inorganic layer, and a protective organic layer.
Two of the same gas barrier laminates were prepared.
The water vapor permeability of the produced gas barrier laminate was measured by a calcium corrosion method (method described in JP-A-2005-283651). As a result, the water vapor transmittance of the laminate was 1 × 10 -6 g / (m 2 · day).

作製したガスバリア積層体の1枚の保護有機層の表面に、ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸(PEDOT−PSS)電極(陽極)を80nm、形成した。
形成した陽極の表面に、真空蒸着装置により、正孔注入層として酸化モリブデン(MoO3)層を2nm、形成し、さらに、酸化モリブデン層の表面に順に正孔輸送層(α-NPD:Bis[N-(1-naphthyl)-N-phenyl]benzidine)を200nm、CBP(4,4'-Bis(carbazol-9-yl)biphenyl)をホスト材料として5%のIr(ppy)3(Tris(2-phenylpyridinato)iridium)をドープした発光層を20nm、正孔ブロック層としてBAlq(Bis-(2-methyl-8- quinolinolato)-4-(phenyl-phenolate)-aluminium(III))層を10nm、および、電子輸送層としてAlq3(Tris(8-hydroxy-quinolinato)aluminium)層を20nm、それぞれ蒸着して、有機電界発光層を形成した。
続けて、得られた有機電界発光層の表面にフッ化リチウム(LiF)を0.5nm、アルミニウムを1.5nm、銀を15nm、この順に蒸着して、透明電極(陰極)を成膜して、有機EL照明素子を形成した。
A polyethylene dioxythiophene-polystyrene sulfonic acid (PEDOT-PSS) electrode (anode) was formed at 80 nm on the surface of one protective organic layer of the produced gas barrier laminate.
A molybdenum oxide (MoO 3 ) layer of 2 nm was formed as a hole injection layer on the surface of the formed anode by a vacuum vapor deposition apparatus, and further, a hole transport layer (α-NPD: Bis [α-NPD: Bis] was formed on the surface of the molybdenum oxide layer in order. N- (1-naphthyl) -N-phenyl] benzidine) at 200 nm, CBP (4,4'-Bis (carbazol-9-yl) biphenyl) as the host material, 5% Ir (ppy) 3 (Tris (2) A light emitting layer doped with -phenylpyridinato) iridium) is 20 nm, and a BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminium (III)) layer is 10 nm as a hole blocking layer. , Alq3 (Tris (8-hydroxy-quinolinato) aluminum) layer was vapor-deposited at 20 nm as an electron transport layer to form an organic electroluminescent layer.
Subsequently, lithium fluoride (LiF) of 0.5 nm, aluminum of 1.5 nm, and silver of 15 nm were deposited on the surface of the obtained organic electroluminescent layer in this order to form a transparent electrode (cathode). , An organic EL lighting element was formed.

有機EL照明素子を形成したガスバリア積層体の上面(保護有機層側の表面)の周辺部に、枠状に接着剤(ナガセケムテックス社製、XNR5516)を塗布した。この接着剤が硬化した際における、500μm当たりの水蒸気透過率は、1×10-1g/(m2・day)である。
次いで、もう1枚のガスバリア積層体を封止基材として、上面側を有機EL照明素子側に向けて、端部を一致して積層した。
さらに、高圧水銀ランプの紫外線を照射(積算照射量約6J/cm2)することによって、接着剤を硬化して封止層を形成し、有機EL照明素子を形成したガスバリア積層体と、封止基材(同様のガスバリア積層体)とを封止層で接着して、有機EL照明素子を封止した、図3に示すような有機EL照明装置を作製した。
形成した封止層の高さ(上下方向のサイズ)は500μm、封止層の厚さ(面方向のサイズ)は5mmであった。従って、本例では、4mmの封止層が保護有機層の端部を覆っている。
An adhesive (manufactured by Nagase ChemteX Corporation, XNR5516) was applied in a frame shape to the peripheral portion of the upper surface (surface on the protective organic layer side) of the gas barrier laminate on which the organic EL lighting element was formed. When this adhesive is cured, the water vapor permeability per 500 μm is 1 × 10 -1 g / (m 2 · day).
Next, another gas barrier laminate was used as a sealing base material, and the upper surface side was directed toward the organic EL lighting element side, and the ends were laminated so as to coincide with each other.
Further, by irradiating ultraviolet rays of a high-pressure mercury lamp (integrated irradiation amount of about 6 J / cm 2 ), the adhesive is cured to form a sealing layer, and the gas barrier laminate on which the organic EL lighting element is formed is sealed. An organic EL lighting device as shown in FIG. 3 was produced in which a base material (similar gas barrier laminate) was adhered with a sealing layer to seal an organic EL lighting element.
The height of the formed sealing layer (size in the vertical direction) was 500 μm, and the thickness of the sealing layer (size in the surface direction) was 5 mm. Therefore, in this example, a 4 mm sealing layer covers the end of the protective organic layer.

[実施例2および実施例3]
1枚のガスバリア積層体の作製において、保護有機層となる有機層の周辺部のエッチングを、隣接する2辺(実施例2、図4右側参照)、および、1辺(実施例3、図4左側参照)、とした以外は、実施例1と同様にガスバリア積層体を作製した。
このガスバリア積層体に有機EL照明素子を形成した以外は、実施例1と同様に、有機EL照明装置を作製した。なお、封止基材となるガスバリア積層体は、実施例1と同じものである。この点に関しては、有機EL照明素子を形成するガスバリア積層体の構成を変更した、全ての例に同様である。
従って、有機EL照明素子を形成したガスバリア積層体の保護有機層は、実施例2においては2辺の端面が外部に剥き出しになっており、実施例3においては3辺の端面が外部に剥き出しになっている。
[Example 2 and Example 3]
In the production of one gas barrier laminate, etching of the peripheral portion of the organic layer to be the protective organic layer is performed on two adjacent sides (see the right side of Example 2 and FIG. 4) and one side (Examples 3 and 4). A gas barrier laminate was produced in the same manner as in Example 1 except that (see left side).
An organic EL lighting device was produced in the same manner as in Example 1 except that the organic EL lighting element was formed on the gas barrier laminate. The gas barrier laminate used as the sealing base material is the same as in Example 1. In this respect, the same applies to all the examples in which the configuration of the gas barrier laminate forming the organic EL lighting element is changed.
Therefore, in the protective organic layer of the gas barrier laminate on which the organic EL lighting element is formed, the end faces of the two sides are exposed to the outside in Example 2, and the end faces of the three sides are exposed to the outside in Example 3. It has become.

[実施例4〜8]
1枚のガスバリア積層体の作製において、保護有機層となる有機層の周辺部のエッチングの幅を、0.5mm、7mm、8mm、10mm、および、11mmに変更し、保護有機層の端面と下層の無機層の端面との距離(図1および図2における距離d)を、0.5mm(実施例4)、7mm(実施例5)、8mm(実施例6)、10mm(実施例7)、および、11mm(実施例8)に変更した以外は、実施例1と同様にガスバリア積層体を作製した。
このガスバリア積層体に有機EL照明素子を形成した以外は、実施例1と同様に、有機EL照明装置を作製した。
[Examples 4 to 8]
In the production of one gas barrier laminate, the etching width of the peripheral part of the organic layer to be the protective organic layer was changed to 0.5 mm, 7 mm, 8 mm, 10 mm, and 11 mm, and the end face and the lower layer of the protective organic layer were changed. The distance from the end face of the inorganic layer (distance d in FIGS. 1 and 2) is 0.5 mm (Example 4), 7 mm (Example 5), 8 mm (Example 6), 10 mm (Example 7). A gas barrier laminate was produced in the same manner as in Example 1 except that the thickness was changed to 11 mm (Example 8).
An organic EL lighting device was produced in the same manner as in Example 1 except that the organic EL lighting element was formed on the gas barrier laminate.

[実施例9]
1枚のガスバリア積層体の作製において、支持体と無機層との間の有機層(下地有機層)を形成しなかった以外は、実施例1と同様にガスバリア積層体を作製した。すなわち、このガスバリア積層体は、支持体・無機層・保護有機層の層構成を有する。
このガスバリア積層体に有機EL照明素子を形成した以外は、実施例1と同様に、有機EL照明装置を作製した。
[実施例10]
1枚のガスバリア積層体の作製において、2層目の有機層を形成した後、2層目の有機層の表面に、1層目の無機層と同様に2層目の無機層を形成し、2層目の無機層の表面に、2層目の有機層と同様に3層目の有機層を形成して、3層目の有機層を保護有機層とした以外は、実施例1と同様にガスバリア積層体を作製した。すなわち、このガスバリア積層体は、支持体・有機層・無機層・有機層・無機層・保護有機層の層構成を有する。
このガスバリア積層体に有機EL照明素子を形成し、封止層の高さを300μmとした以外は、実施例1と同様に、有機EL照明装置を作製した。
[Example 9]
A gas barrier laminate was prepared in the same manner as in Example 1 except that an organic layer (underlying organic layer) was not formed between the support and the inorganic layer in the preparation of one gas barrier laminate. That is, this gas barrier laminate has a layer structure of a support, an inorganic layer, and a protective organic layer.
An organic EL lighting device was produced in the same manner as in Example 1 except that the organic EL lighting element was formed on the gas barrier laminate.
[Example 10]
In the production of one gas barrier laminate, after forming the second organic layer, a second inorganic layer is formed on the surface of the second organic layer in the same manner as the first inorganic layer. Same as Example 1 except that a third organic layer is formed on the surface of the second inorganic layer in the same manner as the second organic layer, and the third organic layer is used as a protective organic layer. A gas barrier laminate was prepared in. That is, this gas barrier laminate has a layer structure of a support, an organic layer, an inorganic layer, an organic layer, an inorganic layer, and a protective organic layer.
An organic EL lighting device was produced in the same manner as in Example 1 except that an organic EL lighting element was formed on the gas barrier laminate and the height of the sealing layer was set to 300 μm.

[実施例11〜16]
封止層の高さを、0.5μm(実施例11)、600μm(実施例12)、50μm(実施例13)、400μm(実施例14)、100μm(実施例15)、および、300μm(実施例16)に変更した以外は、実施例1と同様にガスバリア積層体を作製した。
このガスバリア積層体を用いた以外は、実施例1と同様に、有機EL照明装置を作製した。
[Examples 11 to 16]
The height of the sealing layer is 0.5 μm (Example 11), 600 μm (Example 12), 50 μm (Example 13), 400 μm (Example 14), 100 μm (Example 15), and 300 μm (Example). A gas barrier laminate was produced in the same manner as in Example 1 except that it was changed to Example 16).
An organic EL lighting device was produced in the same manner as in Example 1 except that this gas barrier laminate was used.

[比較例1]
1枚のガスバリア積層体の作製において、保護有機層となる有機層の周辺部のエッチングを行わなかった以外は、実施例1と同様にガスバリア積層体を作製した。
このガスバリア積層体に有機EL照明素子を形成した以外は、実施例1と同様に、有機EL照明装置を作製した。
従って、有機EL照明素子を形成したガスバリア積層体の保護有機層は、4辺の端部全てが外部に剥き出しになっている。
[Comparative Example 1]
In the preparation of one gas barrier laminate, the gas barrier laminate was prepared in the same manner as in Example 1 except that the peripheral portion of the organic layer to be the protective organic layer was not etched.
An organic EL lighting device was produced in the same manner as in Example 1 except that the organic EL lighting element was formed on the gas barrier laminate.
Therefore, in the protective organic layer of the gas barrier laminate on which the organic EL lighting element is formed, all four side ends are exposed to the outside.

[評価(高温高湿耐久性)]
作製した有機EL照明装置の評価を、以下のように行った。
作製した有機EL照明装置を温度60℃、相対湿度90%RHの環境下に100時間放置して、発光全面積(有機EL照明素子の面積)に対するダークスポットの総面積[%]を下記の表に示す。
[Evaluation (high temperature and high humidity durability)]
The produced organic EL lighting device was evaluated as follows.
The produced organic EL lighting device is left in an environment of a temperature of 60 ° C. and a relative humidity of 90% RH for 100 hours, and the total area [%] of dark spots with respect to the total area of light emission (area of the organic EL lighting element) is shown in the table below. Shown in.

ダークスポットの面積が小さいほど、高い高温高湿耐久性を有しており、すなわち、ガスバリア積層体のガスバリア性が優れている。
表1に示されるように、平面図において、保護有機層を下層の無機層よりも小さくして、少なくとも1辺の端面を封止層よりも面方向の内側にした本発明のガスバリア積層体および有機EL照明装置によれば、保護有機層の4辺の端面が全て外部に剥き出しになっている比較例1よりも、高い高温高湿耐久性を有しており、すなわち、ガスバリア積層体のガスバリア性が優れている。
実施例1および実施例5〜7に示されるように、保護有機層の端面と下層の有機層の端面との距離を1〜10mmの範囲とすることにより、より優れた高温高湿耐久性すなわちガスバリア積層体のガスバリア性を得られる。なお、実施例8は、保護有機層の端面と下層の有機層の端面との距離が11mmと、実施例7よりも、若干、長いため、封止前のハンドリングの際に、若干、無機層が多く損傷して、実施例7よりもダークスポットが多くなったと考えられる。
実施例9と実施例1との比較より、支持体と1層目の無機層との間に有機層(下地有機層)を設けることで、良好な高温高湿耐久性すなわちガスバリア積層体のガスバリア性を得られる。
さらに、実施例13〜16に示されるように、封止層の高さを50〜400μmの範囲とすることにより、特に100〜300μmの範囲とすることにより、より優れた高温高湿耐久性すなわちガスバリア積層体のガスバリア性を得られる。
加えて、実施例10に示されるように、封止層の高さを100〜300μmの範囲とし、下地となる有機層と無機層との組み合わせを2組(無機層数2層)とすることにより、非常に優れた高温高湿耐久性すなわちガスバリア積層体のガスバリア性を得られる。
以上の結果より、本発明の効果は明らかである。
The smaller the area of the dark spot, the higher the high temperature and high humidity durability, that is, the better the gas barrier property of the gas barrier laminate.
As shown in Table 1, in the plan view, the gas barrier laminate of the present invention in which the protective organic layer is smaller than the lower inorganic layer and at least one end face is inside the sealing layer in the plane direction. According to the organic EL lighting device, it has higher high temperature and high humidity durability than Comparative Example 1 in which all four side end faces of the protective organic layer are exposed to the outside, that is, the gas barrier of the gas barrier laminate. Excellent in sex.
As shown in Examples 1 and 5-7, by setting the distance between the end face of the protective organic layer and the end face of the lower organic layer in the range of 1 to 10 mm, better high temperature and high humidity durability, that is, The gas barrier property of the gas barrier laminate can be obtained. In Example 8, the distance between the end face of the protective organic layer and the end face of the lower organic layer is 11 mm, which is slightly longer than that of Example 7, so that the inorganic layer is slightly longer during handling before sealing. It is considered that there were many dark spots as compared with Example 7.
From the comparison between Example 9 and Example 1, by providing an organic layer (underlying organic layer) between the support and the first inorganic layer, good high temperature and high humidity durability, that is, a gas barrier of a gas barrier laminate You can get sex.
Further, as shown in Examples 13 to 16, the height of the sealing layer is set in the range of 50 to 400 μm, particularly in the range of 100 to 300 μm, so that the high temperature and high humidity durability is improved. The gas barrier property of the gas barrier laminate can be obtained.
In addition, as shown in Example 10, the height of the sealing layer is in the range of 100 to 300 μm, and the combination of the organic layer and the inorganic layer as the base is two sets (two layers of inorganic layers). As a result, extremely excellent high temperature and high humidity durability, that is, gas barrier properties of the gas barrier laminate can be obtained.
From the above results, the effect of the present invention is clear.

有機EL照明装置および太陽電池等に好適に利用可能である。 It can be suitably used for organic EL lighting devices, solar cells, and the like.

10,10A ガスバリア積層体
12 支持体
14 有機層
16 無機層
18,18A,18B,18C 保護有機層
18e 端面
24,24A 有機EL照明装置
26 有機EL照明素子
28 封止層
30 封止基材
10, 10A Gas barrier laminate 12 Support 14 Organic layer 16 Inorganic layer 18, 18A, 18B, 18C Protective organic layer 18e End face 24, 24A Organic EL lighting device 26 Organic EL lighting element 28 Sealing layer 30 Sealing base material

Claims (11)

支持体と、前記支持体の一方の面側に交互に積層される無機層および有機層と、を有し、
1層以上の前記無機層および1層以上の前記有機層を有し、かつ、交互に積層される前記無機層および前記有機層のうち、最も前記支持体と離間するのが前記有機層であり、
前記支持体と最も離間する前記有機層は、前記支持体と最も離間する前記無機層よりも、面積が小さいことを特徴とするガスバリア積層体。
It has a support and inorganic layers and organic layers alternately laminated on one surface side of the support.
Among the inorganic layers and the organic layers which have one or more layers of the inorganic layer and one or more layers of the organic layer and are alternately laminated, the organic layer is the most separated from the support. ,
A gas barrier laminate characterized in that the organic layer most distant from the support has a smaller area than the inorganic layer most distant from the support.
前記支持体の主面と直交する方向から見た際に、前記支持体と最も離間する前記有機層が、前記支持体と最も離間する前記無機層に内包される、請求項1に記載のガスバリア積層体。 The gas barrier according to claim 1, wherein the organic layer most distant from the support is included in the inorganic layer most distant from the support when viewed from a direction orthogonal to the main surface of the support. Laminated body. 前記無機層と、前記無機層の下地となる前記有機層との組み合わせを、1組以上有する、請求項1または2に記載のガスバリア積層体。 The gas barrier laminate according to claim 1 or 2, further comprising one or more sets of a combination of the inorganic layer and the organic layer serving as a base for the inorganic layer. 前記無機層を2層以上有する、請求項1〜3のいずれか1項に記載のガスバリア積層体。 The gas barrier laminate according to any one of claims 1 to 3, which has two or more inorganic layers. 前記支持体が樹脂フィルムである、請求項1〜4のいずれか1項に記載のガスバリア積層体。 The gas barrier laminate according to any one of claims 1 to 4, wherein the support is a resin film. 少なくとも一部において、前記支持体と最も離間する前記有機層の端面と、前記支持体と最も離間する前記無機層の端面との距離が、1〜10mmである、請求項1〜5のいずれか1項に記載のガスバリア積層体。 Any of claims 1 to 5, wherein in at least a part, the distance between the end face of the organic layer most distant from the support and the end face of the inorganic layer most distant from the support is 1 to 10 mm. The gas barrier laminate according to item 1. 請求項1〜6のいずれか1項に記載のガスバリア積層体と、
前記ガスバリア積層体の前記支持体と最も離間する前記有機層の上に形成される電子素子と、
前記電子素子を封止する封止基材と、
前記封止基材および前記ガスバリア積層体を接着する封止層と、を有することを特徴とする電子デバイス。
The gas barrier laminate according to any one of claims 1 to 6 and
An electronic element formed on the organic layer most distant from the support of the gas barrier laminate, and
A sealing base material for sealing the electronic element and
An electronic device comprising: a sealing base material and a sealing layer for adhering the gas barrier laminate.
前記封止層の高さが1〜500μmである、請求項7に記載の電子デバイス。 The electronic device according to claim 7, wherein the sealing layer has a height of 1 to 500 μm. 前記封止基材が、請求項1〜6のいずれか1項に記載のガスバリア積層体である、請求項7または8に記載の電子デバイス。 The electronic device according to claim 7 or 8, wherein the sealing base material is the gas barrier laminate according to any one of claims 1 to 6. 有機エレクトロルミネッセンスデバイス、または、太陽電池デバイスである、請求項7〜9のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 7 to 9, which is an organic electroluminescence device or a solar cell device. 有機エレクトロルミネッセンス照明装置である、請求項10に記載の電子デバイス。 The electronic device according to claim 10, which is an organic electroluminescence lighting device.
JP2017146343A 2017-07-28 2017-07-28 Gas barrier laminate and electronic device Pending JP2020157476A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017146343A JP2020157476A (en) 2017-07-28 2017-07-28 Gas barrier laminate and electronic device
PCT/JP2018/020701 WO2019021616A1 (en) 2017-07-28 2018-05-30 Gas barrier laminate and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146343A JP2020157476A (en) 2017-07-28 2017-07-28 Gas barrier laminate and electronic device

Publications (1)

Publication Number Publication Date
JP2020157476A true JP2020157476A (en) 2020-10-01

Family

ID=65040590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146343A Pending JP2020157476A (en) 2017-07-28 2017-07-28 Gas barrier laminate and electronic device

Country Status (2)

Country Link
JP (1) JP2020157476A (en)
WO (1) WO2019021616A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544872A (en) * 2019-04-11 2021-10-22 松下知识产权经营株式会社 Solar cell module
JP2023018774A (en) * 2021-07-28 2023-02-09 株式会社リコー Photoelectric conversion element, electronic device, and power supply module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595190B2 (en) * 2010-08-31 2014-09-24 富士フイルム株式会社 Functional film and method for producing functional film
JP5849790B2 (en) * 2012-03-14 2016-02-03 コニカミノルタ株式会社 Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
JP2016159510A (en) * 2015-03-02 2016-09-05 凸版印刷株式会社 Gas barrier film and method for producing the same

Also Published As

Publication number Publication date
WO2019021616A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
TWI637542B (en) Organic electroluminescence laminate
JP4856313B2 (en) Environmental barrier material for organic light emitting device and method of manufacturing the same
TWI587554B (en) Functional film
JP6321169B2 (en) Sealed laminate and organic electronic device
JP6377541B2 (en) Flexible device manufacturing method and flexible device laminate
JP2009067040A (en) Composite gas-barrier film and display element using the same
CN111769206A (en) Thin film permeation barrier system for substrates and devices and method of making the same
US20170100926A1 (en) Method of manufacturing electronic device and composite film
KR20090030227A (en) Light emitting element or display element, and method of manufacturing the same
JP2015103389A (en) Organic el device
JP5884531B2 (en) Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
WO2016031877A1 (en) Organic electroluminescent element
KR101917552B1 (en) Organic electroluminescence device
WO2017033823A1 (en) Electronic device
JP2020157476A (en) Gas barrier laminate and electronic device
JP6026331B2 (en) Organic EL laminate
US9059416B2 (en) Substrate, manufacturing method thereof, and organo-electroluminescent device using the same
WO2016009778A1 (en) Composite film
WO2018221116A1 (en) Organic electroluminescent light-emitting device
JP6196944B2 (en) SEALING MEMBER AND ELECTRONIC DEVICE MANUFACTURING METHOD
KR102345795B1 (en) Barrier film structure and organic electronic device having the same
JP2008173837A (en) Gas barrier laminated substrate and its manufacturing method
KR20160020836A (en) Barrier film structure and organic electronic device having the same
KR20160076836A (en) Transparent gas barrier film and method for manufacturing transparent gas barrier film