JP2020157430A - Super hard alloy drill with spiral oil holes - Google Patents

Super hard alloy drill with spiral oil holes Download PDF

Info

Publication number
JP2020157430A
JP2020157430A JP2019060153A JP2019060153A JP2020157430A JP 2020157430 A JP2020157430 A JP 2020157430A JP 2019060153 A JP2019060153 A JP 2019060153A JP 2019060153 A JP2019060153 A JP 2019060153A JP 2020157430 A JP2020157430 A JP 2020157430A
Authority
JP
Japan
Prior art keywords
drill
layer
oil hole
cemented carbide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019060153A
Other languages
Japanese (ja)
Inventor
高岡 秀充
Hidemitsu Takaoka
秀充 高岡
浩樹 奥村
Hiroki Okumura
浩樹 奥村
河瀬 広樹
Hiroki Kawase
広樹 河瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019060153A priority Critical patent/JP2020157430A/en
Publication of JP2020157430A publication Critical patent/JP2020157430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

To provide a super hard alloy drill with spiral oil holes and a surface-coated super hard alloy drill having an excellent breakage resistance.SOLUTION: There is provided a super hard alloy drill with spiral oil holes, which is made of WC-based super hard alloy having a composition consisting of 6% by mass or more and 15% by mass or less of Co, 0.1% by mass or more and 5% by mass or less in the total amount of one or two or more carbides selected from Ti, Zr, Cr, V, Ta and Nb, and the balance WC and unavoidable impurities. Oil holes for supplying cutting oil to the tip of the drill are formed in a spiral shape inside the drill. A metal-enriched layer containing Co as a main component is formed on the inner wall surface of the oil holes. The Co content of the metal-enriched layer is 1.5 times or more the average Co content of the WC-based super hard alloy. The average thickness of the metal-enriched layer is 0.5 μm or more and 10.0 μm or less. There is also provided a surface-coated super hard alloy drill in which the drill is coated with a hard coating layer.SELECTED DRAWING: Figure 2

Description

この発明は、スパイラル油穴付き超硬合金製ドリルであって、特に、油穴の周囲に発生するクラックに起因するドリルの折損を防止し、また、油穴周辺のドリルの肉厚が薄くなることに起因するドリルの折損を防止し、かつ十分な工具剛性によって高精度の穴あけ加工が可能となるスパイラル油穴付き超硬合金製ドリルに関する。 The present invention is a cemented carbide drill with a spiral oil hole, and in particular, prevents the drill from breaking due to cracks generated around the oil hole, and the wall thickness of the drill around the oil hole becomes thin. The present invention relates to a cemented carbide drill with a spiral oil hole, which prevents the drill from breaking due to the above and enables high-precision drilling with sufficient tool rigidity.

従来、穴あけ加工に使用するドリルとして、切りくずの排出性を高めると同時に、ドリル刃先の冷却を目的として、ドリル本体の軸方向に油穴をスパイラル状に形成したスパイラル油穴付き超硬合金製ドリルが知られている。
そして、切削能率を向上させる上では、油吐出量をさらに増大させることが必要とされるため、油穴径を拡大する試みがなされている。
Conventionally, as a drill used for drilling, it is made of cemented carbide with a spiral oil hole in which oil holes are spirally formed in the axial direction of the drill body for the purpose of improving chip evacuation and cooling the drill edge. Drills are known.
Since it is necessary to further increase the oil discharge amount in order to improve the cutting efficiency, an attempt has been made to increase the oil hole diameter.

例えば、特許文献1には、ドリル刃先の一対の油穴からシャンク部終端の一対の油穴まで連通する一対の油穴が設けられた油穴付きドリルにおいて、シャンク部終端の各油穴の開口面積を大きくするために、シャンク部終端に各油穴を切断する一対の傾斜面又は円錐面を設け、ドリル軸心に対する傾斜面又は円錐面の傾斜面角度を15°を越え75°までの範囲とすることによって、ドリル刃先への十分なクーラント量を供給できるようにした油穴付きドリルが提案されている。 For example, Patent Document 1 describes the opening of each oil hole at the end of a shank in a drill with an oil hole provided with a pair of oil holes communicating from a pair of oil holes at the cutting edge of the drill to a pair of oil holes at the end of the shank. In order to increase the area, a pair of inclined surfaces or conical surfaces for cutting each oil hole are provided at the end of the shank, and the inclined surface angle of the inclined surface or conical surface with respect to the drill axis is in a range of more than 15 ° to 75 °. By doing so, a drill with an oil hole that can supply a sufficient amount of coolant to the drill bit edge has been proposed.

また、特許文献2には、ドリル軸線回りに捩れつつ軸線方向後端側に向けて延びる切屑排出溝と並行して捩れつつドリル先端逃げ面に開口するクーラント穴が穿設されたクーラント穴付きドリルにおいて、このクーラント穴の穴形状を略三角形にするとともに、角に丸みを持たせることが提案されており、このクーラント穴付きドリルによれば、ドリル本体の強度を損なうことなくクーラント供給量を増大させることができるとされている。 Further, in Patent Document 2, a drill with a coolant hole is provided with a coolant hole that opens in the relief surface at the tip of the drill while twisting in parallel with a chip discharge groove extending toward the rear end side in the axial direction while twisting around the drill axis. It has been proposed that the hole shape of the coolant hole be substantially triangular and the corners be rounded. According to this drill with a coolant hole, the amount of coolant supplied can be increased without impairing the strength of the drill body. It is said that it can be made to do.

また、特許文献3には、油穴が設けられたドリル、リーマおよびエンドミル等の油穴付工具において、超硬またはサーメットで構成された工具本体部が焼結時に油穴形成用芯材として配置したパイプ状の金属材と反応、あるいは拡散して、油穴内壁に高靭性化金属層を形成し、工具の耐折損性を向上させられることが知られている。 Further, in Patent Document 3, in a tool with an oil hole such as a drill, a reamer, and an end mill provided with an oil hole, a tool main body made of cemented carbide or cermet is arranged as a core material for forming an oil hole at the time of sintering. It is known that a toughened metal layer can be formed on the inner wall of an oil hole by reacting with or diffusing a pipe-shaped metal material to improve the breakage resistance of a tool.

特開2008−296327号公報Japanese Unexamined Patent Publication No. 2008-296327 特開2011−20254号公報Japanese Unexamined Patent Publication No. 2011-20254 特開平8−215912号公報Japanese Unexamined Patent Publication No. 8-215912

前記特許文献1、2では、油穴付きドリルについて、油吐出量を増大させるための提案がなされ、これによってドリル加工の高能率化を図っているが、小径ドリル、例えば、切れ刃径が3mm未満の小径ドリルにおいては、油穴の曲率半径が小さくなることから、油穴の周囲にクラックが発生しやすくなり、このクラックがドリルの折損発生の原因となる場合がある。
また、油穴径を拡大した場合には、油穴周辺でドリルの肉厚が薄くなる場合があるため、十分な肉厚と強度を確保できなくなり、油穴を起点としたドリルの折損が生じるという課題がある。
また、前記特許文献3では、油穴形成用にパイプ状もしくは棒状の金属材を利用して、油穴内壁に高靭性化金属層を設けて耐折損性の向上を図っている。芯材成分は中央部分から外周に向かって、漸次減少する濃度勾配を有することから、工具全体の結合相成分が多く、剛性率は低下していることが窺える。切れ刃径が3mm未満の小径ドリルにおいては、工具中央に一つの油穴しか形成させられないことから、油穴面積そのものを大きくするのに限界があるために、油吐出量が制限され、その結果として、切りくずの排出性が低く、高能率加工が困難となること、さらに工具そのものの剛性の低下のために、鋼材などに穴あけ加工を行った際に穴曲がりが顕著となり、所望の精度を有する穴あけ加工が困難となる場合がある。
In Patent Documents 1 and 2, a proposal for increasing the amount of oil discharged has been made for a drill with an oil hole, and the efficiency of drilling is improved by this. However, a small-diameter drill, for example, a cutting edge diameter of 3 mm In a small-diameter drill with a diameter less than that, since the radius of curvature of the oil hole becomes small, cracks are likely to occur around the oil hole, and this crack may cause breakage of the drill.
In addition, when the oil hole diameter is increased, the wall thickness of the drill may become thin around the oil hole, so that sufficient wall thickness and strength cannot be secured, and the drill starting from the oil hole may break. There is a problem.
Further, in Patent Document 3, a pipe-shaped or rod-shaped metal material is used for forming an oil hole, and a toughened metal layer is provided on the inner wall of the oil hole to improve breakage resistance. Since the core material component has a concentration gradient that gradually decreases from the central portion to the outer periphery, it can be seen that the coupling phase component of the entire tool is large and the rigidity is reduced. In a small-diameter drill with a cutting edge diameter of less than 3 mm, since only one oil hole can be formed in the center of the tool, there is a limit to increasing the oil hole area itself, so that the amount of oil discharged is limited. As a result, chip evacuation is low, high-efficiency machining becomes difficult, and the rigidity of the tool itself decreases, so that hole bending becomes noticeable when drilling a steel material, etc., and the desired accuracy is achieved. It may be difficult to drill holes with.

そこで、本発明者等は、上述の観点から、スパイラル油穴付き超硬合金製ドリル、特に、切れ刃径が3mm未満の小径ドリルにおいて、油穴周囲のクラック発生を防止すると同時に、油穴周囲の薄肉部からの破壊を防止し、スパイラル油穴付き超硬合金製ドリルの耐折損性を向上させ、かつ、穴あけ加工時の穴曲がりが最小限となるよう工具の剛性を確保するべく鋭意研究を重ねたところ、次のような知見を得た。 Therefore, from the above viewpoint, the present inventors have prevented the occurrence of cracks around the oil hole and at the same time around the oil hole in a cemented carbide drill with a spiral oil hole, particularly a small-diameter drill having a cutting edge diameter of less than 3 mm. Diligent research to prevent breakage from thin-walled parts, improve breakage resistance of cemented carbide drills with spiral oil holes, and ensure tool rigidity so that hole bending during drilling is minimized. As a result of repeating the above, the following findings were obtained.

本発明者らは、スパイラル油穴付き超硬合金製ドリルの折損発生の原因の一つは、油穴周囲からのクラックの発生と進展であって、油穴周囲のクラックの発生は、油穴内面の強度と靱性を向上させることによって抑制し得ること、また、油穴内面の強度と靱性を向上させれば、油穴周囲の薄肉部からの破壊進行も抑制し得るであろうという予測のもとに、スパイラル油穴付き超硬合金製ドリルの油穴内壁面にCoを主成分とする金属富化層を形成し、強度と靱性の向上を図ったところ、該金属富化層が所定の厚みである場合には、油穴周囲のクラックの発生と進展が抑制されること、さらに、十分な油吐出量を確保するために油穴径を大径化した場合であっても、油穴周囲の薄肉部からの破壊進行も抑制できること、また、工具剛性が十分に確保されることから穴あけ加工時の穴曲がりによる穴精度低下も防止できることを見出した。
そして、前記所定厚みの金属富化層を油穴内壁面に形成したスパイラル油穴付き超硬合金製ドリルによれば、折損の恐れもなく、十分な油吐出量を確保することができ、穴曲がりも抑制されることから、高能率かつ高精度加工を行い得ることを見出した。
特に、切れ刃径が3mm未満の小径ドリルにおいては、油穴の曲率半径が小さいことから油穴周囲にクラックが発生しやすく、また、クラックの進展による折損が生じやすいが、本発明のスパイラル油穴付き超硬合金製ドリルによれば、油穴内壁面に形成された金属富化層が、クラックの発生・進展を抑制することから、耐折損性の向上効果が顕著であることを見出したのである。
The present inventors have found that one of the causes of breakage of a hard alloy drill with a spiral oil hole is the generation and propagation of cracks from around the oil hole, and the generation of cracks around the oil hole is the oil hole. It is predicted that it can be suppressed by improving the strength and toughness of the inner surface, and that if the strength and toughness of the inner surface of the oil hole are improved, the progress of fracture from the thin part around the oil hole can also be suppressed. Based on this, a metal-enriched layer containing Co as a main component was formed on the inner wall surface of the oil hole of a superhard alloy drill with a spiral oil hole to improve strength and toughness. When the thickness is large, the generation and growth of cracks around the oil hole are suppressed, and even when the oil hole diameter is increased in order to secure a sufficient oil discharge amount, the oil hole It has been found that the progress of destruction from the surrounding thin-walled portion can be suppressed, and that the tool rigidity is sufficiently secured, so that the hole accuracy can be prevented from being lowered due to the hole bending during drilling.
Further, according to the cemented carbide drill with a spiral oil hole in which the metal enriched layer having a predetermined thickness is formed on the inner wall surface of the oil hole, a sufficient oil discharge amount can be secured without fear of breakage, and the hole is bent. It was found that high-efficiency and high-precision machining can be performed because it is also suppressed.
In particular, in a small-diameter drill having a cutting edge diameter of less than 3 mm, since the radius of curvature of the oil hole is small, cracks are likely to occur around the oil hole, and breakage is likely to occur due to the progress of the crack. According to the drill made of cemented carbide with holes, it was found that the metal-enriched layer formed on the inner wall surface of the oil hole suppresses the generation and growth of cracks, so that the effect of improving breakage resistance is remarkable. is there.

また、従来から、ドリルの耐摩耗性向上等のために、ドリルの刃先の少なくとも先端部に、TiN、TiCN、TiAlN、TiAlSiN、TiSiN、TiAlCN、TiAlCrN、AlCrN、AlCrSiNあるいはCrN等の少なくとも1層以上の硬質被覆層を形成することが行われているが、本発明のドリルについても、ドリルの刃先の少なくとも先端部に前記硬質被覆層を形成することによって、工具特性のさらなる向上を図ることができる。
そして、ドリルの油穴内壁面に形成した金属富化層の厚みが、所定の厚み範囲内であれば、耐折損性にすぐれるばかりか、硬質被覆層の剥離発生を生じることもなく耐摩耗性にすぐれるため、工具寿命の延命化を図ることができる。
Further, conventionally, in order to improve the wear resistance of the drill, at least one layer or more of TiN, TiCN, TiAlN, TiAlSiN, TiSiN, TiAlCN, TiAlCrN, AlCrN, AlCrSiN, CrN, etc. is formed on at least the tip of the drill bit. Although the hard coating layer of the above is formed, the tool characteristics of the drill of the present invention can be further improved by forming the hard coating layer at least at the tip of the cutting edge of the drill. ..
If the thickness of the metal-enriched layer formed on the inner wall surface of the oil hole of the drill is within a predetermined thickness range, not only is it excellent in breakage resistance, but also wear resistance without causing peeling of the hard coating layer. Because it is excellent, the life of the tool can be extended.

この発明は、前記知見に基づいてなされたものであって、以下の特徴を有する。
(1)Coを6質量%以上15質量%以下、Ti、Zr、Cr、V、Ta及びNbから選ばれる1種または2種以上の炭化物の合計量を0.1質量%以上5質量%以下、残部WC及び不可避不純物からなる組成のWC基超硬合金から構成されたスパイラル油穴付き超硬合金製ドリルにおいて、
ドリル先端部に切削油を供給するための油穴は、前記ドリルのフルート溝に沿って前記ドリル内部でスパイラル状に形成され、前記油穴の内壁面にはCoを主成分とする金属富化層が形成され、前記金属富化層のCo含有量は、前記WC基超硬合金の平均Co含有量の1.5倍以上であり、前記金属富化層の平均厚みは0.5μm以上10.0μm以下であることを特徴とするスパイラル油穴付き超硬合金製ドリル。
(2)前記ドリルのドリル先端部の切れ刃径が3mm未満であることを特徴とする前記(1)に記載のスパイラル油穴付き超硬合金製ドリル。
(3)前記(1)または(2)に記載のスパイラル油穴付き超硬合金製ドリルにおいて、少なくとも前記ドリル先端部の表面は、硬質被覆層で被覆されていることを特徴とする表面被覆スパイラル油穴付き超硬合金製ドリル。
(4)前記硬質被覆層は、TiN層、TiAlN層、TiAlSiN層、TiSiN層、TiAlCN層、TiAlCrN層、AlCrN層、AlCrSiN層及びCrN層から選ばれる1層または2層以上であることを特徴とする前記(3)に記載の表面被覆スパイラル油穴付き超硬合金製ドリル。
The present invention has been made based on the above findings and has the following features.
(1) Co is 6% by mass or more and 15% by mass or less, and the total amount of one or two or more kinds of carbides selected from Ti, Zr, Cr, V, Ta and Nb is 0.1% by mass or more and 5% by mass or less. In a cemented carbide drill with a spiral oil hole composed of a WC-based cemented carbide having a composition consisting of the balance WC and unavoidable impurities.
An oil hole for supplying cutting oil to the tip of the drill is formed in a spiral shape inside the drill along the flute groove of the drill, and the inner wall surface of the oil hole is enriched with metal containing Co as a main component. The layer is formed, and the Co content of the metal-enriched layer is 1.5 times or more the average Co content of the WC-based cemented carbide, and the average thickness of the metal-enriched layer is 0.5 μm or more. A cemented carbide drill with a spiral oil hole, characterized by a diameter of 0.0 μm or less.
(2) The cemented carbide drill with a spiral oil hole according to (1) above, wherein the cutting edge diameter of the drill tip of the drill is less than 3 mm.
(3) In the cemented carbide drill with a spiral oil hole according to (1) or (2), at least the surface of the tip of the drill is covered with a hard coating layer. Carbide alloy drill with oil holes.
(4) The hard coating layer is one or more layers selected from TiN layer, TiAlN layer, TiAlSiN layer, TiSiN layer, TiAlCN layer, TiAlCrN layer, AlCrN layer, AlCrSiN layer and CrN layer. The hard alloy drill with a surface-coated spiral oil hole according to (3) above.

本発明のスパイラル油穴付き超硬合金製ドリルは、油穴内壁面にCoを主成分とする金属富化層が形成されていることから、油穴周囲のクラックの発生・進展が抑制されるとともに、油穴を拡大させた場合でも油穴周囲の薄肉部からの破壊進行が抑制されるため、ドリル切削加工時の油吐出量を増大させることができ、さらに、切削時の送り量を高めてもドリルが折損を生じにくく、さらに工具剛性も確保されていることから、穴曲がりが抑制され、高能率かつ高精度加工を行うことができる。
特に、ドリル先端部の切れ刃径が3mm未満の小径ドリルにおいては、耐折損性の向上効果が顕著である。
In the cemented carbide drill with a spiral oil hole of the present invention, a metal-enriched layer containing Co as a main component is formed on the inner wall surface of the oil hole, so that the generation and growth of cracks around the oil hole are suppressed. Even when the oil hole is enlarged, the progress of destruction from the thin part around the oil hole is suppressed, so the amount of oil discharged during drill cutting can be increased, and the amount of feed during cutting can be increased. However, since the drill is less likely to break and the tool rigidity is secured, hole bending is suppressed, and high-efficiency and high-precision machining can be performed.
In particular, in a small-diameter drill having a cutting edge diameter of less than 3 mm at the tip of the drill, the effect of improving breakage resistance is remarkable.

また、スパイラル油穴付き超硬合金製ドリルの少なくともドリル先端部に硬質被覆層を被覆形成した本発明の表面被覆スパイラル油穴付き超硬合金製ドリルにおいては、ドリルの耐折損性を低下させることがないばかりか、硬質被覆層の剥離を生じることもないため耐摩耗性にもすぐれ、より一段と工具特性が向上する。 Further, in the surface-coated cemented carbide drill of the present invention in which a hard coating layer is coated on at least the tip of the cemented carbide drill with a spiral oil hole, the breakage resistance of the drill should be lowered. Not only is there no peeling of the hard coating layer, so it has excellent wear resistance and the tool characteristics are further improved.

本発明のスパイラル油穴付き超硬合金製ドリルの外観模式図を示す。The external schematic diagram of the cemented carbide drill with a spiral oil hole of this invention is shown. (a)は、本発明のスパイラル油穴付き超硬合金製ドリルの、ドリル軸心に垂直な断面で切断した断面模式図を示し、(b)は、ドリル軸心方向に沿った油穴内壁部分の拡大模式図を示す。(A) shows a schematic cross-sectional view of the cemented carbide drill with a spiral oil hole of the present invention cut in a cross section perpendicular to the drill axis, and (b) shows an oil hole inner wall along the direction of the drill axis. An enlarged schematic view of the part is shown.

本発明について、図面を用い、より詳細に説明する。 The present invention will be described in more detail with reference to the drawings.

図1は、本発明のスパイラル油穴付き超硬合金製ドリルの外観模式図、また、図2(a)は、本発明のスパイラル油穴付き超硬合金製ドリルを、軸心に垂直な断面で切断した断面模式図を示し、また、図2(b)は、ドリル軸心方向に沿った油穴内壁部分の拡大模式図を示す。
図1に示すように、本発明のスパイラル油穴付き超硬合金製ドリル(以下、「本発明ドリル」という)は、ドリル本体1のドリル先端部2に、切削油を吐出するための油穴3を備え、該油穴3は、ドリル本体1のフルート溝4に沿って、ドリル本体1の内部でスパイラル状に形成されている。
FIG. 1 is a schematic external view of the cemented carbide drill with a spiral oil hole of the present invention, and FIG. 2A is a cross section of the cemented carbide drill with a spiral oil hole of the present invention perpendicular to the axis. FIG. 2 (b) shows an enlarged schematic view of an oil hole inner wall portion along the direction of the center of the drill axis.
As shown in FIG. 1, the cemented carbide drill with a spiral oil hole of the present invention (hereinafter referred to as “the drill of the present invention”) has an oil hole for discharging cutting oil into the drill tip 2 of the drill body 1. The oil hole 3 is formed in a spiral shape inside the drill body 1 along the flute groove 4 of the drill body 1.

また、図2(b)に示されるように、前記油穴3の内壁面には、Coを主成分とする金属富化層5が形成されている。
なお、図示してはいないが、本発明ドリルの耐摩耗性を向上させるために、少なくともドリル先端部2の表面に、例えば、PVD法で硬質被覆層を被覆形成することができるが、本発明ドリルに、PVD法で硬質被覆層(例えば、TiN層、TiAlN層、TiAlSiN層、TiSiN層、TiAlCN層、TiAlCrN層、AlCrN層、AlCrSiN層及びCrN層から選ばれる1層または2層以上)を被覆形成したドリルが、表面被覆スパイラル油穴付き超硬合金製ドリル(以下、「本発明被覆ドリル」という)である。
Further, as shown in FIG. 2B, a metal enrichment layer 5 containing Co as a main component is formed on the inner wall surface of the oil hole 3.
Although not shown, in order to improve the wear resistance of the drill of the present invention, at least the surface of the drill tip 2 can be coated with a hard coating layer by, for example, the PVD method. The drill is coated with a hard coating layer (for example, one layer or two or more layers selected from TiN layer, TiAlN layer, TiAlSiN layer, TiSiN layer, TiAlCN layer, TiAlCrN layer, AlCrN layer, AlCrSiN layer and CrN layer) by the PVD method. The formed drill is a cemented carbide drill with a surface-coated spiral oil hole (hereinafter referred to as "the coated drill of the present invention").

本発明ドリル、本発明被覆ドリルは、ドリル本体1が、Coを6質量%以上15質量%以下、Ti、Zr、Cr、V、Ta及びNbから選ばれる1種または2種以上の炭化物の合計量を0.1質量%以上5質量%以下、残部WC及び不可避不純物からなる組成のWC基超硬合金から構成される。 In the drill of the present invention and the coated drill of the present invention, the drill body 1 contains 6% by mass or more and 15% by mass or less of Co, and is the total of one or more carbides selected from Ti, Zr, Cr, V, Ta and Nb. It is composed of a WC-based cemented carbide having a composition of 0.1% by mass or more and 5% by mass or less, the balance WC, and unavoidable impurities.

WC基超硬合金の構成成分であるCoには、焼結性を向上させ、結合相を形成して、WC基超硬合金からなるドリルの強度を向上させる作用があるが、その含有割合が6質量%未満では所望の強度を確保することができず、一方、その含有割合が15質量%を越えると、摩耗が急激に進行するようなることから、Coの含有量は6質量%以上15質量%以下に定めた。 Co, which is a constituent component of the WC-based cemented carbide, has the effect of improving the sinterability, forming a bonded phase, and improving the strength of the drill made of the WC-based cemented carbide. If the content is less than 6% by mass, the desired strength cannot be secured, while if the content ratio exceeds 15% by mass, the wear progresses rapidly. Therefore, the Co content is 6% by mass or more and 15%. It was set to mass% or less.

また、Ti、Zr、Cr、V、Ta及びNbから選ばれる1種または2種以上の炭化物は、WC成分と同様、焼結時にCo主体の結合相中に固溶あるいは金属複合炭化物として分散し、超硬合金製ドリルの高温強度や硬さを向上させる作用を有するが、前記炭化物の合計含有量が0.1質量%未満では前記作用に所望の向上効果が得られず、一方、前記炭化物の合計含有量が5質量%を越えると、靭性が低下し、欠損が発生しやすくなることから、Ti、Zr、Cr、V、Ta及びNbから選ばれる1種または2種以上の炭化物の合計含有量は、0.1質量%以上5質量%以下と定めた。
なお、Ti、Zr、Cr、V、Ta、Nbについての含有量は、いずれも炭化物換算値である。
Further, one or more carbides selected from Ti, Zr, Cr, V, Ta and Nb are dispersed as solid-dissolved or metal composite carbides in the Co-based bonding phase at the time of sintering as in the case of the WC component. Although it has an action of improving the high temperature strength and hardness of a cemented carbide drill, if the total content of the carbides is less than 0.1% by mass, the desired improvement effect cannot be obtained in the action, while the carbides. If the total content of the carbide exceeds 5% by mass, the toughness is lowered and defects are likely to occur. Therefore, the total of one or more carbides selected from Ti, Zr, Cr, V, Ta and Nb. The content was determined to be 0.1% by mass or more and 5% by mass or less.
The contents of Ti, Zr, Cr, V, Ta, and Nb are all carbide conversion values.

本発明ドリル、本発明被覆ドリルは、ドリル先端部2に露出する油穴3の内壁面およびドリル本体1の内部にスパイラル状に形成されている油穴3の内壁面に、Coを主成分とする金属富化層5が形成されている。
そして、油穴3の内壁面に、Coを主成分とする金属富化層5が形成されていることによって、油穴3周囲におけるクラックの発生・進展が抑制される。特に、ドリルの切れ刃径が3mm未満の小径ドリルにおいては、油穴3の曲率半径が小さいために、油穴3の周囲には通常、クラックが発生しやすいが、金属富化層5を形成することによってクラックの発生・進展が抑制される。
また、高能率加工を行う上で十分な油吐出量を確保するために油穴3径を拡大した場合、その結果として、油穴3周囲は薄肉部となるが、油穴3の内壁面に金属富化層5を形成することによって、該薄肉部からの破壊進行が抑制される。
The drill of the present invention and the coated drill of the present invention contain Co as a main component on the inner wall surface of the oil hole 3 exposed to the drill tip 2 and the inner wall surface of the oil hole 3 spirally formed inside the drill body 1. The metal enriched layer 5 is formed.
Since the metal-enriched layer 5 containing Co as a main component is formed on the inner wall surface of the oil hole 3, the generation and growth of cracks around the oil hole 3 are suppressed. In particular, in a small-diameter drill having a cutting edge diameter of less than 3 mm, since the radius of curvature of the oil hole 3 is small, cracks are usually likely to occur around the oil hole 3, but a metal enrichment layer 5 is formed. By doing so, the generation and growth of cracks are suppressed.
Further, when the diameter of the oil hole 3 is expanded in order to secure a sufficient oil discharge amount for high-efficiency machining, as a result, the circumference of the oil hole 3 becomes a thin wall portion, but on the inner wall surface of the oil hole 3. By forming the metal-enriched layer 5, the progress of fracture from the thin-walled portion is suppressed.

また、金属富化層の平均厚みが0.5μmから10.0μmであるため、ドリルそのものの剛性が保たれることから、高能率加工を行っても穴曲がりが最小限に抑えられ、高精度加工も実現できる。
ただ、油穴3の内壁面に形成されるCoを主成分とする金属富化層5の平均厚みが0.5μm未満では、油穴3周囲におけるクラックの発生防止効果が十分でなく、その結果、ドリル1の折損防止効果が十分でなく、一方、金属富化層5の平均厚みが10.0μmを超えると、油穴3の周方向にクラックが発生する場合や、硬質被覆層の剥離が発生する場合がある。
したがって、油穴3の内壁面に形成されるCoを主成分とする金属富化層5の平均厚みは、0.5μm以上10.0μm以下とする。好ましい平均厚みは、0.5μm以上5.0μm以下であり、さらに好ましい平均厚みは、0.5μm以上3.0μm以下である。
In addition, since the average thickness of the metal-enriched layer is 0.5 μm to 10.0 μm, the rigidity of the drill itself is maintained, so that hole bending is minimized even when high-efficiency machining is performed, and high accuracy is achieved. Processing can also be realized.
However, if the average thickness of the metal-enriched layer 5 containing Co as a main component formed on the inner wall surface of the oil hole 3 is less than 0.5 μm, the effect of preventing the occurrence of cracks around the oil hole 3 is not sufficient, and as a result. On the other hand, if the average thickness of the metal enrichment layer 5 exceeds 10.0 μm, cracks may occur in the circumferential direction of the oil hole 3 or the hard coating layer may peel off. It may occur.
Therefore, the average thickness of the metal-enriched layer 5 containing Co as a main component formed on the inner wall surface of the oil hole 3 is set to 0.5 μm or more and 10.0 μm or less. The preferable average thickness is 0.5 μm or more and 5.0 μm or less, and the more preferable average thickness is 0.5 μm or more and 3.0 μm or less.

本発明でいう「Coを主成分とする金属富化層5」とは、該金属富化層5におけるCo含有量が、WC基超硬合金の平均Co含有量(実質的に、WC基超硬合金の内部の平均Co含有量に等しい)の1.5倍以上となる領域をいう。
なお、「Coを主成分とする金属富化層5」には、W成分の他、Ti、Zr、Cr、V、Ta、Nbも含有されるが、Wを除く他の成分元素はCoに比して微量であるので、「Coを主成分とする・・」と表現した。
金属富化層5中のCo含有量を前記の如く定めたのは、金属富化層5中のCo含有量がWC基超硬合金の平均Co含有量の1.5倍未満であると、油穴3の内壁面の強度、靱性向上効果が十分でないため、クラックの発生・進展を十分に抑制することができないからである。
前記金属富化層5中のCo含有量は、WC基超硬合金の平均Co含有量の1.8倍以上であることがより好ましく、2.0倍以上であることがさらに好ましい。
The "metal-enriched layer 5 containing Co as a main component" in the present invention means that the Co content in the metal-enriched layer 5 is the average Co content of the WC-based cemented carbide (substantially more than WC-based). A region that is 1.5 times or more the average Co content inside the cemented carbide).
The "metal-enriched layer 5 containing Co as a main component" contains Ti, Zr, Cr, V, Ta, and Nb in addition to the W component, but the other component elements other than W are Co. Since it is a very small amount, it is expressed as "Co is the main component ...".
The Co content in the metal-enriched layer 5 was determined as described above because the Co content in the metal-enriched layer 5 was less than 1.5 times the average Co content of the WC-based cemented carbide. This is because the effect of improving the strength and toughness of the inner wall surface of the oil hole 3 is not sufficient, so that the generation and growth of cracks cannot be sufficiently suppressed.
The Co content in the metal enriched layer 5 is more preferably 1.8 times or more, and further preferably 2.0 times or more, the average Co content of the WC-based cemented carbide.

油穴3の内壁面に形成された金属富化層中におけるCo含有量は、本発明ドリルのドリル軸心に垂直な断面について、オージェ電子分光分析装置(AES)を用いて測定することができる。
例えば、図2に示すように、オージェ電子分光分析装置(AES)を用いて、ドリル軸心に垂直な断面において、油穴内壁の法線方向に縦0.1μm×横10μmのエリアにおけるCo含有量について、油穴内壁を起点に順次測定し、各測定エリアにおけるCo含有量が、WC基超硬合金の平均Co含有量(これは、実質的に、WC基超硬合金の内部の平均Co含有量)の1.5倍以上である領域を、Coを主成分とする金属富化層5であるとして特定し、そのエリアを合計することにより、金属富化層5の厚みとして求める。さらに、このような測定を複数個所で行ってそれぞれ算出した金属富化層の厚みの平均値を金属富化層5の平均厚みとして求める。
同時に、特定された金属富化層5に属する領域のCo含有量を平均し、この値をWC基超硬合金の内部の平均Co含有量で除することにより、金属富化層5におけるCo含有量の濃化率(WC基超硬合金の平均Co含有量に対する金属富化層5におけるCo含有量の濃化割合)を求めることができる。
The Co content in the metal enriched layer formed on the inner wall surface of the oil hole 3 can be measured by using an Auger electron spectrophotometer (AES) for a cross section perpendicular to the drill axis of the drill of the present invention. ..
For example, as shown in FIG. 2, using an Auger electron spectroscopic analyzer (AES), in a cross section perpendicular to the drill axis, Co content is contained in an area of 0.1 μm in length × 10 μm in width in the normal direction of the inner wall of the oil hole. The amount was measured sequentially starting from the inner wall of the oil hole, and the Co content in each measurement area was the average Co content of the WC-based cemented carbide (this is substantially the average Co content inside the WC-based cemented carbide). A region having a content of 1.5 times or more is specified as the metal-enriched layer 5 containing Co as a main component, and the areas are totaled to obtain the thickness of the metal-enriched layer 5. Further, such measurements are performed at a plurality of places, and the average value of the thickness of the metal-enriched layer calculated for each is obtained as the average thickness of the metal-enriched layer 5.
At the same time, the Co content of the region belonging to the specified metal enriched layer 5 is averaged, and this value is divided by the average Co content inside the WC-based cemented carbide to divide the Co content in the metal enriched layer 5. The concentration ratio of the amount (the ratio of the Co content in the metal enriched layer 5 to the average Co content of the WC-based cemented carbide) can be determined.

また、例えば、PVD法により、ドリル1の少なくともドリル先端部2に露出する油穴3の内壁面に形成された金属富化層5の表面に、TiN層、TiAlN層、TiSiN層、TiAlSiN層、TiAlCN層、TiAlCrN層、AlCrN層、AlCrSiN層及びCrN層から選ばれる1層または2層以上の硬質被覆層を被覆して本発明被覆ドリルを作製したとき、金属富化層5の平均厚みが10μmを超えると、ドリル先端部2に露出する油穴3の内壁面に形成された金属富化層5と硬質被覆層との密着性が低下し、切削加工時に、硬質被覆層が剥離脱落する場合があるので、このような観点からも、金属富化層の最大平均厚みは10μmとする。 Further, for example, by the PVD method, a TiN layer, a TiAlN layer, a TiSiN layer, a TiAlSiN layer, etc. are formed on the surface of the metal enrichment layer 5 formed on the inner wall surface of the oil hole 3 exposed at least on the drill tip portion 2 of the drill 1. When the coating drill of the present invention is prepared by coating one or two or more hard coating layers selected from TiAlCN layer, TiAlCrN layer, AlCrN layer, AlCrSiN layer and CrN layer, the average thickness of the metal enrichment layer 5 is 10 μm. If it exceeds, the adhesion between the metal enrichment layer 5 formed on the inner wall surface of the oil hole 3 exposed on the drill tip 2 and the hard coating layer is lowered, and the hard coating layer is peeled off during cutting. Therefore, from this point of view, the maximum average thickness of the metal enrichment layer is set to 10 μm.

本発明ドリルは、まず、所定の成分組成からなる超硬合金の油穴付きプレス成形体を作製し、これを、所定の条件で仮焼、焼結し、焼結体の外周を所定のドリル形状に加工することによって作製することができる。
また、この後、PVD法によって硬質被覆層を蒸着形成することによって、本発明被覆ドリルを作製することができる。
前記の製造法において、油穴付きプレス成形体の製造は、例えば、特開平11−293303号公報等にも示されているように本願出願前から既に知られている。
そこで、本発明では、従来から知られている作製工程(例えば、前記特開平11−293303号公報に示される製造工程)に従って、スパイラル油穴付きの超硬合金からなるプレス成形体を作製する。
ついで、このプレス成形体を、仮焼した後、次の条件で焼結し、スパイラル油穴付きの超硬合金焼結体を作製する。
まず、プレス成形体を炉内に装入して仮焼を行った後、例えば、仮焼したプレス成形体を、1250℃までを10℃/minの昇温速度で昇温し、さらに1400℃までを1.5℃/minの昇温速度で昇温し、1400℃で約60分間保持し、その後、液相が凝固するまでの1400℃〜1250℃の温度域にてAr雰囲気中で通電冷却を行うことにより1.0℃/minの冷却速度で1250℃まで徐冷し、その後室温まで炉冷する。
上記の焼結条件で焼結することにより、プレス成形体を焼結すると同時に油穴内壁にCoを主成分とする金属富化層を形成させたスパイラル油穴付きの超硬合金焼結体を作製する。
ついで、この焼結体の外周を加工することによって、主切れ刃、すくい面等を形成して所定のドリル形状、サイズに整え、本発明のスパイラル油穴付き超硬合金製ドリル(本発明ドリル)を作製することができる。
なお、特許文献3に示されるドリルの製造方法によって作成されたドリルでは、油穴形成用芯材として配置したパイプ状の金属材との反応、あるいは拡散により、油穴内壁に高靭性化金属層を形成しているため、本発明工具の金属富化層に相当する厚みは少なく見積もっても100μm以上となり、その場合には工具剛性が低下するために、穴曲がりが顕著となり、加工された穴精度が低下すること、油穴は中央に一つしか形成できないために、油吐出量を本発明工具に比べると大きくすることが出来ず、結果として、本発明工具で実現されるような高能率でかつ高精度加工は行うことが出来ない。
In the drill of the present invention, first, a press-formed body with oil holes of a cemented carbide having a predetermined composition is prepared, and this is calcined and sintered under predetermined conditions, and the outer periphery of the sintered body is formed by a predetermined drill. It can be produced by processing it into a shape.
Further, after that, the coating drill of the present invention can be produced by forming a hard coating layer by vapor deposition by the PVD method.
In the above-mentioned production method, production of a press-formed body with an oil hole has already been known before the application of the present application, as shown in, for example, Japanese Patent Application Laid-Open No. 11-293303.
Therefore, in the present invention, a press-formed body made of a cemented carbide with a spiral oil hole is produced according to a conventionally known production process (for example, the production process shown in JP-A-11-293303).
Then, after calcining this press-formed body, it is sintered under the following conditions to prepare a cemented carbide sintered body with a spiral oil hole.
First, the press-molded body is charged into a furnace and calcined, and then, for example, the calcined press-molded body is heated up to 1250 ° C. at a heating rate of 10 ° C./min, and further at 1400 ° C. The temperature was raised at a heating rate of 1.5 ° C./min, held at 1400 ° C. for about 60 minutes, and then energized in an Ar atmosphere in the temperature range of 1400 ° C. to 1250 ° C. until the liquid phase solidified. By cooling, the mixture is slowly cooled to 1250 ° C. at a cooling rate of 1.0 ° C./min, and then cooled to room temperature.
By sintering under the above sintering conditions, a cemented carbide sintered body with a spiral oil hole in which a metal-enriched layer containing Co as a main component is formed on the inner wall of the oil hole at the same time as the press-formed body is sintered. To make.
Then, by processing the outer circumference of this sintered body, a main cutting edge, a rake face, etc. are formed and adjusted to a predetermined drill shape and size, and a cemented carbide drill with a spiral oil hole of the present invention (drill of the present invention). ) Can be produced.
In the drill produced by the method for manufacturing a drill shown in Patent Document 3, a toughened metal layer is formed on the inner wall of the oil hole by reaction or diffusion with a pipe-shaped metal material arranged as a core material for forming an oil hole. The thickness corresponding to the metal-enriched layer of the tool of the present invention is at least 100 μm or more, and in that case, the tool rigidity is lowered, so that the hole bending becomes remarkable and the drilled hole is formed. Since the accuracy is lowered and only one oil hole can be formed in the center, the oil discharge amount cannot be increased as compared with the tool of the present invention, and as a result, the high efficiency realized by the tool of the present invention is achieved. Moreover, high-precision machining cannot be performed.

また、前記本発明ドリルに対して、少なくともドリル先端部の表面に、例えば、PVD法で、TiN層、TiAlN層、TiSiN層、TiAlSiN層、TiAlCN層、TiAlCrN層、AlCrN層及びCrN層から選ばれる1層または2層以上の硬質被覆層を蒸着形成することで、本発明の表面被覆スパイラル油穴付き超硬合金製ドリル(本発明被覆ドリル)を作製することができる。 Further, with respect to the drill of the present invention, at least on the surface of the tip of the drill, for example, by PVD method, it is selected from TiN layer, TiAlN layer, TiSiN layer, TiAlSiN layer, TiAlCN layer, TiAlCrN layer, AlCrN layer and CrN layer. A cemented carbide drill with a surface-coated spiral oil hole of the present invention (the coated drill of the present invention) can be produced by depositing and forming one or two or more hard coating layers.

つぎに、本発明を実施例により、具体的に説明する。 Next, the present invention will be specifically described with reference to Examples.

[実施例1]
(a)プレス成形体
原料粉末として、いずれも0.4〜2.0μmの平均粒径(d50)を有する、Co粉末、TiC粉末、ZrC粉末、Cr粉末、VC粉末、TaC粉末、NbC粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、これを、混練装置において石油系ワックスおよび有機溶剤と混合混錬し、プレス原料を作製した。
次いで、プレス原料を押出しプレス装置に供給し、押出し用スクリューによって押出しプレス装置の他端に取り付けられたホルダーのモールドから押し出し、押出しプレス成形体を作製した。
モールドからの押出しに際し、押し出されるプレス成形体は、モールドの内周面に形成されたスパイラル状の溝により、この溝の螺旋の方向に捩られるように回転して押し出された。
押出しプレス成形されたプレス成形体には、その外周にモールドの上記溝によって多数のスパイラル状の突条が形成されるとともに、その内部には、モールドに取り付けられた中子の捩れたピンによって、プレス成形体の中心軸に対して軸対称に一対のスパイラル状の捩れ穴(最終的には、スパイラル油穴となる)が形成された。
[Example 1]
(A) a press-molding material powder, both having an average particle diameter of 0.4 to 2.0 .mu.m (d50), Co powder, TiC powder, ZrC powder, Cr 3 C 2 powder, VC powder, TaC powder, NbC powder and WC powder were prepared, and these raw material powders were blended into the blending composition shown in Table 1, and this was mixed and kneaded with a petroleum wax and an organic solvent in a kneading device to prepare a press raw material.
Next, the press raw material was supplied to the extrusion press device and extruded from the mold of the holder attached to the other end of the extrusion press device by the extrusion screw to prepare an extrusion press molded body.
The press-molded body to be extruded during extrusion from the mold was rotated and extruded by a spiral groove formed on the inner peripheral surface of the mold so as to be twisted in the direction of the spiral of the groove.
In the press-molded body that has been extruded and press-molded, a large number of spiral ridges are formed on the outer periphery of the press-molded body by the grooves of the mold, and inside the press-molded body, a twisted pin of a core attached to the mold A pair of spiral twisted holes (finally, spiral oil holes) were formed symmetrically with respect to the central axis of the press-formed body.

(b)プレス成形体の仮焼と成形加工(切断)
ついで、前記プレス成形体を焼結炉内に装入し、例えば、100Pa以下の真空中で、10℃/minの昇温速度で温度を上げながら、80℃で2時間、150℃で45分間、450℃で2時間ずつ保持した後、750℃まで昇温して1時間保持する仮焼を行った。
ついで、この仮焼体を、所定の長さに切断し、所定の形状に成形した。
(B) Temporary firing and molding (cutting) of the press-formed body
Then, the press-formed body was placed in a sintering furnace, and for example, in a vacuum of 100 Pa or less, the temperature was raised at a temperature rising rate of 10 ° C./min for 2 hours at 80 ° C. and 45 minutes at 150 ° C. After holding at 450 ° C. for 2 hours each, the temperature was raised to 750 ° C. and held for 1 hour by calcining.
Then, this calcined body was cut into a predetermined length and formed into a predetermined shape.

(c)超硬合金焼結体
ついで、前記仮焼したプレス成形体を焼結炉内に装入し、表2に示す条件で焼結し、スパイラル油穴付き超硬合金焼結体を作製した。
焼結条件の一例をあげれば、例えば、次のとおりである。
室温から1250℃までを10℃/minの昇温速度で昇温し、Ar分圧2667Paの雰囲気中で1.5℃/minの昇温速度で1250℃から1400℃の温度範囲に昇温した後、Ar分圧3997Paの雰囲気中で1400℃の温度で60分間保持し、次いで、Ar分圧3997Paの雰囲気中で液相が凝固するまでの1400℃から1250℃の温度域を1.0℃/minの徐冷速度となるように通電冷却し、その後、1250℃から室温までの温度範囲を炉冷することにより、プレス成形体を焼結すると同時に油穴内壁にCoを主成分とする金属富化層を形成させた。
(C) Cemented Carbide Alloy Sintered Body Then, the calcined press-formed body was placed in a sintering furnace and sintered under the conditions shown in Table 2 to prepare a cemented carbide sintered body with spiral oil holes. did.
An example of sintering conditions is as follows, for example.
The temperature was raised from room temperature to 1250 ° C. at a temperature rise rate of 10 ° C./min, and in an atmosphere of Ar partial pressure of 2667 Pa, the temperature was raised to a temperature range of 1250 ° C. to 1400 ° C. at a temperature rise rate of 1.5 ° C./min. After that, the mixture was held at a temperature of 1400 ° C. for 60 minutes in an atmosphere of Ar partial pressure of 3997 Pa, and then the temperature range of 1400 ° C. to 1250 ° C. until the liquid phase solidified in an atmosphere of Ar partial pressure of 3997 Pa was 1.0 ° C. By energizing and cooling to a slow cooling rate of / min and then furnace-cooling in the temperature range from 1250 ° C to room temperature, the press-formed body is sintered and at the same time, a metal containing Co as a main component is formed on the inner wall of the oil hole. An enriched layer was formed.

(d)スパイラル油穴付き超硬合金製ドリル
前記で得られたスパイラル油穴付き超硬合金焼結体の外周の上記螺旋状の突条を削り落とした上で、削り落とした外周に一対のフルート溝が周方向において上記スパイラル状の捩れ穴(スパイラル油穴)の間に螺旋状に捩れるように形成し、また、焼結体の先端に切刃を研ぎ付けることでドリル先端部を形成し、一方、焼結体の後端にはシャンク部を設けることにより、表4に示すスパイラル油穴付き超硬合金製の本発明ドリル1〜6を作製した。
なお、前記で作成されたスパイラル油穴付き超硬合金製ドリルの一つの例としては、油穴径が0.35mmであり、ドリル先端部の切れ刃径が2.0mmのツイストドリルである。
(D) Cemented Carbide Drill with Spiral Oil Holes After scraping off the spiral ridges on the outer circumference of the cemented carbide sintered body with spiral oil holes obtained above, a pair of scraped outer circumferences The flute groove is formed so as to spirally twist between the spiral-shaped twisted holes (spiral oil holes) in the circumferential direction, and the tip of the drill is formed by sharpening the cutting edge at the tip of the sintered body. On the other hand, by providing a shank portion at the rear end of the sintered body, the drills 1 to 6 of the present invention made of cemented carbide with spiral oil holes shown in Table 4 were produced.
An example of the cemented carbide drill with a spiral oil hole created above is a twist drill having an oil hole diameter of 0.35 mm and a cutting edge diameter of 2.0 mm at the tip of the drill.

比較のため、スパイラル油穴付き超硬合金製の比較例ドリル1〜4を、以下の手順で作製した。
前記工程(a)、(b)でプレス成形体を作製し、これを仮焼した後、表3に示す条件でプレス成形体を焼結し、ついで、前記工程(d)を施すことにより、表5に示すスパイラル油穴付き超硬合金製の比較例ドリル1〜6を作製した。
For comparison, comparative example drills 1 to 4 made of cemented carbide with spiral oil holes were produced by the following procedure.
The press-formed body was prepared in the steps (a) and (b), and after calcining the press-molded body, the press-molded body was sintered under the conditions shown in Table 3, and then the step (d) was performed. Comparative example drills 1 to 6 made of cemented carbide with spiral oil holes shown in Table 5 were produced.

前記本発明ドリル1〜6、比較例ドリル1〜4について、これを構成する成分の組成を測定するとともに、油穴内壁のCoを主成分とする金属富化層の平均厚み(μm)及び金属富化層中のCo含有量の濃化率を測定・算出した。
具体的には、オージェ電子分光分析装置(AES)を用いて、ドリル軸心に垂直な断面方向に各成分(但し、Coを除く)の組成を複数個所で測定し、これを、各ドリルを構成する超硬合金の成分組成(ただし、炭化物換算による組成)とした。
また、Coについては、まず、WC基超硬合金の内部(ドリル各部の肉厚中心部分)のCo含有量を複数個所で測定し、これを平均して、平均Co含有量とした。
一方、ドリル軸心に垂直な断面方向にCo含有量を測定し、測定点におけるCo含有量が、前記平均Co含有量の1.5倍以上である領域を、Coを主成分とする金属富化層5であるとして特定し、そのエリアを合計することにより、金属富化層5の厚みとして求める。さらに、このような測定を複数個所で行ってそれぞれ算出した金属富化層の厚みの平均値を金属富化層5の平均厚みとして求めた。
同時に、特定された金属富化層5に属する領域のCo含有量を平均し、この値をWC基超硬合金の内部の平均Co含有量で除すことにより、金属富化層5のCo含有量の濃化率(WC基超硬合金の平均Co含有量に対する金属富化層5におけるCo含有量の濃化割合)を求めた。
表4、表5に、これらの値を示す。
With respect to the drills 1 to 6 of the present invention and the drills 1 to 4 of Comparative Examples, the composition of the components constituting the drills 1 to 6 was measured, and the average thickness (μm) of the metal-enriched layer containing Co as the main component and the metal on the inner wall of the oil hole The concentration rate of the Co content in the enriched layer was measured and calculated.
Specifically, the composition of each component (excluding Co) is measured at a plurality of points in the cross-sectional direction perpendicular to the drill axis using an Auger electron spectroscopic analyzer (AES), and each drill is used. The composition of the constituent cemented carbide (however, the composition in terms of carbide) was used.
Regarding Co, first, the Co content inside the WC-based cemented carbide (the central portion of the wall thickness of each part of the drill) was measured at a plurality of places, and these were averaged to obtain the average Co content.
On the other hand, the Co content is measured in the cross-sectional direction perpendicular to the drill axis, and the region where the Co content at the measurement point is 1.5 times or more the average Co content is the metal richness containing Co as the main component. It is specified as the chemical layer 5, and the area is totaled to obtain the thickness of the metal-enriched layer 5. Further, such measurements were performed at a plurality of places, and the average value of the thickness of the metal-enriched layer calculated for each was obtained as the average thickness of the metal-enriched layer 5.
At the same time, the Co content of the region belonging to the specified metal enriched layer 5 is averaged, and this value is divided by the average Co content inside the WC-based cemented carbide to divide the Co content of the metal enriched layer 5 by the average Co content. The concentration ratio of the amount (the concentration ratio of the Co content in the metal enriched layer 5 with respect to the average Co content of the WC-based cemented carbide) was determined.
Tables 4 and 5 show these values.

つぎに、本発明ドリル1〜6、比較例ドリル1〜4及び参考例ドリル1について、以下の穴あけ切削加工試験を実施した。 Next, the following drilling and cutting tests were carried out for the drills 1 to 6 of the present invention, the drills 1 to 4 of Comparative Example, and the drill 1 of Reference Example.

≪穴あけ切削加工試験1≫
被削材−平面寸法:JIS・A6061の板材、
切削速度(vc): 180 m/min.、
送り(f): 0.25 mm/rev、
穴あけ深さ(Id): 20 mm(貫通穴)、
内部給油(油性) 供給圧力:3.0MPa
の条件でのアルミニウム合金の穴あけ切削加工試験。
≪Drilling cutting test 1≫
Work material-planar dimensions: JIS A6061 plate material,
Cutting speed (vc): 180 m / min. ,
Feed (f): 0.25 mm / rev,
Drilling depth (Id): 20 mm (through hole),
Internal refueling (oil-based) Supply pressure: 3.0 MPa
Drilling and cutting test of aluminum alloy under the conditions of.

≪穴あけ切削加工試験2≫
被削材−平面寸法:JIS・AC4Bの板材、
切削速度(vc): 150 m/min.、
送り(f): 0.28 mm/rev、
穴あけ深さ(Id): 20 mm(貫通穴)、
内部給油(油性) 供給圧力:3.0MPa、
の条件でのアルミニウム合金の穴あけ切削加工試験。
≪Drilling cutting test 2≫
Work material-planar dimensions: JIS / AC4B plate material,
Cutting speed (vc): 150 m / min. ,
Feed (f): 0.28 mm / rev,
Drilling depth (Id): 20 mm (through hole),
Internal refueling (oil-based) Supply pressure: 3.0 MPa,
Drilling and cutting test of aluminum alloy under the conditions of.

上記穴あけ切削加工試験1、穴あけ切削加工試験2のいずれにおいても、ドリル先端部の切れ刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定するとともに、ドリルの折損の有無を調査した。
また、被削材の穴あけ加工精度(3σ)を、次のような方法で測定した。
ドリル切削であけた穴の入口側と出口側の穴位置を計測し、その結果から穴位置のずれを計算し、統計的な処理によって標準偏差(σ)を算出し、加工精度として3σとした。
表6、表7に、試験結果を示す。
In both the drilling cutting test 1 and the drilling cutting test 2, the number of drilling operations until the flank wear width of the cutting edge surface of the drill tip reaches 0.3 mm is measured, and the presence or absence of breakage of the drill is measured. investigated.
Further, the drilling accuracy (3σ) of the work material was measured by the following method.
The hole positions on the inlet side and outlet side of the hole drilled by drilling were measured, the deviation of the hole position was calculated from the result, and the standard deviation (σ) was calculated by statistical processing, and the machining accuracy was set to 3σ. ..
Tables 6 and 7 show the test results.

表6、表7の結果によれば、本発明ドリル1〜6では、穴あけ加工精度の低下もないばかりか、短時間での折損の発生は認められなかった。
しかし、比較例ドリル1〜4では、折損の発生により、すべて短時間で寿命となった。
According to the results of Tables 6 and 7, in the drills 1 to 6 of the present invention, not only the drilling accuracy was not lowered, but also the occurrence of breakage in a short time was not observed.
However, all of the comparative example drills 1 to 4 had a short life due to the occurrence of breakage.

[実施例2]
前記実施例1で作製した本発明ドリル1〜6、比較例ドリル1〜4及び参考例ドリル1に対して、アークイオンプレーティング装置を用いて、表8に示す種々の硬質被覆層を形成することにより、本発明被覆ドリル11〜16、比較例被覆ドリル11〜14及び参考例被覆ドリル11を作製した。
[Example 2]
Various hard coating layers shown in Table 8 are formed on the drills 1 to 6 of the present invention, the drills 1 to 4 of Comparative Examples, and the drill 1 of Reference Example produced in Example 1 by using an arc ion plating apparatus. As a result, the coated drills 11 to 16 of the present invention, the coated drills 11 to 14 of the comparative example, and the coated drill 11 of the reference example were produced.

本発明被覆ドリル11〜16、比較例被覆ドリル11〜14及び参考例被覆ドリル11について、穴あけ切削加工試験3、穴あけ切削加工試験4を実施した。 A drilling cutting test 3 and a drilling cutting test 4 were carried out for the coated drills 11 to 16 of the present invention, the coated drills 11 to 14 of the comparative example, and the coated drill 11 of the reference example.

≪穴あけ切削加工試験3≫
被削材−平面寸法:JIS・SUS304の板材、
切削速度(vc): 80 m/min.、
送り(f): 0.24 mm/rev、
穴あけ深さ(Id): 20 mm(貫通穴)、
内部給油(油性) 供給圧力:3.0MPa、
の条件でのステンレス鋼の穴あけ切削加工試験。
≪Drilling cutting test 3≫
Work Material-Plane Dimension: JIS / SUS304 Plate Material,
Cutting speed (vc): 80 m / min. ,
Feed (f): 0.24 mm / rev,
Drilling depth (Id): 20 mm (through hole),
Internal refueling (oil-based) Supply pressure: 3.0 MPa,
Drilling and cutting test of stainless steel under the conditions of.

≪穴あけ切削加工試験4≫
被削材−平面寸法:JIS・SCM440の板材、
切削速度(vc): 120 m/min.、
送り(f): 0.25 mm/rev、
穴あけ深さ(Id): 20 mm(貫通穴)、
内部給油(油性) 供給圧力:3.0MPa、
の条件での合金鋼の穴あけ切削加工試験。
表9、表10に、試験結果を示す。
≪Drilling cutting test 4≫
Work Material-Plane Dimension: JIS / SCM440 Plate Material,
Cutting speed (vc): 120 m / min. ,
Feed (f): 0.25 mm / rev,
Drilling depth (Id): 20 mm (through hole),
Internal refueling (oil-based) Supply pressure: 3.0 MPa,
Drilling and cutting test of alloy steel under the conditions of.
Tables 9 and 10 show the test results.

表9、表10の結果によれば、本発明被覆ドリル11〜16では、硬質被覆層の剥離、短時間での折損の発生は認められず、また、穴あけ加工精度の低下もなかった。
これに対して、比較例被覆ドリル工具11〜14は、短時間で折損発生により寿命となった。
According to the results of Tables 9 and 10, in the coated drills 11 to 16 of the present invention, peeling of the hard coating layer and occurrence of breakage in a short time were not observed, and the drilling accuracy was not lowered.
On the other hand, the coated drill tools 11 to 14 of the comparative example have reached the end of their life due to breakage in a short time.

本発明ドリル、本発明被覆ドリルは、アルミニウム合金、ステンレス鋼、合金鋼等の被削材の穴あけ加工において、すぐれた耐折損性と安定した加工精度を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
The drill of the present invention and the coated drill of the present invention exhibit excellent breakage resistance and stable machining accuracy in drilling of work materials such as aluminum alloys, stainless steels, and alloy steels, and have excellent cutting performance over a long period of time. Therefore, it is possible to fully and satisfactorily cope with high performance of the cutting machine, labor saving and energy saving of the cutting process, and cost reduction.

Claims (4)

Coを6質量%以上15質量%以下、Ti、Zr、Cr、V、Ta及びNbから選ばれる1種または2種以上の炭化物の合計量を0.1質量%以上5質量%以下、残部WC及び不可避不純物からなる組成のWC基超硬合金から構成されたスパイラル油穴付き超硬合金製ドリルにおいて、
ドリル先端部に切削油を供給するための油穴は、前記ドリルのフルート溝に沿って前記ドリル内部でスパイラル状に形成され、前記油穴の内壁面にはCoを主成分とする金属富化層が形成され、前記金属富化層のCo含有量は、前記WC基超硬合金の平均Co含有量の1.5倍以上であり、前記金属富化層の平均厚みは0.5μm以上10.0μm以下であることを特徴とするスパイラル油穴付き超硬合金製ドリル。
Co is 6% by mass or more and 15% by mass or less, the total amount of one or two or more kinds of carbides selected from Ti, Zr, Cr, V, Ta and Nb is 0.1% by mass or more and 5% by mass or less, and the balance WC. And in a cemented carbide drill with a spiral oil hole composed of a WC-based cemented carbide having a composition of unavoidable impurities.
An oil hole for supplying cutting oil to the tip of the drill is formed in a spiral shape inside the drill along the flute groove of the drill, and the inner wall surface of the oil hole is enriched with metal containing Co as a main component. The layer is formed, and the Co content of the metal-enriched layer is 1.5 times or more the average Co content of the WC-based cemented carbide, and the average thickness of the metal-enriched layer is 0.5 μm or more. A cemented carbide drill with a spiral oil hole, characterized by a diameter of 0.0 μm or less.
前記ドリルのドリル先端部の切れ刃径が3mm未満であることを特徴とする請求項1に記載のスパイラル油穴付き超硬合金製ドリル。 The cemented carbide drill with a spiral oil hole according to claim 1, wherein the cutting edge diameter of the drill tip of the drill is less than 3 mm. 請求項1または2に記載のスパイラル油穴付き超硬合金製ドリルにおいて、少なくとも前記ドリル先端部の表面は、硬質被覆層で被覆されていることを特徴とする表面被覆スパイラル油穴付き超硬合金製ドリル。 The cemented carbide drill with a spiral oil hole according to claim 1 or 2, wherein at least the surface of the tip of the drill is coated with a hard coating layer. Drill made. 前記硬質被覆層は、TiN層、TiAlN層、TiAlSiN層、TiSiN層、TiAlCN層、TiAlCrN層、AlCrN層、AlCrSiN層及びCrN層から選ばれる1層または2層以上であることを特徴とする請求項3に記載の表面被覆スパイラル油穴付き超硬合金製ドリル。
The hard coating layer is one or more layers selected from TiN layer, TiAlN layer, TiAlSiN layer, TiSiN layer, TiAlCN layer, TiAlCrN layer, AlCrN layer, AlCrSiN layer and CrN layer. The hard alloy drill with a surface-coated spiral oil hole according to 3.
JP2019060153A 2019-03-27 2019-03-27 Super hard alloy drill with spiral oil holes Pending JP2020157430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060153A JP2020157430A (en) 2019-03-27 2019-03-27 Super hard alloy drill with spiral oil holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060153A JP2020157430A (en) 2019-03-27 2019-03-27 Super hard alloy drill with spiral oil holes

Publications (1)

Publication Number Publication Date
JP2020157430A true JP2020157430A (en) 2020-10-01

Family

ID=72641002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060153A Pending JP2020157430A (en) 2019-03-27 2019-03-27 Super hard alloy drill with spiral oil holes

Country Status (1)

Country Link
JP (1) JP2020157430A (en)

Similar Documents

Publication Publication Date Title
EP2177295B1 (en) Surface-coated cutting tool
JP2005271190A (en) Surface coated cutting tool
JP5261018B2 (en) Surface coated cutting tool
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2013116509A (en) Surface-coated cutting tool
JP4991244B2 (en) Surface coated cutting tool
JP5835306B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2008238354A (en) Drill and cutting method
JP2009028800A (en) Surface coated cutting tool
JP2009107028A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance
US7897272B2 (en) Wear-resistant structure
JP2020157430A (en) Super hard alloy drill with spiral oil holes
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP4817799B2 (en) Surface covering
JP2008030158A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloy
JP2007331107A (en) Surface coated cubic boron nitride sintered body tool
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2013116551A (en) Surface-coated tool excellent in oxidation resistance and wear resistance
EP3427873B1 (en) Surface-coated cutting tool with excellent chip resistance and abrasion resistance
JP2006299422A (en) Production method of surface coated body
JP5201936B2 (en) Surface coating tool