JP2010070797A - SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF - Google Patents

SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2010070797A
JP2010070797A JP2008238915A JP2008238915A JP2010070797A JP 2010070797 A JP2010070797 A JP 2010070797A JP 2008238915 A JP2008238915 A JP 2008238915A JP 2008238915 A JP2008238915 A JP 2008238915A JP 2010070797 A JP2010070797 A JP 2010070797A
Authority
JP
Japan
Prior art keywords
sic
coating film
sic coating
carbon
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008238915A
Other languages
Japanese (ja)
Inventor
Masaya Yokogawa
雅也 横川
Katsuyuki Shimanuki
克之 島貫
Hideki Tezuka
秀喜 手塚
Yohei Funayama
洋平 舟山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2008238915A priority Critical patent/JP2010070797A/en
Publication of JP2010070797A publication Critical patent/JP2010070797A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SiC coated carbon member in which members with a SiC coating film being formed thereon in advance can be firmly joined with each other, and a uniform SiC coating layer is formed in an internal space (a hollow part), and a manufacturing method thereof. <P>SOLUTION: In the SiC coated carbon member 1, a plurality of carbon base bodies 2a, 3a with a SiC coating film being formed at least on its surface are joined with each other, and a joined layer of a carbon base body 2 with a carbon base body 3 is constituted of SiC coating films 2b, 3b consisting of each single layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、SiC被覆カーボン部材及びSiC被覆カーボン部材の製造方法に関し、特に、複数のSiC被覆カーボン基体を接合したSiC被覆カーボン部材及びSiC被覆カーボン部材の製造方法に関する。   The present invention relates to an SiC-coated carbon member and an SiC-coated carbon member manufacturing method, and more particularly to an SiC-coated carbon member obtained by bonding a plurality of SiC-coated carbon substrates and an SiC-coated carbon member manufacturing method.

半導体製造において高品質の製品を供給するためには、不純物金属やパーティクル等による汚染を回避することが重要である。即ち、不純物金属等による汚染は、ウエハにおける結晶欠陥の発生、結晶の異常成長、抵抗値の変化、耐圧の変化等、半導体製品の歩留まり低下を招く要因となるからである。   In order to supply high-quality products in semiconductor manufacturing, it is important to avoid contamination due to impurity metals and particles. That is, the contamination by the impurity metal or the like is a factor that causes a decrease in the yield of semiconductor products such as generation of crystal defects in the wafer, abnormal crystal growth, change in resistance value, change in breakdown voltage, and the like.

上記のような汚染を回避して、半導体製品の歩留まりの向上および安定な操業を確保するため、シリコンウエハ等の熱処理工程において用いられるウエハボート、ボートテーブル、炉芯管、サセプタ、トレー等の半導体熱処理用治具には、従来から、パーティクルの発生が比較的少ない石英ガラス(SiO2 )材、炭化ケイ素(SiC)材、シリコン−炭化ケイ素(Si−SiC)複合材、カーボン(C)材等のセラミックス製部材が使用されている。 Semiconductors such as wafer boats, boat tables, furnace core tubes, susceptors, and trays used in heat treatment processes for silicon wafers, etc. to avoid contamination as described above, and to ensure improved yield and stable operation of semiconductor products. Conventionally, jigs for heat treatment use quartz glass (SiO 2 with relatively few particles). ) Materials, silicon carbide (SiC) materials, silicon-silicon carbide (Si-SiC) composite materials, carbon (C) materials, and other ceramic members are used.

また、炭化ケイ素(SiC)材、シリコン−炭化ケイ素(Si−SiC)複合材、カーボン(C)材、シリコン(Si)材等からなる基体に、炭化ケイ素(SiC)を被覆した炭化ケイ素被覆セラミックス製部材が使用されている。
これら炭化ケイ素(SiC)を被覆した炭化ケイ素被覆セラミックス製部材は、1200℃以上の高温においても安定して使用することができ、前記フッ酸や混酸等に対する耐食性にも優れ、耐久性にも優れているという長所を有している。
Further, a silicon carbide-coated ceramic in which silicon carbide (SiC) is coated on a base made of a silicon carbide (SiC) material, a silicon-silicon carbide (Si-SiC) composite material, a carbon (C) material, a silicon (Si) material, or the like. Made parts are used.
These silicon carbide coated ceramic members coated with silicon carbide (SiC) can be used stably even at a high temperature of 1200 ° C. or higher, and have excellent corrosion resistance against hydrofluoric acid and mixed acids, and also have excellent durability. It has the advantage of being

このため、高温領域で使用される半導体熱処理用治具の場合は、石英ガラス材と比較して、コストが高いにもかかわらず、上記炭化ケイ素被覆セラミックス製部材が、主として使用されている。
特に、カーボン(C)基体に炭化ケイ素(SiC)を被覆したSiC被覆カーボン部材は、カーボン基体への精密加工が容易であるため、特許文献1に示すようにサセプタを初めとして、複雑な形状を有する部材等に広範に用いられている。
For this reason, in the case of a semiconductor heat treatment jig used in a high temperature region, the silicon carbide-coated ceramic member is mainly used although the cost is higher than that of a quartz glass material.
In particular, an SiC-coated carbon member in which silicon carbide (SiC) is coated on a carbon (C) substrate is easy to precisely process the carbon substrate. Therefore, as shown in Patent Document 1, a complicated shape such as a susceptor is used. Widely used for members and the like.

ところで、図4に示すように、特許文献1に示されたサセプタ20は、カーボン基体からなる、ウエハWが載置される上側部材21と、前記上側部材21と同様にカーボン基体からなり、前記上側部材21の間に中空部(内部空間部)23を形成する下側部材22とから構成されている。また、前記下側部材22の下面には、上記中空部(内部空間部)23に通じる開孔部22aが形成されている。
更に、前記上側部材21と前記下側部材22には、前記中空部23の内側表面を含む全表面がSiC膜で被覆されている。このSiC膜の被覆はCVD法等によって形成される。尚、図中、符号24はガス供給管であり、25はガス導出口である。またHはヒータである。
特許第2628394号公報
Incidentally, as shown in FIG. 4, the susceptor 20 shown in Patent Document 1 is composed of a carbon base, an upper member 21 on which the wafer W is placed, and a carbon base similar to the upper member 21. The lower member 22 is formed with a hollow portion (internal space portion) 23 between the upper members 21. In addition, an opening 22 a communicating with the hollow portion (internal space portion) 23 is formed on the lower surface of the lower member 22.
Further, the upper member 21 and the lower member 22 are covered with a SiC film over the entire surface including the inner surface of the hollow portion 23. The coating of the SiC film is formed by a CVD method or the like. In the figure, reference numeral 24 is a gas supply pipe, and 25 is a gas outlet. H is a heater.
Japanese Patent No. 2628394

特許文献1に示されたサセプタは、上側部材と下側部材が接合され、外側表面と中空部の内側表面の全表面がCVD法等によってSiC膜で被覆されたものである。
しかしながら、上側部材と下側部材の組み立て後、CVD法等によって中空部の内側表面をSiC膜で均一にしかも完全に被覆することは困難であった。即ち、前記中空部(内部空間部)に、SiC膜を形成する成膜ガスを満遍なく流通させることが困難であり、特に中空部(内部空間部)の形状が複雑化したした場合には、SiC膜を均一にしかも完全に被覆することは難しかった。
In the susceptor shown in Patent Document 1, the upper member and the lower member are joined, and the entire outer surface and the inner surface of the hollow portion are covered with a SiC film by a CVD method or the like.
However, after assembling the upper member and the lower member, it has been difficult to uniformly and completely cover the inner surface of the hollow portion with the SiC film by a CVD method or the like. That is, it is difficult to uniformly distribute the film forming gas for forming the SiC film in the hollow portion (internal space portion), and in particular, when the shape of the hollow portion (internal space portion) is complicated, It was difficult to coat the membrane uniformly and completely.

これを解決する方法として、予めSiC被覆膜を形成し、SiC被覆膜が形成された部材同士を接着する方法も考えられるが、接合部にSiC被覆膜と異なる接合層が形成され、前記接合層部分において、剥離する等のあらたな技術的課題が生じる虞がある。   As a method for solving this, a method of forming a SiC coating film in advance and bonding the members on which the SiC coating film is formed is also conceivable, but a bonding layer different from the SiC coating film is formed at the joint, There is a possibility that a new technical problem such as peeling occurs in the bonding layer portion.

そこで、本願発明者は、カーボン基体を組み立て後、CVD法等によってSiC膜を均一かつ完全に形成することは困難であり、特に、内部空間の形状が複雑化した際には、SiC膜を均一かつ完全に形成することがより困難になるとの知見に基づき、予め表面にSiC被覆膜が形成された複数のカーボン基体を接合することを前提に鋭意研究を行った。
即ち、本願発明者は、SiC被覆膜が予め形成された部材同士を接合する方法について鋭意研究を行い、接合部分における剥離を抑制できる、SiC被覆カーボン部材及びSiC被覆カーボン部材の製造方法を想到し、本発明を完成するに至った。
Therefore, it is difficult for the inventor of the present application to form a SiC film uniformly and completely by a CVD method or the like after assembling the carbon base. Especially, when the shape of the internal space is complicated, the SiC film is made uniform. And based on the knowledge that it would be more difficult to form completely, we conducted diligent research on the premise that a plurality of carbon bases on which a SiC coating film was previously formed were bonded.
That is, the inventor of the present application has earnestly studied a method for joining members having SiC coating films formed in advance, and has come up with a SiC-coated carbon member and a method for producing a SiC-coated carbon member that can suppress separation at the joined portion. Thus, the present invention has been completed.

本発明は、上記したようにSiC被覆膜が予め形成された部材同士を強固に接合することができるとともに、内部空間(中空部)に均一なSiC被覆層が形成されたSiC被覆カーボン部材及びSiC被覆カーボン部材の製造方法を提供することを目的とする。   As described above, the present invention is capable of firmly joining the members on which the SiC coating film is formed in advance, and the SiC-coated carbon member in which a uniform SiC coating layer is formed in the internal space (hollow portion), and It aims at providing the manufacturing method of a SiC covering carbon member.

前記した課題を解決するためになされた本発明にかかるSiC被覆カーボン部材は、少なくとも表面にSiC被覆膜が形成された複数のカーボン基体を接合したSiC被覆カーボン部材であって、前記カーボン基体とカーボン基体の接合層が、単一の層からなるSiC被覆膜で構成されていることを特徴としている。   An SiC-coated carbon member according to the present invention, which has been made to solve the above-described problems, is an SiC-coated carbon member obtained by bonding a plurality of carbon substrates each having a SiC coating film formed on at least a surface thereof. The bonding layer of the carbon base is characterized by being composed of a single-layer SiC coating film.

このように、本発明にかかるSiC被覆カーボン部材同士は、単一の層からなるSiC被覆膜で接合されている。即ち、前記カーボン部材を被覆しているSiC被覆膜と異なる接合層を新に形成し、この接合層でSiC被覆カーボン部材同士を接合するものでなく、SiC被覆膜で接合されているため、SiC被覆カーボン部材同士の剥離を抑制できる。   Thus, the SiC covering carbon members concerning this invention are joined by the SiC coating film which consists of a single layer. That is, a new bonding layer different from the SiC coating film covering the carbon member is newly formed, and the SiC coating carbon members are not bonded to each other by this bonding layer, but are bonded by the SiC coating film. Moreover, peeling between SiC-coated carbon members can be suppressed.

ここで、前記カーボン基体を接合する接合層のSiC被覆膜において、前記カーボン基体から離れた接合面近傍のSiC被覆膜の平均粒径が、カーボン基体とSiC被覆膜の界面近傍のSiC被覆膜の平均粒径よりも大きいことが望ましい。
このように、カーボン基体とSiC被覆膜の界面の近傍において小さな粒径のSiC被覆膜とすることで、カーボン基体とSiC被覆膜の界面に発生する熱応力歪みが分散され易くなり、接合温度において接合面の平坦性が損なわれることを抑制できるので、より強固なSiC被覆膜接合体を得るのに有利である。
更に、接合面近傍における大きなSiC被覆膜の粒径は、接合面近傍に、結合の安定性が低いSiC結晶粒界を減らし、強固で化学的に安定なSiC結晶粒子の結合を増加させる。この効果は、カーボン基体とSiC被覆膜の界面の近傍からSiC被覆膜の接合面近傍まで段階的に、あるいは連続的に粒径が増大した場合にも同様である。
Here, in the SiC coating film of the bonding layer for bonding the carbon substrate, the average particle diameter of the SiC coating film in the vicinity of the bonding surface away from the carbon substrate is SiC near the interface between the carbon substrate and the SiC coating film. It is desirable that it is larger than the average particle diameter of the coating film.
Thus, by making the SiC coating film having a small particle size in the vicinity of the interface between the carbon substrate and the SiC coating film, the thermal stress strain generated at the interface between the carbon substrate and the SiC coating film is easily dispersed, Since it can suppress that the flatness of a joint surface is impaired in joining temperature, it is advantageous in obtaining a stronger SiC coating-film joined body.
Further, the particle size of the large SiC coating film in the vicinity of the bonding surface reduces the SiC crystal grain boundaries having low bonding stability in the vicinity of the bonding surface, and increases the bonding of strong and chemically stable SiC crystal particles. This effect is the same when the particle diameter increases stepwise or continuously from the vicinity of the interface between the carbon substrate and the SiC coating film to the vicinity of the bonding surface of the SiC coating film.

また、前記カーボン基体とカーボン基体の接合層が単一の層からなるSiC被覆膜で構成され、かつ前記カーボン基体の外部に露出する面に単一の層のSiC被覆膜が形成され、前記外部に露出する面に形成されたSiC被覆膜と前記接合層とが、同一の層で形成されていることが望ましい。
このように、外部に露出する面に形成されたSiC被覆膜と前記接合層とが、同一の層で形成されることにより、前記接合層と外部に露出する面のSiC被覆膜の界面部分に歪みがなく物理的に強固な結合が得られるため、高温熱サイクルにおいて接合層と外部に露出する面との境界部からSiC被覆膜に物理的損傷が発生することを抑制でき、接合の耐久性を更に向上することができる。
Further, the bonding layer of the carbon substrate and the carbon substrate is composed of a single layer SiC coating film, and a single layer SiC coating film is formed on the surface exposed to the outside of the carbon substrate, It is desirable that the SiC coating film formed on the surface exposed to the outside and the bonding layer are formed of the same layer.
As described above, the SiC coating film formed on the surface exposed to the outside and the bonding layer are formed of the same layer, so that the interface between the bonding layer and the SiC coating film on the surface exposed to the outside is formed. Since there is no distortion in the part and a physically strong bond is obtained, it is possible to suppress physical damage to the SiC coating film from the boundary between the bonding layer and the surface exposed to the outside in a high-temperature thermal cycle. The durability can be further improved.

また、前記カーボン基体とカーボン基体の接合層が単一の層からなるSiC被覆膜で構成され、かつ前記カーボン基体の外部に露出する面に単一の層のSiC被覆膜が形成されると共に、少なくとも露出する面の一部に複数層のSiC被覆膜が形成されていることが望ましい。
外部に露出する面は、例えば半導体熱処理用治具として用いた場合、様々な金属元素や、酸性または、塩基性のガス種に意図的にあるいは意図しないにも関わらず暴露され、金属シリサイドの形成や酸・塩基による含シリコンガス発生あるいはそれらが複合された浸食などの化学的損傷を受ける。
一方、外部に露出する面の少なくとも一部に複数層のSiC被覆膜が形成されていると、前記化学的損傷の進行が前記複数層のSiC被覆膜の層間において拡散されることにより局在化しなくなり、いわゆる応力腐食割れの発生が抑制されるため、本発明によるSiC被覆膜により接合されたSiC被覆カーボンの耐久性を更に高めることができる。
Further, the bonding layer between the carbon substrate and the carbon substrate is composed of a single-layer SiC coating film, and a single layer of the SiC coating film is formed on the surface exposed to the outside of the carbon substrate. At the same time, it is desirable that a plurality of SiC coating films be formed on at least a part of the exposed surface.
The surface exposed to the outside, for example, when used as a semiconductor heat treatment jig, is exposed to various metal elements or acidic or basic gas species, whether intentionally or unintentionally, to form a metal silicide. And chemical damage such as generation of silicon-containing gas by acid and base or erosion combined with them.
On the other hand, if a plurality of SiC coating films are formed on at least a part of the surface exposed to the outside, the progress of the chemical damage is diffused between the layers of the plurality of SiC coating films. Since the occurrence of so-called stress corrosion cracking is suppressed, the durability of the SiC-coated carbon bonded by the SiC coating film according to the present invention can be further enhanced.

また、前記した課題を解決するためになされた本発明にかかるSiC被覆カーボン部材の製造方法は、カーボン基体を所定寸法、形状に形成する加工工程と、前記加工工程を経たカーボン基体にSiC被覆膜を形成する工程と、前記SiC被覆膜が形成された、少なくとも2つ以上のカーボン基体同士を合わせ、高温処理によって、前記合わせ部分に単一の層からなるSiC被覆膜を形成し、カーボン基体同士を接合する工程と、を含むことを特徴としている。   In addition, a method for producing a SiC-coated carbon member according to the present invention, which has been made to solve the above-described problems, includes a processing step of forming a carbon substrate into a predetermined size and shape, and a coating of SiC on the carbon substrate after the processing step. A step of forming a film, and at least two or more carbon bases on which the SiC coating film is formed are combined, and a high temperature treatment is performed to form a SiC coating film composed of a single layer on the combined portion; And a step of bonding the carbon substrates together.

このように、SiC被覆膜が予め形成されたカーボン基体同士を合わせ、前記合わせ部分に、高温処理によって単一の層からなるSiC被覆膜を形成する。そして、この単一の層からなるSiC被覆膜によってカーボン基体同士を接合するため、SiC被覆カーボン部材同士の剥離を抑制できる。
即ち、前記カーボン部材を被覆しているSiC被覆膜と異なる接合層を新に形成し、この接合層でSiC被覆カーボン部材同士を接合するものでなく、SiC被覆膜で接合されているため、SiC被覆カーボン部材同士の剥離を抑制できる。
In this way, the carbon bases on which the SiC coating film is formed in advance are put together, and a SiC coating film made of a single layer is formed on the mating portion by high-temperature treatment. And since carbon base | substrates are joined by the SiC coating film which consists of this single layer, peeling of SiC covering carbon members can be suppressed.
That is, a new bonding layer different from the SiC coating film covering the carbon member is newly formed, and the SiC coating carbon members are not bonded to each other by this bonding layer, but are bonded by the SiC coating film. Moreover, peeling between SiC-coated carbon members can be suppressed.

本発明によれば、SiC被覆膜が予め形成された部材を強固に接合することができるとともに、内部空間(中空部)に均一なSiC被覆層が形成されたSiC被覆カーボン部材及びSiC被覆カーボン部材の製造方法を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the SiC coating | coated carbon member and SiC coating | coated carbon in which the member in which the SiC coating film was formed beforehand can be joined firmly, and the uniform SiC coating layer was formed in internal space (hollow part) A member manufacturing method can be obtained.

本発明の一実施形態を、半導体製造分野で用いられる、反応炉内に導入するガスを加熱する導入ガス加熱板を例にとって、図1,2に基づいて説明する。尚、図1は、導入ガス加熱板の正面図、図2は図1におけるI−I断面図である。   An embodiment of the present invention will be described with reference to FIGS. 1 and 2, taking as an example an introduction gas heating plate for heating a gas introduced into a reaction furnace, which is used in the semiconductor manufacturing field. 1 is a front view of the introduction gas heating plate, and FIG. 2 is a cross-sectional view taken along the line II in FIG.

この導入ガス加熱板1は、溝2cが形成されたカーボン基体2aからなる部材2と、溝3cが形成されたカーボン基体3aからなる部材3とを接合したものである。
前記部材2におけるカーボン基体2aの表面には、SiC被覆膜2bが形成されている。また前記部材3におけるカーボン基体3aの表面には、SiC被覆膜3bが形成されている。そして、SiC被覆膜2b、3bが形成されたカーボン基体2a,3aの溝2cと溝3cとを合致させ、一つの流路(内部空間部)4が形成されるように接合されている。
The introduced gas heating plate 1 is obtained by joining a member 2 made of a carbon base 2a in which a groove 2c is formed and a member 3 made of a carbon base 3a in which a groove 3c is formed.
An SiC coating film 2b is formed on the surface of the carbon substrate 2a in the member 2. An SiC coating film 3b is formed on the surface of the carbon substrate 3a in the member 3. The grooves 2c and the grooves 3c of the carbon bases 2a and 3a on which the SiC coating films 2b and 3b are formed are joined so that one flow path (internal space portion) 4 is formed.

具体的には、まず、カーボン材を加工し、所定寸法、形状にカーボン基体2a,3aを加工する。この際、カーボン基体2a,3aには溝2c、3cが形成される。
その後、前記カーボン基体2a,3aのそれぞれにSiC被覆膜2b、3bを形成する。このSiC被覆膜を形成するには,CVD法等の公知の方法によって形成することができる。
Specifically, first, a carbon material is processed, and the carbon bases 2a and 3a are processed into predetermined dimensions and shapes. At this time, grooves 2c and 3c are formed in the carbon bases 2a and 3a.
Thereafter, SiC coating films 2b and 3b are formed on the carbon substrates 2a and 3a, respectively. In order to form this SiC coating film, it can be formed by a known method such as a CVD method.

例えば、圧力200torr、水素ガスにより濃度を10%に希釈したメチルトリクロロシラン((CH3)S:Cl3)を導入し、1350℃で2時間保持することで形成することができる。
この条件下で形成されたSiC被覆膜の厚さは、30μmであり、またSiCの平均粒径は7μmであった。
For example, it can be formed by introducing methyltrichlorosilane ((CH 3 ) S: Cl 3 ) diluted to a concentration of 10% with hydrogen gas at a pressure of 200 torr and holding at 1350 ° C. for 2 hours.
The thickness of the SiC coating film formed under these conditions was 30 μm, and the average particle diameter of SiC was 7 μm.

更に、SiC被覆膜を形成した後、カーボン基体2a,3aの接合面2dと3dを物理的に接触させたまま、熱処理炉(図示せず)内に部材2,3を収容し、1torr以下の圧力で、1650℃以上で熱処理する。
この熱処理により、接合面表面のSiC被覆膜は気化と再結晶化を繰り返し、所定時間経過(例えば15時間経過)の後、PVD(物理気相成膜)により単一のSiC被覆膜層として形成される。
Further, after forming the SiC coating film, the members 2 and 3 are accommodated in a heat treatment furnace (not shown) while the bonding surfaces 2d and 3d of the carbon substrates 2a and 3a are in physical contact with each other, and 1 torr or less. And heat treatment at 1650 ° C. or higher.
By this heat treatment, the SiC coating film on the bonding surface is repeatedly vaporized and recrystallized, and after a predetermined time (for example, 15 hours), a single SiC coating film layer is formed by PVD (physical vapor deposition). Formed as.

この導入ガス加熱板1はこのように構成されているため、部材2,3の外表面及び流路4の内表面には、均一な単一の層からなるSiC被覆膜で完全に被覆されている。
しかも、部材2,3は、単一の層からなるSiC被覆膜で接合されているため、強固に接合でき、SiC被覆カーボン部材同士の剥離を抑制できる。
Since the introduction gas heating plate 1 is configured as described above, the outer surfaces of the members 2 and 3 and the inner surface of the flow path 4 are completely covered with a uniform SiC coating film. ing.
In addition, since the members 2 and 3 are joined by the SiC coating film made of a single layer, they can be joined firmly, and the separation of the SiC-coated carbon members can be suppressed.

ここで、前記した部材2,3を接合する際には、例えばSiCl4などのSiを含むガス種を熱処理炉内に導入することが好ましい。これは気相中にSi成分が多く含まれる場合、SiC被覆膜が気化する際の活性化エンタルピーが低下し、蒸気圧が極めて小さいSiC被覆膜表面層の気化反応が促進されるため、SiC被覆膜の気化と再結晶化の頻度が高まって接合に要する時間を短縮するため、好ましい。 Here, when joining the members 2 and 3 described above, it is preferable to introduce a gas species containing Si such as SiCl 4 into the heat treatment furnace. This is because when the Si gas phase contains a large amount of Si component, the activation enthalpy when the SiC coating film is vaporized is reduced, and the vaporization reaction of the SiC coating film surface layer having a very low vapor pressure is promoted. This is preferable because the frequency of vaporization and recrystallization of the SiC coating film increases and the time required for bonding is shortened.

また、例えばプロパンなどのC成分を含むガス種を、前記Si成分を含むガス種と同時に少量導入するのが好ましい。前記接合面2dと接合面3dの隙間が大きい場合に、C成分を含むガス種を導入することにより、CVD(化学気相成膜)によるSiC被覆膜形成が生じ、PVDにより前記隙間を埋めるまでの時間を短縮するため、好ましい。   Moreover, it is preferable to introduce a small amount of a gas species containing a C component such as propane simultaneously with the gas species containing the Si component. When the gap between the bonding surface 2d and the bonding surface 3d is large, the introduction of a gas species containing a C component causes the formation of an SiC coating film by CVD (chemical vapor deposition), and the PVD fills the gap. This is preferable because it shortens the time to the time.

また、図3に示すように、カーボン基体2,3を接合する接合層のSiC被覆膜2b、3bにおいて、前記カーボン基体2,3から離れた接合面近傍のSiC被覆膜の粒子2e,3eの平均粒径が、カーボン基体2,3とSiC被覆膜の界面近傍のSiC被覆膜の粒子2f,3fの平均粒径よりも、大きいことが望ましい。部材2,3にSiC被覆膜2b、3bを形成する工程の熱処理温度を、部材2,3の接合工程の熱処理温度よりも低くすることにより、図3に示すように、単一の接合層でありながら、SiC被覆膜2b、3bのSiC粒径を接合面2d、3dにおいて大きくすることができる。
このように、カーボン基体とSiC被覆膜の界面の近傍において小さな粒径のSiC被覆膜とすることで、カーボン基体とSiC被覆膜の界面に発生する熱応力歪みが分散され易くなり、接合温度において接合面の平坦性が損なわれることを抑制できるので、より強固なSiC被覆膜接合体を得るのに有利である。
更に、接合面近傍における大きなSiC被覆膜の粒径は、接合面近傍に、結合の安定性が低いSiC結晶粒界を減らし、強固で化学的に安定なSiC結晶粒子の結合を増加させる。この効果は、カーボン基体とSiC被覆膜の界面の近傍からSiC被覆膜の接合面近傍まで段階的に、あるいは連続的に粒径が増大した場合にも同様である。
Further, as shown in FIG. 3, in the SiC coating films 2b and 3b of the bonding layer for bonding the carbon substrates 2 and 3, the particles 2e of the SiC coating film in the vicinity of the bonding surface apart from the carbon substrates 2 and 3 are used. The average particle size of 3e is desirably larger than the average particle size of the SiC coating film particles 2f and 3f in the vicinity of the interface between the carbon substrates 2 and 3 and the SiC coating film. By making the heat treatment temperature in the step of forming the SiC coating films 2b and 3b on the members 2 and 3 lower than the heat treatment temperature in the joining step of the members 2 and 3, as shown in FIG. However, the SiC particle size of the SiC coating films 2b and 3b can be increased on the bonding surfaces 2d and 3d.
Thus, by making the SiC coating film having a small particle size in the vicinity of the interface between the carbon substrate and the SiC coating film, the thermal stress strain generated at the interface between the carbon substrate and the SiC coating film is easily dispersed, Since it can suppress that the flatness of a joint surface is impaired in joining temperature, it is advantageous in obtaining a stronger SiC coating-film joined body.
Further, the particle size of the large SiC coating film in the vicinity of the bonding surface reduces the SiC crystal grain boundaries having low bonding stability in the vicinity of the bonding surface, and increases the bonding of strong and chemically stable SiC crystal particles. This effect is the same when the particle diameter increases stepwise or continuously from the vicinity of the interface between the carbon substrate and the SiC coating film to the vicinity of the bonding surface of the SiC coating film.

具体的には、部材2,3にSiC被覆膜を形成する熱処理温度を1350℃とし、SiCの平均粒径が7μmのSiC被覆膜を形成する。
その後の部材2,3の接合工程の熱処理温度を1800℃とし、0.1torr下、8時間保持の条件下で行うと、カーボン基体2a,3aから離れた接合面近傍のSiC被覆膜の粒子2e,3eの平均粒径が、30μmであり、カーボン基体2a,3aとSiC被覆膜2b,3bの界面近傍のSiC被覆膜の粒子2f,3fの平均粒径が7μmとすることができる。
Specifically, the heat treatment temperature for forming the SiC coating film on the members 2 and 3 is 1350 ° C., and the SiC coating film having an average SiC particle size of 7 μm is formed.
When the heat treatment temperature in the subsequent joining process of the members 2 and 3 is 1800 ° C. and is held under a condition of 0.1 torr for 8 hours, particles of the SiC coating film in the vicinity of the joining surface apart from the carbon substrates 2a and 3a The average particle diameters of 2e and 3e are 30 μm, and the average particle diameters of the SiC coating film particles 2f and 3f in the vicinity of the interface between the carbon substrates 2a and 3a and the SiC coating films 2b and 3b can be 7 μm. .

また、接合完了後に、接合面2d、3dに相当する部分をマスキングし、接合部以外に新たにSiC被覆膜を形成することにより、接合部以外のSiC被覆膜を複数の層としても良い。即ち、前記カーボン基体2aとカーボン基体3aの接合面2d,3dが単一層のSiC被覆膜2b,3bからなり、更に外部に露出する面(部材2,3の外側面)の少なくとも一部に複数層のSiC被覆膜が形成されていても良い。
このように、外部に露出する面(部材2,3の外側面)の少なくとも一部に複数層のSiC被覆膜が形成されている場合には、応力腐食割れを抑制することができるため、好ましい。
尚、当然に、外部に露出する面(部材2,3の外側面)の全領域に複数層のSiC被覆膜が形成されていても良い。
Further, after completion of the bonding, the portions corresponding to the bonding surfaces 2d and 3d are masked, and a SiC coating film is newly formed in addition to the bonding portion, so that the SiC coating film other than the bonding portion may have a plurality of layers. . That is, the bonding surfaces 2d and 3d of the carbon substrate 2a and the carbon substrate 3a are composed of a single layer of the SiC coating films 2b and 3b, and are further formed on at least a part of the surface exposed to the outside (outer surfaces of the members 2 and 3). A plurality of SiC coating films may be formed.
Thus, when a plurality of layers of the SiC coating film is formed on at least a part of the surface exposed to the outside (outer surfaces of the members 2 and 3), stress corrosion cracking can be suppressed. preferable.
Of course, a plurality of layers of SiC coating films may be formed in the entire region of the surface exposed to the outside (the outer surfaces of the members 2 and 3).

以上説明したように、SiC被覆カーボン部材の内部空間を含むすべての表面に、単一なSiC被覆層が形成されると共に、接合部においても単一層のSiC被覆膜で形成されるため、十分な熱サイクルに耐えられる、被覆カーボン部材を得ることができる。   As described above, a single SiC coating layer is formed on all surfaces including the internal space of the SiC-coated carbon member, and a single layer of SiC coating film is also formed at the junction. It is possible to obtain a coated carbon member that can withstand various heat cycles.

(実施例1)
カーボン基体2,3に溝2a,3aを形成し、所定形状に加工したのち、塩素ガスにより高純度処理をして、化学気相成膜方法により1300℃、300torr(CH3)SiCl3を導入して表面にSiC被覆膜を形成し、部材2,3を形成した。
このときの部材2,3の表面には、厚さ30μmの均一なSiC被覆膜が形成された。
このSiC被覆膜の平均粒径は、7μmであった。
Example 1
Grooves 2a and 3a are formed in the carbon bases 2 and 3 and processed into a predetermined shape, followed by high-purity treatment with chlorine gas, and introduction of 1300 ° C. and 300 torr (CH 3 ) SiCl 3 by a chemical vapor deposition method. Then, a SiC coating film was formed on the surface, and members 2 and 3 were formed.
A uniform SiC coating film having a thickness of 30 μm was formed on the surfaces of the members 2 and 3 at this time.
The average particle diameter of this SiC coating film was 7 μm.

その後、部材2,3の接合面を物理的に接触させて、1800℃、0.1torrで13時間熱処理することにより、図1に示すSiC被覆カーボン部材1を得た。
このときの部材2,3の表面には、厚さ30μmの均一なSiC被覆膜が形成され、接合層は、厚さ65μmの均一なSiC被覆膜が形成された。
このSiC被覆膜の平均粒径は、7μmであり、接合層のSiC被覆膜の平均粒径は20μmであった。
Thereafter, the bonded surfaces of the members 2 and 3 were brought into physical contact with each other and heat-treated at 1800 ° C. and 0.1 torr for 13 hours to obtain the SiC-coated carbon member 1 shown in FIG.
A uniform SiC coating film having a thickness of 30 μm was formed on the surfaces of the members 2 and 3 at this time, and a uniform SiC coating film having a thickness of 65 μm was formed as the bonding layer.
The average particle size of the SiC coating film was 7 μm, and the average particle size of the SiC coating film of the bonding layer was 20 μm.

(比較例1)
実施例1と同様にして、SiC被覆膜が形成された部材2,3を形成した。その後、接合面を物理的に接触させて1300℃、300torr(CH3)SiCl3を導入することによるCVD−SiC被覆膜形成により接合する以外は実施例1と同様の方法により比較例1のSiC被覆カーボンを得た。
(Comparative Example 1)
In the same manner as in Example 1, members 2 and 3 on which the SiC coating film was formed were formed. Thereafter, the bonding surfaces were brought into physical contact with each other in the same manner as in Example 1 except that bonding was performed by forming a CVD-SiC coating film by introducing 1300 ° C. and 300 torr (CH 3 ) SiCl 3 . A SiC-coated carbon was obtained.

(比較例2)
カーボン基体に溝2a,3aを形成し、所定形状に加工したのち、カーボンペーストを用いて部材2,3を接着し、公知の方法により高純度処理をして、1300℃、300torr(CH3)SiCl3を導入して、表面にSiC被覆膜を形成して比較例2のSiC被覆カーボンを得た。
(Comparative Example 2)
After the grooves 2a and 3a are formed on the carbon substrate and processed into a predetermined shape, the members 2 and 3 are bonded using a carbon paste and subjected to high-purity treatment by a known method, and 1300 ° C., 300 torr (CH 3 ). SiCl 3 was introduced to form a SiC coating film on the surface to obtain SiC coated carbon of Comparative Example 2.

実施例および比較例のSiC被覆カーボン部材を切断し、ガス流路4へのSiC被覆膜形成状態を確認し、また、ランプ加熱により500℃から1000℃まで2分で昇温し、2分で冷却する熱サイクルを500回繰り返した時の接合面2dと3dの接合状態を確認した。その結果を表1に示す。
尚、表1中の○は、良好、△は、一部欠損、×は、破断または一部未成膜を意味している。
The SiC-coated carbon members of the examples and comparative examples were cut, the state of the SiC coating film formed on the gas flow path 4 was confirmed, and the temperature was raised from 500 ° C. to 1000 ° C. in 2 minutes by lamp heating, and 2 minutes The joining state of the joining surfaces 2d and 3d when the thermal cycle for cooling at 500 was repeated 500 times was confirmed. The results are shown in Table 1.
In Table 1, “◯” means “good”, “Δ” means partial defect, and “x” means fracture or partial non-film formation.

Figure 2010070797
Figure 2010070797

上記実施形態にあっては、導入ガス加熱板を例にとって説明したが、本発明はこれに限定されることなく、従来例で説明したサセプタ初めとして、ウエハボート、ボートテーブル、炉芯管、トレー等の各種半導体熱処理用治具に用いることができる。   In the above embodiment, the introduction gas heating plate has been described as an example. However, the present invention is not limited to this, and the wafer boat, the boat table, the furnace core tube, the tray, as the susceptor first described in the conventional example, are not limited thereto. It can be used for various semiconductor heat treatment jigs.

図1は、本発明にかかるSiC被覆カーボン部材の一例である導入ガス加熱板の正面図である。FIG. 1 is a front view of an introduction gas heating plate which is an example of a SiC-coated carbon member according to the present invention. 図2は図1におけるI−I断面図である。2 is a cross-sectional view taken along the line II in FIG. 図3はSiC被覆カーボン部材接合面のSiC粒子の状態を示す模式図である。FIG. 3 is a schematic diagram showing the state of SiC particles on the bonded surface of the SiC-coated carbon member. 図4は、SiC被覆カーボン部材が用いられた一例を示す、サセプタの断面図である。FIG. 4 is a cross-sectional view of a susceptor showing an example in which a SiC-coated carbon member is used.

符号の説明Explanation of symbols

1 導入ガス加熱板(SiC被覆カーボン部材)
2 部材
2a カーボン基体
2b SiC被覆膜
2c 溝
2d 接合面
2e カーボン基体から離れた接合面近傍のSiC被覆膜の粒子
2f カーボン基体とSiC被覆膜の界面近傍のSiC被覆膜の粒子
3 部材
3a カーボン基体
3b SiC被覆膜
3c 溝
3d 接合面
3e カーボン基体から離れた接合面近傍のSiC被覆膜の粒子
3f カーボン基体とSiC被覆膜の界面近傍のSiC被覆膜の粒子
4 流路
1 Introducing gas heating plate (SiC coated carbon member)
2 Member 2a Carbon substrate 2b SiC coating film 2c Groove 2d Bonding surface 2e SiC coating film particle 2f near the bonding surface away from the carbon substrate 2f SiC coating film particle 3 near the interface between the carbon substrate and the SiC coating film Member 3a Carbon substrate 3b SiC coating film 3c Groove 3d Bonding surface 3e SiC coating film particle 3f near the bonding surface away from the carbon substrate 3f SiC coating film particle 4 near the interface between the carbon substrate and the SiC coating film Road

Claims (5)

少なくとも表面にSiC被覆膜が形成された複数のカーボン基体を接合したSiC被覆カーボン部材であって、
前記カーボン基体とカーボン基体の接合層が、単一の層からなるSiC被覆膜で構成されていることを特徴とするSiC被覆カーボン部材。
A SiC-coated carbon member obtained by bonding a plurality of carbon substrates having a SiC coating film formed on at least a surface thereof,
A SiC-coated carbon member, wherein the bonding layer between the carbon substrate and the carbon substrate is composed of a single-layer SiC coating film.
前記カーボン基体を接合する接合層のSiC被覆膜において、
前記カーボン基体から離れた接合面近傍のSiC被覆膜の平均粒径が、カーボン基体とSiC被覆膜の界面近傍のSiC被覆膜の平均粒径よりも大きいことを特徴とする前記請求項1に記載のSiC被覆カーボン部材。
In the SiC coating film of the bonding layer for bonding the carbon substrate,
The average particle diameter of the SiC coating film in the vicinity of the bonding surface away from the carbon substrate is larger than the average particle diameter of the SiC coating film in the vicinity of the interface between the carbon substrate and the SiC coating film. 2. The SiC-coated carbon member according to 1.
前記カーボン基体とカーボン基体の接合層が単一の層からなるSiC被覆膜で構成され、かつ前記カーボン基体の外部に露出する面に単一の層のSiC被覆膜が形成され、
前記外部に露出する面に形成されたSiC被覆膜と前記接合層とが、同一の層で形成されていることを特徴とする前記請求項1または請求項2に記載のSiC被覆カーボン部材。
A bonding layer between the carbon substrate and the carbon substrate is composed of a single layer SiC coating film, and a single layer SiC coating film is formed on a surface exposed to the outside of the carbon substrate;
3. The SiC-coated carbon member according to claim 1, wherein the SiC coating film formed on the surface exposed to the outside and the bonding layer are formed of the same layer. 4.
前記カーボン基体とカーボン基体の接合層が単一の層からなるSiC被覆膜で構成され、かつ前記カーボン基体の外部に露出する面に単一の層のSiC被覆膜が形成されると共に、少なくとも露出する面の一部に複数層のSiC被覆膜が形成されていることを特徴とする前記請求項1乃至請求項3のいずれかに記載のSiC被覆カーボン部材。   A bonding layer between the carbon substrate and the carbon substrate is composed of a single layer SiC coating film, and a single layer SiC coating film is formed on a surface exposed to the outside of the carbon substrate; 4. The SiC-coated carbon member according to claim 1, wherein a plurality of SiC coating films are formed on at least a part of the exposed surface. 5. カーボン基体を所定寸法、形状に形成する加工工程と、
前記加工工程を経たカーボン基体にSiC被覆膜を形成する工程と、
前記SiC被覆膜が形成された、少なくとも2つ以上のカーボン基体同士を合わせ、高温処理によって、前記合わせ部分に単一の層からなるSiC被覆膜を形成し、カーボン基体同士を接合する工程と、を含むことを特徴とするSiC被覆カーボン部材の製造方法。
A processing step of forming the carbon substrate into a predetermined size and shape;
Forming a SiC coating film on the carbon substrate that has undergone the processing step;
A step of joining at least two or more carbon substrates on which the SiC coating film is formed, forming a SiC coating film made of a single layer on the mating portion by high-temperature treatment, and bonding the carbon substrates together And a method for producing a SiC-coated carbon member.
JP2008238915A 2008-09-18 2008-09-18 SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF Pending JP2010070797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238915A JP2010070797A (en) 2008-09-18 2008-09-18 SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238915A JP2010070797A (en) 2008-09-18 2008-09-18 SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
JP2010070797A true JP2010070797A (en) 2010-04-02

Family

ID=42202859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238915A Pending JP2010070797A (en) 2008-09-18 2008-09-18 SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2010070797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381013A3 (en) * 2010-04-21 2016-06-01 Ibiden Co., Ltd. Carbon component and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381013A3 (en) * 2010-04-21 2016-06-01 Ibiden Co., Ltd. Carbon component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4348542B2 (en) Quartz jig and semiconductor manufacturing equipment
JP4926632B2 (en) Method for producing tantalum and carbon bond, gradient composition structure of tantalum and carbon, and tantalum-carbon composite
JP5071217B2 (en) Vertical heat treatment boat and silicon wafer heat treatment method using the same
TWI505399B (en) Carbon component and method for manufacturing the same
JP3963788B2 (en) Heating device with electrostatic adsorption function
TWI697576B (en) Base and its manufacturing method
CN104867818B (en) A kind of method for reducing silicon carbide epitaxy material defect
JP5273150B2 (en) Manufacturing method of silicon epitaxial wafer
JP2008174841A (en) Susceptor for vapor deposition, and method for producing the same
JP3680281B2 (en) Tantalum carbide, tantalum carbide manufacturing method, tantalum carbide wiring, tantalum carbide electrode
TW201907035A (en) Sic wafer production method, epitaxial wafer production method, and epitaxial wafer
JP7163756B2 (en) LAMINATED PRODUCT, METHOD FOR MANUFACTURING LAMINATED BODY, AND METHOD FOR MANUFACTURING SILICON CARBIDE POLYCRYSTALLINE SUBSTRATE
JP2010070797A (en) SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF
US20070274021A1 (en) Electrostatic chuck apparatus
JP7220844B2 (en) Manufacturing method of SiC polycrystalline substrate
JP5548174B2 (en) Manufacturing method of PIT carbon core TaC tube and PIT carbon core TaC tube
JPH11131236A (en) Corrosion resistant member and its production
JP5689661B2 (en) Seed crystal support and method for producing single crystal using the same
JP2021046336A (en) Method for processing surface of graphite support substrate, method for depositing silicon carbide polycrystalline film and method for manufacturing silicon carbide polycrystalline substrate
JP7367497B2 (en) Method for forming a silicon carbide polycrystalline film and manufacturing method for a silicon carbide polycrystalline substrate
JP3693470B2 (en) Manufacturing method and manufacturing apparatus for silicon wafer with protective film
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film
JPH10287495A (en) High-purity silicon carbide-based semiconductor treating member and its production
JP2007073823A (en) Ceramic covering material and method of manufacturing same
JP5544061B2 (en) Substrate support and manufacturing method thereof