JP2012052235A - Manufacturing method of tantalum tube and pit carbon core, tantalum tube and pit carbon core, manufacturing method of tantalum carbide wiring, and tantalum carbide wiring - Google Patents

Manufacturing method of tantalum tube and pit carbon core, tantalum tube and pit carbon core, manufacturing method of tantalum carbide wiring, and tantalum carbide wiring Download PDF

Info

Publication number
JP2012052235A
JP2012052235A JP2011198901A JP2011198901A JP2012052235A JP 2012052235 A JP2012052235 A JP 2012052235A JP 2011198901 A JP2011198901 A JP 2011198901A JP 2011198901 A JP2011198901 A JP 2011198901A JP 2012052235 A JP2012052235 A JP 2012052235A
Authority
JP
Japan
Prior art keywords
tantalum
carbon
tube
alloy
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011198901A
Other languages
Japanese (ja)
Other versions
JP5548174B2 (en
Inventor
Tadaaki Kaneko
忠昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2011198901A priority Critical patent/JP5548174B2/en
Publication of JP2012052235A publication Critical patent/JP2012052235A/en
Application granted granted Critical
Publication of JP5548174B2 publication Critical patent/JP5548174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which enables the solid-phase diffusion joining of tantalum of a prescribed shape and carbon by a simple method, and forms a carbide on a tantalum surface other than a place where the solid-phase diffusion joining of the tantalum and the carbon is performed.SOLUTION: Tantalum or a tantalum alloy is formed into a tube shape, carbon powder is press-inserted into the tube, after that, the tube is placed in a vacuum heat treatment furnace after the tube is formed into a coil shape, TaOwhich is a natural oxide membrane formed at the tantalum or on the surface of the tantalum alloy is removed, after that, the tantalum or the inside of the tantalum alloy tube and the carbon powder PIT are molecular-joined by solid-phase diffusion coupling, the carbon is intruded into the external surface of the tantalum or the tantalum alloy tube by introducing a carbon source into the vacuum heat treatment furnace, and TaC is formed.

Description

本発明は、タンタルチューブとPIT炭素芯の製造方法、タンタルチューブとPIT炭素芯、タンタル炭化物配線の製造方法及びタンタル炭化物配線に関する。   The present invention relates to a manufacturing method of a tantalum tube and a PIT carbon core, a tantalum tube and a PIT carbon core, a manufacturing method of a tantalum carbide wiring, and a tantalum carbide wiring.

タンタルと炭素の固相拡散接合に付いては今だ研究の報告がないが神戸製鋼ホームページKOBELCOの拡散接合可能な金属としてTa及びTa合金とグラファイトは接合出来る組み合わせとして認知されていない。図12にKOBELCOホームページより引用した拡散接合可能な金属の組み合わせ可能図を示す。タンタルの炭化物、例えばTaCは、遷移金属炭化物中で一番融点が高く、化学的安定性が高く研究の報告がなされている。図13にTaCのフェーズダイアグラムを示す。このようなTaCは、従来から高温雰囲気下における各種用途への応用が模索され、以下のような種々の方法による製造方法が報告されている。従来のTaCを製造する方法の文献例として次のようなものが挙げられる。   Although there is no report yet on solid phase diffusion bonding of tantalum and carbon, Ta, Ta alloy and graphite are not recognized as a combination that can be bonded as a diffusion bonding metal on the Kobe Steel Website KOBELCO. FIG. 12 shows a combination possible diagram of metals that can be diffusion bonded, quoted from the KOBELCO website. A tantalum carbide, such as TaC, has the highest melting point among transition metal carbides, has high chemical stability, and has been reported to be researched. FIG. 13 shows a phase diagram of TaC. Conventionally, such TaC has been sought for application to various uses in a high-temperature atmosphere, and production methods by various methods as described below have been reported. The following is mentioned as a literature example of the method of manufacturing the conventional TaC.

例えば、特許文献1には、微粉末のTaC粉末と、HfC,ZrC,HfN等の他の化合物の微粉末を混合し、約1Paの真空中で2000℃で焼結し、TaCとこれら他の化合物の固溶体を形成し、TaCの粒成長を抑制することによって緻密なTaC焼結体を作製する方法が記載されている。   For example, in Patent Document 1, fine TaC powder and fine powder of other compounds such as HfC, ZrC, and HfN are mixed, sintered at 2000 ° C. in a vacuum of about 1 Pa, TaC and these other A method for producing a dense TaC sintered body by forming a solid solution of a compound and suppressing grain growth of TaC is described.

また、特許文献2には、酸化タンタル(Ta25)とカーボンを混合し、水素炉で所定の温度で一次炭化を行い、得られた炭化物の遊離カーボンの量を測定し、次いでこの測定結果に基づいてカーボン量を調整して一次炭化物に添加し、次いで真空炭化炉で所定の温度で二次炭化を行いTaCを製造する方法が記載されている。 In Patent Document 2, tantalum oxide (Ta 2 O 5 ) and carbon are mixed, primary carbonization is performed at a predetermined temperature in a hydrogen furnace, the amount of free carbon in the obtained carbide is measured, and then this measurement is performed. A method is described in which the amount of carbon is adjusted based on the result and added to the primary carbide, followed by secondary carbonization at a predetermined temperature in a vacuum carbonization furnace to produce TaC.

また、特許文献3には、真空中で金属Taを蒸発させ、同時にC22ガスを導入して、両者を反応性イオンプレーティング法により蒸着中圧力/成膜速度を6.0×10-2Pa・min/μm以上で反応させてタングステン製電子放射材料の表面に組成比1<C/Ta<1.2から成る耐熱性に優れ、悪い真空状態でも安定に放射電流が得られ、且つ長寿命のTaC膜を被覆する方法が記載されている。 In Patent Document 3, metal Ta is evaporated in a vacuum, C 2 H 2 gas is introduced at the same time, and the pressure during deposition / film formation rate is 6.0 × 10 6 by reactive ion plating. -2 It has excellent heat resistance with a composition ratio of 1 <C / Ta <1.2 on the surface of tungsten electron emission material by reacting at Pa · min / μm or more, and radiation current can be obtained stably even in a bad vacuum condition. In addition, a method for coating a long-life TaC film is described.

また、特許文献4には、レンズやプリズム等の高精度のガラス光学素子をプレス成形する際に用いられる金型表面に被覆される離型膜として、次の(a)酸化クロムを50〜99モル%と酸化タンタルを1〜50モル%とからなるセラミック材料、(b)窒化クロムを50〜99モル%と窒化タンタルを1〜50モル%とからなるセラミック材料、(c)炭化クロムを50〜99モル%と炭化タンタルを1〜50モル%とからなるセラミック材料から選ばれる一種から構成したものが記載されている。   Further, in Patent Document 4, the following (a) chromium oxide is used in a range of 50 to 99 as a release film to be coated on a mold surface used when press-molding a high-precision glass optical element such as a lens or a prism. A ceramic material comprising 1 mol% and 1 to 50 mol% of tantalum oxide, (b) a ceramic material comprising 50 to 99 mol% of chromium nitride and 1 to 50 mol% of tantalum nitride, and (c) 50 of chromium carbide. A material composed of one kind selected from ceramic materials consisting of ˜99 mol% and tantalum carbide of 1 to 50 mol% is described.

また、特許文献5には、1000℃を超える高温の還元性ガス雰囲気中においても、優れた還元性ガス反応抑制効果を発揮し、製品寿命を大きく延ばすことができる還元性雰囲気炉用炭素複合材料として、金属タンタル及び反応ガスを使用してアークイオンプレーティング(AIP)式反応性蒸着法により黒鉛基材の表面に形成される炭化タンタルの皮膜について記載されている。   Further, Patent Document 5 discloses a carbon composite material for a reducing atmosphere furnace that exhibits an excellent reducing gas reaction suppressing effect even in a high temperature reducing gas atmosphere exceeding 1000 ° C. and can greatly extend the product life. Describes a tantalum carbide film formed on the surface of a graphite substrate by an arc ion plating (AIP) reactive vapor deposition method using metal tantalum and a reactive gas.

また、特許文献6には、Taを有する化合物と、炭化水素系の溶媒とを含む導電性Ta系膜形成材料を使用してCVD法によって導電性のTa系膜を形成する方法について記載されている。   Patent Document 6 describes a method for forming a conductive Ta-based film by a CVD method using a conductive Ta-based film forming material containing a compound containing Ta and a hydrocarbon-based solvent. Yes.

また、特許文献7には、黒鉛製ルツボの内壁にTa板を配置する。そして、Ta板と接触するように炭素粉末を充填してTa板を覆う。その後、黒鉛製ルツボを加熱してTa板を炭化させ、黒鉛製ルツボの内壁をTaCでコーティングする方法が記載されている。   In Patent Document 7, a Ta plate is disposed on the inner wall of a graphite crucible. Then, the Ta plate is covered with carbon powder so as to come into contact with the Ta plate. Thereafter, a method is described in which the graphite crucible is heated to carbonize the Ta plate, and the inner wall of the graphite crucible is coated with TaC.

また、特許文献8には、1300℃〜1600℃に加熱した真空炉内でTaまたはTa合金の表面に、炭素源を与えてTaCとTa2C膜を形成させその後に表面に付着した未反応の炭素原子をTa基材内部に拡散する様に真空中で高温アニール加熱して、炭化処理を行い、TaC形成する方法が記載されている。 In Patent Document 8, a carbon source is applied to the surface of Ta or Ta alloy in a vacuum furnace heated to 1300 ° C. to 1600 ° C. to form a TaC and Ta 2 C film, and then unreacted adhered to the surface. A method is described in which TaC is formed by performing high temperature annealing and heating in a vacuum so that the carbon atoms in the Ta base material diffuse into the Ta substrate.

特開平6−87656号公報JP-A-6-87656 特開2000−44222号公報JP 2000-44222 A 特開平8−64110号公報JP-A-8-64110 特開平7−330351号公報JP 7-330351 A 特開平10−245285号公報Japanese Patent Laid-Open No. 10-245285 特開2000−265274号公報JP 2000-265274 A 特開平11−116399号公報JP-A-11-116399 米国特許第5383981号明細書US Pat. No. 5,383,981

しかしながら、特許文献1に記載のものは、微粉末のTaC粉末と、HfC,ZrC,HfN等の他の化合物の微粉末を混合し、約1Paの真空中で2000℃で焼結してTaCを作製するため、任意の形状のTaCの形成が困難であるという問題がある。   However, the one described in Patent Document 1 is a mixture of fine TaC powder and fine powder of other compounds such as HfC, ZrC, HfN, etc., and sintered at 2000 ° C. in a vacuum of about 1 Pa to obtain TaC. In order to produce, there exists a problem that formation of TaC of arbitrary shapes is difficult.

また、特許文献2に記載のものは、Ta25及びCとを混合し、成形後、2度の炭化処理を経てTaCを形成するものであるため、前述の特許文献1のものと同様、所定の形状のTaCを形成することが困難であるという問題を有している。 Also, those described in Patent Document 2, a mixture of a Ta 2 O 5 and C, after molding, because it forms a TaC through twice carbonization, similar to those of the aforementioned Patent Document 1 There is a problem that it is difficult to form TaC having a predetermined shape.

また、特許文献3に記載のものは、タングステンフィラメントの外周面にTaCの被膜を形成するものであり、必然的にタングステン等の基材との界面が形成されるものであるため、TaCのクラック、剥離等の発生を避けることが困難である。   Moreover, since the thing of patent document 3 forms the TaC film in the outer peripheral surface of a tungsten filament, and the interface with base materials, such as tungsten, is necessarily formed, the crack of TaC It is difficult to avoid the occurrence of peeling.

また、特許文献4に記載のものは、特許文献3に記載のものと同様、基材表面に被膜として形成されるものであり、特許文献3と同様に、表面に形成される酸化クロムを50〜99モル%と酸化タンタルを1〜50モル%とからなるセラミック材料等のクラック、剥離等を避けることが困難である。   Moreover, the thing of patent document 4 is formed as a film on the base-material surface similarly to the thing of patent document 3, and 50% of chromium oxide formed on the surface is made like patent document 3. It is difficult to avoid cracks, exfoliation and the like of a ceramic material or the like composed of ˜99 mol% and tantalum oxide of 1 to 50 mol%.

また、特許文献5に記載のものは、基材である黒鉛材の表面にアークイオンプレーティング式反応性蒸着法によってTaCを形成したものであるため、特許文献3及び4に記載のものと同様に、基材とTaCとの界面が明確に形成され、TaCのクラック、剥離等を避けることが困難である。   In addition, the one described in Patent Document 5 is the same as that described in Patent Documents 3 and 4 because TaC is formed on the surface of a graphite material as a base material by an arc ion plating type reactive vapor deposition method. In addition, the interface between the substrate and TaC is clearly formed, and it is difficult to avoid TaC cracks, peeling, and the like.

また、特許文献6に記載のものも、CVD法によって導電性Ta系膜を形成しているため、前述の特許文献3〜5に記載のものと同様に、基材と導電性Ta系膜との界面が形成されるため、熱履歴等によって導電性Ta系膜のクラック、剥離等を避けることが困難である。   Moreover, since the thing of patent document 6 also forms the electroconductive Ta-type film | membrane by CVD method, similarly to the thing of the above-mentioned patent documents 3-5, a base material, an electroconductive Ta-type film | membrane, Therefore, it is difficult to avoid cracking, peeling, etc. of the conductive Ta-based film due to thermal history or the like.

また、特許文献7に記載のものは、Taと炭素粉末とを直接接触させて、熱処理することによってTaの表面にTaCを形成したものであり、明細書中には特に記載はないが、TaとTaCとの境界が明確に現れているものと考えられる。このため、熱履歴によってTaC層部分が剥離することが考えられる。   Moreover, the thing of patent document 7 forms TaC on the surface of Ta by making Ta and carbon powder contact directly, and heat-processing, although there is no description in particular in specification, Ta It is considered that the boundary between TaC and TaC appears clearly. For this reason, it is considered that the TaC layer portion is peeled off due to the thermal history.

また、特許文献8に記載のものは、その明細書のFIG5A〜FIG5Fに示されているようにTa2C、TaC層の形成後に高温アニールで表面の未反応の炭素原子をTa基板内部に拡散させることによりTa2C層も消滅しアニール前の約2倍の厚みのTaCのバルク状結晶に成している。拡大写真の観察でTa基材とTaCの境界が明確に分かれており、このため、その明細書中に記載はないが、繰返し受ける熱応力によって、層間での層間剥離とTaC層のクラックが発生しやすいものと考えられる。 In addition, as described in FIG. 5A to FIG. 5F of the patent document 8, the unreacted carbon atoms on the surface are diffused into the Ta substrate by high-temperature annealing after the formation of Ta 2 C and TaC layers as shown in FIG. As a result, the Ta 2 C layer disappears, and a TaC bulk crystal having a thickness about twice that before annealing is formed. The boundary between the Ta substrate and TaC is clearly separated by observing the enlarged photograph. For this reason, although not described in the specification, delamination between layers and cracks in the TaC layer occur due to repeated thermal stress. It is thought that it is easy to do.

Ta基板表面の自然酸化膜Ta25に1300℃〜1600℃の低い温度で炭素原子を反応させても自然酸化膜Ta25が化学的に安定でありTaの炭化速度が低く炭素原子の拡散深さが非常に浅い為真空加熱アニールを数十時間も行って炭素原子を拡散させてTaC膜を成長させても所望の厚みが得られていない。 合わせて長時間の加熱で結晶粒子が大きく成長してバルク状に成り粒界も大きくなつておりTa基材とTaCの境界が明確に分かれてしまい層間での層間剥離とTaC層内のクラックが発生しやすいものと考えられる。 Even if carbon atoms are reacted with the natural oxide film Ta 2 O 5 on the surface of the Ta substrate at a low temperature of 1300 ° C. to 1600 ° C., the natural oxide film Ta 2 O 5 is chemically stable, and the carbonization rate of Ta is low. Since the diffusion depth is very shallow, a desired thickness cannot be obtained even when a TaC film is grown by diffusing carbon atoms by performing vacuum heating annealing for several tens of hours. Combined with the heating for a long period of time, the crystal grains grow and become bulky, and the grain boundary also grows. The boundary between the Ta substrate and TaC is clearly separated, causing delamination between layers and cracks in the TaC layer. It is thought to occur easily.

本発明は上記問題に鑑みてなされ、簡易な方法で、タンタル或いはタンタル合金と炭素とを固相拡散接合させることが可能であり、また、タンタル或いはタンタル合金と炭素とを固相拡散接合させる場所以外のタンタル或いはタンタルの合金に均一な厚みのタンタルの炭化物を形成することができるとともに、熱履歴によっても剥離することのない固相拡散接合を行うと同時にタンタル表面にタンタル炭化物を生成出来るタンタルチューブとPIT炭素芯の製造方法、タンタルチューブとPIT炭素芯、タンタル炭化物配線の製造方法、タンタル炭化物配線を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and it is possible to perform solid phase diffusion bonding of tantalum or a tantalum alloy and carbon by a simple method, and a place for solid phase diffusion bonding of tantalum or a tantalum alloy and carbon. A tantalum tube that can form tantalum carbide on the tantalum surface at the same time as solid-phase diffusion bonding that can be formed on tantalum or tantalum alloys other than tantalum or tantalum carbide, and that does not peel off due to thermal history An object of the present invention is to provide a method for producing a PIT carbon core, a tantalum tube and a PIT carbon core, a method for producing a tantalum carbide wiring, and a tantalum carbide wiring.

本発明は、上記目的を達成するために以下のような幾つかの特徴を主に有している。本発明において、以下の主な特徴は単独で、若しくは、適宜組合わされて備えられている。   In order to achieve the above object, the present invention mainly has several features as follows. In the present invention, the following main features are provided singly or appropriately combined.

本発明はタンタル若しくはタンタル合金をチューブ状の形状に加工しチューブの中にPIT方式で炭素粉末を圧入し更に前記タンタル若しくはタンタル合金チューブを圧延成形して焼結固形化前の加工性の高い間に全体を所定のコイル形状に加工した後に、真空熱処理炉内に設置し、前記タンタル若しくはタンタル合金表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記Ta25を除去した後、前記真空熱処理炉内に炭素源を導入して前記真空熱処理炉内温度を更に上昇させて、前記タンタル若しくはタンタル合金チューブ内面と前記炭素粉末PITを固相拡散結合で分子接合する温度条件下で前記タンタル若しくはタンタル合金表面と前記PIT方式で圧縮圧接された炭素粉末が高温で焼結固形化しチューブの内表面と固相拡散分子結合すると同時に前記タンタル若しくはタンタル合金チューブの外表面に炭素が侵入して形成されたTaCであることを特徴とするタンタルチューブとPIT炭素芯の製造方法を提供する。 In the present invention, while tantalum or a tantalum alloy is processed into a tube shape, carbon powder is press-fitted into the tube by a PIT method, and the tantalum or tantalum alloy tube is rolled and formed, while the workability before solidification is high. After processing the whole into a predetermined coil shape, it is installed in a vacuum heat treatment furnace, and heat treatment is performed under the condition that Ta 2 O 5 which is a natural oxide film formed on the tantalum or tantalum alloy surface is sublimated, After removing Ta 2 O 5 , a carbon source is introduced into the vacuum heat treatment furnace to further increase the temperature in the vacuum heat treatment furnace, and solid phase diffusion of the inner surface of the tantalum or tantalum alloy tube and the carbon powder PIT is performed. The carbon powder compressed and pressure-bonded to the tantalum or tantalum alloy surface by the PIT method is sintered and solidified at a high temperature under the temperature condition for molecular bonding by bonding. Provided is a method for producing a tantalum tube and a PIT carbon core, which is TaC formed by solid-phase diffusion molecular bonding with the inner surface of the tube and carbon entering the outer surface of the tantalum or tantalum alloy tube. .

本発明はタンタル若しくはタンタル合金をチューブ状の形状に加工しチューブの中にPIT方式で炭素粉末を圧入し更に前記タンタル若しくはタンタル合金チューブを圧延成形してリボン状に成形して焼結固形化前の加工性の高い間に全体を所定のコイル形状に加工した後に、真空熱処理炉内に設置し、前記タンタル若しくはタンタル合金表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記Ta25を除去した後、前記真空熱処理炉内に炭素源を導入して前記真空熱処理炉内温度を更に上昇させて、前記タンタル若しくはタンタル合金リボン内表面と前記炭素粉末PITを固相拡散結合で分子接合する温度条件下で前記タンタル若しくはタンタル合金リボン内表面と前記PIT方式で圧縮圧接された炭素粉末が高温で焼結固形化しリボンの内表面と固相拡散分子結合すると同時に前記タンタル若しくはタンタル合金リボンの外表面に炭素が侵入して形成されたTaCであることを特徴とするタンタルチューブとPIT炭素芯の製造方法を提供する。 In the present invention, tantalum or a tantalum alloy is processed into a tube shape, carbon powder is press-fitted into the tube by a PIT method, and the tantalum or tantalum alloy tube is rolled and formed into a ribbon shape before being sintered and solidified. After the whole is processed into a predetermined coil shape while the workability is high, it is placed in a vacuum heat treatment furnace, and the condition that Ta 2 O 5 which is a natural oxide film formed on the tantalum or tantalum alloy surface is sublimated After the heat treatment is performed and the Ta 2 O 5 is removed, a carbon source is introduced into the vacuum heat treatment furnace to further increase the temperature in the vacuum heat treatment furnace, and the inner surface of the tantalum or tantalum alloy ribbon and the Charcoal compressed and pressure welded by the PIT method with the inner surface of the tantalum or tantalum alloy ribbon under temperature conditions for molecular bonding of carbon powder PIT by solid phase diffusion bonding A tantalum tube characterized in that the elementary powder is TaC formed by sintering and solidifying at a high temperature and solid-phase diffusion molecular bonding with the inner surface of the ribbon and simultaneously carbon entering the outer surface of the tantalum or tantalum alloy ribbon; A method for producing a PIT carbon core is provided.

本発明は上述の製造方法で製造されたタンタルチューブとPIT炭素芯であって、前記タンタルチューブとPIT炭素芯がタンタル炭化物のフィラメント若しくはヒータであるタンタルチューブとPIT炭素芯を提供する。   The present invention provides a tantalum tube and a PIT carbon core manufactured by the above-described manufacturing method, wherein the tantalum tube and the PIT carbon core are tantalum carbide filaments or heaters.

本発明はSiC半導体基板上に真空下で所定の形状にレーザー又は電子線でパターニングして加熱処理する事で炭素リッチな基板表面を作り、タンタル若しくはタンタル合金をその部分にパターニングして、前記パターニングしたタンタル若しくはタンタル合金の表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面から前記Ta25を除去した後、炭素源を導入して熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面とSiC基板表面の炭素リッチ部分から炭素を浸入させて形成されたSiC半導体のタンタル炭化物配線の製造方法を提供する。 The present invention creates a carbon-rich substrate surface by patterning with a laser or an electron beam into a predetermined shape under vacuum on a SiC semiconductor substrate to form a carbon-rich substrate surface, and patterning the tantalum or tantalum alloy on the portion, The Ta 2 O 5 , which is a natural oxide film formed on the surface of the tantalum or tantalum alloy, was subjected to heat treatment under the condition of sublimation, and the Ta 2 O 5 was removed from the surface of the patterned tantalum or tantalum alloy. A method of manufacturing a SiC semiconductor tantalum carbide wiring formed by introducing carbon from the surface of the patterned tantalum or tantalum alloy and the carbon-rich portion of the SiC substrate surface after introducing a carbon source and providing heat treatment is provided. To do.

本発明はSiC半導体基板上を真空下で加熱処理する事で炭素リッチなSiC基板表面環境を作り、前記基板表面にタンタル若しくはタンタル合金をパターニングして、表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面から前記Ta25を除去した後、炭素源を導入して熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面とSiC基板表面の炭素リッチなSiC表面部分から炭素を浸入させて形成されたSiC半導体のタンタル炭化物配線の製造方法を提供する。 The present invention is a natural oxide film formed on a surface by patterning tantalum or a tantalum alloy on the substrate surface by creating a carbon-rich SiC substrate surface environment by heat-treating the SiC semiconductor substrate under vacuum. A heat treatment is performed under conditions in which Ta 2 O 5 is sublimated, the Ta 2 O 5 is removed from the surface of the patterned tantalum or tantalum alloy, a carbon source is introduced, and a heat treatment is performed. Alternatively, a method for producing a tantalum carbide wiring of an SiC semiconductor formed by infiltrating carbon from a carbon-rich SiC surface portion of a tantalum alloy surface and an SiC substrate surface is provided.

本発明は上述の製造方法で製造されたタンタル炭化物配線であって、前記タンタル炭化物配線は所定の形状にCVD法又は真空蒸着されたタンタル若しくはタンタル合金の表面の全てに炭素が浸入して形成されたTaCであるタンタル炭化物配線を提供する。   The present invention is a tantalum carbide wiring manufactured by the above-described manufacturing method, wherein the tantalum carbide wiring is formed by carbon intrusion into all surfaces of tantalum or a tantalum alloy that are CVD-processed or vacuum-deposited into a predetermined shape. A tantalum carbide wiring that is TaC is provided.

本発明によると、簡易な方法で、所定形状のタンタルと炭素の結合物を形成することができるとともに、タンタルと炭素の結合物のクラック、剥離等の発生がないため、タンタルと炭素の結合物の優位性、例えば、TaCの持つ、優れた高融点、高硬度、機械特性、電気特性等の性能を確実に発揮することが可能となり、各種用途への応用が容易に行える。   According to the present invention, a tantalum-carbon bond having a predetermined shape can be formed by a simple method, and there is no occurrence of cracking, peeling, or the like of the tantalum-carbon bond. For example, the superior high melting point, high hardness, mechanical properties, electrical properties, etc. possessed by TaC can be reliably exhibited, and can be easily applied to various applications.

本発明の実施形態に係るタンタルと炭素結合物の製造方法に用いられる真空加熱炉の概要図。The schematic diagram of the vacuum heating furnace used for the manufacturing method of the tantalum and carbon combination thing concerning the embodiment of the present invention. 本発明の実施形態に係る固相拡散接合工程におけるTaとグラファイトの拡散接合部の接合面積の増加過程を示す概念図。The conceptual diagram which shows the increase process of the joining area of the diffusion joining part of Ta and a graphite in the solid phase diffusion joining process which concerns on embodiment of this invention. 本発明の実施形態に係るTaとグラファイトを接合させる材料の配置図を示す。The arrangement plan of the material which joins Ta and graphite concerning the embodiment of the present invention is shown. 本発明の実施形態に係るグラファイトとタンタルを固相拡散結合させた試料の接合部浸炭層の炭化タンタルの傾斜組成断面拡大写真。The gradient composition cross-sectional enlarged photograph of the tantalum carbide of the joining part carburized layer of the sample which made the solid phase diffusion bond of the graphite and tantalum which concern on embodiment of this invention. 本発明の実施形態に係るタンタルの表面の酸化膜を離脱させた後に炭素源を導入してTa表面に浸炭させて炭化タンタルを作る工程フローチャートの概念図。The conceptual diagram of the process flowchart which makes a carbon source introduce | transduce after making the oxide film of the surface of the tantalum which concerns on embodiment of this invention detach | leave, and carburizes to Ta surface, and makes tantalum carbide. 本発明の実施形態に係る上記図5の工程の真空加熱温度制御と自然酸化膜の脱離時点を示す真空加熱炉の加熱条件とを示す概念図。The conceptual diagram which shows the heating conditions of the vacuum heating furnace which shows the vacuum heating temperature control of the process of the said FIG. 5 which concerns on embodiment of this invention, and the detachment | desorption time of a natural oxide film. 本発明の実施形態に係るタンタル基板表面に浸炭して基板表面にTa2C・Ta・TaCが形成された断面拡大写真。Sectional enlarged photograph Ta 2 C · Ta 4 C 3 · TaC is formed on the substrate surface carburization to tantalum substrate surface according to an embodiment of the present invention. 本発明の実施形態に係るPIT方式炭素内芯タンタルチューブ製法工程の一例を示す概念図。The conceptual diagram which shows an example of the manufacturing process of the PIT system carbon inner core tantalum tube which concerns on embodiment of this invention. 本発明の実施形態に係るPIT方式炭素内芯タンタルチューブ断面図の一例を示す概念図The conceptual diagram which shows an example of sectional drawing of the PIT system carbon core tantalum tube concerning embodiment of this invention 本発明の実施形態に係るタンタルの炭化物電極を製造するフローチャートを示す図である。It is a figure which shows the flowchart which manufactures the carbide electrode of the tantalum which concerns on embodiment of this invention. 本発明の実施形態に係るタンタル炭化物配線を製造するフローチャートを示す図である。It is a figure which shows the flowchart which manufactures the tantalum carbide wiring which concerns on embodiment of this invention. KOBELCOホームページより引用した拡散接合可能な金属の組み合わせ可能図。Figure of possible combinations of metals that can be diffusion bonded quoted from the KOBELCO website. TaとCのフェーズダイアグラムを示す図。The figure which shows the phase diagram of Ta and C.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の実施形態に係るタンタルと炭素結合物の製造方法に用いられる真空加熱炉の概要を示す図である。図1において、符号1は真空加熱炉等の真空熱処理炉、2は真空チャンバー、3は予熱室、4は搬送室、5はタンタル若しくはタンタル合金の基材板、6は予熱ランプ、8は支持台、9は搬送トレイ、10は昇降台、11aは保温防護部材を兼ねた炭素トレイ、11bは保温防護部材、12は熱反射板、13は炭素源注入口、14は真空ポンプ接続口、15は基材5の出入口、16は温度等の測定窓、17は赤外線放射温度計、20は炭素ヒータ、22は搬送室4と真空チャンバー間2をシールするシール部材を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an outline of a vacuum heating furnace used in a method for producing tantalum and a carbon bond according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a vacuum heat treatment furnace such as a vacuum heating furnace, 2 is a vacuum chamber, 3 is a preheating chamber, 4 is a transfer chamber, 5 is a base plate of tantalum or tantalum alloy, 6 is a preheating lamp, and 8 is a support. , 9 is a transport tray, 10 is a lift, 11a is a carbon tray that also serves as a heat protection member, 11b is a heat protection member, 12 is a heat reflecting plate, 13 is a carbon source inlet, 14 is a vacuum pump connection port, 15 Is an inlet / outlet of the substrate 5, 16 is a temperature measurement window, 17 is an infrared radiation thermometer, 20 is a carbon heater, and 22 is a seal member for sealing the space 2 between the transfer chamber 4 and the vacuum chamber.

図2は、本実施形態に係る固相拡散接合工程におけるタンタルとグラファイト拡散接合部の接合面積の増加過程を示す。拡散接合においては、図2に示すような過程で進むと考えられている。図2(a)は常温で接合面を突き合わせた様子を示している。加熱・加圧によって、接触した突起部が塑性変形、クリープ変形機構によって変形し、密着面積が増加する。これと並行して、未密着部(空隙)表面への原子の拡散により接合が進行していく(図2(b))。図2(c)では、拡散の役割がより重要となり、空隙の消失と、一部の接合境界の移動が生じる。さらに接合が進行すると図2(d)に示すように、結晶粒界に取り残された空隙が原子の拡散によって消失する。ただし、これらの各段階は重なり合って進行する。   FIG. 2 shows a process of increasing the bonding area of tantalum and graphite diffusion bonding parts in the solid phase diffusion bonding process according to the present embodiment. In diffusion bonding, it is considered that the process proceeds as shown in FIG. FIG. 2A shows a state in which the joint surfaces are abutted at room temperature. Due to the heating and pressurizing, the contact protrusions are deformed by the plastic deformation and creep deformation mechanisms, and the contact area increases. In parallel with this, bonding proceeds by the diffusion of atoms to the surface of the non-adhered portion (void) (FIG. 2B). In FIG. 2 (c), the role of diffusion becomes more important, and the disappearance of voids and the movement of some joint boundaries occur. When the bonding further proceeds, as shown in FIG. 2D, voids left in the crystal grain boundaries disappear due to the diffusion of atoms. However, each of these stages proceeds in an overlapping manner.

図3に示すように、高温高真空熱処理炉にグラファイトブロック、もしくはグラファイトシートとTaをセットし、高真空環境下においてアニールすることにより接合を行った実施例を説明する。実験条件としては、2000℃〜2200℃(1×10−5torr)で2〜10時間真空アニールを行った。
I.グラファイトブロック、もしくはグラファイトシートとTaを図3のような配置で高温高真空熱処理炉中の予備加熱炉に設置し、炉内を1×10−5torr程度になるまで真空引きを行なう。
II.予備加熱炉内が真空に引けると、真空中で試料温度が800℃になるまで1時間ほど掛けてゆっくりと加熱を行ない、炉内のガス出しを行なう。
III.サンプルを予備加熱炉から熱処理炉に搬送することにより、800℃から2000℃〜2200℃まで瞬間昇温させ、2〜10時間真空アニールを行う。
As shown in FIG. 3, an embodiment will be described in which a graphite block or a graphite sheet and Ta are set in a high-temperature high-vacuum heat treatment furnace, and bonding is performed by annealing in a high-vacuum environment. As experimental conditions, vacuum annealing was performed at 2000 ° C. to 2200 ° C. (1 × 10 −5 torr) for 2 to 10 hours.
I. A graphite block or graphite sheet and Ta are placed in the preheating furnace in the high-temperature high-vacuum heat treatment furnace in the arrangement as shown in FIG. 3, and the inside of the furnace is evacuated to about 1 × 10 −5 torr.
II. When the inside of the preheating furnace is evacuated, the sample is heated slowly in vacuum until the sample temperature reaches 800 ° C., and the gas in the furnace is discharged.
III. By carrying the sample from the preheating furnace to the heat treatment furnace, the temperature is instantaneously increased from 800 ° C. to 2000 ° C. to 2200 ° C., and vacuum annealing is performed for 2 to 10 hours.

図4は前記の工程で行ったグラファイトとタンタルを固相拡散結合させた試料の接合部浸炭層の炭化タンタルの傾斜組成断面拡大写真を示す。Taの表面から炭素が内部に拡散し、表層部に略均一なTaC層が形成され、そのTaC層の内面には、TaとTaCを結合するアンカー層(遷移層)としてTa、Ta2C層が現れている。図4の接合部拡大断面図がアンカー層(遷移層)を介して炭素とタンタル金属が分子拡散接合している状況が確認出来る。 FIG. 4 shows an enlarged photograph of the gradient composition cross section of tantalum carbide in the joint carburized layer of the sample obtained by solid phase diffusion bonding of graphite and tantalum performed in the above process. Carbon diffuses inward from the surface of Ta, and a substantially uniform TaC layer is formed on the surface layer. On the inner surface of the TaC layer, Ta 4 C 3 , Ta as an anchor layer (transition layer) for bonding Ta and TaC. 2 C layer appears. The enlarged cross-sectional view of the bonded portion in FIG. 4 confirms that the carbon and tantalum metal are molecularly diffusion bonded through the anchor layer (transition layer).

図5に示すフローチャートは本実施形態に係る浸炭工程を説明しており、真空環境内で炭素蒸気圧を金属Taに直接照射することにより浸炭処理を行い、その後高真空アニールをし、バルク内への炭素原子の拡散を促すことによって炭素濃度の層内均一化を行う。高温真空炭化処理炉に金属Taを挿入し、真空環境下においてカーボンヒーターからの炭素蒸気圧を金属Taに直接照射することにより炭化反応させTaCを合成する。実験条件としては1700℃〜2250℃(1×10−3torr)で2時間浸炭処理を行う。 The flowchart shown in FIG. 5 illustrates the carburizing process according to the present embodiment. Carburizing treatment is performed by directly irradiating the metal Ta with carbon vapor pressure in a vacuum environment, and then high-vacuum annealing is performed to enter the bulk. The carbon concentration in the layer is made uniform by promoting the diffusion of carbon atoms. TaC is synthesized by inserting metal Ta into a high-temperature vacuum carbonization furnace and directly irradiating the metal Ta with carbon vapor pressure from a carbon heater in a vacuum environment to cause carbonization reaction. As experimental conditions, carburizing treatment is performed at 1700 ° C. to 2250 ° C. (1 × 10 −3 torr) for 2 hours.

図6に上記図5の工程中の温度プロファイルを示す。自然酸化膜であるTa25が昇華する好ましい熱処理条件は、処理圧力が低ければ、比較的低温で行うことができるが、確実に表面の自然酸化膜を昇華するためには、圧力約1Pa以下において、約1750℃以上2250℃以下の範囲、更に好ましくは、圧力約0.5Pa以下において約1860℃以上2500℃以下の範囲の条件下で熱処理することが好ましい。このような条件で熱処理を行うことによって、表面に形成されている自然酸化膜であるTa25が確実に昇華して、除去される。 FIG. 6 shows a temperature profile during the process of FIG. A preferable heat treatment condition for sublimation of Ta 2 O 5, which is a natural oxide film, can be performed at a relatively low temperature if the processing pressure is low. In order to reliably sublimate the natural oxide film on the surface, the pressure is about 1 Pa. In the following, it is preferable to perform heat treatment under conditions in the range of about 1750 ° C. to 2250 ° C., more preferably in the range of about 1860 ° C. to 2500 ° C. at a pressure of about 0.5 Pa or less. By performing the heat treatment under such conditions, Ta 2 O 5 which is a natural oxide film formed on the surface is surely sublimated and removed.

自然酸化膜であるTa25の除去後、前記真空熱処理炉1内に炭素源を導入して、前記タンタル若しくはタンタル合金基材5の表面にタンタルの炭化物を形成する好ましい熱処理条件は、圧力約1Pa以下において約1860℃以上2500℃以下の範囲である。更に好ましくは圧力約0.5Pa以下において約2000℃以上2500℃以下の範囲である。 After removing Ta 2 O 5 which is a natural oxide film, a preferable heat treatment condition for introducing a carbon source into the vacuum heat treatment furnace 1 to form tantalum carbide on the surface of the tantalum or tantalum alloy substrate 5 is pressure. It is a range of about 1860 ° C. or more and 2500 ° C. or less at about 1 Pa or less. More preferably, it is in the range of about 2000 ° C. to 2500 ° C. at a pressure of about 0.5 Pa or less.

自然酸化膜であるTa25の除去後の熱処理条件において、ヒータに黒鉛製の抵抗加熱ヒータを使用した場合、ヒータからの蒸気が炭素源となり得る。しかしながら、本実施形態に係るタンタルの炭化物製造条件下においては、黒鉛ヒータの消耗も激しくなる為、このように、放射温度計の出力が変化した直後から、別途、炭素源となる炭素材料を基材5とともに加熱処理室内に設置することが好ましい。また、炭素を含むガスを導入することもできる。 When a graphite resistance heater is used as the heater under the heat treatment conditions after the removal of Ta 2 O 5 , which is a natural oxide film, steam from the heater can serve as a carbon source. However, under the tantalum carbide manufacturing conditions according to the present embodiment, the graphite heater is also consumed heavily. Thus, immediately after the output of the radiation thermometer changes, a carbon material as a carbon source is separately used. It is preferable to install in the heat treatment chamber together with the material 5. A gas containing carbon can also be introduced.

図7にはタンタル基板表面に浸炭してTa基板表面にTa2C・Ta・TaCが形成された断面拡大写真を示しておりTaの表面から炭素が内部に拡散し、表層部に略均一なTaC層が形成され、そのTaC層の内面には、TaとTaCを結合するアンカー層(遷移層)としてTa、Ta2C層が現れている。図7のタンタル基板表面の拡大断面図がアンカー層(遷移層)を介して炭化タンタルとタンタル金属が分子接合している状況が確認出来る。 FIG. 7 shows an enlarged cross-sectional photograph in which Ta 2 C, Ta 4 C 3 and TaC are formed on the Ta substrate surface by carburizing on the tantalum substrate surface. Carbon diffuses from the Ta surface to the surface layer. A substantially uniform TaC layer is formed. On the inner surface of the TaC layer, Ta 4 C 3 and Ta 2 C layers appear as anchor layers (transition layers) for bonding Ta and TaC. The enlarged sectional view of the surface of the tantalum substrate in FIG. 7 confirms that tantalum carbide and tantalum metal are molecularly bonded via an anchor layer (transition layer).

図8にはPIT方式炭素内芯タンタルチューブ製法工程の一例を示す。タンタル金属をチューブ状に加工し、炭素粉末や石油コークス粉体を注入し圧延引き落しドローイングして真円状又はリボン状形状のワイヤーチューブを形成させる。高温真空加熱によりタンタルチューブの表面の酸化皮膜を昇華させて除去した後に炭素源を挿入して高温真空加熱する事で、タンタルチューブの内面は焼結固形化したカーボン内芯と固相拡散接合して浸炭してTaCに改質され、タンタルチューブの外面は炭素源を挿入する事で浸炭してTaCに改質され、タンタルチューブの内外面両面からTaCに改質されて、カーボンを内芯とするTaC被覆カーボンヒーターが得られる。   FIG. 8 shows an example of the manufacturing process of the PIT-type carbon inner core tantalum tube. Tantalum metal is processed into a tube shape, carbon powder or petroleum coke powder is injected, rolled, drawn, and drawn to form a round or ribbon-shaped wire tube. After the oxide film on the surface of the tantalum tube is sublimated and removed by high-temperature vacuum heating, a carbon source is inserted and heated at high temperature under vacuum, so that the inner surface of the tantalum tube is solid-phase diffusion bonded with the sintered solidified carbon core. Carburized and modified to TaC, and the outer surface of the tantalum tube was carburized by inserting a carbon source to be modified to TaC, and both the inner and outer surfaces of the tantalum tube were modified to TaC. A TaC-coated carbon heater is obtained.

図9にはPIT方式炭素内芯タンタルチューブ断面図の一例を示す。従来からカーボンヒーターは白熱電球のヒーターに使われた歴史もあり数々の長所がある反面、寿命や強度等の問題があり寿命や強度に非常に安定した特性を持つTaCチューブを被覆したカーボンヒーターの内芯として高純度高温用途の加熱ヒーター材等に利用が期待できる。   FIG. 9 shows an example of a cross-sectional view of the PIT-type carbon inner core tantalum tube. Carbon heaters have traditionally been used for incandescent bulb heaters and have many advantages. However, carbon heaters that have TaC tubes coated with TaC tubes have characteristics that are very stable in terms of life and strength. The inner core can be expected to be used as a heater material for high-purity high-temperature applications.

図10は本発明の実施形態に係るタンタルチューブとPIT炭素芯を製造するフローチャートを示す図である。Taチューブにカーボン粉末を圧入しチューブを圧延加工成形した後にコイル状に成形した後に、Taチューブを高温真空加熱する事でTaチューブ表面の酸化膜を昇華させる。更に温度を上げる事で内芯のカーボン粉末を焼結固形化させてTaチューブ内表面と固相拡散結合させてTaCに改質する。Taチューブ外表面は高温真空加熱中に炭素源を挿入して浸炭する事でTaCに改質する。以上の工程で内芯カーボンヒーターをTaCで被覆してシールする工程概念図を示し、比較的加工のしやすいTa若しくはTa合金のPITの段階で所定の形状に加工した後、本実施形態に係るタンタル炭化物の製造方法の条件下で処理すると、所定形状のTaCを形成することができる。このため、フィラメントやヒータの電極としても任意の形状に加工して使用することが可能となる。   FIG. 10 is a view showing a flowchart for manufacturing a tantalum tube and a PIT carbon core according to an embodiment of the present invention. After the carbon powder is press-fitted into the Ta tube and the tube is rolled and formed into a coil shape, the Ta tube is heated at high temperature under vacuum to sublimate the oxide film on the surface of the Ta tube. Further, the inner core carbon powder is sintered and solidified by raising the temperature and solid-phase diffusion-bonded with the inner surface of the Ta tube to be modified to TaC. The outer surface of the Ta tube is modified to TaC by inserting a carbon source and carburizing during high-temperature vacuum heating. The process conceptual diagram which coat | covers and seals an inner core carbon heater with TaC in the above process is shown, and after processing into the predetermined shape in the PIT stage of Ta or Ta alloy which is comparatively easy to process, it concerns on this embodiment When processed under the conditions of the method for producing tantalum carbide, TaC having a predetermined shape can be formed. For this reason, it becomes possible to process and use it as an arbitrary shape also as an electrode of a filament or a heater.

図11は、本発明の実施形態に係るタンタル炭化物配線を製造するフローチャートを示す図である。半導体基板表面にレーザー照射等で所定のパターン形状の炭化層を形成する上にタンタル若しくはタンタル合金を本実施形態に係るタンタル炭化物の製造方法の条件下で処理すると、所定形状にパターニングされたTaCを形成することができる。炭化ケイ素(以下、SiCという。)等の半導体基板表面にレーザー照射等で局部加熱して所定のパターン形状の炭化層を形成する。更に半導体基板上に形成された炭化層の上にタンタル若しくはタンタル合金を蒸着等の任意の方法で積み重ねる(Ta金属パターニング工程)。高温真空加熱炉に炭素源を導入して熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面から炭素を浸炭してTaCを形成し、タンタル若しくはタンタル合金とSiC基板の界面からはSiC基板表面の炭化されたSiCがタンタル若しくはタンタル合金と固相拡散接合してタンタル若しくはタンタル合金を背面からTaCに改質させてタンタルの炭化物配線を形成する。   FIG. 11 is a diagram showing a flowchart for manufacturing the tantalum carbide wiring according to the embodiment of the present invention. When a carbide layer having a predetermined pattern shape is formed on the surface of the semiconductor substrate by laser irradiation or the like and tantalum or a tantalum alloy is processed under the conditions of the tantalum carbide manufacturing method according to the present embodiment, TaC patterned into the predetermined shape is formed. Can be formed. A surface of a semiconductor substrate such as silicon carbide (hereinafter referred to as SiC) is locally heated by laser irradiation or the like to form a carbonized layer having a predetermined pattern shape. Further, tantalum or a tantalum alloy is stacked on the carbonized layer formed on the semiconductor substrate by any method such as vapor deposition (Ta metal patterning step). A carbon source is introduced into a high-temperature vacuum heating furnace to perform heat treatment, and carbon is carburized from the surface of the patterned tantalum or tantalum alloy to form TaC. From the interface between the tantalum or tantalum alloy and the SiC substrate, the SiC substrate surface The carbonized SiC is solid phase diffusion bonded to tantalum or a tantalum alloy, and the tantalum or tantalum alloy is modified to TaC from the back surface to form a tantalum carbide wiring.

このように本実施形態に係るタンタルの炭化物の製造方法は、1750℃以上2250℃以下の真空中でTa若しくはTa合金基材表面に形成されている自然酸化膜であるTa25を昇華させて除去してから真空中に炭素源を導入しTa若しくはTa合金基材表面にTaCとTa及びTa2Cを形成する。 As described above, the method for manufacturing a tantalum carbide according to the present embodiment sublimates Ta 2 O 5 which is a natural oxide film formed on the surface of Ta or Ta alloy substrate in a vacuum of 1750 ° C. or higher and 2250 ° C. or lower. Then, a carbon source is introduced into the vacuum to form TaC, Ta 4 C 3 and Ta 2 C on the surface of the Ta or Ta alloy substrate.

本発明のTa基板表面の自然酸化膜除去及び真空中加熱炉に炭素源を挿入した時の化学変化を以下の化学式で説明する。
The chemical change when the natural oxide film is removed from the surface of the Ta substrate of the present invention and the carbon source is inserted into the vacuum heating furnace will be described by the following chemical formula.

因みに、特許文献8に記載の従来製法では1300℃〜1600℃の真空中に炭素源を導入しTaC及びTa2Cを形成させた後に1300℃〜1600℃の真空中で15時間程度の長時間アニールして表面付着した未反応炭素原子を拡散させてTaC層を成長させる。 Incidentally, in the conventional manufacturing method described in Patent Document 8, after a carbon source is introduced into a vacuum at 1300 ° C. to 1600 ° C. to form TaC and Ta 2 C, it takes a long time of about 15 hours in a vacuum at 1300 ° C. to 1600 ° C. The TaC layer is grown by diffusing unreacted carbon atoms adhering to the surface by annealing.

特許文献8に記載の従来製法の化学変化を以下の化学式で説明される。
The chemical change of the conventional manufacturing method described in Patent Document 8 is explained by the following chemical formula.

そのため、特許文献8に掲載の拡大写真の観察からわかるように、Ta基材とTaCの境界が明確に分かれており、繰返し受ける熱応力によって、層間での層間剥離とTaC層のクラックが発生しやすいものと考えられる。Ta基板表面の自然酸化膜Ta25に1300℃〜1600℃の低い温度で炭素原子を反応させても自然酸化膜Ta25が化学的に安定でありTaの炭化速度が低く炭素原子の拡散深さが非常に浅い為真空加熱アニールを数十時間も行って炭素原子を拡散させてTaC膜を成長させても所望の厚みが得られていない。合わせて長時間の加熱で結晶粒子が大きく成長してバルク状に成り粒界も大きくなつておりTa基材とTaCの境界が明確に分かれてしまい層間での層間剥離とTaC層内のクラックが発生しやすいものと考えられる。 Therefore, as can be seen from the observation of the enlarged photograph published in Patent Document 8, the boundary between the Ta base material and TaC is clearly separated, and the delamination between layers and the crack of the TaC layer occur due to repeated thermal stress. It is considered easy. Even if carbon atoms are reacted with the natural oxide film Ta 2 O 5 on the surface of the Ta substrate at a low temperature of 1300 ° C. to 1600 ° C., the natural oxide film Ta 2 O 5 is chemically stable, and the carbonization rate of Ta is low. Since the diffusion depth is very shallow, a desired thickness cannot be obtained even when a TaC film is grown by diffusing carbon atoms by performing vacuum heating annealing for several tens of hours. Combined with the heating for a long period of time, the crystal grains grow and become bulky, and the grain boundary also grows. The boundary between the Ta substrate and TaC is clearly separated, causing delamination between layers and cracks in the TaC layer. It is thought to occur easily.

尚、本発明は、上記の好ましい実施形態に記載されているが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることができることは理解されよう。   In addition, although this invention is described in said preferable embodiment, this invention is not restrict | limited only to it. It will be understood that various other embodiments may be made without departing from the spirit and scope of the invention.

本発明によると、簡易な方法で、確実にタンタルと炭素結合物を製造することが可能であり、その優れた化学的特性を利用した熱処理用治具はもちろんであるが、照明等のフィラメントやヒータとして用いられる電極や半導体ウエハー上の回路の配線等、各種産業用用途への利用可能性を有している。   According to the present invention, it is possible to reliably produce a tantalum and carbon bond by a simple method, not to mention a jig for heat treatment utilizing its excellent chemical characteristics, It has applicability to various industrial uses such as electrodes used as heaters and wiring of circuits on semiconductor wafers.

Claims (6)

タンタル若しくはタンタル合金をチューブ状の形状に加工しチューブの中にPIT方式で炭素粉末を圧入し更に前記タンタル若しくはタンタル合金チューブを圧延成形して焼結固形化前の加工性の高い間に全体を所定のコイル形状に加工した後に、真空熱処理炉内に設置し、前記タンタル若しくはタンタル合金表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記Ta25を除去した後、前記真空熱処理炉内に炭素源を導入して前記真空熱処理炉内温度を更に上昇させて、前記タンタル若しくはタンタル合金チューブ内面と前記炭素粉末PITを固相拡散結合で分子接合する温度条件下で前記タンタル若しくはタンタル合金表面と前記PIT方式で圧縮圧接された炭素粉末が高温で焼結固形化しチューブの内表面と固相拡散分子結合すると同時に前記タンタル若しくはタンタル合金チューブの外表面に炭素が侵入して形成されたTaCであることを特徴とするタンタルチューブとPIT炭素芯の製造方法。 Tantalum or tantalum alloy is processed into a tube shape, carbon powder is press-fitted into the tube by the PIT method, and the tantalum or tantalum alloy tube is rolled to form the whole during high workability before sintering solidification. After processing into a predetermined coil shape, it is placed in a vacuum heat treatment furnace, and heat treatment is performed under conditions where Ta 2 O 5 , which is a natural oxide film formed on the tantalum or tantalum alloy surface, is sublimated, and the Ta 2 After removing O 5 , a carbon source is introduced into the vacuum heat treatment furnace to further raise the temperature in the vacuum heat treatment furnace, and the inner surface of the tantalum or tantalum alloy tube and the carbon powder PIT are molecularly bonded by solid phase diffusion bonding. The carbon powder compressed and pressure-bonded to the tantalum or tantalum alloy surface by the PIT method is sintered and solidified at a high temperature under the temperature condition for joining. A method for producing a tantalum tube and a PIT carbon core, characterized in that it is TaC formed by solid-phase diffusion molecular bonding with the inner surface of the tantalum and simultaneously carbon entering the outer surface of the tantalum or tantalum alloy tube. タンタル若しくはタンタル合金をチューブ状の形状に加工しチューブの中にPIT方式で炭素粉末を圧入し更に前記タンタル若しくはタンタル合金チューブを圧延成形してリボン状に成形して焼結固形化前の加工性の高い間に全体を所定のコイル形状に加工した後に、真空熱処理炉内に設置し、前記タンタル若しくはタンタル合金表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記Ta25を除去した後、前記真空熱処理炉内に炭素源を導入して前記真空熱処理炉内温度を更に上昇させて、前記タンタル若しくはタンタル合金リボン内表面と前記炭素粉末PITを固相拡散結合で分子接合する温度条件下で前記タンタル若しくはタンタル合金リボン内表面と前記PIT方式で圧縮圧接された炭素粉末が高温で焼結固形化しリボンの内表面と固相拡散分子結合すると同時に前記タンタル若しくはタンタル合金リボンの外表面に炭素が侵入して形成されたTaCであることを特徴とするタンタルチューブとPIT炭素芯の製造方法。 Tantalum or tantalum alloy is processed into a tube shape, carbon powder is press-fitted into the tube by the PIT method, and the tantalum or tantalum alloy tube is rolled and formed into a ribbon shape and processed before solidification. After the whole is processed into a predetermined coil shape while the temperature is high, it is installed in a vacuum heat treatment furnace, and heat treatment is performed under the condition that Ta 2 O 5 which is a natural oxide film formed on the surface of the tantalum or tantalum alloy is sublimated. After removing Ta 2 O 5 , a carbon source is introduced into the vacuum heat treatment furnace to further raise the temperature in the vacuum heat treatment furnace, and the inner surface of the tantalum or tantalum alloy ribbon and the carbon powder PIT Carbon powder compressed and pressure welded to the inner surface of the tantalum or tantalum alloy ribbon by the PIT method under the temperature condition for molecular bonding by solid phase diffusion bonding A tantalum tube and a PIT carbon core characterized by being TaC formed by sintering and solidifying at a high temperature and solid-phase diffusion molecular bonding with the inner surface of the ribbon and at the same time carbon entering the outer surface of the tantalum or tantalum alloy ribbon. Manufacturing method. 請求項1または2に記載の製造方法で製造されたタンタルチューブとPIT炭素芯であって、前記タンタルチューブとPIT炭素芯がタンタル炭化物のフィラメント若しくはヒータであることを特徴とするタンタルチューブとPIT炭素芯。   A tantalum tube and a PIT carbon core manufactured by the manufacturing method according to claim 1 or 2, wherein the tantalum tube and the PIT carbon core are a tantalum carbide filament or a heater. core. SiC半導体基板上に真空下で所定の形状にレーザー又は電子線でパターニングして加熱処理する事で炭素リッチな基板表面を作り、タンタル若しくはタンタル合金をその部分にパターニングして、前記パターニングしたタンタル若しくはタンタル合金の表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面から前記Ta25を除去した後、炭素源を導入して熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面とSiC基板表面の炭素リッチ部分から炭素を浸入させて形成されたSiC半導体のタンタル炭化物配線の製造方法。 A carbon-rich substrate surface is formed by patterning with a laser or an electron beam into a predetermined shape under vacuum on a SiC semiconductor substrate to form a carbon-rich substrate surface, and tantalum or a tantalum alloy is patterned on the portion, and the patterned tantalum or A heat treatment is performed under the condition that Ta 2 O 5 , which is a natural oxide film formed on the surface of the tantalum alloy, is sublimated, and after removing the Ta 2 O 5 from the surface of the patterned tantalum or tantalum alloy, carbon A method for producing a tantalum carbide wiring of an SiC semiconductor formed by introducing heat from a carbon-rich portion of the surface of the patterned tantalum or tantalum alloy and the surface of the SiC substrate and introducing a heat treatment. SiC半導体基板上を真空下で加熱処理する事で炭素リッチなSiC基板表面環境を作り、前記基板表面にタンタル若しくはタンタル合金をパターニングして、表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面から前記Ta25を除去した後、炭素源を導入して熱処理を行い、前記パターニングされたタンタル若しくはタンタル合金の表面とSiC基板表面の炭素リッチなSiC表面部分から炭素を浸入させて形成されたSiC半導体のタンタル炭化物配線の製造方法。 The SiC semiconductor substrate is heated under vacuum to create a carbon-rich SiC substrate surface environment, and tantalum or a tantalum alloy is patterned on the substrate surface, and Ta 2 O, which is a natural oxide film formed on the surface. 5 is subjected to a heat treatment under the condition of sublimation, and after removing Ta 2 O 5 from the surface of the patterned tantalum or tantalum alloy, a carbon source is introduced to perform the heat treatment, and the patterned tantalum or tantalum alloy Of SiC semiconductor tantalum carbide wiring formed by carbon intrusion from a carbon-rich SiC surface portion of the surface of the substrate and the SiC substrate surface. 請求項4または5に記載の製造方法で製造されたタンタル炭化物配線であって、前記タンタル炭化物配線は所定の形状にCVD法又は真空蒸着されたタンタル若しくはタンタル合金の表面の全てに炭素が浸入して形成されたTaCであることを特徴とするタンタル炭化物配線。   6. The tantalum carbide wiring manufactured by the manufacturing method according to claim 4 or 5, wherein the tantalum carbide wiring has carbon infiltrated into all surfaces of tantalum or tantalum alloy that are CVD-processed or vacuum-deposited into a predetermined shape. A tantalum carbide wiring, characterized in that the tantalum carbide wiring is made of TaC.
JP2011198901A 2011-09-12 2011-09-12 Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube Active JP5548174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198901A JP5548174B2 (en) 2011-09-12 2011-09-12 Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198901A JP5548174B2 (en) 2011-09-12 2011-09-12 Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006263429A Division JP4926632B2 (en) 2006-09-27 2006-09-27 Method for producing tantalum and carbon bond, gradient composition structure of tantalum and carbon, and tantalum-carbon composite

Publications (2)

Publication Number Publication Date
JP2012052235A true JP2012052235A (en) 2012-03-15
JP5548174B2 JP5548174B2 (en) 2014-07-16

Family

ID=45905864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198901A Active JP5548174B2 (en) 2011-09-12 2011-09-12 Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube

Country Status (1)

Country Link
JP (1) JP5548174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989767A (en) * 2012-08-16 2013-03-27 宁夏东方钽业股份有限公司 Hot rolling process for high-performance tantalum target
JP2013243100A (en) * 2012-05-23 2013-12-05 Ushio Inc Short arc discharge lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116399A (en) * 1997-10-16 1999-04-27 Denso Corp Coating of tantalum carbide and single crystal production apparatus produced by the coating
JPH11116398A (en) * 1997-10-15 1999-04-27 Showa Denko Kk Production of silicon carbide single crystal
JPH11199395A (en) * 1998-01-13 1999-07-27 Showa Denko Kk Production of silicon carbide single crystal
JP2005068002A (en) * 2003-08-01 2005-03-17 Kwansei Gakuin Tantalum carbide, method of manufacturing tantalum carbide, and wiring line and electrode of tantalum carbide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116398A (en) * 1997-10-15 1999-04-27 Showa Denko Kk Production of silicon carbide single crystal
JPH11116399A (en) * 1997-10-16 1999-04-27 Denso Corp Coating of tantalum carbide and single crystal production apparatus produced by the coating
JPH11199395A (en) * 1998-01-13 1999-07-27 Showa Denko Kk Production of silicon carbide single crystal
JP2005068002A (en) * 2003-08-01 2005-03-17 Kwansei Gakuin Tantalum carbide, method of manufacturing tantalum carbide, and wiring line and electrode of tantalum carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243100A (en) * 2012-05-23 2013-12-05 Ushio Inc Short arc discharge lamp
CN102989767A (en) * 2012-08-16 2013-03-27 宁夏东方钽业股份有限公司 Hot rolling process for high-performance tantalum target

Also Published As

Publication number Publication date
JP5548174B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP4926632B2 (en) Method for producing tantalum and carbon bond, gradient composition structure of tantalum and carbon, and tantalum-carbon composite
US8211244B2 (en) Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
TWI585247B (en) Tantalum carbide-ruthenium carbide composite and mounting table
JP3680281B2 (en) Tantalum carbide, tantalum carbide manufacturing method, tantalum carbide wiring, tantalum carbide electrode
US5882807A (en) Jig for heat treatment and process for fabricating the jig
JP5548174B2 (en) Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641533B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641535B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641536B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4690367B2 (en) Carbon composite material for reducing atmosphere furnace
JP4863176B2 (en) Thin film heating element
US11885022B2 (en) Method of forming a film on a substrate by chemical vapor deposition
TW200925108A (en) Carbon material and method for producing the same
JP4056774B2 (en) Heating element and manufacturing method thereof
TW202128558A (en) Tantalum carbonate-coated graphite member and method for producing same
JP4641534B2 (en) Method for producing carbon composite material for reducing atmosphere furnace
JP6131701B2 (en) Manufacturing method of semiconductor substrate
JP3739507B2 (en) Manufacturing method of heat treatment jig
JP2010070797A (en) SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF
KR20230001692A (en) Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same
CN116813383A (en) Tantalum carbide coating and preparation method thereof
JP2014133919A (en) Member coated with thermal decomposition carbon
JP5269819B2 (en) Metal buried goods
JP2005243758A (en) Plasma resistance member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140409

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5548174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250