JP2020155449A - Manufacturing method of electrode embedded member - Google Patents

Manufacturing method of electrode embedded member Download PDF

Info

Publication number
JP2020155449A
JP2020155449A JP2019049656A JP2019049656A JP2020155449A JP 2020155449 A JP2020155449 A JP 2020155449A JP 2019049656 A JP2019049656 A JP 2019049656A JP 2019049656 A JP2019049656 A JP 2019049656A JP 2020155449 A JP2020155449 A JP 2020155449A
Authority
JP
Japan
Prior art keywords
electrode
mesh
embedded
manufacturing
embedded member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019049656A
Other languages
Japanese (ja)
Other versions
JP7249827B2 (en
Inventor
誠 檜野
Makoto Hino
誠 檜野
裕明 鈴木
Hiroaki Suzuki
裕明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019049656A priority Critical patent/JP7249827B2/en
Publication of JP2020155449A publication Critical patent/JP2020155449A/en
Application granted granted Critical
Publication of JP7249827B2 publication Critical patent/JP7249827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a manufacturing method of an electrode embedded member capable of stabilizing characteristics of an electrode constituted of a mesh body.SOLUTION: The present invention relates to a manufacturing method of an electrode embedded member 10 comprising a substrate 1 constituted of ceramics and an electrode 2 constituted of a mesh body embedded in the substrate 1. The manufacturing method includes: an electrode heat treatment step STEP1 of applying a heat treatment to the mesh body which is configured by weaving a wire constituted of molybdenum, tungsten or an alloy containing them as main components at a temperature equal to or higher than 900°C and lower than a recrystallization temperature of the wire and in a reduction atmosphere; an electrode cut step STEP3 of cutting the mesh body in a shape of the electrode 2; and a calcination step STEP4 of heating the mesh body at a temperature equal to or higher than the recrystallization temperature in a state where the cut mesh body to which the heat treatment is applied, is embedded in a ceramic powder to be the substrate 1, in a ceramic mold formed by molding the ceramic powder, in a defatted body formed by defatting the ceramic mold or in a calcined body formed by calcinating the ceramic mold or the defatted body.SELECTED DRAWING: Figure 1

Description

本発明は、基体に電極が埋設された電極埋設部材の製造方法に関する。 The present invention relates to a method for manufacturing an electrode-embedded member in which an electrode is embedded in a substrate.

半導体製造装置において、ウエハなどの基板を表面に保持する静電チャックや、表面に載置された基板を加熱するヒータ、サセプタなどは、セラミックスからなる基体の内部に電極が埋設された電極埋設部材を備えている。 In semiconductor manufacturing equipment, electrostatic chucks that hold substrates such as wafers on the surface, heaters that heat the substrates placed on the surface, susceptors, etc. are electrode-embedded members in which electrodes are embedded inside a substrate made of ceramics. It has.

特にヒータに備わる電極埋設部材においては、発熱体として機能する電極(ヒータ電極)を、Mo(モリブデン)又はW(タングステン)からなる網目状体(メッシュ体)を所定の形状に切断したものからなるとすることが多い。 In particular, in the electrode-embedded member provided in the heater, the electrode (heater electrode) that functions as a heating element is made of a mesh body (mesh body) made of Mo (molybdenum) or W (tungsten) cut into a predetermined shape. I often do it.

そして、特許文献1には、静電チャックの内部電極を網状の電極(金網状電極)として、その厚み方向に加圧して塑性変形させることにより、大きな吸着力を安定して発現させることが開示されている。また、特許文献2には、発熱体として機能する電極がMo、Wなどからなる網状物が圧延加工されたものからなることが開示されている。 Further, Patent Document 1 discloses that the internal electrode of the electrostatic chuck is used as a mesh-like electrode (wire mesh-like electrode), and a large attractive force is stably exhibited by applying pressure in the thickness direction to plastically deform the electrode. Has been done. Further, Patent Document 2 discloses that an electrode functioning as a heating element is made by rolling a net-like material made of Mo, W or the like.

さらに、特許文献3には、Mo線棒材を、非酸化雰囲気で900℃から1200℃に加熱することによって、表面の酸化物を除去し、所望のアスペクト比を備える結晶粒とその数、並びに引張強さ、伸び、折り曲げ回数を確保することが開示されている。 Further, Patent Document 3 describes the number of crystal grains having a desired aspect ratio by heating the Mo wire rod from 900 ° C. to 1200 ° C. in a non-oxidizing atmosphere to remove oxides on the surface. It is disclosed to ensure tensile strength, elongation, and number of bends.

特許3359582号公報Japanese Patent No. 3359582 特開平11−204238号公報JP-A-11-204238 特許5068986号公報Japanese Patent No. 5068986

例えば、上記従来のような網目状体からなら電極を発熱体として機能させ、電極埋設部材をヒータとして構成する場合、ヒータ特性の個体差が大きく、所望の温度分布が得られないことがあった。 For example, when the electrode is made to function as a heating element and the electrode-embedded member is configured as a heater from the above-mentioned conventional mesh-like body, individual differences in heater characteristics are large, and a desired temperature distribution may not be obtained. ..

発明者は、この原因が、電極の線材の交差部分における不安定な接触状態、交差部分における線材の局所的な過度な変形、及び、電極全体に亘る屈曲などの変形であることを見い出した。 The inventor has found that the cause of this is an unstable contact state at the intersection of the wires of the electrode, a local excessive deformation of the wire at the intersection, and a deformation such as bending over the entire electrode.

線材の交差部分における不安定な接触状態を解消するためには、上記特許文献1,2を参照して、電極の厚み方向に大きな圧力を加えればよい。しかし、これによって、交差部分における線材の局所的な過度な変形、さらには線材にクラックなどが生じ断線するおそれが生じる。 In order to eliminate the unstable contact state at the intersection of the wire rods, a large pressure may be applied in the thickness direction of the electrode with reference to Patent Documents 1 and 2 above. However, this may cause local excessive deformation of the wire rod at the intersection, and further cause cracks or the like in the wire rod to cause disconnection.

本発明は、かかる事情に鑑みてなされたものであり、網目状体からなる電極の特性の安定化を図ることが可能となる電極埋設部材の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing an electrode embedded member capable of stabilizing the characteristics of an electrode made of a mesh-like body.

本発明は、セラミックスからなる基体と、前記基体の内部に埋設された網目状体からなる電極とを備える電極埋設部材の製造方法であって、モリブデン、タングステン又はこれらを主成分とする合金からなる線材が織られてなる網目状体を900℃以上、前記線材の再結晶化温度未満の温度で還元雰囲気にて熱処理する工程と、前記網目状体を前記電極の形状に裁断する工程と、前記基体となるセラミックス粉末中、前記セラミックス粉末を成形してなるセラミックス成形体中、前記セラミックス成形体を脱脂してなる脱脂体中、あるいは前記セラミックス成形体又は前記脱脂体を仮焼してなる仮焼体中に前記熱処理及び前記裁断した網目状体を埋設した状態で、前記網目状体を前記再結晶化温度以上の温度で加熱する工程とを備えることを特徴とする。 The present invention is a method for manufacturing an electrode-embedded member including a substrate made of ceramics and an electrode made of a network-like body embedded inside the substrate, which is made of molybdenum, tungsten or an alloy containing these as main components. A step of heat-treating a network formed by weaving a wire in a reducing atmosphere at a temperature of 900 ° C. or higher and lower than the recrystallization temperature of the wire, a step of cutting the network into the shape of the electrode, and the above-mentioned In the ceramic powder to be the base, in the ceramic molded body formed by molding the ceramic powder, in the degreased body obtained by degreasing the ceramic molded body, or by calcining the ceramic molded body or the degreased body. It is characterized by comprising a step of heating the network at a temperature equal to or higher than the recrystallization temperature in a state where the heat treatment and the cut network are embedded in the body.

本発明によれば、網目状体を900℃以上、線材の再結晶化温度未満の温度で還元雰囲気にて熱処理することにより、電極埋設部材における電極の特性の安定化を図ることが可能となる。 According to the present invention, it is possible to stabilize the characteristics of the electrode in the electrode-embedded member by heat-treating the network at 900 ° C. or higher and lower than the recrystallization temperature of the wire rod in a reducing atmosphere. ..

これは、発明者が後述する実施例及び比較例に基づき見出したものであり、その理由は定かではないが、再結晶化温度より低い温度で熱処理した結果、微細構造を大幅に変化させることなく(再結晶化に比較して相対的な変化が大幅に小さい)、主として線材を織る際に生じた残留応力の一部が、焼きなましや焼きならしと同様に除去されるからであると考えられる。 This was found by the inventor based on Examples and Comparative Examples described later, and the reason is not clear, but as a result of heat treatment at a temperature lower than the recrystallization temperature, the microstructure is not significantly changed. (Relative change is much smaller than recrystallization), mainly because some of the residual stress generated when weaving the wire is removed in the same way as annealing and normalizing. ..

さらに、還元雰囲気にて網目状体を熱処理することにより網目状体を構成する線材同士の接点に形成されていた自然酸化被膜が還元される。これにより、線材同士の接触抵抗が小さくなり網目状体の面内の抵抗分布が安定化する。また、熱処理後の網目状体は歪みが取り除かれ平坦な形状となるため、熱処理後に網目状体の裁断を行う場合には高い寸法精度で所望の形状の電極を得ることが可能となる。一方、網目状体の裁断後に熱処理を行う場合には、裁断時の加工歪の除去を行うことが可能となる。 Further, by heat-treating the network in a reducing atmosphere, the natural oxide film formed at the contact points between the wires constituting the network is reduced. As a result, the contact resistance between the wires is reduced and the resistance distribution in the plane of the network is stabilized. Further, since the mesh-like body after the heat treatment is distorted and has a flat shape, it is possible to obtain an electrode having a desired shape with high dimensional accuracy when the mesh-like body is cut after the heat treatment. On the other hand, when the heat treatment is performed after cutting the mesh-like body, it is possible to remove the processing strain at the time of cutting.

なお、熱処理温度が900℃未満では網目状体の残留応力が十分に除去されず、熱処理温度が再結晶化温度では再結晶化が進行して網目状体が脆弱化するおそれが生じる。さらに、網目状体を構成する線材同士の接点における自然酸化被膜が十分に除去されず、面内の抵抗分布が不安定になるおそれが生じる。 If the heat treatment temperature is less than 900 ° C., the residual stress of the network is not sufficiently removed, and if the heat treatment temperature is the recrystallization temperature, recrystallization may proceed and the network may be weakened. Further, the natural oxide film at the contact point between the wires constituting the network is not sufficiently removed, and the resistance distribution in the plane may become unstable.

本発明において、前記熱処理した網目状体を厚さ方向に押圧する工程を備え、前記押圧された網目状体を前記セラミックス粉末中、前記セラミックス成形体中、前記脱脂体中又は前記仮焼体中に埋設した状態で前記加熱を行うことが好ましい。 In the present invention, the step of pressing the heat-treated network in the thickness direction is provided, and the pressed network is pressed in the ceramic powder, in the ceramic molded body, in the degreased body, or in the calcined body. It is preferable to carry out the heating in a state of being embedded in.

また、本発明において、前記網目状体を前記熱処理すると同時に当該網目状体を厚さ方向に押圧することが好ましい。 Further, in the present invention, it is preferable to heat-treat the network and simultaneously press the network in the thickness direction.

これらの場合、網目状体の線材の接触状態の安定化、線材の局所的な過度の変形の緩和化、及び、網目状体全体に亘る変形や歪みの抑制化をさらに図ることが可能となる。その結果、電極の特性が安定化する。 In these cases, it is possible to stabilize the contact state of the wire rod of the network, alleviate the local excessive deformation of the wire rod, and further suppress the deformation and distortion of the entire mesh body. .. As a result, the characteristics of the electrode are stabilized.

また、本発明において、前記加熱後の前記線材におけるモリブデン又はタングステンの平均粒径が1μm以上100μm以下であることが好ましい。 Further, in the present invention, it is preferable that the average particle size of molybdenum or tungsten in the wire rod after heating is 1 μm or more and 100 μm or less.

この場合、平均粒径が100μm以下と小さく粗大粒径化していないので、電極の線材の接触状態における接触抵抗の均一化をさらに図ることが可能となる。 In this case, since the average particle size is as small as 100 μm or less and the particle size is not coarsened, it is possible to further make the contact resistance uniform in the contact state of the wire rod of the electrode.

また、本発明において、前記押圧前の前記線材の断面が直径dの円状であるとき、前記裁断した網目状体の前記線材の交差部分における厚みが1.95d以下となるように前記押圧を行うことが好ましい。 Further, in the present invention, when the cross section of the wire rod before pressing is circular with a diameter d, the pressing is performed so that the thickness at the intersection of the wire rods of the cut mesh body is 1.95 d or less. It is preferable to do so.

この場合、後述する実施例及び比較例から分かるように、線材の交差部分における安定化をさらに図ることが可能となる。 In this case, as can be seen from Examples and Comparative Examples described later, it is possible to further stabilize the intersection of the wire rods.

本発明の実施形態に係る電極埋設部材の製造方法によって製造される電極埋設部材を示す模式断面図。The schematic cross-sectional view which shows the electrode embedded member manufactured by the manufacturing method of the electrode embedded member which concerns on embodiment of this invention. 本発明の実施形態に係る電極埋設部材の製造方法を示すフローチャート。The flowchart which shows the manufacturing method of the electrode embedded member which concerns on embodiment of this invention. 電極埋設部材の電極の拡大模式部分断面図。An enlarged schematic partial cross-sectional view of an electrode of an electrode embedded member.

本発明の実施形態に係る電極埋設部材10の製造方法について図面を参照して説明する。なお、各図面は、電極埋設部材10及び構成要素などを明確化するためにデフォルメされており、実際の比率を表すものではなく、上下などの方向も単なる例示である。 The manufacturing method of the electrode embedded member 10 according to the embodiment of the present invention will be described with reference to the drawings. It should be noted that each drawing is deformed in order to clarify the electrode embedded member 10, the constituent elements, and the like, and does not represent the actual ratio, and the directions such as up and down are merely examples.

本発明の実施形態に係る電極埋設部材10の製造方法によって製造される電極埋設部材10は、図1に示すように、セラミックスからなる基体1と、基体1の内部に埋設された網目状体からなる電極2とを備えている。電極埋設部材10は、例えば半導体製造装置におけるヒータに用いられ、この場合、電極2はヒータ用電極として機能する。 As shown in FIG. 1, the electrode-embedded member 10 manufactured by the method for manufacturing the electrode-embedded member 10 according to the embodiment of the present invention is made of a substrate 1 made of ceramics and a mesh-like body embedded inside the substrate 1. The electrode 2 is provided. The electrode embedded member 10 is used, for example, in a heater in a semiconductor manufacturing apparatus, and in this case, the electrode 2 functions as a heater electrode.

ただし、電極埋設部材10は、ヒータに用いられるものに限定されず、静電チャック、サセプタなどに用いられるものであってもよく、この場合、電極2は静電吸着電極、高周波発生用電極などとして機能する。また、電極埋設部材10に複数の電極2が埋設されていてもよく、そして、これら複数の電極2は同様に機能するものであっても、異なる機能を有するものであってもよい。 However, the electrode burying member 10 is not limited to the one used for the heater, and may be used for an electrostatic chuck, a susceptor, or the like. In this case, the electrode 2 is an electrostatic adsorption electrode, a high frequency generation electrode, or the like. Functions as. Further, a plurality of electrodes 2 may be embedded in the electrode embedded member 10, and these plurality of electrodes 2 may have the same function or may have different functions.

本製造方法は、図2に示すように、電極熱処理工程STEP1、電極押圧工程STEP2、電極裁断工程STEP3及び焼成工程STEP4を備えている。 As shown in FIG. 2, this manufacturing method includes an electrode heat treatment step STEP1, an electrode pressing step STEP2, an electrode cutting step STEP3, and a firing step STEP4.

電極熱処理工程STEP1は、Mo(モリブデン)、W(タングステン)又はこれらを主成分とする合金からなる線材が織られてなる網目状体を900℃以上、線材の再結晶化温度未満の温度で還元雰囲気にて熱処理する工程である。還元雰囲気は、例えば、H(水素)、CO(一酸化炭素)、CH(メタン)、C(プロパン)、C10(ブタン)等の炭化水素ガスなどからなる雰囲気である。なお、Mo、Wを主成分とする合金とは、一般的にMoとWとの合計含有率が50重量%以上のものを指すが、好ましくは70重量%以上のもの、より好ましくは80重量%以上のものである。 In the electrode heat treatment step STEP1, a network formed of a wire rod made of Mo (molybdenum), W (tungsten) or an alloy containing these as a main component is reduced at a temperature of 900 ° C. or higher and lower than the recrystallization temperature of the wire rod. This is a process of heat treatment in an atmosphere. The reducing atmosphere is, for example, an atmosphere composed of hydrocarbon gases such as H 2 (hydrogen), CO (carbon monoxide), CH 4 (methane), C 3 H 8 (propane), and C 4 H 10 (butane). is there. The alloy containing Mo and W as main components generally refers to an alloy having a total content of Mo and W of 50% by weight or more, preferably 70% by weight or more, and more preferably 80% by weight. % Or more.

Mo及びMo合金の再結晶化温度は、約1000℃から1200℃であるが、例えばMoにTi(チタン)、ジルコニア(ZrO)及びC(カーボン)をドーピングしたTZM合金の再結晶化温度は約1300℃である。そして、W及びW合金の再結晶化温度は、Mo及びMo合金よりも高い。よって、電極熱処理工程STEP1においては、網目状体を900℃以上1200℃以下、好ましくは、900℃以上1000℃以下で熱処理すればよい。 The recrystallization temperature of Mo and Mo alloy is about 1000 ° C to 1200 ° C. For example, the recrystallization temperature of TZM alloy in which Mo is doped with Ti (titanium), zirconia (ZrO 2 ) and C (carbon) is It is about 1300 ° C. The recrystallization temperature of W and W alloy is higher than that of Mo and Mo alloy. Therefore, in the electrode heat treatment step STEP1, the network may be heat-treated at 900 ° C. or higher and 1200 ° C. or lower, preferably 900 ° C. or higher and 1000 ° C. or lower.

網目状体は、平織からなるものであることが好ましいが、他の織り方によるもの、例えば、綾織、畳織、綾畳織などからなるものであってもよい。 The mesh-like body is preferably made of plain weave, but may be made of other weaves such as twill weave, tatami mat weave, and twill tatami weave.

発明者は、後述する実施例及び比較例に基づき、網目状体を900℃以上、線材の再結晶化温度未満の温度で還元雰囲気にて熱処理することにより、電極埋設部材10における電極2の特性の安定化を図ることが可能となることを見い出した。 Based on Examples and Comparative Examples described later, the inventor heat-treats the network at a temperature of 900 ° C. or higher and lower than the recrystallization temperature of the wire rod in a reducing atmosphere to develop the characteristics of the electrode 2 in the electrode embedded member 10. It was found that it is possible to stabilize the temperature.

その理由は定かではないが、再結晶化温度より低い温度で熱処理した結果、微細構造を大幅に変化させることなく(再結晶化に比較して相対的な変化が大幅に小さい)、主として織りこむときに生じた残留応力の一部が除去されるからであると考えられる。なお、熱処理温度が900℃未満では網目状体の残留応力が十分に除去されず、熱処理温度が再結晶化温度では再結晶化が進行して網目状体が脆弱化するおそれがある。また、熱処理された網目状体は変形や歪みが小さく、後述の電極裁断工程STEP3において網目状体を高い寸法精度で所望の電極2の形状に裁断することが可能になったためであると考えられる。 The reason is not clear, but as a result of heat treatment at a temperature lower than the recrystallization temperature, the microstructure is mainly woven without significantly changing (relative change is significantly smaller than that of recrystallization). It is considered that this is because a part of the residual stress generated at that time is removed. If the heat treatment temperature is less than 900 ° C., the residual stress of the network is not sufficiently removed, and if the heat treatment temperature is the recrystallization temperature, recrystallization may proceed and the network may be weakened. Further, it is considered that the heat-treated mesh-like body has small deformation and distortion, and it is possible to cut the mesh-like body into a desired electrode 2 shape with high dimensional accuracy in the electrode cutting step STEP3 described later. ..

電極押圧工程STEP2は、熱処理した網目状体を厚さ方向に押圧する工程である。このように、熱処理した網目状体を厚さ方向に押圧することによって、線材の交差部分において線材同士が確実に広範囲に亘って接触するようになるので、線材の接触状態の安定化をさらに図ることが可能となる。 The electrode pressing step STEP2 is a step of pressing the heat-treated mesh-like body in the thickness direction. By pressing the heat-treated mesh-like body in the thickness direction in this way, the wires are surely brought into contact with each other over a wide range at the intersections of the wires, so that the contact state of the wires is further stabilized. It becomes possible.

図3を参照して、押圧前の線材の断面が直径dの円状であるとき、裁断した網目状体の線材の交差部分における厚みtが1.95d以下となるように押圧を行うことが好ましい。これにより、後述する実施例及び比較例から分かるように、線材の交差部分における安定化をさらに図ることが可能となる。押圧する際には、重石を載せる方法や一軸プレスする方法を用いることができる。 With reference to FIG. 3, when the cross section of the wire rod before pressing is circular with a diameter d, pressing is performed so that the thickness t at the intersection of the wire rods of the cut mesh-like body is 1.95 d or less. preferable. As a result, as can be seen from Examples and Comparative Examples described later, it is possible to further stabilize the intersection of the wire rods. When pressing, a method of placing a heavy stone or a method of uniaxial pressing can be used.

なお、押圧前の線材の断面とは、交差部分間において交差によって断面が変形していない部分における線材の断面のことであり、織り込まれる前の線材の断面を意味する。なお、線材の断面は、円状である場合に限らず、実質的又は大略的に円状であっても、楕円状、あるいは六角形、八角形等の高多角形状であってもよい。 The cross section of the wire rod before pressing is the cross section of the wire rod in the portion where the cross section is not deformed by the intersection during the intersection portion, and means the cross section of the wire rod before weaving. The cross section of the wire rod is not limited to a circular shape, and may be substantially or roughly circular, or may be an elliptical shape, or a high polygonal shape such as a hexagon or an octagon.

また、電極熱処理工程STEP1と電極押圧工程STEP2とを同時又は部分的に同時に行ってもよい。すなわち、網目状体を熱処理すると同時又は部分的に同時に当該網目状体を厚さ方向に押圧してもよい。その場合、ホットプレス炉を用いて、N雰囲気下、圧力1MPa〜10MPaで加圧することが好適である。 Further, the electrode heat treatment step STEP1 and the electrode pressing step STEP2 may be performed simultaneously or partially at the same time. That is, the mesh-like body may be pressed in the thickness direction simultaneously or partially at the same time as the heat treatment of the network-like body. In this case, using a hot press furnace, N 2 atmosphere, it is preferable to pressurize a pressure 1MPa~10MPa.

このように押圧しながら網目状体を熱処理することによって、網目状体の線材の接触状態の安定化、線材の局所的な過度の変形の緩和化、及び、網目状体全体に亘る変形の抑制化をさらに図ることが可能となる。ただし、電極押圧工程STEP2は必ずしも行う必要はなく、省略してもよい。 By heat-treating the mesh-like body while pressing in this way, the contact state of the wire rod of the mesh-like body is stabilized, the local excessive deformation of the wire rod is alleviated, and the deformation of the entire mesh-like body is suppressed. It will be possible to further improve the system. However, the electrode pressing step STEP2 does not necessarily have to be performed and may be omitted.

電極裁断工程STEP3は、熱処理された網目状体を裁断して、所定の形状の網目状体からなる電極2を得る工程である。裁断は、例えばレーザ加工により行うことができる。 The electrode cutting step STEP3 is a step of cutting the heat-treated mesh-like body to obtain an electrode 2 made of the mesh-like body having a predetermined shape. Cutting can be performed, for example, by laser processing.

焼成工程STEP4は、基体1となるセラミックス粉末中、セラミックス粉末を成形してなるセラミックス成形体中、セラミックス成形体を脱脂してなる脱脂体中、あるいはセラミックス成形体又は脱脂体を仮焼してなる仮焼体中に熱処理及び裁断した網目状体を埋設した状態で、網目状体を再結晶化温度以上の温度で加熱することにより、電極2が埋設されたセラミックス焼結体からなる基体1を得る工程である。 The firing step STEP4 is performed in the ceramic powder to be the substrate 1, in the ceramic molded body formed by molding the ceramic powder, in the degreased body obtained by degreasing the ceramic molded body, or by calcining the ceramic molded body or the degreased body. A substrate 1 made of a ceramic sintered body in which an electrode 2 is embedded is formed by heating the mesh-like body at a temperature equal to or higher than the recrystallization temperature in a state where the heat-treated and cut mesh-like body is embedded in the calcined body. This is the process of obtaining.

セラミックス粉末は、例えば、窒化アルミニウム(AlN)に、酸化イットリウム(Y)などが添加されてなるものである。 Ceramic powder, for example, aluminum nitride (AlN), yttrium oxide (Y 2 O 3) in which the like is added.

セラミックス成形体を用いる場合は、例えば、セラミックス原料を冷間等方圧加圧法(CIP:Cold Isostatic Pressing)を用いて成形することにより板状の複数枚のセラミックス成形体を用意する。具体的には、例えば、上記のセラミックス粉末にバインダ、可塑剤、焼結助剤、分散剤などを添加し、溶剤を用いて混合した後、スプレードライ乾燥をすることで、セラミックス顆粒を得る。そして、このセラミックス顆粒をCIP成形することによりインゴットを得て、このインゴットを機械加工して所定の外形に形成することによりセラミックス成形体を作製する。 When a ceramic molded body is used, for example, a plurality of plate-shaped ceramic molded bodies are prepared by molding the ceramic raw material by a cold isostatic pressing method (CIP). Specifically, for example, a binder, a plasticizer, a sintering aid, a dispersant and the like are added to the above ceramic powder, mixed with a solvent, and then spray-dried to obtain ceramic granules. Then, an ingot is obtained by CIP molding the ceramic granules, and the ingot is machined to form a predetermined outer shape to produce a ceramic molded body.

脱脂体を用いる場合、上述したセラミックス成形体を500℃以上900℃未満の温度で加熱することにより脱脂処理を行うことにより脱脂体を作製する。また、仮焼体を用いる場合、上述したセラミックス成形体又は脱脂体を900℃以上線材の再結晶化温度未満の温度で仮焼を行うことにより仮焼体を作製する。 When a degreased body is used, the degreased body is produced by performing a degreasing treatment by heating the above-mentioned ceramic molded product at a temperature of 500 ° C. or higher and lower than 900 ° C. When a calcined body is used, the calcined body is produced by calcining the above-mentioned ceramic molded body or degreased body at a temperature of 900 ° C. or higher and lower than the recrystallization temperature of the wire rod.

セラミックス成形体中に網目状体を埋設する場合、複数のセラミックス成形体を用意し、これらセラミックス成形体の少なくとも一つのセラミックス成形体の表面に機械加工によって網目状体の外形に沿った形状を有する凹部を形成し、この凹部内に網目状体を収容した状態で、複数のセラミックス成形体を積層すればよい。この場合、複数のセラミックス成形体を積層する方向を網目状体の厚さ方向とし、この厚さ方向に加圧しながら加熱することが好ましい。セラミックス成形体の代わりに脱脂体又は仮焼体を用いる場合も、セラミックス成形体と同様に埋設、積層、加熱を行えばよい。 When embedding a network in a ceramic molded body, a plurality of ceramic molded bodies are prepared, and the surface of at least one of the ceramic molded bodies has a shape along the outer shape of the meshed body by machining. A plurality of ceramic molded bodies may be laminated in a state where a recess is formed and a mesh-like body is housed in the recess. In this case, it is preferable that the direction in which the plurality of ceramic molded bodies are laminated is the thickness direction of the mesh-like body, and heating is performed while pressurizing in this thickness direction. When a degreased body or a calcined body is used instead of the ceramic molded body, it may be embedded, laminated, and heated in the same manner as the ceramic molded body.

なお、凹部に網目状体を収容する場合、凹部の深さは網目状体の厚みと同程度であることが望ましい。凹部が浅すぎると網目状体が過度に潰れる不都合が生じるおそれがあり、、凹部が深すぎると網目状体の上部に窪みが形成される不都合が生じるおそれがあるからである。 When the mesh-like body is housed in the recess, it is desirable that the depth of the recess is about the same as the thickness of the mesh-like body. This is because if the recess is too shallow, the mesh-like body may be excessively crushed, and if the recess is too deep, a recess may be formed in the upper part of the mesh-like body.

粉末ホットプレス法の場合、脱脂処理及び仮焼を行う必要はなく、セラミック粉末を型に充填した後、一軸加圧を行うことによりセラミックス成形体を作製する。その後、網目状体を載置したセラミックス成形体上にセラミックス粉末を充填し、1MPa以上20MPa以下の圧力で一軸加圧することにより、セラミックス粉末中に網目状体を埋設すればよい。この場合、加圧方向は網目状体の厚み方向に行うことが好ましい。 In the case of the powder hot press method, it is not necessary to perform degreasing treatment and calcining, and a ceramic molded product is produced by filling a mold with ceramic powder and then performing uniaxial pressurization. After that, the ceramic powder may be filled in the ceramic molded body on which the mesh-like body is placed, and the mesh-like body may be embedded in the ceramic powder by uniaxially pressing at a pressure of 1 MPa or more and 20 MPa or less. In this case, the pressurizing direction is preferably performed in the thickness direction of the network.

発明者は、網目状体からなる電極2の交差部分における線材の不安定な接触状態、差部分における線材の局所的な過度な変形、及び、電極2全体に亘る屈曲などの変形によって電極2のヒータ特性などの特性に影響が及び、基体1の表面に所望の温度分布が得られないことの不具合が生じることを見い出した。 The inventor has found that the electrode 2 is deformed due to an unstable contact state of the wire rod at the intersection of the electrode 2 made of a mesh-like body, a local excessive deformation of the wire rod at the difference portion, and a deformation such as bending over the entire electrode 2. It has been found that the characteristics such as the heater characteristics are affected, and the problem that the desired temperature distribution cannot be obtained on the surface of the substrate 1 occurs.

これに対し、発明者は、後述する実施例から分かるように、900℃以上再結晶化温度未満の温度で還元雰囲気にて網目状体を熱処理すれば、原理は推測に過ぎないが、焼きなましや焼きならしと同様に、熱応力による組織変化による残留応力が除去されることによって見い出した。 On the other hand, as can be seen from the examples described later, if the inventor heat-treats the network in a reducing atmosphere at a temperature of 900 ° C. or higher and lower than the recrystallization temperature, the principle is only speculation, but normalizing Similar to normalizing, it was found by removing the residual stress due to the structural change due to thermal stress.

なお、焼成工程STEP4後の線材におけるモリブデン又はタングステンの平均粒径は1μm以上100μm以下であることが好ましい。これは、平均粒径が100μm以下と小さく粗大粒径化していなければ、電極2の線材の接触状態における接触抵抗の均一化を図ることが可能となるからである。 The average particle size of molybdenum or tungsten in the wire rod after the firing step STEP4 is preferably 1 μm or more and 100 μm or less. This is because if the average particle size is as small as 100 μm or less and the particle size is not coarse, it is possible to make the contact resistance of the wire rod of the electrode 2 uniform in the contact state.

(実施例1)
窒化アルミニウム(AlN)粉末95重量%に焼結助剤として酸化イットリウム(Yを5重量%添加し、バインダと溶剤を用いて混合した後、スプレードライ乾燥することによりセラミックス顆粒を得た。そして、このセラミックス顆粒を98MPa(1ton/cm)の圧力でCIP成形することにより、セラミックス成形体のインゴットを得た。次に、このインゴットに機械加工を施すことにより直径370mm、厚さ5mm〜20mmの複数の円板状部材を得た。このとき、円板状部材の表面には電極2を収容するための深さ0.2mmの凹部を形成した。複数の円板状部材を大気雰囲気で500℃以上の温度で2時間脱脂することにより複数の脱脂体を得た。
(Example 1)
Aluminum nitride (AlN) yttrium oxide as a sintering aid powder 95% by weight of (Y 2 O 3 was added 5 wt%, were mixed with a binder and a solvent, to obtain a ceramic granules by spray-drying drying Then, the ceramic granules were CIP-molded at a pressure of 98 MPa (1 ton / cm 2 ) to obtain an ingot of a ceramic molded body. Next, the ingot was machined to have a diameter of 370 mm and a thickness of 5 mm. A plurality of disc-shaped members having a thickness of ~ 20 mm were obtained. At this time, a recess having a depth of 0.2 mm for accommodating the electrode 2 was formed on the surface of the disc-shaped member. A plurality of degreased bodies were obtained by degreasing in an atmosphere at a temperature of 500 ° C. or higher for 2 hours.

脱脂体の凹部に電極2となる熱処理及び裁断された網目状体を配置した後、網目状体を挟み込むように複数の脱脂体を積層することにより積層体を得た。積層体を内部に配置したカーボン型をホットプレス炉内に入れ、積層体の積層方向に1MPa以上の圧力で加圧しながら、N雰囲気において炉内温度1800℃を2時間維持して焼成し、セラミックス焼結体を得た。そして、セラミックス焼結体の表面に研削、研磨加工を施すことにより、セラミックス焼結体に埋設された電極2と外部電源を接続するための端子穴を形成した後、端子穴内において電極2と端子をろう付けすることにより電極埋設部材10を作製した。 After heat-treating the electrode 2 and arranging the cut mesh-like body in the recess of the degreased body, a laminated body was obtained by laminating a plurality of degreased bodies so as to sandwich the mesh-like body. Carbon type of arranging the laminated body inside placed in a hot press furnace, while pressurized with 1MPa or more pressure in the laminating direction of the laminate was fired by keeping the furnace temperature 1800 ° C. for 2 hours in N 2 atmosphere, A ceramic sintered body was obtained. Then, by grinding and polishing the surface of the ceramics sintered body, a terminal hole for connecting the electrode 2 embedded in the ceramics sintered body and an external power source is formed, and then the electrode 2 and the terminal are formed in the terminal hole. The electrode embedded member 10 was manufactured by brazing.

ここで、電極2となる網目状体には、再結晶化温度が約1200℃のMoからなる直径dが0.1mmの線材が用いられた1インチ当たり50本の線材からなるメッシュサイズ50で平織されたものを用いた。 Here, for the mesh-like body to be the electrode 2, a wire rod having a diameter d of 0.1 mm made of Mo having a recrystallization temperature of about 1200 ° C. is used, and the mesh size is 50 made of 50 wires per inch. A plain weave was used.

そして、網目状体を水素雰囲気下、1000℃で熱処理した後、網目状体をレーザ加工により所定のパターンに裁断することにより、室温での抵抗値が6.02Ωであり、発熱体として機能する電極2を得た。 Then, after the mesh-like body is heat-treated at 1000 ° C. in a hydrogen atmosphere, the network-like body is cut into a predetermined pattern by laser processing, so that the resistance value at room temperature is 6.02Ω and it functions as a heating element. Electrode 2 was obtained.

作製した電極埋設部材10は、電極2に外部電源から給電し、電極埋設部材10の温度が定常状態になったのち表面の温度分布をIRカメラで測定し、直径300mmの所定の測定領域における温度の最大値と最小値の差を温度分布として測定した。 The produced electrode-embedded member 10 supplies power to the electrode 2 from an external power source, and after the temperature of the electrode-embedded member 10 becomes steady, the temperature distribution on the surface is measured with an IR camera, and the temperature in a predetermined measurement region having a diameter of 300 mm is measured. The difference between the maximum and minimum values of was measured as the temperature distribution.

また、温度分布の測定後には電極埋設部材10を切断し、電極2の断面の500倍又は1000倍に拡大した視野で画像処理を行うことにより、電極2の平均粒子径を測定した。結果などを表1にまとめた。 Further, after the temperature distribution was measured, the electrode embedded member 10 was cut, and image processing was performed in a field view magnified 500 times or 1000 times the cross section of the electrode 2, so that the average particle size of the electrode 2 was measured. The results are summarized in Table 1.

(実施例2)
電極2となる網目状体を室温での抵抗値が5.45Ωとなる所定のパターンに裁断したことを除いて、実施例1と同様の方法に従って実施例2の電極埋設部材10を作製した。
(Example 2)
The electrode-embedded member 10 of Example 2 was produced according to the same method as that of Example 1 except that the network body to be the electrode 2 was cut into a predetermined pattern having a resistance value of 5.45 Ω at room temperature.

(実施例3)
電極2となる網目状体を1000℃で熱処理を行うに際してホットプレス炉を用いてN雰囲気下で線材の交差部分の厚みtが0.185mmとなるように押圧しながら熱処理を行ったことを除いて、実施例1と同様の方法に従って実施例3の電極埋設部材10を作製した。
(Example 3)
That thickness t of the intersection of the wire rod under a N 2 atmosphere using a hot press furnace were subjected to a heat treatment while pressing so as to 0.185mm when a reticulated body serving as an electrode 2 is subjected to heat treatment at 1000 ° C. Except, the electrode-embedded member 10 of Example 3 was produced according to the same method as that of Example 1.

(実施例4)
電極2となる網目状体として再結晶化温度が約1200℃のWからなる線材が織られたものを用いたことを除いて、実施例1と同様の方法に従って実施例4の電極埋設部材10を作製した。
(Example 4)
The electrode-embedded member 10 of Example 4 was used in the same manner as in Example 1 except that a wire rod made of W having a recrystallization temperature of about 1200 ° C. was used as the network body to be the electrode 2. Was produced.

(実施例5)
電極2となる網目状体の熱処理を900℃で行ったことを除いて、実施例1と同様の方法に従って実施例5の電極埋設部材10を作製した。
(Example 5)
The electrode-embedded member 10 of Example 5 was produced in the same manner as in Example 1 except that the reticulated body to be the electrode 2 was heat-treated at 900 ° C.

(実施例6)
電極2となる網目状体として再結晶化温度が約1200℃の300ppmのK(カリウム)が添加されたWからなる線材が織られたものを用いたことを除いて、実施例1と同様の方法に従って実施例6の電極埋設部材10を作製した。
(Example 6)
The same as in Example 1 except that a wire rod made of W to which 300 ppm of K (potassium) added at a recrystallization temperature of about 1200 ° C. was used as the network body to be the electrode 2. The electrode-embedded member 10 of Example 6 was produced according to the method.

(比較例1)
電極2となる網目状体の熱処理を行わなかった点を除いて、実施例1と同様の方法に従って実施例1と同様のパターンに裁断した網目状体を用いて比較例1の電極埋設部材10を作製した。
(Comparative Example 1)
The electrode embedded member 10 of Comparative Example 1 was cut into the same pattern as in Example 1 according to the same method as in Example 1 except that the mesh-like body to be the electrode 2 was not heat-treated. Was produced.

(比較例2)
電極2となる網目状体の熱処理を行わなかった点を除いて、実施例1と同様の方法に従って実施例2と同様のパターンに裁断した網目状体を用いて比較例1の電極埋設部材10を作製した。
(Comparative Example 2)
The electrode embedded member 10 of Comparative Example 1 was cut into the same pattern as in Example 2 according to the same method as in Example 1 except that the mesh-like body to be the electrode 2 was not heat-treated. Was produced.

(比較例3)
電極2となる網目状体の熱処理を700℃で行ったことを除いて、実施例1と同様の方法に従って比較例3の電極埋設部材10を作製した。
(Comparative Example 3)
The electrode embedded member 10 of Comparative Example 3 was produced according to the same method as in Example 1 except that the reticulated body to be the electrode 2 was heat-treated at 700 ° C.

実施例1と比較例1や実施例2と比較例2の比較により、網目状体の熱処理を行うことにより、電極埋設部材10の表面の温度分布が低減されることが確認された。 By comparing Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2, it was confirmed that the temperature distribution on the surface of the electrode embedded member 10 was reduced by performing the heat treatment of the network.

実施例5と比較例3の比較により、900℃以上で網目状体を熱処理することにより電極埋設部材10の表面の温度分布の低減効果が顕著になることが確認された。 By comparing Example 5 and Comparative Example 3, it was confirmed that the effect of reducing the temperature distribution on the surface of the electrode embedded member 10 becomes remarkable by heat-treating the network at 900 ° C. or higher.

実施例5と実施例6の比較により、線材の平均粒径が1μm以上100μm以下であると電極埋設部材10の表面の温度分布のさらなる低減効果があることが確認された。 By comparing Example 5 and Example 6, it was confirmed that when the average particle size of the wire rod is 1 μm or more and 100 μm or less, the temperature distribution on the surface of the electrode embedded member 10 is further reduced.

実施例1と実施例3の比較により、電極押圧工程STEP2を行うことにより電極埋設部材10の表面の温度分布のさらなる低減効果があることが確認された。 By comparing Example 1 and Example 3, it was confirmed that the electrode pressing step STEP2 has the effect of further reducing the temperature distribution on the surface of the electrode embedded member 10.

1…基体、 2…電極、 10…電極埋設部材。 1 ... Base, 2 ... Electrode, 10 ... Electrode embedded member.

Claims (5)

セラミックスからなる基体と、前記基体の内部に埋設された網目状体からなる電極とを備える電極埋設部材の製造方法であって、
モリブデン、タングステン又はこれらを主成分とする合金からなる線材が織られてなる網目状体を900℃以上、前記線材の再結晶化温度未満の温度で還元雰囲気にて熱処理する工程と、
前記網目状体を前記電極の形状に裁断する工程と、
前記基体となるセラミックス粉末中、前記セラミックス粉末を成形してなるセラミックス成形体中、前記セラミックス成形体を脱脂してなる脱脂体中、あるいは前記セラミックス成形体又は前記脱脂体を仮焼してなる仮焼体中に前記熱処理及び前記裁断した網目状体を埋設した状態で、前記網目状体を前記再結晶化温度以上の温度で加熱する工程とを備えることを特徴とする電極埋設部材の製造方法。
A method for manufacturing an electrode-embedded member including a substrate made of ceramics and an electrode made of a mesh-like body embedded inside the substrate.
A step of heat-treating a network formed of a wire rod made of molybdenum, tungsten, or an alloy containing these as a main component in a reducing atmosphere at a temperature of 900 ° C. or higher and lower than the recrystallization temperature of the wire rod.
A step of cutting the network into the shape of the electrode, and
In the ceramic powder serving as the substrate, in the ceramic molded body obtained by molding the ceramic powder, in the degreased body obtained by degreasing the ceramic molded body, or temporarily baking the ceramic molded body or the degreased body. A method for producing an electrode-embedded member, which comprises a step of heating the network at a temperature equal to or higher than the recrystallization temperature in a state where the heat treatment and the cut network are embedded in the burnt body. ..
前記熱処理した網目状体を厚さ方向に押圧する工程を備え、
前記押圧された網目状体を前記セラミックス粉末中、前記セラミックス成形体中、前記脱脂体中又は前記仮焼体中に埋設した状態で前記加熱を行うことを特徴とする請求項1に記載の電極埋設部材の製造方法。
A step of pressing the heat-treated network in the thickness direction is provided.
The electrode according to claim 1, wherein the pressed mesh body is heated while being embedded in the ceramic powder, the ceramic molded body, the degreased body, or the calcined body. Manufacturing method of buried members.
前記網目状体を前記熱処理すると同時に当該網目状体を厚さ方向に押圧することを特徴とする請求項1に記載の電極埋設部材の製造方法。 The method for manufacturing an electrode-embedded member according to claim 1, wherein the mesh-like body is heat-treated and the mesh-like body is pressed in the thickness direction at the same time. 前記加熱後の前記線材におけるモリブデン又はタングステンの平均粒径が1μm以上100μm以下であることを特徴とする請求項2又は3に記載の電極埋設部材の製造方法。 The method for manufacturing an electrode-embedded member according to claim 2 or 3, wherein the average particle size of molybdenum or tungsten in the wire rod after heating is 1 μm or more and 100 μm or less. 前記押圧前の前記線材の断面が直径dの円状であるとき、前記裁断した網目状体の前記線材の交差部分における厚みが1.95d以下となるように前記押圧を行うことを特徴とする請求項2又は3に記載の電極埋設部材の製造方法。 When the cross section of the wire rod before pressing is circular with a diameter d, the pressing is performed so that the thickness at the intersection of the wire rods of the cut mesh-like body is 1.95 d or less. The method for manufacturing an electrode embedded member according to claim 2 or 3.
JP2019049656A 2019-03-18 2019-03-18 Method for manufacturing electrode-embedded member Active JP7249827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049656A JP7249827B2 (en) 2019-03-18 2019-03-18 Method for manufacturing electrode-embedded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049656A JP7249827B2 (en) 2019-03-18 2019-03-18 Method for manufacturing electrode-embedded member

Publications (2)

Publication Number Publication Date
JP2020155449A true JP2020155449A (en) 2020-09-24
JP7249827B2 JP7249827B2 (en) 2023-03-31

Family

ID=72559622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049656A Active JP7249827B2 (en) 2019-03-18 2019-03-18 Method for manufacturing electrode-embedded member

Country Status (1)

Country Link
JP (1) JP7249827B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228244A (en) * 1998-02-12 1999-08-24 Ngk Insulators Ltd Ceramic member having metal member built therein and its production
JP2000158275A (en) * 1998-11-27 2000-06-13 Kyocera Corp Electrostatic chuck
JP2002151240A (en) * 2000-11-14 2002-05-24 Inoac Corp Ceramic heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228244A (en) * 1998-02-12 1999-08-24 Ngk Insulators Ltd Ceramic member having metal member built therein and its production
JP2000158275A (en) * 1998-11-27 2000-06-13 Kyocera Corp Electrostatic chuck
JP2002151240A (en) * 2000-11-14 2002-05-24 Inoac Corp Ceramic heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石原秀夫(他2名): "モリブデンの再結晶特性と高温硬さ", JAERI−Mレポート, vol. 8567, JPN7022004881, November 1979 (1979-11-01), JP, pages 1 - 6, ISSN: 0004897710 *

Also Published As

Publication number Publication date
JP7249827B2 (en) 2023-03-31

Similar Documents

Publication Publication Date Title
TWI501684B (en) Ceramic heater and method for producing same
JP5008875B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
US7800029B2 (en) Heating device
KR101963521B1 (en) Ceramic structure, member for substrate holding device, and method for manufacturing ceramic structure
CN107135560B (en) Ceramic structure, method for producing the same, and member for semiconductor manufacturing apparatus
JP7465771B2 (en) Compound sintered body, semiconductor manufacturing equipment member, and method for manufacturing compound sintered body
JP2005203734A (en) Ceramic article with embedded metal member and method of manufacturing the same
JP6618409B2 (en) Substrate holding device and manufacturing method thereof
JP2020155449A (en) Manufacturing method of electrode embedded member
CN114180942B (en) Composite sintered body, semiconductor manufacturing apparatus member, and method for manufacturing composite sintered body
JP6196492B2 (en) Manufacturing method of alumina ceramic joined body
JP2014067834A (en) Electrostatic chuck and manufacturing method of the same
JP2007070142A (en) Plasma-resistant electrode-buried body, and method for producing the same
JP2020040865A (en) Manufacturing method of ceramic member
JP2017191910A (en) Board holding device and manufacturing method thereof
TWI609162B (en) Calcination jig and method for producing the same
TWI839171B (en) Member for semiconductor manufacturing apparatus
JP7311975B2 (en) Manufacturing method of ceramic member
JP7280059B2 (en) Method for manufacturing electrode-embedded member
JP6236314B2 (en) Silicon carbide bonded body and method for manufacturing the same
JP4522963B2 (en) Heating device
KR102352039B1 (en) Manufacturing Method Edge Ring of Electrostatic Chuck and Electrostatic Chuck Comprising Same
JP2021157948A (en) Ceramic heater and manufacturing method thereof
JP2022048078A (en) Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
JP2662360B2 (en) Manufacturing method of ceramic heater and ceramic heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150