JP2020152141A - In-wheel motor driving device - Google Patents

In-wheel motor driving device Download PDF

Info

Publication number
JP2020152141A
JP2020152141A JP2019049765A JP2019049765A JP2020152141A JP 2020152141 A JP2020152141 A JP 2020152141A JP 2019049765 A JP2019049765 A JP 2019049765A JP 2019049765 A JP2019049765 A JP 2019049765A JP 2020152141 A JP2020152141 A JP 2020152141A
Authority
JP
Japan
Prior art keywords
tooth
gears
gear shaft
gear
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019049765A
Other languages
Japanese (ja)
Other versions
JP7165081B2 (en
Inventor
佐藤 勝則
Katsunori Sato
勝則 佐藤
雪島 良
Makoto Yukishima
良 雪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019049765A priority Critical patent/JP7165081B2/en
Priority to CN202010192042.5A priority patent/CN111703293A/en
Publication of JP2020152141A publication Critical patent/JP2020152141A/en
Application granted granted Critical
Publication of JP7165081B2 publication Critical patent/JP7165081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Gear Transmission (AREA)
  • Motor Power Transmission Devices (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Gears, Cams (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To improve durability and quietness of an in-wheel motor driving device that uses a parallel shaft reduction gear.SOLUTION: An in-wheel motor driving device 21 uses a parallel shaft reduction gear 30 with respective gears composed of helical gears in a reduction gear part B which reduces rotation of an electric motor unit A and outputs the rotation to a wheel bearing part C. One or both of two gears 31, 32 forming a meshing part M1 is/are different in tooth thickness at one end and the other end in a tooth-trace direction from each other due to application of tooth surface amending. One of the one end and the other end that has a relatively smaller tooth thickness is positioned on a side of a decreasing distance between the meshing surfaces of the two gears 31 and 32 in response to occurrence of an inclination in an intermediate gear shaft 36 with a moment of an axial load occurring in the meshing part M1 in driving of the electric motor unit A.SELECTED DRAWING: Figure 5

Description

本発明は、インホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device.

インホイールモータ駆動装置は、装置全体がホイール内部に収容された状態で使用される関係上、その重量や大きさが車両のばね下重量(走行性能)や客室スペースの広さに影響を及ぼすため、できるだけ軽量・コンパクトであることが望まれる。その一方、インホイールモータ駆動装置は、車輪を駆動するために大きなトルクを必要とする。このため、インホイールモータ駆動装置においては、駆動力を発生させる電動モータと、車輪を回転自在に支持する車輪用軸受との間に、電動モータの回転を減速して車輪用軸受に出力する減速機を設けるのが一般的である。例えば下記の特許文献1〜3に記載されたインホイールモータ駆動装置では、互いに平行に配置された入力歯車軸、中間歯車軸および出力歯車軸を備えた多段減速式の平行軸歯車減速機(平行軸減速機)を採用している。 Since the in-wheel motor drive device is used with the entire device housed inside the wheel, its weight and size affect the unsprung weight (running performance) of the vehicle and the size of the cabin space. It is desirable to be as lightweight and compact as possible. On the other hand, the in-wheel motor drive device requires a large torque to drive the wheels. Therefore, in the in-wheel motor drive device, the rotation of the electric motor is decelerated between the electric motor that generates the driving force and the wheel bearing that rotatably supports the wheel, and the deceleration is output to the wheel bearing. It is common to install a machine. For example, in the in-wheel motor drive device described in Patent Documents 1 to 3 below, a multi-stage reduction gear reduction gear (parallel) having an input gear shaft, an intermediate gear shaft, and an output gear shaft arranged in parallel with each other. Axis reducer) is adopted.

特許文献3では、各歯車軸に設けられる歯車に、歯すじがつるまき線状となったはすば歯車を採用している。この場合、同時に噛み合う歯数が増え、歯当たりが分散されるため、静粛でトルク変動が小さい減速機を実現する上で有利となる。但し、はすば歯車を採用した場合、各歯車軸には歯車同士の噛合いによってラジアル荷重のみならずアキシャル荷重(アキシャル荷重によるモーメント荷重)も作用するため、歯車軸(特に中間歯車軸)に傾きが発生し易い。中間歯車軸に傾きが生じ、この傾きに起因して図11(a)に模式的に示すような歯車の片当たりが生じると(同図では、互いに噛合う入力歯車と入力側中間歯車のアウトボード側の端部で片当たりが生じた場合を例示)、歯の摩耗や折損等が生じ易くなり、減速機の耐久性や音振性能に悪影響が及ぶ。歯車同士の片当たりは、例えば下記の特許文献4の図6(b)に記載されているように、歯車の歯面に対して歯面修整としてのクラウニング(歯すじクラウニング)を施すことによって可及的に防止することができる。 In Patent Document 3, a helical gear having tooth streaks in the shape of a spiral line is adopted as the gear provided on each gear shaft. In this case, the number of teeth that mesh with each other increases at the same time, and the tooth contact is dispersed, which is advantageous in realizing a speed reducer that is quiet and has a small torque fluctuation. However, when helical gears are used, not only radial load but also axial load (moment load due to axial load) acts on each gear shaft due to the meshing of the gears, so the gear shaft (especially the intermediate gear shaft) Tilt is likely to occur. When the intermediate gear shaft is tilted and one-sided contact of the gear as schematically shown in FIG. 11A occurs due to this tilt (in the same figure, the input gear and the input side intermediate gear that mesh with each other are out. (Example is the case where one-sided contact occurs at the end on the board side), tooth wear and breakage are likely to occur, which adversely affects the durability and sound vibration performance of the reducer. One-sided contact between gears can be achieved by applying crowning (tooth streak crowning) to the tooth surface of the gear as a tooth surface modification, for example, as described in FIG. 6 (b) of Patent Document 4 below. It can be prevented.

特開2017−65306号公報JP-A-2017-65306 特開2017−160961号公報JP-A-2017-160961 特開2018−53927号公報JP-A-2018-53927 特開2013−72528号公報Japanese Unexamined Patent Publication No. 2013-72528

ところで、インホイールモータ駆動装置に組み込まれる多段減速式の平行軸減速機においては、そのコンパクト化を図るために歯車軸のレイアウトが調整される。例えば、特許文献1〜3においては、歯車同士の噛合い部を形成する2つの歯車軸の回転中心を結ぶ直線で形成される挟角(二段減速式の平行軸減速機の場合、入力歯車軸と中間歯車軸の回転中心を結ぶ直線と、中間歯車軸と出力歯車軸の回転中心を結ぶ直線とがなす角度。本明細書においては、以下、これを「歯車軸の配置角」という。)が概ね60°〜110°程度となるように、各歯車軸が配置されている。 By the way, in the multi-stage speed reduction type parallel shaft speed reducer incorporated in the in-wheel motor drive device, the layout of the gear shaft is adjusted in order to make it compact. For example, in Patent Documents 1 to 3, a narrowing angle formed by a straight line connecting the rotation centers of two gear shafts forming a meshing portion between gears (in the case of a two-stage reduction type parallel shaft speed reducer, an input gear). The angle formed by the straight line connecting the shaft and the center of rotation of the intermediate gear shaft and the straight line connecting the center of rotation of the intermediate gear shaft and the output gear shaft. In the present specification, this is hereinafter referred to as "the arrangement angle of the gear shaft". ) Is approximately 60 ° to 110 °, and each gear shaft is arranged.

しかしながら、本発明者らが検証したところ、歯車軸の配置角を上記の角度範囲に設定した場合、各噛合い部で生じる歯車軸を傾かせる力が相互に影響し合うこと、また歯車軸の傾きが歯車軸に垂直な成分としての食違い誤差になること、などにより、大きなミスアライメントが発生するため、特許文献4に示されているような単一円弧の歯すじクラウニング(歯すじ方向の一端部および他端部におけるドロップ量を同じくするクラウニング)を施すだけでは、図11(b)に模式的に示すように、片当たりの発生を適切に防止することができないことが判明した。例えば、歯車軸の傾き(ミスアライメント)が最も大きくなる条件に合わせてクラウニングの曲率を大きくすれば、片当たりの発生を可及的に防止することができるとも考えられる。しかしながら、クラウニングの曲率を大きくすると、ミスアライメントが小さい条件では歯当たりが減少して実噛合い率が低下するため、歯の折損、異音・振動の発生などといった問題が生じ易くなる。 However, as verified by the present inventors, when the arrangement angle of the gear shaft is set within the above angle range, the forces that tilt the gear shaft generated at each meshing portion influence each other, and the gear shaft Since a large misalignment occurs due to the inclination becoming a staggered error as a component perpendicular to the gear axis, a single arc tooth streak crowning (in the tooth streak direction) as shown in Patent Document 4 occurs. It has been found that it is not possible to appropriately prevent the occurrence of one-sided contact, as schematically shown in FIG. 11 (b), only by performing crowning) in which the amount of drops at one end and the other end is the same. For example, it is considered that the occurrence of one-sided contact can be prevented as much as possible by increasing the curvature of crowning in accordance with the condition where the inclination (misalignment) of the gear shaft is maximized. However, if the curvature of the crowning is increased, the tooth contact is reduced and the actual meshing rate is lowered under the condition that the misalignment is small, so that problems such as tooth breakage and generation of abnormal noise / vibration are likely to occur.

そこで、本発明は、電動モータ部の回転を減速して出力する減速機部に、各歯車がはすば歯車で構成された多段減速式の平行軸減速機を採用してなるインホイールモータ駆動装置において、歯車同士の噛合い部で片当たりが生じるのを防止可能とし、もって耐久性や音振性能に優れたインホイールモータ駆動装置を提供することを目的とする。 Therefore, the present invention is an in-wheel motor drive in which a multi-stage speed reduction type parallel shaft speed reducer in which each gear is composed of helical gears is used for the speed reducer unit that decelerates the rotation of the electric motor unit and outputs the speed. It is an object of the present invention to provide an in-wheel motor drive device which can prevent one-sided contact at a meshing portion between gears and has excellent durability and sound vibration performance.

上記の目的を達成するために創案された本発明は、駆動力を発生させる電動モータ部と、互いに平行に配置された入力歯車軸、中間歯車軸および出力歯車軸を有し、入力歯車軸に入力された電動モータ部の回転を二段以上で減速して出力する減速機部と、を備え、各歯車軸に設けられた歯車がはすば歯車で構成された車両駆動装置において、減速機部内で互いに噛合う二つの歯車の何れか一方又は双方は、歯面修整が施されることによって歯すじ方向の一端部および他端部で歯厚が相互に異なっており、上記一端部および他端部のうち歯厚が相対的に小さい方が、電動モータ部の駆動時に歯車同士の噛合い部に生じるアキシャル荷重のモーメントにより上記中間歯車軸に傾きが生じるのに伴って上記二つの歯車の噛合う歯面同士の距離が縮まる側に配置されていることを特徴とする。 The present invention, which was devised to achieve the above object, has an electric motor unit for generating a driving force, and an input gear shaft, an intermediate gear shaft, and an output gear shaft arranged in parallel with each other, and the input gear shaft has an input gear shaft. In a vehicle drive device that includes a speed reducer unit that decelerates the input rotation of the electric motor unit in two or more stages and outputs it, and the gears provided on each gear shaft are helical gears. One or both of the two gears that mesh with each other in the portion have different tooth thicknesses at one end and the other end in the tooth streak direction due to the tooth surface modification, and the one end and the other Of the ends, the one with a relatively small tooth thickness has the above two gears as the intermediate gear shaft is tilted due to the moment of the axial load generated in the meshing portion between the gears when the electric motor portion is driven. It is characterized in that it is arranged on the side where the distance between the meshing tooth surfaces is shortened.

各歯車がはすば歯車で構成された多段減速式の平行軸減速機内で歯車同士の噛合い部に片当たりが生じるのは、歯車同士の噛合い部に生じるアキシャル荷重のモーメントにより中間歯車軸に傾き(ミスアライメント)が生じるのに伴って、互いに噛合う二つの歯車のうち噛合う歯面同士の距離が縮まる側である。また、どの程度のミスアライメントが生じるかは、歯車の歯のねじれ方向や歯車の諸元などに基づいて設計段階で比較的高精度に推定することができる。そのため、互いに噛合う二つの歯車の何れか一方又は双方について、上記の推定結果に基づいて歯面修整を施すことによって歯すじ方向の一端部および他端部で歯厚を相互に異ならせ、上記一端部および他端部のうち歯厚が相対的に小さい方を、中間歯車軸に傾きが生じるのに伴って噛合う歯面同士の距離が縮まる側に配置しておけば、中間歯車軸の傾き量(ミスアライメント)の大小に関わらず、歯車同士の噛合い部において適切な噛合い状態を実現することが可能となる。これにより、耐久性および静粛性(音振性能)、さらにはトルク伝達性能に優れた高品質の平行軸減速機、ひいてはインホイールモータ駆動装置を実現することができる。 In a multi-stage reduction type parallel shaft reducer in which each gear is composed of helical gears, one-sided contact occurs in the meshing part between the gears because of the moment of the axial load generated in the meshing part between the gears. This is the side where the distance between the meshing tooth surfaces of the two gears that mesh with each other decreases as the tilt (misalignment) occurs. In addition, the degree of misalignment can be estimated with relatively high accuracy at the design stage based on the twisting direction of the gear teeth and the specifications of the gear. Therefore, for either or both of the two gears that mesh with each other, the tooth thickness is made different from each other at one end and the other end in the tooth streak direction by modifying the tooth surface based on the above estimation result. If the one end and the other end having a relatively small tooth thickness are arranged on the side where the distance between the tooth surfaces that mesh with each other decreases as the intermediate gear shaft tilts, the intermediate gear shaft Regardless of the amount of inclination (misalignment), it is possible to realize an appropriate meshing state at the meshing portion between the gears. As a result, it is possible to realize a high-quality parallel-axis speed reducer having excellent durability, quietness (sound vibration performance), and torque transmission performance, and by extension, an in-wheel motor drive device.

歯面修整に必要となる手間とコストを低減する上では、互いに噛合う二つの歯車の何れか一方についてのみ、歯面修整を施す(歯すじ方向の一端部および他端部で歯厚を相互に異ならせる)のが好ましく、特に、互いに噛合う二つの歯車のうち歯数の少ない方(径の小さい方)の歯車についてのみ歯面修整を施すのが好ましい。 In order to reduce the labor and cost required for tooth surface modification, tooth surface modification is performed only on one of the two gears that mesh with each other (the tooth thickness is mutually adjusted at one end and the other end in the tooth streak direction). It is preferable that the tooth surface is modified only on the gear having the smaller number of teeth (the one having the smaller diameter) among the two gears that mesh with each other.

片当たりの発生を可及的に防止可能とする上では、第1に、互いに噛合う二つの歯車の何れか一方又は双方に対する歯面修整として、歯すじ方向に沿ったテーパ状の肉取りを採用するのが好ましい。互いに噛合う二つの歯車の何れか一方又は双方には、上記歯面修整として、歯すじ方向に沿うクラウニング(歯すじクラウニング)および歯形方向のクラウニング(歯形クラウニング)の何れか一方又は双方をさらに施すようにしても良い。 In order to prevent the occurrence of one-sided contact as much as possible, first, as a tooth surface modification for one or both of the two gears that mesh with each other, a tapered thinning along the tooth streak direction is performed. It is preferable to adopt it. One or both of the two gears that mesh with each other are further subjected to either one or both of the crowning along the tooth streak direction (tooth streak crowning) and the tooth profile direction crowning (tooth profile crowning) as the tooth surface modification. You may do so.

以上から、本発明によれば、減速機部に、各歯車がはすば歯車で構成された多段減速式の平行軸減速機を採用してなるインホイールモータ駆動装置において、歯車同士の噛合い部で片当たりが生じるのを効果的に防止することができる。これにより、耐久性や音振性能に優れたインホイールモータ駆動装置を提供することができる。 From the above, according to the present invention, in the in-wheel motor drive device in which each gear employs a multi-stage speed reduction type parallel shaft speed reducer in which each gear is composed of helical gears, the gears mesh with each other. It is possible to effectively prevent one-sided contact from occurring in the portion. This makes it possible to provide an in-wheel motor drive device having excellent durability and sound vibration performance.

本発明の第1実施形態に係るインホイールモータ駆動装置の断面図である。It is sectional drawing of the in-wheel motor drive device which concerns on 1st Embodiment of this invention. 図1のインホイールモータ駆動装置をアウトボード側から見たときの概略図である。It is the schematic when the in-wheel motor drive device of FIG. 1 is seen from the outboard side. 図1に示す減速機部に設けられる歯車(はすば歯車)のねじれ方向や歯車同士の噛合いによって生じるアキシャル荷重の方向性を説明するための図である。It is a figure for demonstrating the twisting direction of a gear (the helical gear) provided in the reduction gear part shown in FIG. 1 and the directionality of an axial load generated by meshing of gears. 図1に示す減速機部をアウトボード側から見たときの概略斜視図である。It is the schematic perspective view when the reduction gear part shown in FIG. 1 is seen from the outboard side. (a)図〜(d)図は、何れも、図1のインホイールモータ駆動装置における入力歯車と入力側中間歯車の噛合い部の概要図である。FIGS. (A) to (d) are schematic views of the meshing portion between the input gear and the input side intermediate gear in the in-wheel motor drive device of FIG. 歯形クラウニングの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of tooth profile crowning. (a)図〜(d)図は、何れも、図1のインホイールモータ駆動装置における出力側中間歯車と出力歯車の噛合い部の概要図である。FIGS. (A) to (d) are schematic views of the meshing portion between the output side intermediate gear and the output gear in the in-wheel motor drive device of FIG. 本発明の第2実施形態に係るインホイールモータ駆動装置において、減速機部に設けられるはすば歯車のねじれ方向や歯車同士の噛合いによって生じるアキシャル荷重の方向性を説明するための図である。It is a figure for demonstrating the direction | direction of the axial load generated by the twisting direction of the helical gear provided in the reduction gear part, and the meshing of gears in the in-wheel motor drive device which concerns on 2nd Embodiment of this invention. .. インホイールモータ駆動装置を搭載した電気自動車の概略平面図である。It is a schematic plan view of an electric vehicle equipped with an in-wheel motor drive device. 図9に示す電気自動車の後方断面図である。It is a rear sectional view of the electric vehicle shown in FIG. (a)図および(b)図は、従来技術の問題点を説明するための概略図である。(A) and (b) are schematic views for explaining the problems of the prior art.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、図9および図10に基づき、車両駆動装置の一種であるインホイールモータ駆動装置を搭載した電気自動車11の概要を説明する。図9に示すように、電気自動車11は、シャシー12と、操舵輪として機能する一対の前輪13と、駆動輪として機能する一対の後輪14と、左右の後輪14のそれぞれを駆動するインホイールモータ駆動装置21とを備える。図10に示すように、後輪14は、シャシー12のホイールハウジング15の内部に収容され、懸架装置16を介してシャシー12の下部に固定されている。 First, an outline of the electric vehicle 11 equipped with an in-wheel motor drive device, which is a kind of vehicle drive device, will be described with reference to FIGS. 9 and 10. As shown in FIG. 9, the electric vehicle 11 drives the chassis 12, the pair of front wheels 13 that function as steering wheels, the pair of rear wheels 14 that function as driving wheels, and the left and right rear wheels 14, respectively. A wheel motor drive device 21 is provided. As shown in FIG. 10, the rear wheel 14 is housed inside the wheel housing 15 of the chassis 12 and is fixed to the lower part of the chassis 12 via the suspension device 16.

懸架装置16は、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングおよびショックアブソーバを含むストラットによって、後輪14が路面から受ける振動を吸収してシャシー12の振動を抑制する。懸架装置16は、路面の凹凸に対する追従性を向上し、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させる独立懸架式が好ましいが、その他の懸架方式が採用される場合もある。 The suspension device 16 supports the rear wheels 14 by suspension arms extending to the left and right, and absorbs vibrations received by the rear wheels 14 from the road surface by struts including a coil spring and a shock absorber to suppress vibrations of the chassis 12. The suspension device 16 is preferably an independent suspension type in which the left and right wheels are independently raised and lowered in order to improve the followability to the unevenness of the road surface and efficiently transmit the driving force of the rear wheels 14 to the road surface, but other suspensions. The method may be adopted.

この電気自動車11では、左右のホイールハウジング15の内部に、左右の後輪14それぞれを回転駆動させるインホイールモータ駆動装置21が組み込まれるので、シャシー12上にモータ、ドライブシャフトおよび差動装置等を設ける必要がなくなる。そのため、この電気自動車11は、客室スペースを広く確保でき、しかも、左右の後輪14の回転をそれぞれ制御することができるという利点を有する。 In the electric vehicle 11, an in-wheel motor drive device 21 for rotationally driving each of the left and right rear wheels 14 is incorporated inside the left and right wheel housings 15, so that a motor, a drive shaft, a differential device, and the like are mounted on the chassis 12. There is no need to provide it. Therefore, the electric vehicle 11 has an advantage that a large cabin space can be secured and the rotations of the left and right rear wheels 14 can be controlled respectively.

なお、インホイールモータ駆動装置21は、上記のように、後輪14を駆動輪とした後輪駆動タイプの電気自動車11のみならず、前輪13を駆動輪とした前輪駆動タイプの電気自動車や、前輪13および後輪14の双方を駆動輪とした四輪駆動タイプの電気自動車に適用することもできる。 As described above, the in-wheel motor drive device 21 includes not only a rear-wheel drive type electric vehicle 11 having a rear wheel 14 as a drive wheel, but also a front-wheel drive type electric vehicle 11 having a front wheel 13 as a drive wheel. It can also be applied to a four-wheel drive type electric vehicle in which both the front wheels 13 and the rear wheels 14 are drive wheels.

電気自動車11の走行安定性およびNVH特性を向上するためには、ばね下重量を抑える必要がある。また、電気自動車11の客室スペースを拡大するためには、インホイールモータ駆動装置21をできるだけコンパクト化する必要がある。そこで、以下に説明するようなインホイールモータ駆動装置21を採用する。 In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight. Further, in order to expand the cabin space of the electric vehicle 11, it is necessary to make the in-wheel motor drive device 21 as compact as possible. Therefore, the in-wheel motor drive device 21 as described below is adopted.

図1に、本発明の第1実施形態に係るインホイールモータ駆動装置21、より詳細には、電気自動車11(図9参照)の左側の駆動輪を回転駆動させるインホイールモータ駆動装置21の断面図を示す。このインホイールモータ駆動装置21は、車輪を駆動するための駆動力を発生させる電動モータ部Aと、電動モータ部Aの回転を減速して出力する減速機部Bと、減速機部Bの出力を駆動輪に伝達する車輪用軸受部Cとを備えている。電動モータ部Aおよび減速機部Bはケーシング22に収容され、車輪用軸受部Cはケーシング22に取り付けられている。なお、以下の説明では、インホイールモータ駆動装置21をホイールハウジング15(図10参照)内に取り付けた状態で車幅方向外側および車幅方向内側となる側を、それぞれ、アウトボード側およびインボード側という。図1においては、紙面左側がアウトボード側であり、紙面右側がインボード側である。 FIG. 1 shows a cross section of an in-wheel motor drive device 21 according to the first embodiment of the present invention, more specifically, an in-wheel motor drive device 21 that rotationally drives the left drive wheel of an electric vehicle 11 (see FIG. 9). The figure is shown. The in-wheel motor drive device 21 has an electric motor unit A that generates a driving force for driving the wheels, a speed reducer unit B that decelerates and outputs the rotation of the electric motor unit A, and outputs of the speed reducer unit B. Is provided with a wheel bearing portion C that transmits the above to the drive wheels. The electric motor portion A and the speed reducer portion B are housed in the casing 22, and the wheel bearing portion C is attached to the casing 22. In the following description, the in-wheel motor drive device 21 is mounted in the wheel housing 15 (see FIG. 10), and the outer side in the vehicle width direction and the inner side in the vehicle width direction are the outboard side and the inboard side, respectively. Called the side. In FIG. 1, the left side of the paper surface is the outboard side, and the right side of the paper surface is the inboard side.

電動モータ部Aは、ケーシング22に固定された筒状のステータ23と、図示外の径方向隙間を介してステータ23の内周に配置されたロータ24と、外周にロータ24を装着したモータ回転軸25とを有するラジアルギャップ型の電動モータ26を備える。モータ回転軸25は、その軸方向の二箇所に離間して配置された転がり軸受40,41によってケーシング22に対して回転自在に支持されており、毎分1万数千回程度の回転速度で回転可能である。なお、電動モータ部Aには、ラジアルギャップ型に替えてアキシャルギャップ型の電動モータを採用しても良い。 The electric motor unit A includes a tubular stator 23 fixed to the casing 22, a rotor 24 arranged on the inner circumference of the stator 23 via a radial gap (not shown), and a motor rotation in which the rotor 24 is mounted on the outer circumference. A radial gap type electric motor 26 having a shaft 25 is provided. The motor rotating shaft 25 is rotatably supported with respect to the casing 22 by rolling bearings 40 and 41 arranged at two positions apart from each other in the axial direction, and at a rotation speed of about 10,000 times per minute. It is rotatable. An axial gap type electric motor may be used for the electric motor unit A instead of the radial gap type.

図1に示すように、減速機部Bは、入力歯車31を有する入力歯車軸35と、入力側中間歯車32および出力側中間歯車33を有する中間歯車軸36と、出力歯車34を有する出力歯車軸37とを備え、各歯車軸35〜37が互いに平行に配置された平行軸歯車減速機(平行軸減速機)30を備える。図2にも示すように、この平行軸減速機30では、入力歯車31と入力側中間歯車32とが噛み合い、出力側中間歯車33と出力歯車34とが噛み合っている。入力側中間歯車32の歯数は、入力歯車31および出力側中間歯車33の歯数よりも多く、出力歯車34の歯数は、出力側中間歯車33の歯数よりも多い。係る構成から、この平行軸減速機30は、モータ回転軸25の回転を二段階で減速して出力する。 As shown in FIG. 1, the speed reducer unit B includes an input gear shaft 35 having an input gear 31, an intermediate gear shaft 36 having an input side intermediate gear 32 and an output side intermediate gear 33, and an output gear having an output gear 34. A parallel shaft gear reducer (parallel shaft reducer) 30 is provided with a shaft 37 and the gear shafts 35 to 37 are arranged in parallel with each other. As shown in FIG. 2, in the parallel shaft speed reducer 30, the input gear 31 and the input side intermediate gear 32 mesh with each other, and the output side intermediate gear 33 and the output gear 34 mesh with each other. The number of teeth of the input side intermediate gear 32 is larger than the number of teeth of the input gear 31 and the output side intermediate gear 33, and the number of teeth of the output gear 34 is larger than the number of teeth of the output side intermediate gear 33. From this configuration, the parallel shaft speed reducer 30 reduces the rotation of the motor rotation shaft 25 in two stages and outputs the speed.

図1に示すように、入力歯車軸35は、モータ回転軸25と同軸に配置され、スプライン嵌合によってモータ回転軸25と一体回転可能に連結されている。入力歯車軸35は転がり軸受42,43により、中間歯車軸36は転がり軸受44,45により、また、出力歯車軸37は転がり軸受46,47により、ケーシング22に対して回転自在に支持されている。 As shown in FIG. 1, the input gear shaft 35 is arranged coaxially with the motor rotating shaft 25, and is integrally rotatably connected to the motor rotating shaft 25 by spline fitting. The input gear shaft 35 is rotatably supported by rolling bearings 42 and 43, the intermediate gear shaft 36 is rotatably supported by rolling bearings 44 and 45, and the output gear shaft 37 is rotatably supported by rolling bearings 46 and 47 with respect to the casing 22. ..

図3および図4に示すように、入力歯車31、両中間歯車32,33および出力歯車34には、何れも、歯31a〜34aの歯すじがつるまき線状に形成された(歯すじが軸方向に対して傾斜した)はすば歯車を用いている。はすば歯車は、同時に噛合う歯数が多く、歯当たりが分散されるため、噛合い時の音が静かでトルク変動が少ないという利点を有する。従って、はすば歯車を用いれば、静粛かつトルク伝達効率に優れた平行軸減速機30を実現する上で有利となる。 As shown in FIGS. 3 and 4, the input gear 31, the intermediate gears 32, 33, and the output gear 34 all have tooth streaks of teeth 31a to 34a formed in a spiral line shape (tooth streaks). A helical gear (inclined with respect to the axial direction) is used. The helical gear has an advantage that the number of teeth meshed at the same time is large and the tooth contact is dispersed, so that the sound at the time of meshing is quiet and the torque fluctuation is small. Therefore, the use of helical gears is advantageous in realizing a parallel shaft reducer 30 that is quiet and has excellent torque transmission efficiency.

各歯車31〜34がはすば歯車で構成される関係上、インホイールモータ駆動装置21の駆動中、入力歯車31と入力側中間歯車32の噛合い部M1、および出力側中間歯車33と出力歯車34の噛合い部M2には、ラジアル荷重およびアキシャル荷重の双方が作用する。これらのラジアル荷重およびアキシャル荷重は、主に歯車軸35〜37を支持する転がり軸受42〜47によって支持される。従って、転がり軸受42〜47には、ラジアル荷重およびアキシャル荷重の双方を受けることができる軸受、例えば深溝玉軸受が使用される。 Since each of the gears 31 to 34 is composed of helical gears, the meshing portion M1 of the input gear 31 and the input side intermediate gear 32 and the output side intermediate gear 33 and the output while the in-wheel motor drive device 21 is being driven. Both a radial load and an axial load act on the meshing portion M2 of the gear 34. These radial and axial loads are mainly supported by rolling bearings 42-47 that support gear shafts 35-37. Therefore, for the rolling bearings 42 to 47, bearings capable of receiving both radial load and axial load, for example, deep groove ball bearings are used.

図1に示すように、本実施形態では、中間歯車軸36のインボード側の端部を支持する転がり軸受44に、中間歯車軸36のアウトボード側の端部を支持する転がり軸受45よりも大径のもの、すなわち負荷容量が大きいものを用いると共に、出力歯車軸37の軸方向中央部付近を支持する転がり軸受47に、出力歯車軸37のインボード側の端部を支持する転がり軸受46よりも大径のものを用いている。係る構成に加え、入力側中間歯車32を部分的に肉取りして入力側中間歯車32の内周に中間歯車軸36のインボード側の端部を支持する転がり軸受44を配置すると共に、出力歯車34を部分的に肉取りして出力歯車34の内周に出力歯車軸37の軸方向中央部付近を支持する転がり軸受47を配置している。係る構成により、減速機30に高い減速比を確保しつつ、減速機部B(インホイールモータ駆動装置21)の軸方向のコンパクト化を図っている。 As shown in FIG. 1, in the present embodiment, the rolling bearing 44 that supports the end of the intermediate gear shaft 36 on the inboard side is more than the rolling bearing 45 that supports the end of the intermediate gear shaft 36 on the outboard side. A rolling bearing 47 having a large diameter, that is, having a large load capacity, and a rolling bearing 47 supporting the vicinity of the central portion in the axial direction of the output gear shaft 37, and a rolling bearing 46 supporting the end portion on the inboard side of the output gear shaft 37. The one with a larger diameter is used. In addition to this configuration, the input side intermediate gear 32 is partially lightened, and a rolling bearing 44 that supports the inboard side end of the intermediate gear shaft 36 is arranged on the inner circumference of the input side intermediate gear 32, and the output is output. The gear 34 is partially lightened, and a rolling bearing 47 that supports the vicinity of the central portion of the output gear shaft 37 in the axial direction is arranged on the inner circumference of the output gear 34. With this configuration, the reduction gear unit B (in-wheel motor drive device 21) is made compact in the axial direction while ensuring a high reduction ratio for the reduction gear 30.

減速機部Bを径方向にコンパクト化する観点から、本実施形態では、歯車軸の配置角(入力歯車軸35と中間歯車軸36の回転中心O1,O2を結ぶ直線と、中間歯車軸36と出力歯車軸37の回転中心O2,O3を結ぶ直線とがなす角度)が65°程度となるように各歯車軸35〜37が配置されている。なお、図2および図4には、電気自動車11がインホイールモータ駆動装置21の駆動力を受けて前進移動するとき(電動モータ26の正転力行時)の各歯車軸35〜37の回転方向を黒塗り矢印で示し、電気自動車11がインホイールモータ駆動装置21の駆動力を受けて後退移動するとき(電動モータ26の逆転力行時)の各歯車軸35〜37の回転方向を白抜き矢印で示している。 From the viewpoint of making the speed reducer portion B compact in the radial direction, in the present embodiment, the gear shaft arrangement angle (the straight line connecting the input gear shaft 35 and the rotation centers O1 and O2 of the intermediate gear shaft 36, and the intermediate gear shaft 36 The gear shafts 35 to 37 are arranged so that the angle formed by the straight lines connecting the rotation centers O2 and O3 of the output gear shafts 37) is about 65 °. It should be noted that FIGS. 2 and 4 show the rotation directions of the gear shafts 35 to 37 when the electric vehicle 11 moves forward by receiving the driving force of the in-wheel motor drive device 21 (when the electric motor 26 runs in the forward rotation force). Are indicated by black arrows, and the rotation directions of the gear shafts 35 to 37 when the electric vehicle 11 receives the driving force of the in-wheel motor drive device 21 and moves backward (when the electric motor 26 is running the reverse force) are shown by white arrows. It is shown by.

本実施形態では、動作頻度が最も多い電動モータ26の正転力行時に、中間歯車軸36に入力されるアキシャル荷重(入力側中間歯車32に作用するアキシャル荷重、および出力側中間歯車33に作用するアキシャル荷重の合力)が中間歯車軸36を支持する二つの転がり軸受44,45のうち負荷容量が相対的に大きい転がり軸受44に作用すると共に、出力歯車軸37に入力されるアキシャル荷重(出力歯車34に作用するアキシャル荷重)が出力歯車軸37を支持する二つの転がり軸受46,47のうち負荷容量が相対的に大きい転がり軸受47に作用するように、各歯車31〜34の歯31a〜34aのねじれ方向を設定している。具体的には、図3および図4に示すように、入力歯車31および出力歯車34の歯31a,34aのねじれ方向をいわゆる左ねじれとし、両中間歯車32,33の歯32a,33aのねじれ方向をいわゆる右ねじれとしている。 In the present embodiment, the axial load input to the intermediate gear shaft 36 (the axial load acting on the input side intermediate gear 32 and the output side intermediate gear 33 act on the intermediate gear 33 when the electric motor 26 operates most frequently. The resultant force of the axial load acts on the rolling bearing 44 having a relatively large load capacity among the two rolling bearings 44 and 45 that support the intermediate gear shaft 36, and the axial load (output gear) input to the output gear shaft 37. The teeth 31a to 34a of the gears 31 to 34 so that the axial load acting on the 34) acts on the rolling bearing 47 having a relatively large load capacity among the two rolling bearings 46 and 47 supporting the output gear shaft 37. The twist direction of is set. Specifically, as shown in FIGS. 3 and 4, the twisting directions of the teeth 31a and 34a of the input gear 31 and the output gear 34 are so-called left-handed twists, and the twisting directions of the teeth 32a and 33a of the intermediate gears 32 and 33. Is a so-called right-handed twist.

図3には、参考までに、電動モータ26の正転力行時に両中間歯車32,33に作用するアキシャル荷重の方向を、それぞれ黒塗り矢印F1,F2で示し、電動モータ26の逆転力行時に、両中間歯車32,33に作用するアキシャル荷重の方向を、それぞれ白抜き矢印F1’,F2’で示している。図3では、矢印F1,F2の長さを相互に異ならせているが、これは、出力側中間歯車33が入力側中間歯車32よりも動力伝達方向の後段側に位置して大きな回転トルクを伝達するものである関係上、出力側中間歯車33に作用するアキシャル荷重の方が入力側中間歯車32に作用するアキシャル荷重よりも大きいことを意味している。矢印F1’,F2’についても同様である。 In FIG. 3, for reference, the directions of the axial loads acting on the intermediate gears 32 and 33 when the electric motor 26 is driven in the forward direction are indicated by black arrows F1 and F2, respectively. The directions of the axial loads acting on the intermediate gears 32 and 33 are indicated by the white arrows F1'and F2', respectively. In FIG. 3, the lengths of the arrows F1 and F2 are different from each other. This is because the output side intermediate gear 33 is located on the rear stage side in the power transmission direction with respect to the input side intermediate gear 32 and exerts a large rotational torque. It means that the axial load acting on the output side intermediate gear 33 is larger than the axial load acting on the input side intermediate gear 32 because it is transmitted. The same applies to the arrows F1'and F2'.

図1に示すように、車輪用軸受部Cは、いわゆる内輪回転タイプの車輪用軸受50を備える。車輪用軸受50は、ハブ輪51および内輪52からなる内方部材53と、外輪54と、ボール57と、図示外の保持器とを備えた複列アンギュラ玉軸受からなる。この車輪用軸受50では、ハブ輪51および内輪52の外周にそれぞれ形成された内側軌道面55と、外輪54の内周に形成された複列の外側軌道面56とで形成されるボールトラックに複数のボール57が組み込まれている。詳細な図示は省略しているが、車輪用軸受50の内部空間には、潤滑剤としてのグリースが充填されている。軸受内部空間への異物侵入および軸受外部へのグリース漏洩を防止するため、車輪用軸受50の軸方向両端部にはシール部材が設けられている。 As shown in FIG. 1, the wheel bearing portion C includes a so-called inner ring rotation type wheel bearing 50. The wheel bearing 50 is composed of a double row angular contact ball bearing including an inner member 53 including a hub ring 51 and an inner ring 52, an outer ring 54, a ball 57, and a cage (not shown). The wheel bearing 50 is formed on a ball track formed by an inner raceway surface 55 formed on the outer periphery of the hub ring 51 and the inner ring 52, and a double row outer raceway surface 56 formed on the inner circumference of the outer ring 54. A plurality of balls 57 are incorporated. Although detailed illustration is omitted, the internal space of the wheel bearing 50 is filled with grease as a lubricant. Seal members are provided at both ends of the wheel bearing 50 in the axial direction in order to prevent foreign matter from entering the bearing internal space and grease from leaking to the outside of the bearing.

ハブ輪51は、スプライン嵌合によって平行軸減速機30を構成する出力歯車軸37と一体回転可能に連結されている。ハブ輪51のアウトボード側の端部には、径方向外向きに延びたフランジ部51aが設けられ、このフランジ部51aに車輪(駆動輪)が取り付けられる。また、ハブ輪51のインボード側の端部には、車輪用軸受50に予圧を付与するため、内輪52を加締め固定してなる加締め部51bが形成されている。 The hub wheel 51 is rotatably connected to the output gear shaft 37 constituting the parallel shaft speed reducer 30 by spline fitting. A flange portion 51a extending outward in the radial direction is provided at the end of the hub wheel 51 on the outboard side, and wheels (driving wheels) are attached to the flange portion 51a. Further, a crimping portion 51b formed by crimping and fixing the inner ring 52 in order to apply a preload to the wheel bearing 50 is formed at the end portion of the hub wheel 51 on the inboard side.

外輪54のアウトボード側の端部には、径方向外向きに延びたフランジ部が設けられ、このフランジ部にアタッチメント58がボルト止めされている。そして、車輪用軸受部Cは、アタッチメント58を介してケーシング22に対してボルト止めされている。 A flange portion extending outward in the radial direction is provided at the end of the outer ring 54 on the outboard side, and the attachment 58 is bolted to the flange portion. The wheel bearing portion C is bolted to the casing 22 via the attachment 58.

以上の構成を有するインホイールモータ駆動装置21の全体的な作動態様を簡単に説明する。まず、電動モータ部Aにおいて、電動モータ26のステータ23に交流電流が供給されると、これに伴って生じる電磁力によりロータ24およびモータ回転軸25が一体回転する。モータ回転軸25の回転は、減速機部Bにおいて平行軸減速機30によって減速された上で車輪用軸受50に伝達される。そのため、低トルクで高回転型の電動モータ(小型の電動モータ)26を採用した場合でも、駆動輪に必要なトルクを伝達することができる。 The overall operation mode of the in-wheel motor drive device 21 having the above configuration will be briefly described. First, in the electric motor unit A, when an alternating current is supplied to the stator 23 of the electric motor 26, the rotor 24 and the motor rotating shaft 25 are integrally rotated by the electromagnetic force generated by the alternating current. The rotation of the motor rotating shaft 25 is decelerated by the parallel shaft speed reducer 30 in the speed reducer unit B and then transmitted to the wheel bearing 50. Therefore, even when a low torque and high rotation type electric motor (small electric motor) 26 is adopted, the required torque can be transmitted to the drive wheels.

図示は省略しているが、インホイールモータ駆動装置21は、電動モータ部Aおよび減速機部Bの各部に潤滑油を供給するための潤滑機構を有する。そして、インホイールモータ駆動装置21の駆動中には、上記潤滑機構から供給される潤滑油により、電動モータ部Aの各部が冷却されると共に減速機部Bの各部が潤滑および冷却されるようになっている。 Although not shown, the in-wheel motor drive device 21 has a lubrication mechanism for supplying lubricating oil to each of the electric motor unit A and the speed reducer unit B. Then, while the in-wheel motor drive device 21 is being driven, each part of the electric motor part A is cooled and each part of the speed reducer part B is lubricated and cooled by the lubricating oil supplied from the lubrication mechanism. It has become.

本実施形態のインホイールモータ駆動装置21の基本的構成は以上のとおりであるが、本実施形態のインホイールモータ駆動装置21は、その駆動時に、平行軸減速機30を構成する中間歯車軸36に傾きが生じるのに起因して歯車同士が片当たりするのを可及的に防止可能とした点に主たる特徴がある。以下、まず、中間歯車軸36に傾きが生じる主な理由を説明し、その後、本発明で採用している特徴的な構成について説明する。 The basic configuration of the in-wheel motor drive device 21 of the present embodiment is as described above, but the in-wheel motor drive device 21 of the present embodiment has an intermediate gear shaft 36 constituting the parallel shaft speed reducer 30 at the time of driving the in-wheel motor drive device 21. The main feature is that it is possible to prevent the gears from hitting each other as much as possible due to the tilting of the wheels. Hereinafter, the main reason why the intermediate gear shaft 36 is tilted will be described first, and then the characteristic configuration adopted in the present invention will be described.

前述したように、本実施形態では、各歯車31〜34の歯31a〜34aのねじれ方向を、電動モータ26の正転力行時に中間歯車軸36に入力されるアキシャル荷重(両中間歯車32,33に作用するアキシャル荷重の合力)が中間歯車軸36を支持する二つの転がり軸受44,45のうちの転がり軸受44に、また、出力歯車軸37に入力されるアキシャル荷重が出力歯車軸37を支持する二つの転がり軸受46,47のうちの転がり軸受47に作用するように設定している。 As described above, in the present embodiment, the torsional directions of the teeth 31a to 34a of each of the gears 31 to 34 are the axial loads (both intermediate gears 32, 33) input to the intermediate gear shaft 36 when the electric motor 26 runs in the forward rotation force. The axial load applied to the rolling bearing 44 of the two rolling bearings 44 and 45 supporting the intermediate gear shaft 36, and the axial load input to the output gear shaft 37 supports the output gear shaft 37. It is set to act on the rolling bearing 47 of the two rolling bearings 46 and 47.

そして、インホイールモータ駆動装置21(電動モータ26)の駆動中、中間歯車軸36には、入力側中間歯車32および出力側中間歯車33に作用するアキシャル荷重に加え、このアキシャル荷重によるモーメント荷重が常に作用するため、中間歯車軸36は、軸方向に対して傾いた傾斜状態で回転することになる。 Then, while the in-wheel motor drive device 21 (electric motor 26) is being driven, in addition to the axial load acting on the input side intermediate gear 32 and the output side intermediate gear 33, the intermediate gear shaft 36 receives a moment load due to this axial load. Since it always acts, the intermediate gear shaft 36 rotates in an inclined state inclined with respect to the axial direction.

より具体的に説明すると、電動モータ26の正転力行時、入力側中間歯車32には図3中に矢印F1で示すアキシャル荷重(アウトボード側に指向したアキシャル荷重)が作用し、出力側中間歯車33には図3中に矢印F2で示すアキシャル荷重(インボード側に指向し、かつ入力側中間歯車32に作用するアキシャル荷重よりも大きいアキシャル荷重)が作用することから、中間歯車軸36には、中間歯車軸36を図3中で反時計回りの方向に回転させるようなモーメント荷重が作用する。このようなモーメント荷重が作用することによって中間歯車軸36に傾きが生じると、入力歯車31と入力側中間歯車32の噛合い部M1では、そのアウトボード側の端部で両歯車31,32の噛合う歯面同士の距離が縮まり(例えば、図5(a)に示す入力歯車31の修整前歯面T’と入力側中間歯車32の歯面Tを参照)、また、出力側中間歯車33と出力歯車34の噛合い部M2では、そのインボード側の端部で両歯車33,34の噛合う歯面同士の距離が縮まる(例えば、図7(a)に示す出力歯車34の修整前歯面T’と出力側中間歯車33の歯面Tを参照)。 More specifically, when the electric motor 26 is running in the forward rotation force, the axial load (axial load directed to the outboard side) indicated by the arrow F1 in FIG. 3 acts on the input side intermediate gear 32, and is in the middle of the output side. Since the axial load indicated by the arrow F2 in FIG. 3 (an axial load directed toward the inboard side and larger than the axial load acting on the input side intermediate gear 32) acts on the gear 33, the intermediate gear shaft 36 is affected. Is acted on by a moment load that causes the intermediate gear shaft 36 to rotate in the counterclockwise direction in FIG. When the intermediate gear shaft 36 is tilted due to the action of such a moment load, in the meshing portion M1 between the input gear 31 and the input side intermediate gear 32, the both gears 31 and 32 are at the end on the outboard side. The distance between the meshing tooth surfaces is shortened (see, for example, the front tooth surface T'of the input gear 31 and the tooth surface T of the input side intermediate gear 32 shown in FIG. 5A), and the output side intermediate gear 33. In the meshing portion M2 of the output gear 34, the distance between the meshing tooth surfaces of the gears 33 and 34 is shortened at the end on the inboard side thereof (for example, the front tooth surface of the output gear 34 shown in FIG. 7A). See T'and the tooth surface T of the output side intermediate gear 33).

また、電動モータ26の逆転力行時、入力側中間歯車32には図3中に矢印F1’で示すアキシャル荷重(インボード側に指向したアキシャル荷重)が作用し、出力側中間歯車33には図3中に矢印F2’で示すアキシャル荷重(アウトボード側に指向したアキシャル荷重)が作用することから、中間歯車軸36には、中間歯車軸36を図3中で時計回りの方向に回転させるようなモーメント荷重が作用する。このようなモーメント荷重が作用することによって中間歯車軸36に傾きが生じると、電動モータ26の正転力行時と同様に、噛合い部M1ではそのアウトボード側の端部で両歯車31,32の噛合う歯面同士の距離が縮まり、また、噛合い部M2ではそのインボード側の端部で両歯車33,34の噛合う歯面同士の距離が縮まる。 Further, when the electric motor 26 runs in reverse force, the axial load (axial load directed toward the inboard side) indicated by the arrow F1'in FIG. 3 acts on the input side intermediate gear 32, and the output side intermediate gear 33 is shown in FIG. Since the axial load indicated by the arrow F2'(axial load directed toward the outboard side) acts on the intermediate gear shaft 36, the intermediate gear shaft 36 is rotated in the clockwise direction in FIG. Moment load acts. When the intermediate gear shaft 36 is tilted due to the action of such a moment load, both gears 31 and 32 at the end of the meshing portion M1 on the outboard side, as in the case of the forward rolling force of the electric motor 26. The distance between the meshing tooth surfaces of the gears is shortened, and the distance between the meshing tooth surfaces of the gears 33 and 34 is shortened at the end of the meshing portion M2 on the inboard side.

要するに、各歯車31〜34の歯31a〜34aについて、図3および図4に示すようなねじれ方向を設定した場合、電動モータ26が駆動されると、噛合い部M1ではアウトボード側の端部で両歯車31,32の噛合う歯面同士の距離が縮まって片当たりが生じると共に、噛合い部M2ではインボード側の端部で両歯車33,34の噛合う歯面同士の距離が縮まって片当たりが生じる。この場合に何らの対策も講じなければ、上記のような片当たりが生じた状態で平行軸減速機30が継続的に駆動されるため、各歯車31〜34が早期に折損等する可能性が高まる。しかしながら、一般的な単一円弧の歯すじクラウニングを施すだけでは、図11(b)に示すように、適正な噛合い状態を実現することができない。 In short, when the twisting directions of the teeth 31a to 34a of the gears 31 to 34 are set as shown in FIGS. 3 and 4, when the electric motor 26 is driven, the meshing portion M1 has an end portion on the outboard side. The distance between the meshing tooth surfaces of the gears 31 and 32 is shortened to cause one-sided contact, and at the meshing portion M2, the distance between the meshing tooth surfaces of the gears 33 and 34 is shortened at the end on the inboard side. One-sided hit occurs. In this case, if no measures are taken, the parallel shaft reducer 30 is continuously driven in the state where the above-mentioned one-sided contact occurs, so that each gear 31 to 34 may be broken at an early stage. Increase. However, as shown in FIG. 11B, it is not possible to realize an appropriate meshing state only by applying general single arc tooth streak crowning.

そこで、本発明に係るインホイールモータ駆動装置21では、互いに噛合う二つの歯車の何れか一方又は双方について、歯面修整を施すことによって歯すじ方向(軸方向)の一端部および他端部で歯厚を相互に異ならせ、上記一端部および他端部のうち歯厚が相対的に小さい方を、中間歯車軸36に上記のような傾きが生じるのに伴って互いに噛合う二つの歯車のうちの噛合う歯面同士の距離が縮まる側に配置する、という対策を講じるようにしている。 Therefore, in the in-wheel motor drive device 21 according to the present invention, one or both of the two gears that mesh with each other are subjected to tooth surface modification at one end and the other end in the tooth streak direction (axial direction). Two gears that have different tooth thicknesses and mesh with each other as the intermediate gear shaft 36 is tilted as described above, with the one end and the other end having a relatively smaller tooth thickness. We are trying to take measures to place it on the side where the distance between our meshing tooth surfaces is shortened.

以下、上記対策の具体例を図面に基づいて説明する。 Hereinafter, specific examples of the above measures will be described with reference to the drawings.

まず、上記のように、噛合い部M1,M2に生じるアキシャル荷重のモーメントにより中間歯車軸36に傾きが生じた結果、噛合い部M1のアウトボード側の端部で両歯車31,32の片当たりが生じる場合には、例えば図5(a)に示すように、入力歯車31(を構成する多数の歯のそれぞれ)の歯面を歯すじ方向に沿ってテーパ状に肉取りする(肉取りする部分は符号60で示す部位)といった歯面修整を施すことにより、入力歯車31のアウトボード側の端部の歯厚x1をインボード側の端部の歯厚x2よりも小さくする(x1<x2)。なお、上記の歯面修整は、入力歯車31に替えて入力側中間歯車32に施しても良いし[図5(b)参照]、入力歯車31および入力側中間歯車32の双方に施しても良い[図5(c)参照]。但し、歯面修整に要する手間とコストを考慮すると、図5(a)(b)に示すように、入力歯車31および入力側中間歯車32の何れか一方のみに歯面修整を施すのが好ましく、さらに言えば、図5(a)に示すように、入力側中間歯車32よりも歯数が少ない入力歯車31のみに歯面修整を施すのが好ましい。 First, as described above, as a result of the intermediate gear shaft 36 being tilted by the moment of the axial load generated in the meshing portions M1 and M2, one of the gears 31 and 32 is formed at the end of the meshing portion M1 on the outboard side. When a hit occurs, for example, as shown in FIG. 5A, the tooth surface of the input gear 31 (each of a large number of teeth constituting the input gear 31) is tapered along the tooth trace direction (meat removal). The tooth thickness x1 at the end of the input gear 31 on the outboard side is made smaller than the tooth thickness x2 at the end on the inboard side by modifying the tooth surface such as (the portion indicated by reference numeral 60). x2). The tooth surface modification may be applied to the input side intermediate gear 32 instead of the input gear 31 [see FIG. 5B], or may be applied to both the input gear 31 and the input side intermediate gear 32. Good [see Figure 5 (c)]. However, considering the labor and cost required for tooth surface modification, it is preferable to perform tooth surface modification on only one of the input gear 31 and the input side intermediate gear 32 as shown in FIGS. 5A and 5B. Further, as shown in FIG. 5A, it is preferable to modify the tooth surface only on the input gear 31 having a smaller number of teeth than the input side intermediate gear 32.

両歯車31,32の何れか一方又は双方には、上述したテーパ状の肉取り60に加え、図5(d)に示すように、歯面修整としての歯すじクラウニング(歯すじ方向に沿ったクラウニング)を追加的に設けるようにしても良い。なお、図5(d)は、入力歯車31および入力側中間歯車32の双方について歯すじクラウニング61を追加的に設けた場合の一例である。さらに、両歯車31,32の何れか一方又は双方には、上述したテーパ状の肉取り60に加え、図6に模式的に示すような歯面修整としての歯形クラウニング62を追加的に設けるようにしても良い。なお、図6は、入力歯車31について、テーパ状の肉取り60および歯すじクラウニング61に加え、歯形クラウニング62を設けた場合の一例である。 For either one or both of the gears 31 and 32, in addition to the tapered lightening 60 described above, as shown in FIG. 5 (d), tooth streak crowning (along the tooth streak direction) as tooth surface modification is performed. A crowning) may be additionally provided. Note that FIG. 5D is an example in which tooth streak crowning 61 is additionally provided for both the input gear 31 and the input side intermediate gear 32. Further, in addition to the tapered lightening 60 described above, one or both of the gears 31 and 32 is additionally provided with a tooth profile crowning 62 as a tooth surface modification as schematically shown in FIG. You can do it. Note that FIG. 6 is an example of the case where the input gear 31 is provided with the tooth profile crowning 62 in addition to the tapered lightening 60 and the tooth streak crowning 61.

また、噛合い部M1,M2に生じるアキシャル荷重のモーメントにより中間歯車軸36に傾きが生じた結果、噛合い部M2のインボード側の端部で出力側中間歯車33と出力歯車34の片当たりが生じる場合には、例えば図7(a)に模式的に示すように、出力歯車34の歯面を歯すじ方向に沿ってテーパ状に肉取りする(肉取りする部分は符号60で示す部位)といった歯面修整を施すことにより、出力歯車34のインボード側の端部の歯厚x2をアウトボード側の端部の歯厚x1よりも小さくする(x2<x1)。なお、上記の歯面修整は、出力歯車34に替えて出力側中間歯車33に施しても良いし[図7(b)参照]、出力側中間歯車33および出力歯車34の双方に施しても良い[図7(c)参照]。但し、この場合においても、歯面修整に要する手間とコストを低減する観点から言えば、図7(a)(b)に示すように、出力側中間歯車33および出力歯車34の何れか一方のみに歯面修整を施すのが好ましく、さらに言えば、図7(b)に示すように、出力歯車34よりも歯数が少ない出力側中間歯車33のみに歯面修整を施すのが好ましい。 Further, as a result of the intermediate gear shaft 36 being tilted due to the moment of the axial load generated in the meshing portions M1 and M2, the output side intermediate gear 33 and the output gear 34 come into contact with each other at the end of the meshing portion M2 on the inboard side. When, for example, as schematically shown in FIG. 7A, the tooth surface of the output gear 34 is tapered along the tooth trace direction (the portion to be thinned is the portion indicated by reference numeral 60). ) To make the tooth thickness x2 at the end on the inboard side of the output gear 34 smaller than the tooth thickness x1 at the end on the outboard side (x2 <x1). The tooth surface modification may be applied to the output side intermediate gear 33 instead of the output gear 34 [see FIG. 7B], or may be applied to both the output side intermediate gear 33 and the output gear 34. Good [see Figure 7 (c)]. However, even in this case, from the viewpoint of reducing the labor and cost required for tooth surface repair, as shown in FIGS. 7A and 7B, only one of the output side intermediate gear 33 and the output gear 34 is used. It is preferable to perform tooth surface modification on the tooth surface, and further, as shown in FIG. 7B, it is preferable to perform tooth surface modification only on the output side intermediate gear 33 having a smaller number of teeth than the output gear 34.

また、両歯車33,34の何れか一方又は双方には、上述したテーパ状の肉取り60に加え、歯面修整としての歯すじクラウニングおよび/または歯形クラウニング(図6参照)を追加的に施すようにしても良い。図7(d)は、出力側中間歯車33および出力歯車34の双方について歯すじクラウニング61を追加的に設けた場合の一例である。 Further, in addition to the tapered lightening 60 described above, tooth streak crowning and / or tooth profile crowning (see FIG. 6) as tooth surface modification is additionally applied to either one or both of the gears 33 and 34. You may do so. FIG. 7D is an example in which tooth streak crowning 61 is additionally provided for both the output side intermediate gear 33 and the output gear 34.

以上に示すような対策を講じておけば、中間歯車軸36が傾いた状態で平行軸減速機30が運転される場合でも、噛合い部M1における両歯車31,32の噛合い位置および噛合い量(実噛合い率)、並びに噛合い部M2における両歯車33,34の噛合い位置および噛合い量を適正化することができる。そのため、各歯車31〜34の折損や、噛合い部M1,M2での異音・振動の発生等を効果的に防止することができる。 If the measures shown above are taken, even if the parallel shaft reducer 30 is operated with the intermediate gear shaft 36 tilted, the meshing positions and meshing positions and meshing of the gears 31 and 32 in the meshing portion M1. The amount (actual meshing ratio), and the meshing positions and meshing amounts of the gears 33 and 34 in the meshing portion M2 can be optimized. Therefore, it is possible to effectively prevent breakage of the gears 31 to 34 and generation of abnormal noise / vibration at the meshing portions M1 and M2.

以上で述べたような作用効果が相俟って、本発明によれば、耐久性および静粛性(音振性能)、さらにはトルク伝達効率に優れた高品質の平行軸減速機30、ひいてはインホイールモータ駆動装置21を実現することができる。 Combined with the effects described above, according to the present invention, according to the present invention, a high-quality parallel shaft speed reducer 30 having excellent durability, quietness (sound vibration performance), and torque transmission efficiency, and by extension, an in-wheel The wheel motor drive device 21 can be realized.

以上、本発明の第1実施形態に係るインホイールモータ駆動装置21について説明したが、インホイールモータ駆動装置21には、本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。 The in-wheel motor drive device 21 according to the first embodiment of the present invention has been described above, but the in-wheel motor drive device 21 can be appropriately modified without departing from the gist of the present invention. ..

例えば、各歯車31〜34の歯31a〜34aのねじれ方向は、図8に示すように、図3に示した第1実施形態とは逆向きとすることもできる。この場合、電動モータ26の駆動時に歯車同士の噛合い部M1,M2で生じるアキシャル荷重の方向は、図3に示すような歯車31〜34を採用した場合とは逆になる。そのため、中間歯車軸36にアキシャル荷重によるモーメントが作用するのに伴って生じる中間歯車軸36の傾きの方向も逆になる。よって、電動モータ26の駆動時(正転力行時および逆転力行時)に中間歯車軸36に傾きが生じると、入力歯車31と入力側中間歯車32の噛合い部M1では、そのインボード側の端部で両歯車31,32の噛合う歯面同士の距離が縮まり、出力側中間歯車33と出力歯車34の噛合い部M2では、そのアウトボード側の端部で両歯車33,34の噛合う歯面同士の距離が縮まることになる。要するに、各歯車31〜34の歯31a〜34aについて、図8に示すようなねじれ方向を設定した場合、電動モータ26が駆動されると、噛合い部M1ではインボード側の端部で両歯車31,32の噛合う歯面同士の距離が縮まって片当たりが生じると共に、噛合い部M2ではアウトボード側の端部で両歯車33,34の噛合う歯面同士の距離が縮まって片当たりが生じる。 For example, as shown in FIG. 8, the twisting directions of the teeth 31a to 34a of the gears 31 to 34 may be opposite to those of the first embodiment shown in FIG. In this case, the direction of the axial load generated in the meshing portions M1 and M2 of the gears when the electric motor 26 is driven is opposite to the case where the gears 31 to 34 as shown in FIG. 3 are adopted. Therefore, the direction of inclination of the intermediate gear shaft 36 caused by the moment due to the axial load acting on the intermediate gear shaft 36 is also reversed. Therefore, when the intermediate gear shaft 36 is tilted when the electric motor 26 is driven (when the forward rotation force is applied and when the reverse rotation force is applied), the meshing portion M1 between the input gear 31 and the input side intermediate gear 32 is on the inboard side. The distance between the meshing tooth surfaces of the gears 31 and 32 is shortened at the end, and the meshing portion M2 of the output side intermediate gear 33 and the output gear 34 is engaged with the gears 33 and 34 at the end on the outboard side. The distance between the matching tooth surfaces will be shortened. In short, when the twisting directions of the teeth 31a to 34a of the gears 31 to 34 are set as shown in FIG. 8, when the electric motor 26 is driven, the meshing portion M1 has both gears at the end on the inboard side. The distance between the meshing tooth surfaces of 31 and 32 is shortened to cause one-sided contact, and at the end of the meshing portion M2, the distance between the meshing tooth surfaces of both gears 33 and 34 is reduced to one-sided contact. Occurs.

そのため、噛合い部M1では、入力歯車31および入力側中間歯車32の何れか一方又は双方に対して歯面修整を施すことによって、インボード側の端部の歯厚x2をアウトボード側の端部の歯厚x1よりも小さくし(x2<x1)、また、噛合い部M2では、出力側中間歯車33および出力歯車34の何れか一方又は双方に対して歯面修整を施すことによって、アウトボード側の端部の歯厚x1をインボード側の端部の歯厚x2よりも小さくする(x1<x2)。これにより、第1実施形態のインホイールモータ駆動装置21と同様の作用効果を奏することができる。 Therefore, in the meshing portion M1, the tooth thickness x2 of the end on the inboard side is adjusted to the end on the outboard side by modifying the tooth surface on either or both of the input gear 31 and the intermediate gear 32 on the input side. The tooth thickness of the portion is made smaller than x1 (x2 <x1), and in the meshing portion M2, one or both of the output side intermediate gear 33 and the output gear 34 are subjected to tooth surface modification to be out. The tooth thickness x1 at the end on the board side is made smaller than the tooth thickness x2 at the end on the inboard side (x1 <x2). As a result, the same effect as that of the in-wheel motor drive device 21 of the first embodiment can be obtained.

以上では、入力歯車軸35と出力歯車軸37の間に一軸の中間歯車軸36を配置してなる二段減速式(三軸タイプ)の平行軸減速機30を採用したインホイールモータ駆動装置21に本発明を適用した場合について説明したが、本発明の適用範囲はこれに限られない。すなわち、「はすば歯車からなる歯車同士の噛合い部に生じるアキシャル荷重のモーメントにより中間歯車軸に傾きが生じ、これに伴って歯車同士の噛合い部で片当たりが生じる」という問題は、歯車軸の配置角が概ね60°〜110°程度となるように各歯車軸のレイアウトが調整される平行軸減速機において同様に生じる。従って、本発明は、例えば入力歯車軸35と出力歯車軸37との間に二軸の中間歯車軸36を配置してなる三段減速タイプ(四軸タイプ)の平行軸減速機30を採用したインホイールモータ駆動装置21((図示省略)にも同様に適用し得る。 In the above, the in-wheel motor drive device 21 adopting a two-stage reduction type (three-axis type) parallel shaft reduction gear 30 in which a single intermediate gear shaft 36 is arranged between the input gear shaft 35 and the output gear shaft 37. Although the case where the present invention is applied to is described above, the scope of application of the present invention is not limited to this. That is, the problem that "the moment of the axial load generated in the meshing portion between the helical gears causes the intermediate gear shaft to tilt, and the meshing portion between the gears causes one-sided contact" is solved. The same occurs in a parallel shaft reducer in which the layout of each gear shaft is adjusted so that the arrangement angle of the gear shafts is approximately 60 ° to 110 °. Therefore, the present invention employs, for example, a three-stage reduction type (four-axis type) parallel shaft reduction gear 30 in which a two-axis intermediate gear shaft 36 is arranged between the input gear shaft 35 and the output gear shaft 37. The same can be applied to the in-wheel motor drive device 21 ((not shown)).

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得る。すなわち、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can be further implemented in various forms without departing from the gist of the present invention. That is, the scope of the present invention is indicated by the scope of claims, and further includes the equal meaning described in the scope of claims, and all modifications within the scope.

11 電気自動車(車両)
21 インホイールモータ駆動装置
26 電動モータ
30 平行軸減速機
31 入力歯車
32 入力側中間歯車(大径歯車)
33 出力側中間歯車(小径歯車)
34 出力歯車
35 入力歯車軸
36 中間歯車軸
37 出力歯車軸
50 車輪用軸受
60 肉取り
61 歯すじクラウニング
A 電動モータ部
B 減速機部
C 車輪用軸受部
M1,M2 噛合い部
T 歯面
T’ 修整前歯面
x1 アウトボード側の端部の歯厚
x2 インボード側の端部の歯厚
11 Electric vehicle (vehicle)
21 In-wheel motor drive device 26 Electric motor 30 Parallel shaft reducer 31 Input gear 32 Input side intermediate gear (large diameter gear)
33 Output side intermediate gear (small diameter gear)
34 Output gear 35 Input gear shaft 36 Intermediate gear shaft 37 Output gear shaft 50 Wheel bearing 60 Weeping 61 Tooth streak crowning A Electric motor part B Reducer part C Wheel bearing part M1, M2 Mating part T Tooth surface T' Pre-repair tooth surface x1 Outboard side end tooth thickness x2 Inboard side end tooth thickness

Claims (5)

駆動力を発生させる電動モータ部と、車輪を回転自在に支持する車輪用軸受部と、互いに平行に配置された入力歯車軸、中間歯車軸および出力歯車軸を有し、前記入力歯車軸に入力された前記電動モータ部の回転を二段以上で減速して前記車輪用軸受部に出力する減速機部と、を備え、各歯車軸に設けられた歯車がはすば歯車で構成されたインホイールモータ駆動装置において、
前記減速機部内で互いに噛合う二つの歯車の何れか一方又は双方は、歯面修整が施されることによって歯すじ方向の一端部および他端部で歯厚が相互に異なっており、
前記一端部および前記他端部のうち前記歯厚が相対的に小さい方が、前記電動モータ部の駆動時に歯車同士の噛合い部に生じるアキシャル荷重のモーメントにより前記中間歯車軸に傾きが生じるのに伴って前記二つの歯車の噛合う歯面同士の距離が縮まる側に配置されていることを特徴とするインホイールモータ駆動装置。
It has an electric motor unit that generates driving force, a wheel bearing unit that rotatably supports the wheels, and an input gear shaft, an intermediate gear shaft, and an output gear shaft arranged in parallel with each other, and inputs to the input gear shaft. A speed reducer unit that decelerates the rotation of the electric motor unit in two or more stages and outputs the speed to the wheel bearing unit, and gears provided on each gear shaft are made of helical gears. In the wheel motor drive unit
One or both of the two gears that mesh with each other in the speed reducer portion have different tooth thicknesses at one end and the other end in the tooth streak direction due to the tooth surface modification.
Of the one end and the other end, the one having a relatively small tooth thickness causes the intermediate gear shaft to tilt due to the moment of the axial load generated in the meshing portion between the gears when the electric motor portion is driven. An in-wheel motor drive device characterized in that it is arranged on a side where the distance between the tooth surfaces where the two gears mesh with each other is shortened.
前記二つの歯車のうち歯数が少ない方の歯車のみが、前記一端部および前記他端部で歯厚が相互に異なっている請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein only the gear having the smaller number of teeth among the two gears has different tooth thicknesses at the one end portion and the other end portion. 前記歯面修整が、歯すじ方向に沿って設けられたテーパ状の肉取りである請求項1又は2に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1 or 2, wherein the tooth surface modification is a tapered thinning provided along the tooth streak direction. 前記二つの歯車の何れか一方又は双方は、前記歯面修整として歯すじ方向のクラウニングがさらに施されている請求項3に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 3, wherein either one or both of the two gears is further crowned in the tooth streak direction as the tooth surface modification. 前記二つの歯車の何れか一方又は双方は、前記歯面修整として歯形方向のクラウニングがさらに施されている請求項3又は4に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 3 or 4, wherein either one or both of the two gears is further crowned in the tooth profile direction as the tooth surface modification.
JP2019049765A 2019-03-18 2019-03-18 In-wheel motor drive Active JP7165081B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019049765A JP7165081B2 (en) 2019-03-18 2019-03-18 In-wheel motor drive
CN202010192042.5A CN111703293A (en) 2019-03-18 2020-03-18 In-wheel motor driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049765A JP7165081B2 (en) 2019-03-18 2019-03-18 In-wheel motor drive

Publications (2)

Publication Number Publication Date
JP2020152141A true JP2020152141A (en) 2020-09-24
JP7165081B2 JP7165081B2 (en) 2022-11-02

Family

ID=72536694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049765A Active JP7165081B2 (en) 2019-03-18 2019-03-18 In-wheel motor drive

Country Status (2)

Country Link
JP (1) JP7165081B2 (en)
CN (1) CN111703293A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114435128B (en) * 2021-12-20 2024-05-24 中国船舶重工集团应急预警与救援装备股份有限公司 Follow-up driving dual-purpose wheel set for towing carrying platform

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859143A1 (en) * 1998-12-21 2000-06-29 Buhler Motor Gmbh Pair of gear wheels, in which at least one cylindrical gear has combination of head shape circles deviating from cylindrical
US20050278952A1 (en) * 2002-04-26 2005-12-22 O-Oka Corporation Gear product and method for manufacturing the same
JP2006103487A (en) * 2004-10-05 2006-04-20 Yanmar Co Ltd Speed-reduction reverser for vessel
JP2010249161A (en) * 2009-04-10 2010-11-04 Toyota Motor Corp Power transmission device
JP2012215258A (en) * 2011-04-01 2012-11-08 Toyota Motor Corp Meshing gear device of vehicle
JP2018071686A (en) * 2016-10-31 2018-05-10 Ntn株式会社 In-wheel motor drive unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102204B2 (en) * 1993-05-31 2000-10-23 日産自動車株式会社 Tooth profile structure of spiral bevel gear
CN100575750C (en) * 2006-06-07 2009-12-30 重庆大学 Adjustable side play and variable thickness gear driving pair
JP2010216518A (en) * 2009-03-13 2010-09-30 Masahiro Ikemura Gear without transmission error and backlash
JP5520374B2 (en) * 2010-06-21 2014-06-11 大岡技研株式会社 Free curved surface gear
WO2017110840A1 (en) * 2015-12-25 2017-06-29 オリジン電気株式会社 Rotation transmitting device with integrated planetary gear mechanisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859143A1 (en) * 1998-12-21 2000-06-29 Buhler Motor Gmbh Pair of gear wheels, in which at least one cylindrical gear has combination of head shape circles deviating from cylindrical
US20050278952A1 (en) * 2002-04-26 2005-12-22 O-Oka Corporation Gear product and method for manufacturing the same
JP2006103487A (en) * 2004-10-05 2006-04-20 Yanmar Co Ltd Speed-reduction reverser for vessel
JP2010249161A (en) * 2009-04-10 2010-11-04 Toyota Motor Corp Power transmission device
JP2012215258A (en) * 2011-04-01 2012-11-08 Toyota Motor Corp Meshing gear device of vehicle
JP2018071686A (en) * 2016-10-31 2018-05-10 Ntn株式会社 In-wheel motor drive unit

Also Published As

Publication number Publication date
CN111703293A (en) 2020-09-25
JP7165081B2 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
WO2021095418A1 (en) In-wheel motor drive device
JP6781608B2 (en) In-wheel motor drive
CA3151066A1 (en) Bearing support for parallel electric axle gear assembly
KR101968005B1 (en) Power transmission mechanism
WO2016047442A1 (en) In-wheel motor drive apparatus
JP2020152141A (en) In-wheel motor driving device
WO2020137925A1 (en) In-wheel motor drive device
JP7048460B2 (en) In-wheel motor drive
JP7053405B2 (en) Vehicle drive
JP6333579B2 (en) In-wheel motor drive device
CN108290491B (en) In-wheel motor driving device
JP2020046055A (en) In-wheel motor drive device
JP6843511B2 (en) In-wheel motor drive
WO2021176951A1 (en) In-wheel motor driving device
JP2020051543A (en) Spline fitting structure and vehicle drive device
JP2020100343A (en) In-wheel motor driving device
JP2016070298A (en) In-wheel motor driving device
JP7126908B2 (en) Electric vehicle drive device and in-wheel motor drive device
WO2019142701A1 (en) In-wheel motor drive device
JP2019002449A (en) Helical Gear Device
WO2019021555A1 (en) Differential for motor vehicle and transmission for motor vehicle
WO2015137073A1 (en) In-wheel motor drive device
CN111565958A (en) In-wheel motor driving device
JP2018070095A (en) In-wheel motor drive device
JP6361614B2 (en) Transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221021

R150 Certificate of patent or registration of utility model

Ref document number: 7165081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150