JP2002151240A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JP2002151240A
JP2002151240A JP2000347128A JP2000347128A JP2002151240A JP 2002151240 A JP2002151240 A JP 2002151240A JP 2000347128 A JP2000347128 A JP 2000347128A JP 2000347128 A JP2000347128 A JP 2000347128A JP 2002151240 A JP2002151240 A JP 2002151240A
Authority
JP
Japan
Prior art keywords
heat
resistant
conductive material
ceramic heater
metal core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000347128A
Other languages
Japanese (ja)
Other versions
JP4592926B2 (en
Inventor
Kazuyasu Nakane
和靖 中根
Toshihiro Yamamoto
敏博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Inoac Technical Center Co Ltd
Original Assignee
Inoue MTP KK
Inoac Corp
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp, Inoac Technical Center Co Ltd filed Critical Inoue MTP KK
Priority to JP2000347128A priority Critical patent/JP4592926B2/en
Publication of JP2002151240A publication Critical patent/JP2002151240A/en
Application granted granted Critical
Publication of JP4592926B2 publication Critical patent/JP4592926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic heater of high durability which is dense, of high strength, small thermal capacity, and excellent in resistance to thermal shock, and yet, can follow rapid rise in temperature and cooling. SOLUTION: The ceramic heater is composed of lattice body of wire material with heat resistant conductive material 12 formed around a heat resistant metal core material 11 and heat resistant, oxidation resistant ceramics around the heat resistant conductive material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電気炉等に用い
られるセラミックヒータに関する。
The present invention relates to a ceramic heater used for an electric furnace or the like.

【0002】[0002]

【従来の技術】近年、耐久性が高く、高強度で、さらに
耐熱衝撃性に優れたヒータの必要性が高まっている。
2. Description of the Related Art In recent years, there has been an increasing need for a heater having high durability, high strength, and excellent thermal shock resistance.

【0003】このため、ヒータとしてセラミックス製の
ものが多用されるようになってきた。このセラミックス
製のヒータは、耐熱性、耐酸化性、耐熱衝撃性、高温強
度などが優れており、また、抵抗値が発熱体に適した値
を有しているため、電気炉の発熱源として好適なものと
されている。例えば、従来より、再結晶質の炭化ケイ素
発熱体や、二ケイ化モリブデン発熱体がセラミックヒー
タに広く利用されている。
For this reason, ceramic heaters have been widely used as heaters. This ceramic heater has excellent heat resistance, oxidation resistance, thermal shock resistance, high-temperature strength, etc., and has a resistance value suitable for the heating element. It is considered suitable. For example, recrystallized silicon carbide heating elements and molybdenum disilicide heating elements have been widely used in ceramic heaters.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記再結晶質
の炭化ケイ素発熱体や二ケイ化モリブデン発熱体からな
るセラミックヒータは、炭化ケイ素や二ケイ化モリブデ
ン粉末に有機バインダーなどを混合して、所定の形状に
成形したのち、焼成処理をすることにより製造されてい
るので、一般に組織性状の緻密性が低く、高い気孔率を
有している。そのため、高温における耐酸化性が低く、
長期の使用には耐えないものであった。しかも、二ケイ
化モリブデン発熱体からなるセラミックヒータは、数1
00℃の比較的低温域において熱力学的に不安定であ
り、相変態を起こして粉体化してしまう傾向がある。そ
のため、温度の上昇と降下を伴う繰り返し使用によっ
て、寿命の低下を来す問題がある。
However, the ceramic heater comprising the recrystallized silicon carbide heating element or the molybdenum disilicide heating element is prepared by mixing an organic binder or the like with silicon carbide or molybdenum disilicide powder. Since it is manufactured by performing a baking treatment after molding into a predetermined shape, it generally has low texture and high porosity. Therefore, oxidation resistance at high temperature is low,
It could not withstand long-term use. In addition, the ceramic heater composed of the molybdenum disilicide heating element has the following formula:
It is thermodynamically unstable in a relatively low temperature range of 00 ° C., and tends to undergo phase transformation to powder. Therefore, there is a problem that the life is shortened due to the repeated use with the rise and fall of the temperature.

【0005】さらに、従来のセラミックヒータは、ある
程度の熱容量を自らが持つため、分単位での急速な冷却
が難しく、また、この急速な温度低下を生じないことに
より耐熱衝撃性を有するものでもあった。しかし、物質
の熱処理の都合上、このような急速な処理を要求する場
合には、加熱したセラミックヒータを炉から取り出す以
外に方法がなく、作業が煩わしくなる問題がある。
Further, the conventional ceramic heater itself has a certain heat capacity, so that it is difficult to perform rapid cooling in units of minutes, and it does not have such a rapid temperature drop, so that it has thermal shock resistance. Was. However, when such rapid processing is required due to the heat treatment of the substance, there is no other method than removing the heated ceramic heater from the furnace, and there is a problem that the operation becomes complicated.

【0006】この発明は、前記の点に鑑みなされたもの
であり、緻密で強度が高く、熱容量が小さくて耐熱衝撃
性に優れ、しかも急激な昇温、冷却に追随できる耐久性
の高いセラミックヒータの提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is a highly durable ceramic heater which is dense, has high strength, has a small heat capacity, has excellent thermal shock resistance, and can follow rapid temperature rise and cooling. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、耐熱
金属芯材の周囲に耐熱導電性物質が形成され、該耐熱導
電性物質の周囲に耐熱耐酸化性セラミックスが形成され
た線材の格子状体からなることを特徴とするセラミック
ヒータに係る。
According to a first aspect of the present invention, there is provided a wire rod having a heat-resistant conductive material formed around a heat-resistant metal core, and a heat-resistant and oxidation-resistant ceramic formed around the heat-resistant conductive material. The present invention relates to a ceramic heater comprising a lattice.

【0008】請求項2の発明は、請求項1における耐熱
導電性物質及び耐熱耐酸化性セラミックスが、CVD又
はCVI法で形成されたものであることを特徴とする。
A second aspect of the present invention is characterized in that the heat-resistant conductive material and the heat-resistant oxidation-resistant ceramic according to the first aspect are formed by a CVD or CVI method.

【0009】請求項3の発明は、請求項2における耐熱
金属芯材がモリブデン製であり、耐熱導電性物質が、前
記耐熱金属芯材のモリブデンと気相から供給されたケイ
素とが反応して形成された二ケイ化モリブデンであるこ
とを特徴とする。
According to a third aspect of the present invention, the heat-resistant metal core material of the second aspect is made of molybdenum, and the heat-resistant conductive material reacts with the molybdenum of the heat-resistant metal core material and silicon supplied from the gas phase. It is characterized by being formed molybdenum disilicide.

【0010】請求項4の発明は、請求項2又は3におけ
る耐熱金属芯材の全部が耐熱導電性物質の形成に使用さ
れて、前記耐熱金属芯材全体が耐熱導電性物質と同材質
のものに変化していることを特徴とする。
According to a fourth aspect of the present invention, the heat-resistant metal core is entirely used for forming a heat-resistant conductive material, and the entire heat-resistant metal core is made of the same material as the heat-resistant conductive material. It is characterized by having changed to.

【0011】[0011]

【発明の実施の形態】以下この発明の実施形態について
説明する。図1はこの発明の一実施例に係わるセラミッ
クヒータの部分拡大平面図、図2は図1におけるセラミ
ックヒータの骨格構造を示す概略断面図、図3は他の実
施例における骨格構造を示す概略断面図である。
Embodiments of the present invention will be described below. FIG. 1 is a partially enlarged plan view of a ceramic heater according to one embodiment of the present invention, FIG. 2 is a schematic cross-sectional view showing a skeleton structure of the ceramic heater in FIG. 1, and FIG. 3 is a schematic cross-section showing a skeleton structure in another embodiment. FIG.

【0012】図1、2に示すこの発明の一実施例に係わ
るセラミックヒータ10は、耐熱金属芯材11の周囲に
耐熱導電性物質12が形成され、さらにその周囲に耐熱
耐酸化性セラミックス13が形成された線材15の格子
状体からなる。ここでの格子状体は、線材が縦・横に織
りなされた織物、あるいは網等をいう。線材15間の織
目又は網目14は開口している必要はなく、隣り合う線
材15同士が接触して織目又は網目14を閉じていても
よい。
In a ceramic heater 10 according to an embodiment of the present invention shown in FIGS. 1 and 2, a heat-resistant conductive material 12 is formed around a heat-resistant metal core material 11, and a heat-resistant oxidation-resistant ceramic 13 is further formed around the heat-resistant conductive material 12. It is formed of a lattice of the formed wire 15. The lattice-like body here refers to a woven fabric or a net or the like in which a wire is woven vertically and horizontally. The weave or mesh 14 between the wires 15 need not be open, and the wires or meshes 14 may be closed by contacting adjacent wires 15.

【0013】耐熱金属芯材11としては、溶融温度が
1,400℃以上のものとされ、モリブデン、ニッケ
ル、チタン、タングステン、タンタル、ジルコニウム、
ニオブ等を挙げることができる。また、この耐熱金属芯
材11は、予め耐熱金属芯材11を織物状とした金属繊
維織物が好適である。その際の線サイズ及び織目又は網
目サイズは適宜とされる。例として、150メッシュ程
度を示す。
The heat-resistant metal core material 11 has a melting temperature of 1,400 ° C. or more, and includes molybdenum, nickel, titanium, tungsten, tantalum, zirconium,
Niobium and the like can be mentioned. The heat-resistant metal core material 11 is preferably a metal fiber woven fabric in which the heat-resistant metal core material 11 is woven in advance. In this case, the line size and the weave or mesh size are appropriately determined. As an example, about 150 mesh is shown.

【0014】耐熱導電性物質12としては、溶融温度が
1,000℃以上、抵抗値が2×10-4〜1×10-6Ω
・cmのものが好適であり、二ケイ化モリブデン、窒化
チタン、炭化ジルコニウム等を挙げることができる。こ
の耐熱導電性物質12は、公知のCVD又はCVI法に
より形成されたものが緻密で強度に優れるため好まし
い。
The heat-resistant conductive material 12 has a melting temperature of 1,000 ° C. or more and a resistance value of 2 × 10 -4 to 1 × 10 -6 Ω.
Cm is preferable, and examples thereof include molybdenum disilicide, titanium nitride, and zirconium carbide. The heat-resistant conductive material 12 is preferably formed by a known CVD or CVI method because it is dense and has excellent strength.

【0015】前記耐熱導電性物質12は、該耐熱導電性
物質12の全元素をすべて気相から供給して、CVD又
はCVI法により前記耐熱金属芯材11上に付加したも
のでもよい。また、前記耐熱導電性物質12を構成する
構成元素の一つを耐熱金属芯材11に含まれる金属と
し、残りの元素を気相法で供給して、金属繊維芯材11
を消費する形で耐熱導電性物質12を形成すれば、前記
耐熱金属芯材11と耐熱導電性物質12が、より強固に
密着してセラミックヒータ10の強度が高くなるために
好ましい。例えば、前記耐熱金属芯材11としてモリブ
デンを用い、該モリブデンと、気相から供給されたケイ
素との反応により、二ケイ化モリブデンからなる耐熱導
電性物質12を形成する場合を挙げる。
The heat-resistant conductive material 12 may be a material in which all the elements of the heat-resistant conductive material 12 are supplied from a gas phase and are added onto the heat-resistant metal core material 11 by CVD or CVI. Further, one of the constituent elements constituting the heat-resistant conductive material 12 is a metal contained in the heat-resistant metal core material 11, and the remaining elements are supplied by a vapor phase method to form the metal fiber core material 11.
It is preferable to form the heat-resistant conductive material 12 in a form in which the heat-resistant metal core material 11 and the heat-resistant conductive material 12 are more firmly adhered to each other and the strength of the ceramic heater 10 is increased. For example, a case where molybdenum is used as the heat-resistant metal core material 11 and the heat-resistant conductive material 12 made of molybdenum disilicide is formed by a reaction between the molybdenum and silicon supplied from the gas phase.

【0016】さらに、気相から供給された元素と前記耐
熱金属芯材11のすべてとを反応させて耐熱導電性物質
12を形成してもよい。その場合、前記耐熱金属芯材1
1はすべて耐熱導電性物質12と同材質となり、図3に
示す例のように、セラミックヒータ10Aの骨格は、耐
熱金属芯材11であったところまで耐熱導電性物質12
で構成されるため、より強度が高いものとなる。符号1
5Aは線材を示す。
Further, the heat-resistant conductive material 12 may be formed by reacting the element supplied from the gas phase with all of the heat-resistant metal core material 11. In this case, the heat-resistant metal core 1
1 are made of the same material as the heat-resistant conductive material 12. As shown in the example shown in FIG.
, The strength is higher. Sign 1
5A shows a wire.

【0017】耐熱耐酸化性セラミックス13としては、
耐熱性及び耐酸化性を有する物質であればよく、好まし
くは炭化ケイ素、窒化ケイ素、炭化クロム、酸化クロ
ム、酸化アルミニウム、シリカのいずれかからなるもの
である。ここで耐熱性としては溶融温度が1,000℃
以上、耐酸化性としては酸素拡散バリア層の形成される
ものが好ましい。この耐熱耐酸化性セラミックス13と
して、特に炭化ケイ素、窒化ケイ素および炭化クロムは
耐熱性及び耐酸化性に優れるため最適である。この耐熱
耐酸化性セラミックス13は、公知のCVD又はCVI
法により前記耐熱導電性物質12の外周に形成されたも
のが緻密で強度に優れるため好ましい。
The heat and oxidation resistant ceramics 13 include
Any substance having heat resistance and oxidation resistance may be used, and is preferably made of any of silicon carbide, silicon nitride, chromium carbide, chromium oxide, aluminum oxide, and silica. Here, as the heat resistance, the melting temperature is 1,000 ° C.
As described above, the oxidation resistance is preferably that in which an oxygen diffusion barrier layer is formed. As the heat-resistant and oxidation-resistant ceramics 13, silicon carbide, silicon nitride and chromium carbide are particularly preferable because of their excellent heat resistance and oxidation resistance. This heat-resistant and oxidation-resistant ceramic 13 is made of a known CVD or CVI.
A material formed on the outer periphery of the heat-resistant conductive material 12 by a method is preferable because it is dense and has excellent strength.

【0018】[0018]

【実施例】・実施例1 まず、モリブデンよりなる金属繊維織物(150メッシ
ュ、商品名:モリブデン金網、ニラコ製、平面寸法5×
5cm)を反応容器に入れ、その反応容器を電気炉内に
収納して反応容器内が1,000℃になるように加熱す
る。他方、1級塩化ケイ素を入れた飽和容器に水素(純
度99.9%)を通過させ、形成される水素と塩化ケイ
素の混合気体が塩化ケイ素濃度4%となるように前記水
素の流量を保ち、得られる混合気体を、一時リザーバー
タンクに蓄える。
EXAMPLES Example 1 First, a metal fiber woven fabric made of molybdenum (150 mesh, trade name: molybdenum wire mesh, made by Nilaco, plane dimension 5 ×
5 cm) is placed in a reaction vessel, and the reaction vessel is housed in an electric furnace and heated to 1,000 ° C. in the reaction vessel. On the other hand, hydrogen (purity: 99.9%) is passed through a saturated vessel containing primary silicon chloride, and the flow rate of the hydrogen is maintained such that the mixed gas of hydrogen and silicon chloride has a silicon chloride concentration of 4%. The obtained gas mixture is temporarily stored in a reservoir tank.

【0019】次いで、前記リザーバータンクの混合気体
を、前記1,000℃になっている反応容器内に50m
l供給して金属繊維織物のモリブデンと反応させ、その
後、反応容器から真空排気を行った。前記混合気体の供
給から真空排気までの工程を20,000回繰り返して
行い、これにより前記モリブデンとケイ素を反応させて
二ケイ化モリブデン(MoSi2)からなる耐熱導電性
物質を金属繊維織物のモリブデン周囲に形成した。
Next, the mixed gas in the reservoir tank was poured into the reaction vessel at 1,000 ° C. for 50 m.
and then reacted with molybdenum of the metal fiber fabric, and then the chamber was evacuated. The steps from the supply of the mixed gas to the evacuation are repeated 20,000 times, whereby the molybdenum and silicon are reacted to form a heat-resistant conductive material composed of molybdenum disilicide (MoSi 2 ) on the metal fiber fabric molybdenum. Formed around.

【0020】次いで、水素(純度99.9%)とメタン
(純度99.9%)を24:1で混合した混合気体を、
1級塩化ケイ素を入れた飽和容器に通過させ、形成され
る塩化ケイ素、水素およびメタンからなる混合気体が塩
化ケイ素濃度4%となるように前記水素とメタンの流量
を保ち、得られる塩化ケイ素、水素およびメタンからな
る混合気体を、一時リザーバータンクに蓄える。そし
て、前記塩化ケイ素、水素およびメタンからなる混合気
体を、リザーバータンクから前記反応容器内に50ml
供給して反応させ、その後、反応容器から真空排気を行
った。前記塩化ケイ素、水素およびメタンからなる混合
気体の反応容器への供給から真空排気までの工程を1
0,000回繰り返して、前記二ケイ化モリブデン上に
炭化ケイ素からなる耐熱耐酸化性セラミックスを形成し
て、図1及び図2の構造からなるセラミックヒータを得
た。
Next, a mixed gas obtained by mixing hydrogen (purity 99.9%) and methane (purity 99.9%) at a ratio of 24: 1 is used.
Passing through a saturated vessel containing primary silicon chloride, maintaining the flow rates of the hydrogen and methane so that the mixed gas formed of silicon chloride, hydrogen and methane has a silicon chloride concentration of 4%; A gas mixture consisting of hydrogen and methane is temporarily stored in a reservoir tank. Then, 50 ml of the mixed gas comprising the silicon chloride, hydrogen and methane was poured into the reaction vessel from a reservoir tank.
The reaction was supplied and reacted, and then the chamber was evacuated. The steps from supply of the mixed gas comprising silicon chloride, hydrogen and methane to the reaction vessel to evacuation are as follows:
By repeating 000 times, heat-resistant and oxidation-resistant ceramics made of silicon carbide were formed on the molybdenum disilicide to obtain a ceramic heater having the structure shown in FIGS.

【0021】このようにして得られたセラミックヒータ
に対し、対向する辺の間の抵抗値を測定したところ0.
1Ωであった。また、このセラミックヒータの両端(対
向する辺)間に通電したところ、約1分で、放射温度1
500℃に達した。通電を終了すると約5分ですみやか
に100℃以下になった。1分通電5分切断のサイクル
を100回繰り返しても抵抗値の変化はなく、ヒータと
して正常に動作した。
With respect to the ceramic heater thus obtained, the resistance between opposing sides was measured.
It was 1Ω. When electricity was applied between both ends (opposite sides) of the ceramic heater, the radiation temperature was reduced to about 1 minute.
500 ° C. was reached. When the energization was completed, the temperature quickly decreased to 100 ° C. or less in about 5 minutes. The resistance value did not change even if the 1 minute energization 5 minute disconnection cycle was repeated 100 times, and the heater operated normally.

【0022】・実施例2 前記実施例1における塩化ケイ素と水素の混合気体を、
リザーバータンクから1,000℃の反応容器内に50
ml供給して反応させ、その後真空排気する繰り返し回
数を40,000回に変更した点を除き、他は実施例1
と同様にしてセラミックヒータを得た。このようにして
得られたセラミックヒータは、図3に示すように、耐熱
金属芯材であるモリブデン部分まで、完全に二ケイ化モ
リブデンからなる耐熱耐酸化物質12に変化していた。
Example 2 The mixed gas of silicon chloride and hydrogen in Example 1 was
50 from the reservoir tank into the reaction vessel at 1,000 ℃
Example 1 was repeated except that the number of repetitions of supplying, reacting and then evacuating to 40,000 was changed to 40,000.
In the same manner as above, a ceramic heater was obtained. As shown in FIG. 3, the ceramic heater thus obtained was completely changed to the heat-resistant and oxidation-resistant substance 12 composed of molybdenum disilicide up to the molybdenum portion as the heat-resistant metal core.

【0023】前記実施例2のセラミックヒータに対し、
対向する辺間の抵抗値を測定したところ6Ωであった。
また、この実施例2のセラミックヒータにおける両端
(対向する辺)間に通電したところ、約1分で、放射温
度1500℃に達した。通電を終了すると約5分ですみ
やかに100℃以下になった。1分通電5分切断のサイ
クルを100回繰り返しても抵抗値の変化はなく、ヒー
タとして正常に動作した。
With respect to the ceramic heater of the second embodiment,
When the resistance value between the opposing sides was measured, it was 6Ω.
Further, when a current was applied between both ends (opposed sides) of the ceramic heater of Example 2, the radiation temperature reached 1500 ° C. in about 1 minute. When the energization was completed, the temperature quickly decreased to 100 ° C. or less in about 5 minutes. The resistance value did not change even if the 1 minute energization 5 minute disconnection cycle was repeated 100 times, and the heater operated normally.

【0024】[0024]

【発明の効果】この発明のセラミックヒータによれば、
耐熱金属芯材の周囲に耐熱導電性物質が形成され、該耐
熱導電性物質の周囲に耐熱耐酸化性セラミックスが形成
された線材の格子状体からなるため、低温から低い抵抗
値を示して急速に高温となることができ、また、高温で
の酸化劣化が起こりにくく、しかも、熱容量が小さく耐
熱衝撃性が高いためにすみやかに温度を低下できるとい
う種々の優れた効果を有する。これらの効果は、請求項
2〜4のように、CVD又はCVIにより耐熱金属芯材
の周囲に耐熱導電性物質を形成し、その周囲に耐熱耐酸
化性セラミックスを被覆したものにおいてより優れたも
のとなる。
According to the ceramic heater of the present invention,
A heat-resistant conductive material is formed around the heat-resistant metal core material, and a heat-resistant and oxidation-resistant ceramic is formed around the heat-resistant conductive material. In addition, it has various excellent effects that the temperature can be rapidly lowered due to low heat capacity, high thermal shock resistance, and low heat capacity. These effects are superior to those in which a heat-resistant conductive material is formed around a heat-resistant metal core material by CVD or CVI and the heat-resistant oxidation-resistant ceramic is coated around the core as described in claims 2 to 4. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係わるセラミックヒータ
の部分拡大平面図である。
FIG. 1 is a partially enlarged plan view of a ceramic heater according to one embodiment of the present invention.

【図2】図1におけるセラミックヒータの骨格構造を示
す概略断面図である。
FIG. 2 is a schematic sectional view showing a skeleton structure of the ceramic heater in FIG.

【図3】他の実施例における骨格構造を示す概略断面図
である。
FIG. 3 is a schematic sectional view showing a skeletal structure according to another embodiment.

【符号の説明】[Explanation of symbols]

10 セラミックヒータ 11 耐熱金属芯材 12
耐熱導電性物質 13 耐熱耐酸化性セラミックス 15,15A 線材
Reference Signs List 10 ceramic heater 11 heat-resistant metal core material 12
Heat resistant conductive material 13 Heat resistant oxidation resistant ceramics 15, 15A Wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敏博 愛知県名古屋市熱田区千年一丁目16番30号 株式会社イノアックコーポレーション船 方事業所内 Fターム(参考) 3K092 PP09 QA01 QB08 QB11 QB12 QB24 QB78 RA01 RD09 RD25 RD34 RE02 RE05 TT37 VV09 VV34 4K030 AA03 AA09 AA17 BA37 BA48 BB12 CA02 LA00  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshihiro Yamamoto 1-16-30 Millennichi, Atsuta-ku, Nagoya-shi, Aichi F-term in Inoac Corporation Shipbuilding Works (reference) 3K092 PP09 QA01 QB08 QB11 QB12 QB24 QB78 RA01 RD09 RD25 RD34 RE02 RE05 TT37 VV09 VV34 4K030 AA03 AA09 AA17 BA37 BA48 BB12 CA02 LA00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐熱金属芯材の周囲に耐熱導電性物質が
形成され、該耐熱導電性物質の周囲に耐熱耐酸化性セラ
ミックスが形成された線材の格子状体からなることを特
徴とするセラミックヒータ。
A ceramic comprising a heat-resistant conductive material formed around a heat-resistant metal core material, and a wire-like lattice in which a heat-resistant and oxidation-resistant ceramic is formed around the heat-resistant conductive material. heater.
【請求項2】 耐熱導電性物質及び耐熱耐酸化性セラミ
ックスが、CVD又はCVI法で形成されたものである
ことを特徴とする請求項1記載のセラミックヒータ。
2. The ceramic heater according to claim 1, wherein the heat-resistant conductive material and the heat-resistant oxidation-resistant ceramic are formed by CVD or CVI.
【請求項3】 耐熱金属芯材がモリブデン製であり、耐
熱導電性物質が、前記耐熱金属芯材のモリブデンと気相
から供給されたケイ素とが反応して形成された二ケイ化
モリブデンであることを特徴とする請求項2記載のセラ
ミックヒータ。
3. The heat-resistant metal core material is made of molybdenum, and the heat-resistant conductive material is molybdenum disilicide formed by reacting the molybdenum of the heat-resistant metal core material with silicon supplied from a gas phase. 3. The ceramic heater according to claim 2, wherein:
【請求項4】 耐熱金属芯材の全部が耐熱導電性物質の
形成に使用されて、前記耐熱金属芯材全体が耐熱導電性
物質と同材質のものに変化していることを特徴とする請
求項2又は3記載のセラミックヒータ。
4. The heat-resistant metal core is entirely used for forming a heat-resistant conductive material, and the entire heat-resistant metal core is changed to the same material as the heat-resistant conductive material. Item 4. The ceramic heater according to item 2 or 3.
JP2000347128A 2000-11-14 2000-11-14 Heater with ceramic layer Expired - Fee Related JP4592926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347128A JP4592926B2 (en) 2000-11-14 2000-11-14 Heater with ceramic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347128A JP4592926B2 (en) 2000-11-14 2000-11-14 Heater with ceramic layer

Publications (2)

Publication Number Publication Date
JP2002151240A true JP2002151240A (en) 2002-05-24
JP4592926B2 JP4592926B2 (en) 2010-12-08

Family

ID=18820909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347128A Expired - Fee Related JP4592926B2 (en) 2000-11-14 2000-11-14 Heater with ceramic layer

Country Status (1)

Country Link
JP (1) JP4592926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155449A (en) * 2019-03-18 2020-09-24 日本特殊陶業株式会社 Manufacturing method of electrode embedded member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134585A (en) * 1983-01-21 1984-08-02 ティーディーケイ株式会社 Structure of heater
JPS61183888A (en) * 1985-02-09 1986-08-16 株式会社リケン Metal heat generating body having heatproof electric insulation film
JPS61195580A (en) * 1985-02-22 1986-08-29 京セラ株式会社 Ceramic heater
JPS62170183A (en) * 1986-01-22 1987-07-27 株式会社東芝 Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same
JPH05270930A (en) * 1991-09-17 1993-10-19 Hiroyuki Yoshiura Far infrared ray emitting ceramic body and its production
JPH0655034A (en) * 1992-06-10 1994-03-01 Shimadzu Corp Purifying device for exhaust gas and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134585A (en) * 1983-01-21 1984-08-02 ティーディーケイ株式会社 Structure of heater
JPS61183888A (en) * 1985-02-09 1986-08-16 株式会社リケン Metal heat generating body having heatproof electric insulation film
JPS61195580A (en) * 1985-02-22 1986-08-29 京セラ株式会社 Ceramic heater
JPS62170183A (en) * 1986-01-22 1987-07-27 株式会社東芝 Tungsten or molybdenum heater which is excellent in acid errosion resistant properties and manufacture of the same
JPH05270930A (en) * 1991-09-17 1993-10-19 Hiroyuki Yoshiura Far infrared ray emitting ceramic body and its production
JPH0655034A (en) * 1992-06-10 1994-03-01 Shimadzu Corp Purifying device for exhaust gas and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155449A (en) * 2019-03-18 2020-09-24 日本特殊陶業株式会社 Manufacturing method of electrode embedded member
JP7249827B2 (en) 2019-03-18 2023-03-31 日本特殊陶業株式会社 Method for manufacturing electrode-embedded member

Also Published As

Publication number Publication date
JP4592926B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4641569B2 (en) Aluminum nitride sintered body, corrosion resistant member, metal burying and semiconductor holding device
TW201230201A (en) Heating device
TW201041424A (en) Ceramic heater and method for producing same
JP2008081362A (en) Method for producing bonded material of tantalum and carbon, gradient composition structure of tantalum and carbon, method for producing tantalum tube and pit carbon core, tantalum tube and pit carbon core, method for producing tantalum carbide wire, and tantalum carbide wire
TWI303626B (en)
JP2002151240A (en) Ceramic heater
CN110054173A (en) A kind of preparation method of the carbon material for the class carbon nano tube structure adulterating nitrogen
JPWO2006095709A1 (en) Thin film heating element
US2966430A (en) Electric resistance elements
JPH05343170A (en) Small-size electric furnace for working optical fiber
EP1344428B1 (en) A resistor element for extreme temperatures
JP2006045059A (en) Aluminum nitride sintered compact, corrosion resistant member, metal buried article, and semiconductor holding device
JP2000082574A (en) Carbon heating element and its manufacture
JP4090767B2 (en) Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating
CN104962857B (en) A kind of coating molybdenum heater that can be used in an atmosphere and preparation method thereof
JPH09512129A (en) Manufacturing method of electric resistance heating means
JPS5921950B2 (en) Manufacturing method of aluminum composite material
JP2012052235A (en) Manufacturing method of tantalum tube and pit carbon core, tantalum tube and pit carbon core, manufacturing method of tantalum carbide wiring, and tantalum carbide wiring
JP2537606B2 (en) Ceramic Heater
CN106747464A (en) ZrB2SiC ceramic heater and superhigh temperature firing equipment
JP2010143823A (en) MoSi2 POWDER, METHOD FOR PRODUCING THE SAME, HEATING ELEMENT USING THE POWDER, AND METHOD FOR PRODUCING THE HEATING ELEMENT
JPH03272587A (en) Anti-corrosion member
CN105873253A (en) High-thermal-conductivity ceramic membrane heating pipe
KR101738857B1 (en) Microwave sensitized composition and method for manufacturing sensitized material
JP2000150115A (en) Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees