JP2020151889A - Method for manufacturing polypropylene system vertically uniaxial stretched film - Google Patents

Method for manufacturing polypropylene system vertically uniaxial stretched film Download PDF

Info

Publication number
JP2020151889A
JP2020151889A JP2019050900A JP2019050900A JP2020151889A JP 2020151889 A JP2020151889 A JP 2020151889A JP 2019050900 A JP2019050900 A JP 2019050900A JP 2019050900 A JP2019050900 A JP 2019050900A JP 2020151889 A JP2020151889 A JP 2020151889A
Authority
JP
Japan
Prior art keywords
film
thickness
polypropylene
prototype
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019050900A
Other languages
Japanese (ja)
Other versions
JP7273564B2 (en
Inventor
加奈子 蒔田
Kanako Makita
加奈子 蒔田
宏 緩詰
Hiroshi Yurutsume
宏 緩詰
和幸 岡田
Kazuyuki Okada
和幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2019050900A priority Critical patent/JP7273564B2/en
Publication of JP2020151889A publication Critical patent/JP2020151889A/en
Application granted granted Critical
Publication of JP7273564B2 publication Critical patent/JP7273564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a new method for manufacturing the polypropylene system vertically uniaxial stretched film, that maintains good tearability of the film itself, has a uniform film thickness, is excellent in strength, and suppresses a rise in a heat seal temperature.SOLUTION: A film in which difference between maximum thickness and minimum thickness in film thickness is within 20% of average thickness is obtained by setting a melt flow rate (MFR) of polypropylene resin to 1 to 10 g/10 min, melt-extruding a raw material, molding into a sheet with a cooling roll, adjusting crystallinity to 55% or less, and next, uniaxially stretching at a stretch ratio of 1.2 to 3.5 times in a longitudinal direction with a difference in roll speed to form a stretched film, wherein the raw material is a resin composition containing 70 wt% or more of polypropylene system resin that is an isotactic polypropylene that is either a propylene homopolymer, or a random copolymer or a block copolymer obtained by polymerizing propylene and α-olefin other than propylene.SELECTED DRAWING: Figure 1

Description

本発明は、ポリプロピレン系縦一軸延伸フィルムの製造方法に関し、特に縦一軸延伸フィルムにおいて直線状の引裂き性能を備えつつヒートシール温度を抑えることのできる縦一軸延伸フィルムを製造する方法に関する。 The present invention relates to a method for producing a polypropylene-based longitudinally uniaxially stretched film, and particularly to a method for producing a longitudinally uniaxially stretched film capable of suppressing a heat seal temperature while having linear tearing performance.

現在、物品の包装用袋にあっては、自動包装機によりフィルムと包装される内容物が同時に供給され、充填、包装、ヒートシールによる封止が連続して行われる。このような包装用袋に要求される性能は、自動包装の加工時や流通時において破れず、内容物が安定して保存されることである。該包装用袋において、封止部分のヒートシール強度が低いと加工時や流通時に封止部分の破れが生ずるおそれがあり、特には、内容物がシャンプー等の重量物や、レトルト食品のような包装後に加熱加工されるような物である場合には、より強固なヒートシール強度が要求される。 Currently, in a bag for packaging an article, a film and contents to be packaged are simultaneously supplied by an automatic wrapping machine, and filling, packaging, and heat-sealing are continuously performed. The performance required for such a packaging bag is that the contents are stably stored without being torn during processing or distribution of automatic packaging. In the packaging bag, if the heat-sealing strength of the sealing portion is low, the sealing portion may be torn during processing or distribution, and in particular, the content is heavy such as shampoo or retort food. If the product is heat-processed after packaging, stronger heat-sealing strength is required.

包装用袋に強度が求められる一方で、近年では包装用袋の易開封性が求められている。特に引裂き開封される包装用袋であって、まっすぐ引裂いて容易に開封が可能な機能性を有する包装用袋が要求されている。例えば、強度の高い包装用袋に用いられるフィルムとしてよく使用される二軸延伸フィルムと無延伸シーラントフィルムをラミネートした積層体は、比較的低温でのヒートシールが可能であり引裂き強度が低いものの、引裂き方向性が定まらない。 While strength is required for packaging bags, in recent years, easy-to-open packaging bags have been required. In particular, there is a demand for a packaging bag that can be torn and opened and has a functionality that allows it to be torn straight and easily opened. For example, a laminate obtained by laminating a biaxially stretched film and a non-stretched sealant film, which are often used as a film used for high-strength packaging bags, can be heat-sealed at a relatively low temperature and has low tear strength. The tearing direction is uncertain.

このような引裂性への対処として、一軸延伸により製膜したフィルムが提唱されている(特許文献1、2等参照。)。特許文献1は、各種オレフィン系樹脂のヒートシール層にこれよりも高融点のプロピレン系樹脂のフィルムが積層され、縦一軸延伸されてなる縦方向引裂性積層フィルムである。特許文献2は、各種オレフィン系樹脂のヒートシール層にこれよりも高融点のプロピレン系樹脂のフィルムが積層され、横一軸延伸されてなる横方向引裂性積層フィルムである。 As a countermeasure against such tearability, a film formed by uniaxial stretching has been proposed (see Patent Documents 1 and 2 and the like). Patent Document 1 is a longitudinally tearable laminated film obtained by laminating a film of a propylene-based resin having a melting point higher than this on a heat-sealing layer of various olefin-based resins and stretching the film vertically and uniaxially. Patent Document 2 is a laterally tearable laminated film in which a film of a propylene resin having a melting point higher than this is laminated on a heat seal layer of various olefin resins and stretched laterally uniaxially.

特許文献1、2等に例示のフィルムによると、フィルム方向の引裂性においては一定の効果を発揮する。しかしながら、延伸による配向により、十分なヒートシール強度が得られる温度(ヒートシール温度)は上昇する。ヒートシール温度が上昇することによって、ヒートシールによる封止時に包装用フィルムの熱変形が生ずるおそれがある。このように、既存の延伸フィルムにおいてはヒートシール温度の上昇を抑えることが求められていた。 According to the films exemplified in Patent Documents 1 and 2, etc., a certain effect is exhibited in the tearability in the film direction. However, the temperature at which sufficient heat seal strength can be obtained (heat seal temperature) rises due to the orientation due to stretching. As the heat-sealing temperature rises, the packaging film may be thermally deformed during sealing by heat-sealing. As described above, in the existing stretched film, it has been required to suppress the increase in the heat seal temperature.

また、延伸倍率を低下させることでフィルムのヒートシール温度の上昇を抑えたフィルムが提唱されている(特許文献3参照。)。しかしながら、ヒートシール温度の上昇を抑えることができたとしても、延伸倍率を低下させることによって延伸ムラが生じフィルム厚さの均一性が低下してしまう問題があった。 Further, a film in which an increase in the heat seal temperature of the film is suppressed by lowering the draw ratio has been proposed (see Patent Document 3). However, even if the increase in the heat seal temperature can be suppressed, there is a problem that stretching unevenness occurs and the uniformity of the film thickness is lowered by lowering the stretching ratio.

このような経緯から、内容物の安定した保存とともに、引裂きによる易開封性及びヒートシール温度の低下についてもより改善を図ったシーラントフィルムが求められていた。 From such a background, there has been a demand for a sealant film in which the contents can be stably stored, and the sealant film can be easily opened due to tearing and the heat seal temperature can be lowered.

特許第2518233号公報Japanese Patent No. 2518233 特公平8−18416号公報Special Fair 8-18416 Gazette 特許第821164号公報Japanese Patent No. 821164

本発明は、上記状況に鑑み提案されたものであり、ポリプロピレン系樹脂を主原料とし、一軸延伸により引裂方向性を備えたシーラントフィルムにおいて、フィルム自体の引裂性の良さを保持しつつ、フィルム厚さが均一であり強度に優れ、かつヒートシール温度の上昇を抑制したポリプロピレン系縦一軸延伸フィルムを製造する新たな方法を提供する。 The present invention has been proposed in view of the above circumstances. In a sealant film using polypropylene resin as a main raw material and having tearability by uniaxial stretching, the film thickness is maintained while maintaining the good tearability of the film itself. Provided is a new method for producing a polypropylene-based longitudinally uniaxially stretched film having a uniform shape, excellent strength, and suppressed increase in heat seal temperature.

すなわち、第1の発明は、プロピレン単独重合体、プロピレンとプロピレンを除くα−オレフィンとの重合によるランダム共重合体又はブロック共重合体のいずれかのアイソタクチックポリプロピレンであるポリプロピレン系樹脂を70重量%以上含む樹脂組成物を原料とし、前記ポリプロピレン系樹脂のJIS K 7210−1(2014)に準拠して測定されたメルトフローレート(MFR)を1〜10g/10minとし、前記原料を溶融押出し、冷却ロールにてシート状に成形するとともにIR法により測定された結晶化度を55%以下に調整し、次いでロールの速度差をもって縦方向に延伸倍率が1.2〜3.5倍に一軸延伸して延伸フィルムを形成して、JIS K 7130(1999)に準拠して測定されたフィルム厚さにおける最大厚さと最小厚さの差が平均厚さの20%以内であるフィルムを得ることを特徴とするポリプロピレン系縦一軸延伸フィルムの製造方法に係る。 That is, the first invention comprises 70 weights of a polypropylene resin which is an isotactic polypropylene which is either a propylene homopolymer, a random copolymer obtained by polymerizing propylene and α-olefins other than propylene, or a block copolymer. The melt flow rate (MFR) measured in accordance with JIS K 7210-1 (2014) of the polypropylene-based resin was set to 1 to 10 g / 10 min using a resin composition containing% or more as a raw material, and the raw material was melt-extruded. It is formed into a sheet with a cooling roll and the degree of crystallinity measured by the IR method is adjusted to 55% or less, and then uniaxially stretched to a stretching ratio of 1.2 to 3.5 times in the longitudinal direction with a difference in roll speed. To form a stretched film, the difference between the maximum thickness and the minimum thickness in the film thickness measured in accordance with JIS K 7130 (1999) is within 20% of the average thickness. The present invention relates to a method for producing a polypropylene-based longitudinally uniaxially stretched film.

第2の発明は、前記原料の溶融押出時において、前記樹脂組成物のうちから選択される異なる複数の前記原料を層状に溶融押出することを特徴とする請求項1に記載のポリプロピレン系縦一軸延伸フィルムの製造方法に係る。 The polypropylene-based longitudinal uniaxial axis according to claim 1, wherein a second invention comprises layered melt extrusion of a plurality of different raw materials selected from the resin compositions at the time of melt extrusion of the raw materials. The present invention relates to a method for producing a stretched film.

第3の発明は、第1又は2の発明に記載のポリプロピレン系縦一軸延伸フィルムであるシーラント層と、1ないし複数の基材層を有する延伸基材フィルムとを備えたことを特徴とする積層体に係る。 A third invention is characterized in that it includes a sealant layer, which is the polypropylene-based longitudinally uniaxially stretched film according to the first or second invention, and a stretched base film having one or more base material layers. It concerns the body.

第1の発明に係るポリプロピレン系縦一軸延伸フィルムの製造方法によると、プロピレン単独重合体、プロピレンとプロピレンを除くα−オレフィンとの重合によるランダム共重合体又はブロック共重合体のいずれかのアイソタクチックポリプロピレンであるポリプロピレン系樹脂を70重量%以上含む樹脂組成物を原料とし、前記ポリプロピレン系樹脂のJIS K 7210−1(2014)に準拠して測定されたメルトフローレート(MFR)を1〜10g/10minとし、前記原料を溶融押出し、冷却ロールにてシート状に成形するとともにIR法により測定された結晶化度を55%以下に調整し、次いでロールの速度差をもって縦方向に延伸倍率が1.2〜3.5倍に一軸延伸して延伸フィルムを形成して、JIS K 7130(1999)に準拠して測定されたフィルム厚さにおける最大厚さと最小厚さの差が平均厚さの20%以内であるフィルムを得るため、フィルム自体の引裂性の良さを保持しつつ、フィルム厚さが均一であり強度に優れ内容物を安定して保存することができるとともに、ヒートシール温度の上昇を抑制したフィルムを得ることができる。 According to the method for producing a polypropylene-based longitudinally uniaxially stretched film according to the first invention, isotac of either a propylene homopolymer, a random copolymer by polymerization of propylene and α-olefin excluding propylene, or a block copolymer. Using a resin composition containing 70% by weight or more of a polypropylene-based resin which is a tic polypropylene as a raw material, 1 to 10 g of a melt flow rate (MFR) measured in accordance with JIS K 7210-1 (2014) of the polypropylene-based resin. The raw material was melt-extruded at / 10 min, formed into a sheet with a cooling roll, and the crystallinity measured by the IR method was adjusted to 55% or less, and then the draw ratio was 1 in the longitudinal direction due to the difference in roll speed. A stretched film is formed by uniaxially stretching 2 to 3.5 times, and the difference between the maximum thickness and the minimum thickness in the film thickness measured according to JIS K 7130 (1999) is 20 of the average thickness. In order to obtain a film within%, while maintaining the good tearability of the film itself, the film thickness is uniform, the strength is excellent, and the contents can be stably stored, and the heat seal temperature rises. A suppressed film can be obtained.

第2の発明に係るポリプロピレン系縦一軸延伸フィルムの製造方法によると、前記原料の溶融押出時において、前記樹脂組成物のうちから選択される異なる複数の前記原料を層状に溶融押出するため、内容物を安定して保存することができるとともに、フィルムの引裂性の良さを保持しつつ、ヒートシール温度の上昇を抑制したフィルムを得ることができる。 According to the method for producing a polypropylene-based longitudinally uniaxially stretched film according to a second invention, a plurality of different raw materials selected from the resin compositions are melt-extruded in layers at the time of melt extrusion of the raw materials. It is possible to obtain a film in which an object can be stably stored, and a film in which an increase in heat-sealing temperature is suppressed while maintaining good tearability of the film can be obtained.

第3の発明に係る積層体によると、第1又は第2の発明のポリプロピレン系縦一軸延伸フィルムであるシーラント層と、1ないし複数の基材層を有する延伸基材フィルムとを備えるため、延伸基材フィルム由来の機能性をさらに備えることができる。 According to the laminate according to the third invention, the sealant layer which is the polypropylene-based longitudinally uniaxially stretched film of the first or second invention and the stretched base film having one or more base material layers are provided, and thus stretched. Further functionality derived from the base film can be provided.

積層体の断面模式図である。It is sectional drawing of the laminated body. 直進引裂試験を表す模式図である。It is a schematic diagram which shows the straight-line tear test.

本発明の縦一軸延伸フィルムの製造に際し、原料であるアイソタクチックポリプロピレンの溶融樹脂はTダイ等の押出装置から吐出されるとともにロール間延伸を通じて製膜される。従って、本発明により製造されるフィルムは、一方方向の引き裂きの良さを考慮した実質的に縦方向の一軸延伸フィルムである。 In the production of the longitudinally uniaxially stretched film of the present invention, the molten resin of isotactic polypropylene as a raw material is discharged from an extruder such as a T-die and is formed through stretching between rolls. Therefore, the film produced according to the present invention is a substantially longitudinally uniaxially stretched film in consideration of good tearing in one direction.

本発明により製造されるフィルムの原料は、ポリプロピレン系樹脂が主に用いられる。特に、アイソタクチックポリプロピレンであって、プロピレンの単独重合体、プロピレンとα−オレフィン(プロピレンを除く)とのランダム共重合体又はブロック共重合体のいずれかを70重量%以上を含む組成樹脂である。 A polypropylene resin is mainly used as a raw material for the film produced by the present invention. In particular, an isotactic polypropylene having a composition resin containing 70% by weight or more of either a homopolymer of propylene, a random copolymer of propylene and α-olefin (excluding propylene), or a block copolymer. is there.

また、原料であるポリプロピレン系樹脂のMFR(メルト・フロー・レート)の値は、1ないし10g/10minの範囲である。MFRの値が1g/10minを下回る場合、ヒートシール時の樹脂の流動性は十分とは言えず、ヒートシール部位の密封性は十分とはいえない。また、MFRの値が10g/10minを上回る場合、製膜等の生産時に流動過剰となることから製膜等に支障を来たすことになる。そこで、好適なMFRの値は1ないし10g/10minの範囲となる。 The MFR (melt flow rate) value of the polypropylene resin as a raw material is in the range of 1 to 10 g / 10 min. When the value of MFR is less than 1 g / 10 min, the fluidity of the resin at the time of heat sealing cannot be said to be sufficient, and the sealing property of the heat-sealed portion cannot be said to be sufficient. On the other hand, if the MFR value exceeds 10 g / 10 min, the flow becomes excessive during the production of the film-forming or the like, which hinders the film-forming or the like. Therefore, a suitable MFR value is in the range of 1 to 10 g / 10 min.

Tダイ等の押出装置から吐出されたポリプロピレン系樹脂は、冷却ロールにより冷却されつつシート状に成形されシート状物となる。このとき、シート状物の結晶化度は55%以下に調整される。結晶化度はIR法により測定される。結晶化度が55%よりも大きくなると、延伸成形後のフィルムの厚みにムラが生じやすくなったり、ヒートシール温度が上昇してしまう等の不具合が生ずるおそれがあるためである。結晶化度はTダイ等から吐出される際の樹脂の温度や冷却ロールの設定温度等により調整することが可能である。さらには、冷却ロール以外にも、エアナイフ、エアチャンバー、タッチロール、フレックスロールないしは金属ベルト等による冷却を行うことで、より冷却効果を高めることができる。 The polypropylene-based resin discharged from an extruder such as a T-die is molded into a sheet while being cooled by a cooling roll to become a sheet. At this time, the crystallinity of the sheet-like material is adjusted to 55% or less. The crystallinity is measured by the IR method. This is because if the crystallinity is higher than 55%, the thickness of the film after stretch molding tends to be uneven, and the heat seal temperature may rise. The crystallinity can be adjusted by adjusting the temperature of the resin when discharged from the T-die or the like, the set temperature of the cooling roll, or the like. Further, in addition to the cooling roll, the cooling effect can be further enhanced by cooling with an air knife, an air chamber, a touch roll, a flex roll, a metal belt, or the like.

また、原料がTダイ等から吐出される時には、前出のポリプロピレン系樹脂のうち異なる複数のポリプロピレン系樹脂を層状として吐出されることもできる。各ポリプロピレン系樹脂の組合せは適宜である。この際の原料のMFRの値や、シート状物とした後の結晶化度は前述の通りである。例えば、プロピレン単独重合体及びプロピレンとエチレンのランダム共重合体を層状に組み合わせたフィルムは、基材層とシーラント層とに融点差があるため、耐熱性を有し、かつ低温でのヒートシール性に優れる。このように、異なるポリプロピレン系樹脂を組み合わせて層状とすることによって、製造されるフィルムの機能性を向上させることができる。 Further, when the raw material is discharged from the T-die or the like, a plurality of different polypropylene-based resins among the polypropylene-based resins mentioned above can be discharged as layers. The combination of each polypropylene resin is appropriate. The MFR value of the raw material at this time and the crystallinity after forming the sheet are as described above. For example, a film in which a propylene homopolymer and a random copolymer of propylene and ethylene are combined in a layered manner has heat resistance and heat sealability at a low temperature because the base material layer and the sealant layer have different melting points. Excellent for. In this way, the functionality of the produced film can be improved by combining different polypropylene-based resins to form a layer.

ロール間延伸の倍率は1.2ないし3.5倍の低延伸倍率である。延伸倍率が1.2倍を下回る場合、一軸延伸由来の真っ直ぐな引き裂き(直進引裂性、直進カット性)が生じにくくなる。また、延伸倍率が3.5倍を上回る場合、ヒートシール温度が上昇しすぎて外観不良を生じたり、密封性が得られないおそれがある。特に本発明により製造されたフィルムを用いた包装用袋の内容物は食品や薬品等の重量物を想定している点を考慮してロール間延伸の倍率は1.2ないし3.5倍の低延伸倍率とした。 The stretching ratio between rolls is a low stretching ratio of 1.2 to 3.5 times. When the draw ratio is less than 1.2 times, straight tearing (straight tearing property, straight cutting property) derived from uniaxial stretching is less likely to occur. On the other hand, if the draw ratio exceeds 3.5 times, the heat seal temperature may rise too much, resulting in poor appearance or poor sealing performance. In particular, considering that the contents of the packaging bag using the film produced by the present invention are assumed to be heavy objects such as foods and chemicals, the ratio of stretching between rolls is 1.2 to 3.5 times. The draw ratio was low.

また、延伸前にシートを加熱する予熱工程,延伸工程,延伸後の残留歪を取り除くヒートセット工程は、全て加熱ロール上で行われ、ロール温度は押出されたシートの融点より10〜80℃低い温度に調整される。ロール温度をシートの融点付近まで上げた場合はロールへの貼り付きや巻付きによるシートの切断が生じやすく、融点より80℃以上下げた場合は延伸にトルクがかかり過ぎて同様にシートの切断が生じやすくなる。 Further, the preheating step of heating the sheet before stretching, the stretching step, and the heat setting step of removing the residual strain after stretching are all performed on the heating roll, and the roll temperature is 10 to 80 ° C. lower than the melting point of the extruded sheet. Adjusted to temperature. When the roll temperature is raised to near the melting point of the sheet, the sheet is likely to be cut due to sticking to the roll or winding, and when the temperature is lowered by 80 ° C or more from the melting point, excessive torque is applied to stretching and the sheet is similarly cut. It is easy to occur.

先に述べたように、シート状物の結晶化度は55%以下に調整される。ポリプロピレン系樹脂は結晶性プラスチックであって、結晶部分と非結晶部分との両方を有する。ポリプロピレン系樹脂のような結晶性高分子は、ネック延伸となるため延伸倍率が小さいフィルムでは厚さムラが大きくなる傾向がある。そのため、結晶部分の割合を少なくすることによって、低延伸倍率のフィルムであっても厚さムラを小さくすることができる。 As described above, the crystallinity of the sheet-like material is adjusted to 55% or less. The polypropylene-based resin is a crystalline plastic and has both a crystalline portion and a non-crystalline portion. Since crystalline polymers such as polypropylene resins are neck-stretched, the thickness unevenness tends to be large in a film having a small draw ratio. Therefore, by reducing the proportion of the crystal portion, it is possible to reduce the thickness unevenness even in a film having a low draw ratio.

フィルムの厚さは特には規定されない。一般的なフィルム製品と同様であり、10ないし100μmの厚さである。そして、フィルムの厚さの最大箇所の厚さと最小箇所の厚さとの差は平均厚さの20%以内である。フィルムの厚さのムラが大きいと、加工性の悪さに加え、ヒートシール強度にバラつきが生ずるおそれがある。このことから、フィルムの厚さムラは、最大厚さと最小厚さの差が平均厚さの20%以内の範囲とする。 The thickness of the film is not particularly specified. It is similar to a general film product and has a thickness of 10 to 100 μm. The difference between the thickness of the maximum portion and the thickness of the minimum portion of the film thickness is within 20% of the average thickness. If the thickness of the film is uneven, the heat seal strength may vary in addition to the poor workability. From this, the thickness unevenness of the film shall be within the range where the difference between the maximum thickness and the minimum thickness is within 20% of the average thickness.

これまでに説明した縦一軸延伸フィルムは単独で包装資材として使用されることに加え、主として他のフィルムと積層(ラミネート)されて各種の包装資材に加工される。図1の概略断面模式図は積層体11の例である。縦一軸延伸フィルム10の一側(特には、包装資材の外側)に、他のフィルム20が積層される。こうして両フィルムの組み合わせとして積層体5が形成される。他のフィルムを縦一軸延伸フィルム10に積層する方法は限定されず、ドライラミネート、押出しラミネート、またはホットメルトラミネート等の公知の方法が目的に応じて採用される。他のフィルムは特に限定されず、単層ないし複数層を有する基材フィルムでもよく、ガスバリア性能や印刷性能など、必要に応じて任意の機能を有するフィルムが使用されることができる。 The longitudinally uniaxially stretched film described so far is used alone as a packaging material, and is mainly laminated with other films to be processed into various packaging materials. The schematic cross-sectional schematic diagram of FIG. 1 is an example of the laminated body 11. Another film 20 is laminated on one side (particularly, the outside of the packaging material) of the vertically uniaxially stretched film 10. In this way, the laminate 5 is formed as a combination of both films. The method of laminating another film on the longitudinally uniaxially stretched film 10 is not limited, and known methods such as dry laminating, extruded laminating, and hot melt laminating are adopted depending on the purpose. The other film is not particularly limited, and may be a base film having a single layer or a plurality of layers, and a film having an arbitrary function such as gas barrier performance and printing performance can be used.

[一軸延伸フィルムの作成]
試作例1〜25の縦一軸延伸フィルムについて、原料となる樹脂を溶融、混練して共押出Tダイフィルム成形機及びオーブンを用い、実質的に縦方向に一軸延伸して製膜した。試作例1〜8の原料は、ポリプロピレン単独の重合体100重量%、試作例9〜17はエチレン−プロピレンのブロック共重合体100重量%、試作例18〜22はエチレン−プロピレン−ブレンのランダム共重合体100重量%とした。試作例23〜25については、原料をポリプロピレン単独の重合体と、エチレン−プロピレンのブロック共重合体とをTダイから層状に供押出してフィルム成形した。各試作例とも、表中の延伸前のシート厚さ(μm)、結晶化度(%)及び延伸倍率とする条件とした。
[Creation of uniaxially stretched film]
The longitudinally uniaxially stretched films of Prototype Examples 1 to 25 were melted and kneaded with a resin as a raw material, and substantially uniaxially stretched in the vertical direction using a coextrusion T-die film forming machine and an oven to form a film. The raw materials of Prototype Examples 1 to 8 are 100% by weight of a polymer of polypropylene alone, Prototype Examples 9 to 17 are 100% by weight of a block copolymer of ethylene-propylene, and Prototype Examples 18 to 22 are random copolymers of ethylene-propylene-brene. The polymer was 100% by weight. For Prototype Examples 23 to 25, a polymer of polypropylene alone and a block copolymer of ethylene-propylene were extruded in layers from a T-die to form a film. In each prototype example, the conditions were set to the sheet thickness (μm) before stretching, the crystallinity (%), and the stretching ratio in the table.

[使用原料]
各試作例を形成する原料樹脂として、以下の原料を使用した。試作例1〜8は原料01を使用した。試作例9〜17は原料02を使用した。試作例18〜22は原料03を使用した。試作例23〜25は原料01と原料04を使用した。メルトフローレート(MFR)の測定は、JIS K 7210−1(2014)のA法に準拠する。
(原料01) ホモポリプロピレン(日本ポリプロ株式会社製,商品名「FY6」,MFR:2.5g/10min)
(原料02) エチレン−プロピレンブロック共重合体(日本ポリプロ株式会社製,商品名「BC6CB」,MFR:2.5g/10min)
(原料03) エチレン−プロピレン−ブテンランダム共重合体(日本ポリプロ株式会社製,商品名「FW4BT」,MFR:6.5g/10min)
(原料04) エチレン−プロピレンランダム共重合体(日本ポリプロ株式会社製,商品名「WXK1233」,MFR:7.0g/10min)
[Raw materials used]
The following raw materials were used as the raw material resins for forming each prototype. Raw materials 01 were used in Prototype Examples 1 to 8. Raw materials 02 were used in Prototype Examples 9 to 17. Raw materials 03 were used in Prototype Examples 18 to 22. In Prototype Examples 23 to 25, raw material 01 and raw material 04 were used. The measurement of melt flow rate (MFR) conforms to the A method of JIS K 7210-1 (2014).
(Raw material 01) Homopolypropylene (manufactured by Japan Polypropylene Corporation, trade name "FY6", MFR: 2.5 g / 10 min)
(Raw material 02) Ethylene-propylene block copolymer (manufactured by Japan Polypropylene Corporation, trade name "BC6CB", MFR: 2.5 g / 10 min)
(Raw material 03) Ethylene-propylene-butene random copolymer (manufactured by Japan Polypropylene Corporation, trade name "FW4BT", MFR: 6.5 g / 10 min)
(Raw Material 04) Ethylene-Propylene Random Copolymer (manufactured by Japan Polypropylene Corporation, trade name "WXK1233", MFR: 7.0 g / 10 min)

<試作例1>
原料01を溶融、混練してTダイから240℃で吐出し、30℃の冷却ロールにて厚さ42μmのシート状に成形し結晶化度を51%に調整した。得られたシート状物を試作例1のフィルムとした。
<Prototype example 1>
The raw material 01 was melted and kneaded, discharged from the T die at 240 ° C., molded into a sheet having a thickness of 42 μm with a cooling roll at 30 ° C., and the crystallinity was adjusted to 51%. The obtained sheet-like material was used as the film of Prototype Example 1.

<試作例2>
原料01を使用し、Tダイから吐出される際の樹脂の温度を240℃とし、冷却ロールの温度を30℃として厚さ60μmのシート状物を成形し結晶化度を53%に調整した。得られたシート状物を135℃で予熱し、延伸倍率を1.5倍としてロール延伸して試作例2のフィルムを得た。
<Prototype example 2>
Using the raw material 01, the temperature of the resin when discharged from the T-die was set to 240 ° C., the temperature of the cooling roll was set to 30 ° C., and a sheet-like material having a thickness of 60 μm was formed to adjust the crystallinity to 53%. The obtained sheet-like product was preheated at 135 ° C. and rolled with a draw ratio of 1.5 times to obtain a film of Prototype Example 2.

<試作例3>
シート状物の厚さ78μm、結晶化度を54%、延伸倍率を2.0倍とした以外は試作例2と同様として試作例3のフィルムを得た。
<Prototype example 3>
A film of Prototype Example 3 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 78 μm, the crystallinity was 54%, and the draw ratio was 2.0 times.

<試作例4>
シート状物の厚さ97μm、結晶化度を55%、延伸倍率を2.5倍とした以外は試作例2と同様として試作例4のフィルムを得た。
<Prototype example 4>
A film of Prototype Example 4 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 97 μm, the crystallinity was 55%, and the draw ratio was 2.5 times.

<試作例5>
冷却ロールの温度を80℃、シート状物の厚さ101μm、結晶化度を62%、延伸倍率を2.5倍とした以外は試作例2と同様として試作例5のフィルムを得た。
<Prototype example 5>
A film of Prototype Example 5 was obtained in the same manner as in Prototype Example 2 except that the temperature of the cooling roll was 80 ° C., the thickness of the sheet-like material was 101 μm, the crystallinity was 62%, and the draw ratio was 2.5 times.

<試作例6>
冷却ロールの温度を80℃、シート状物の厚さ137μm、結晶化度を63%、延伸倍率を3.5倍とした以外は試作例2と同様として試作例6のフィルムを得た。
<Prototype example 6>
A film of Prototype Example 6 was obtained in the same manner as in Prototype Example 2 except that the temperature of the cooling roll was 80 ° C., the thickness of the sheet-like material was 137 μm, the crystallinity was 63%, and the draw ratio was 3.5 times.

<試作例7>
シート状物の厚さ201μm、結晶化度を59%、延伸倍率を5.0倍とした以外は試作例2と同様として試作例7のフィルムを得た。
<Prototype example 7>
A film of Prototype Example 7 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 201 μm, the crystallinity was 59%, and the draw ratio was 5.0 times.

<試作例8>
冷却ロールの温度を80℃、シート状物の厚さ1580μm、結晶化度を68%、延伸倍率を5.0倍とした以外は試作例2と同様としてフィルムを作成し、さらにテンターにて延伸倍率を8.0倍として横方向に延伸し、合計延伸倍率40.0倍の二軸延伸フィルムである試作例8のフィルムを得た。
<Prototype example 8>
A film was prepared in the same manner as in Prototype Example 2 except that the temperature of the cooling roll was 80 ° C., the thickness of the sheet was 1580 μm, the crystallinity was 68%, and the stretching ratio was 5.0 times, and the film was further stretched with a tenter. The film was stretched in the lateral direction at a magnification of 8.0 times to obtain a film of Prototype Example 8 which is a biaxially stretched film having a total stretching ratio of 40.0 times.

<試作例9>
原料02を使用し、シート状物の厚さ41μm、結晶化度を45%とした以外は試作例1と同様として試作例9のフィルムとした。
<Prototype example 9>
The film of Prototype Example 9 was prepared in the same manner as Prototype Example 1 except that the raw material 02 was used, the thickness of the sheet-like material was 41 μm, and the crystallinity was 45%.

<試作例10>
原料02を使用し、シート状物の厚さ78μm、結晶化度を45%、延伸倍率を2.0倍とした以外は試作例2と同様として試作例10のフィルムを得た。
<Prototype example 10>
Using the raw material 02, a film of Prototype Example 10 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 78 μm, the crystallinity was 45%, and the draw ratio was 2.0 times.

<試作例11>
原料02を使用し、冷却ロールの温度を80℃、シート状物の厚さ81μm、結晶化度を56%、延伸倍率を2.0倍とした以外は試作例2と同様として試作例11のフィルムを得た。
<Prototype example 11>
The raw material 02 was used, and the temperature of the cooling roll was 80 ° C., the thickness of the sheet was 81 μm, the crystallinity was 56%, and the draw ratio was 2.0 times. I got a film.

<試作例12>
原料02を使用し、シート状物の厚さ97μm、結晶化度を45%、延伸倍率を2.0倍とした以外は試作例2と同様として試作例12のフィルムを得た。
<Prototype example 12>
Using the raw material 02, a film of Prototype Example 12 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 97 μm, the crystallinity was 45%, and the draw ratio was 2.0 times.

<試作例13>
原料02を使用し、冷却ロールの温度を80℃、シート状物の厚さ102μm、結晶化度を56%、延伸倍率を2.5倍とした以外は試作例2と同様として試作例13のフィルムを得た。
<Prototype example 13>
Using the raw material 02, the temperature of the cooling roll was 80 ° C., the thickness of the sheet was 102 μm, the crystallinity was 56%, and the draw ratio was 2.5 times. I got a film.

<試作例14>
原料02を使用し、シート状物の厚さ118μm、結晶化度を45%、延伸倍率を3.0倍とした以外は試作例2と同様として試作例14のフィルムを得た。
<Prototype example 14>
Using the raw material 02, a film of Prototype Example 14 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 118 μm, the crystallinity was 45%, and the draw ratio was 3.0 times.

<試作例15>
原料02を使用し、シート状物の厚さ138μm、結晶化度を45%、延伸倍率を3.5倍とした以外は試作例2と同様として試作例15のフィルムを得た。
<Prototype example 15>
Using the raw material 02, a film of Prototype Example 15 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 138 μm, the crystallinity was 45%, and the draw ratio was 3.5 times.

<試作例16>
原料02を使用し、シート状物の厚さ158μm、結晶化度を47%、延伸倍率を4.0倍とした以外は試作例2と同様として試作例16のフィルムを得た。
<Prototype example 16>
Using the raw material 02, a film of Prototype Example 16 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 158 μm, the crystallinity was 47%, and the draw ratio was 4.0 times.

<試作例17>
原料02を使用し、シート状物の厚さ204μm、結晶化度を46%、延伸倍率を5.0倍とした以外は試作例2と同様として試作例17のフィルムを得た。
<Prototype example 17>
Using the raw material 02, a film of Prototype Example 17 was obtained in the same manner as in Prototype Example 2 except that the thickness of the sheet-like material was 204 μm, the crystallinity was 46%, and the draw ratio was 5.0 times.

<試作例18>
原料03を使用し、Tダイから吐出される際の樹脂の温度を230℃とし、シート状物の厚さ42μm、結晶化度を38%とした以外は試作例1と同様として試作例18のフィルムとした。
<Prototype example 18>
Using the raw material 03, the temperature of the resin when discharged from the T-die was set to 230 ° C., the thickness of the sheet-like material was 42 μm, and the crystallinity was set to 38%. It was made into a film.

<試作例19>
原料03を使用し、Tダイから吐出される際の樹脂の温度を230℃とし、冷却ロールの温度を30℃として厚さ81μmのシート状物を成形し結晶化度を41%に調整した。得られたシート状物を100℃で予熱し、延伸倍率を2.0倍としてロール延伸して試作例19のフィルムを得た。
<Prototype example 19>
Using the raw material 03, the temperature of the resin when discharged from the T-die was set to 230 ° C., the temperature of the cooling roll was set to 30 ° C., and a sheet-like material having a thickness of 81 μm was formed to adjust the crystallinity to 41%. The obtained sheet-like product was preheated at 100 ° C. and rolled with a draw ratio of 2.0 times to obtain a film of Prototype Example 19.

<試作例20>
シート状物の厚さ102μm、結晶化度を41%、延伸倍率を2.5倍とした以外は試作例19と同様として試作例20のフィルムを得た。
<Prototype example 20>
A film of Prototype Example 20 was obtained in the same manner as in Prototype Example 19 except that the thickness of the sheet-like material was 102 μm, the crystallinity was 41%, and the draw ratio was 2.5 times.

<試作例21>
シート状物の厚さ118μm、結晶化度を40%、延伸倍率を3.0倍とした以外は試作例19と同様として試作例21のフィルムを得た。
<Prototype example 21>
A film of Prototype Example 21 was obtained in the same manner as in Prototype Example 19 except that the thickness of the sheet-like material was 118 μm, the crystallinity was 40%, and the draw ratio was 3.0 times.

<試作例22>
シート状物の厚さ160μm、結晶化度を40%、延伸倍率を4.0倍とした以外は試作例19と同様として試作例22のフィルムを得た。
<Prototype example 22>
A film of Prototype Example 22 was obtained in the same manner as in Prototype Example 19 except that the thickness of the sheet-like material was 160 μm, the crystallinity was 40%, and the draw ratio was 4.0 times.

<試作例23>
原料01及び原料4をTダイから層状に吐出し、シート状物の厚さ40μm、結晶化度を49%とした以外は試作例1と同様として試作例23のフィルムとした。
<Prototype example 23>
The raw material 01 and the raw material 4 were discharged in layers from the T-die to prepare a film of Prototype Example 23 in the same manner as in Prototype Example 1 except that the thickness of the sheet-like material was 40 μm and the crystallinity was 49%.

<試作例24>
原料01及び原料4をTダイから層状に吐出し、Tダイから吐出される際の樹脂の温度を240℃とし、冷却ロールの温度を30℃として厚さ80μmのシート状物を成形し、結晶化度を52%に調整した。得られたシート状物を110℃で予熱し、延伸倍率を2.5倍としてロール延伸して試作例24のフィルムを得た。
<Prototype example 24>
Raw material 01 and raw material 4 are discharged from the T-die in layers, the temperature of the resin when discharged from the T-die is 240 ° C., the temperature of the cooling roll is 30 ° C., and a sheet-like material having a thickness of 80 μm is formed and crystallized. The degree of crystallization was adjusted to 52%. The obtained sheet-like product was preheated at 110 ° C. and rolled to obtain a film of Prototype Example 24 at a draw ratio of 2.5 times.

<試作例25>
シート状物の厚さ120μm、結晶化度を52%、延伸倍率を5.0倍とした以外は試作例24と同様として試作例25のフィルムを得た。
<Prototype example 25>
A film of Prototype Example 25 was obtained in the same manner as in Prototype Example 24 except that the thickness of the sheet-like material was 120 μm, the crystallinity was 52%, and the draw ratio was 5.0 times.

[シート厚さ]
各試作例の縦一軸延伸フィルムの製膜に際し、延伸される前におけるシートの厚さ(μm)を計測した。
[Sheet thickness]
When forming the longitudinally uniaxially stretched film of each prototype, the thickness (μm) of the sheet before being stretched was measured.

[結晶化度]
各試作例の縦一軸延伸フィルムの製膜に際し、冷却ロールにてシート状に形成されたシート状物について結晶化度(%)を求めた。結晶化度は、PerkinElmer社製フーリエ変換赤外分光分析装置Spectrum Twoを使用し、IR法により以下の式(i)(錦田晃一・岩本令吉著,「赤外法による材料分析−基礎と応用−」,講談社サイエンティフィック,1986年8月,第214〜215頁)を利用して算出した。式(i)中、A998、A974及びA920はそれぞれ、波数998cm-1、974cm-1及び920cm−1における吸光度を意味する。
[Crystallinity]
The crystallinity (%) of the sheet-like material formed in the form of a sheet by a cooling roll was determined during the film formation of the longitudinally uniaxially stretched film of each prototype. The crystallinity was determined by using the Fourier transform infrared spectroscopic analyzer Spectrum Two manufactured by PerkinElmer, and using the following formula (i) by IR method (Koichi Kinda and Reikichi Iwamoto, "Material Analysis by Infrared Method-Basics and Applications". -”, Kodansha Spectroscopy, August 1986, pp. 214-215). In formula (i), A 998 , A 974 and A 920 mean the absorbances at wavenumbers 998 cm -1 , 974 cm -1 and 920 cm -1 , respectively.

Figure 2020151889
Figure 2020151889

[延伸倍率]
各試作例のフィルムを作成する際の延伸倍率である。
[Stretching ratio]
It is a stretch ratio at the time of making a film of each prototype.

[フィルム厚さ]
各試作例それぞれについて、JIS K 7130(1999)に準拠し、製膜の流れ方向(MD)に沿って20か所の厚さを計測し、平均厚さ(t)を計測した。また、各試作例のフィルムにおける最も薄い箇所の厚さ(最小厚さ)(min)と最も厚い箇所の厚さ(最大厚さ)(max)を計測し、その差(R){(R)=(max)−(min)}を算出した。最大厚さと最小厚さとの厚み差(R)を平均厚さ(t)により除し、百分率とした。
[Film thickness]
For each of the prototype examples, the thickness at 20 points was measured along the flow direction (MD) of the film formation, and the average thickness (t) was measured in accordance with JIS K 7130 (1999). In addition, the thickness (minimum thickness) (min) of the thinnest part and the thickness (maximum thickness) (max) of the thickest part in the film of each prototype are measured, and the difference (R) {(R). = (Max)-(min)} was calculated. The thickness difference (R) between the maximum thickness and the minimum thickness was divided by the average thickness (t) to obtain a percentage.

[ヒートシール温度]
各試作例の縦一軸延伸フィルムについて、JIS Z 1713(2009)に準拠してヒートシール開始温度を測定した。このとき、測定片(幅50mm、長さ250mm)の長手方向をフィルムの延伸方向とした。そして、2枚の試験片のヒートシール層同士を重ね、株式会社東洋精機製作所製,熱傾斜試験機(ヒートシール試験機)を使用し、ヒートシール圧力を0.34MPa、ヒートシール時間を1.0秒とした。このとき、ヒートシーラーの熱板と試験片フィルムの間に融着防止用のPETフィルム(厚さ12μm)を挟んだ。そして、5℃ずつ温度を傾斜(昇温)する条件にてヒートシールした。ヒートシール後、試験片を15mm幅で切り出した。ヒートシールにより融着した試験片を180°に開き、株式会社島津製作所製,引張試験機(EZ−SX)により未シール部分をチャックに挟み、シール部分を剥離した。そして、ヒートシール強度が3Nに到達した時点の温度を求めた。
[Heat seal temperature]
The heat seal start temperature was measured for the longitudinally uniaxially stretched film of each prototype in accordance with JIS Z 1713 (2009). At this time, the longitudinal direction of the measurement piece (width 50 mm, length 250 mm) was defined as the stretching direction of the film. Then, the heat seal layers of the two test pieces were overlapped with each other, and a heat inclination tester (heat seal tester) manufactured by Toyo Seiki Seisakusho Co., Ltd. was used to set the heat seal pressure to 0.34 MPa and the heat seal time to 1. It was set to 0 seconds. At this time, a PET film (thickness 12 μm) for preventing fusion was sandwiched between the hot plate of the heat sealer and the test piece film. Then, heat-sealing was performed under the condition that the temperature was inclined (increased) by 5 ° C. After heat sealing, the test piece was cut out with a width of 15 mm. The test piece fused by heat sealing was opened at 180 °, and the unsealed portion was sandwiched between chucks by a tensile tester (EZ-SX) manufactured by Shimadzu Corporation, and the sealed portion was peeled off. Then, the temperature at the time when the heat seal strength reached 3N was determined.

また、試作例2〜8については未延伸の試作例1とのヒートシール温度の差(ΔT)を求めた。試作例10〜17については同様に未延伸の試作例9とのヒートシール温度の差を求め、試作例19〜22については試作例18とのヒートシール温度の差、試作例24,25については試作例23とのヒートシール温度の差を求めた。ヒートシール温度の差(ΔT)が25℃以下である例を「A」とし、25℃よりも差が大きい例を「B」とした。 Further, for Prototype Examples 2 to 8, the difference (ΔT) in heat seal temperature from the unstretched Prototype Example 1 was determined. Similarly, for Prototype Examples 10 to 17, the difference in heat seal temperature from the unstretched Prototype Example 9 was obtained, for Prototype Examples 19 to 22, the difference in heat seal temperature from Prototype 18 and for Prototype Examples 24 and 25 were obtained. The difference in heat seal temperature from that of Prototype Example 23 was determined. An example in which the difference in heat seal temperature (ΔT) was 25 ° C. or lower was designated as “A”, and an example in which the difference was larger than 25 ° C. was designated as “B”.

[引裂方向性]
各試作例の縦一軸延伸フィルムの引裂き性の良さに基づいた易開封性の良否判断に際し、直進引裂試験を行った。直進引裂試験について、図2の模式図を用い説明する。縦一軸延伸フィルム10は、フィルムの製膜時の流れ方向(MD)に300mmの長辺51、幅方向(TD)に100mmの短辺52の長方形状に切り出され試験フィルム50となる。短辺52の中央より試験フィルム50の内側に長辺と平行に100mmの切れ込み30をいれ、切れ込み30の左右5mmには長辺と平行に直線40が引かれる。そして、試験フィルム50の切れ込み30の左右の端31,32を引張速度6m/minで引張して試験フィルム50を引裂いた。該引裂きが2本の直線よりも内側であれば「○」とし、直線よりも外側にはみ出したのであれば「×」とした。
[Tearing direction]
A straight-line tear test was conducted to determine the quality of easy-opening based on the good tearability of the longitudinally uniaxially stretched film of each prototype. The straight-line tear test will be described with reference to the schematic diagram of FIG. The longitudinally uniaxially stretched film 10 is cut into a rectangular shape having a long side 51 of 300 mm in the flow direction (MD) and a short side 52 of 100 mm in the width direction (TD) during film formation to obtain a test film 50. A 100 mm notch 30 is made inside the test film 50 from the center of the short side 52 parallel to the long side, and a straight line 40 is drawn parallel to the long side 5 mm to the left and right of the notch 30. Then, the left and right ends 31 and 32 of the notch 30 of the test film 50 were pulled at a tensile speed of 6 m / min to tear the test film 50. If the tear was inside the two straight lines, it was marked with "◯", and if it protruded outside the straight line, it was marked with "x".

各試作例の計測結果、評価結果について、表1ないし表6に示す。表の上欄から順に、シート厚さ(μm)、結晶化度(%)、延伸倍率、平均厚さt(μm)、厚み差R、厚み差の割合(%)、ヒートシール開始温度(℃)、未延伸の試作例とのヒートシール開始温度の差とその評価、引裂方向性の判定を示す。 Tables 1 to 6 show the measurement results and evaluation results of each prototype. From the top column of the table, sheet thickness (μm), crystallinity (%), draw ratio, average thickness t (μm), thickness difference R, thickness difference ratio (%), heat seal start temperature (° C) ), The difference in the heat seal start temperature from the unstretched prototype example, its evaluation, and the determination of the tear direction are shown.

Figure 2020151889
Figure 2020151889

Figure 2020151889
Figure 2020151889

表1,2に示される試作例1〜8は原料にホモポリプロピレンを使用した例である。まず、試作例2〜4と試作例5,6を対比検討する。それぞれの試作例は延伸倍率が1.5〜3.5倍の範囲の低延伸倍率のフィルムである。試作例2〜4はフィルム厚さの評価において、フィルム厚さのムラが小さく、試作例5,6は厚さムラが大きい。これは、それぞれの試作例が延伸前のシート状物であるときの結晶化度の差に起因するものと考えられる。試作例2〜4の結晶化度は53〜55%であるのに対して、試作例5,6はそれぞれ62%及び63%である。また、結晶化度が高い試作例7及び8について、延伸倍率を5倍あるいは40倍の高延伸倍率で延伸すれば厚さムラは小さくなった。 Prototype Examples 1 to 8 shown in Tables 1 and 2 are examples in which homopolypropylene is used as a raw material. First, the trial examples 2 to 4 and the trial examples 5 and 6 are compared and examined. Each prototype is a film having a low draw ratio in the range of 1.5 to 3.5 times. In the evaluation of the film thickness in the prototype examples 2 to 4, the unevenness of the film thickness is small, and in the trial examples 5 and 6, the unevenness of the thickness is large. It is considered that this is due to the difference in crystallinity when each prototype is a sheet-like product before stretching. The crystallinity of Prototype Examples 2 to 4 is 53 to 55%, whereas that of Prototype Examples 5 and 6 is 62% and 63%, respectively. Further, with respect to Prototype Examples 7 and 8 having a high degree of crystallinity, if the stretching ratio was stretched at a high stretching ratio of 5 times or 40 times, the thickness unevenness was reduced.

これらのことから、低延伸倍率でフィルムを延伸する場合には、結晶化度を低く設定することでフィルムの厚さムラを抑制することができることがわかった。また、試作例2〜4と試作例7,8との対比によれば、延伸倍率を低延伸倍率とするとヒートシール開始温度が低くなり、試作例2〜4は低温度域でヒートシールすることができる。なお、試作例5,6については、均一な厚さのフィルムを作成することができなかったためヒートシールの開始温度の測定ができず評価ができず「−(測定不能)」とした。引裂方向性についても同様である。 From these facts, it was found that when the film is stretched at a low stretching ratio, unevenness in the thickness of the film can be suppressed by setting the crystallinity low. Further, according to the comparison between Prototype Examples 2 to 4 and Prototype Examples 7 and 8, when the stretching ratio is set to a low stretching ratio, the heat seal start temperature becomes low, and Prototype Examples 2 to 4 are heat-sealed in a low temperature range. Can be done. For Prototype Examples 5 and 6, since a film having a uniform thickness could not be produced, the start temperature of the heat seal could not be measured and could not be evaluated, and was set to "-(measurable)". The same applies to the tear direction.

Figure 2020151889
Figure 2020151889

Figure 2020151889
Figure 2020151889

次に、表3,4に示される試作例9〜17は、原料にエチレン−プロピレンブロック共重合体を使用した例である。試作例10,12と試作例11,13との対比によれば、先の表1,2に示される結果と同様に、延伸倍率が同じ場合では結晶化度が高い試作例11,13はフィルム厚さの評価においてフィルム厚さのムラが大きくなり、結晶化度が低い試作例10,12はフィルム厚さのムラが小さくなった。同様に、結晶化度が低い試作例14,15はフィルム厚さのムラが小さくなった。試作例16,17のように延伸倍率が3.5倍を超える(4.0倍以上とする)と無延伸である試作例10と比較してヒートシール開始温度が25℃以上上昇してしまうことがわかった。なお、試作例11,13については、均一な厚さのフィルムを作成することができなかったためヒートシールの開始温度の測定ができず評価ができなかったため「−(測定不能)」とした。引裂方向性についても同様である。 Next, Prototype Examples 9 to 17 shown in Tables 3 and 4 are examples in which an ethylene-propylene block copolymer is used as a raw material. According to the comparison between Prototype Examples 10 and 12 and Prototype Examples 11 and 13, similar to the results shown in Tables 1 and 2 above, Prototype Examples 11 and 13 having a high crystallinity when the draw ratios are the same are films. In the evaluation of the thickness, the unevenness of the film thickness became large, and the unevenness of the film thickness became small in the prototype examples 10 and 12 having a low crystallinity. Similarly, in the prototype examples 14 and 15 having a low crystallinity, the unevenness of the film thickness was reduced. When the draw ratio exceeds 3.5 times (4.0 times or more) as in the prototype examples 16 and 17, the heat seal start temperature rises by 25 ° C. or more as compared with the non-stretched prototype example 10. I understand. For Prototype Examples 11 and 13, since it was not possible to produce a film having a uniform thickness, the start temperature of the heat seal could not be measured and could not be evaluated, so it was set as "-(not measurable)". The same applies to the tear direction.

Figure 2020151889
Figure 2020151889

表5に示される試作例18〜22は、原料にエチレン−プロピレン−ブテンランダム共重合体を使用した例である。フィルム原料をエチレン−プロピレン−ブテンランダム共重合体に変更したとしても、先の表1〜4に示される結果と同様の結果が示された。これらの結果から、延伸倍率を4.0倍未満、望ましくは3.5倍以下とするとヒートシール開始温度の上昇を抑制することができることがわかった。延伸倍率の下限としては、引裂方向性が担保されれば良いので、1.2倍であると考えられる。また、結晶化度については56%を超えるとフィルム厚さのムラが顕著になることから、結晶化度の上限は55%であると考えられる。 Prototype Examples 18 to 22 shown in Table 5 are examples in which an ethylene-propylene-butene random copolymer is used as a raw material. Even if the film raw material was changed to ethylene-propylene-butene random copolymer, the same results as those shown in Tables 1 to 4 above were shown. From these results, it was found that an increase in the heat seal start temperature can be suppressed when the draw ratio is less than 4.0 times, preferably 3.5 times or less. The lower limit of the draw ratio is considered to be 1.2 times as long as the tear direction is ensured. Further, when the crystallinity exceeds 56%, the unevenness of the film thickness becomes remarkable, so that the upper limit of the crystallinity is considered to be 55%.

Figure 2020151889
Figure 2020151889

そして、表6は原料にホモプロピレン及びエチレン−プロピレンランダム共重合体を層状に重ねて使用した例である。先の使用原料が一種類の試作例と同様の傾向であった。試作例24と試作例25とを対比すれば、延伸倍率を5.0倍とした試作例25のヒートシール開始温度は、延伸倍率が2.5倍とした試作例24よりも高くなっている。また、試作例24,25は結晶化度はそれぞれ52%であるためフィルム厚さのムラは小さい。 Table 6 shows an example in which homopropylene and ethylene-propylene random copolymers are layered and used as raw materials. The raw materials used above tended to be similar to those of one type of prototype. Comparing Prototype 24 and Prototype 25, the heat seal start temperature of Prototype 25 having a draw ratio of 5.0 times is higher than that of Prototype 24 having a draw ratio of 2.5 times. .. Further, since the crystallinity of Prototype Examples 24 and 25 is 52%, the unevenness of the film thickness is small.

[まとめ]
一連の試作例の検証よって、フィルム厚さのムラが少なく縦一軸延伸の製膜を採用してフィルムに引裂方向性を備えたフィルムを作製することができた。そこで、各種の包装資材用途の需要に適する。フィルムの延伸倍率を低延伸倍率とすることにより、フィルムの強度を維持しつつヒートシール温度の上昇を抑制することができたため、製造が容易で経済的である。特に、低延伸倍率の一軸延伸フィルムはフィルム厚さにムラが生じやすい欠点を解消することができた。このため、本発明の製造方法により製造され縦一軸延伸フィルムは強度を維持しつつも引裂方向性を有するため、内容物を確実に保持しつつも易開封性をも備える。
[Summary]
By verifying a series of prototype examples, it was possible to produce a film having a tearing direction by adopting a longitudinally uniaxially stretched film with little unevenness in film thickness. Therefore, it is suitable for various packaging material applications. By setting the draw ratio of the film to a low draw ratio, it is possible to suppress an increase in the heat seal temperature while maintaining the strength of the film, so that the production is easy and economical. In particular, the uniaxially stretched film having a low draw ratio was able to eliminate the drawback that the film thickness tends to be uneven. Therefore, since the longitudinally uniaxially stretched film produced by the production method of the present invention has a tearing direction while maintaining strength, it also has easy-opening properties while reliably holding the contents.

以上のとおり、本発明の製造方法により製造された縦一軸延伸フィルムは、低延伸倍率であってもフィルム厚さのムラが少なく、強度がありつつ良好な引裂性を備える。さらに、低延伸倍率であることからヒートシール温度の上昇を抑制することができるため、経済的である。 As described above, the longitudinally uniaxially stretched film produced by the production method of the present invention has little unevenness in film thickness even at a low draw ratio, and has good tearability while having strength. Further, since the draw ratio is low, it is possible to suppress an increase in the heat seal temperature, which is economical.

10 縦一軸延伸フィルム
11 積層体
20 他のフィルム
30 切れ込み
40 直線
50 試験フィルム
51 長辺
52 短辺
MD 縦一軸延伸フィルムのフィルム製膜時の流れ方向
TD 縦一軸延伸フィルムのフィルム製膜時の幅方向
10 Vertical uniaxially stretched film 11 Laminated body 20 Other film 30 Notch 40 Straight line 50 Test film 51 Long side 52 Short side MD Vertical uniaxially stretched film flow direction during film formation TD Vertical uniaxially stretched film width during film formation direction

Claims (3)

プロピレン単独重合体、プロピレンとプロピレンを除くα−オレフィンとの重合によるランダム共重合体又はブロック共重合体のいずれかのアイソタクチックポリプロピレンであるポリプロピレン系樹脂を70重量%以上含む樹脂組成物を原料とし、
前記ポリプロピレン系樹脂のJIS K 7210−1(2014)に準拠して測定されたメルトフローレート(MFR)を1〜10g/10minとし、
前記原料を溶融押出し、
冷却ロールにてシート状に成形するとともにIR法により測定された結晶化度を55%以下に調整し、
次いでロールの速度差をもって縦方向に延伸倍率が1.2〜3.5倍に一軸延伸して延伸フィルムを形成して、
JIS K 7130(1999)に準拠して測定されたフィルム厚さにおける最大厚さと最小厚さの差が平均厚さの20%以内であるフィルムを得る
ことを特徴とするポリプロピレン系縦一軸延伸フィルムの製造方法。
A resin composition containing 70% by weight or more of a polypropylene-based resin which is an isotactic polypropylene of either a propylene homopolymer, a random copolymer obtained by polymerizing propylene and α-olefin excluding propylene, or a block copolymer is used as a raw material. age,
The melt flow rate (MFR) measured in accordance with JIS K 7210-1 (2014) of the polypropylene resin was set to 1 to 10 g / 10 min.
The raw material is melt-extruded and
It is molded into a sheet with a cooling roll and the crystallinity measured by the IR method is adjusted to 55% or less.
Next, a stretched film was formed by uniaxially stretching the stretch ratio in the longitudinal direction to 1.2 to 3.5 times with a difference in roll speed.
A polypropylene-based longitudinally uniaxially stretched film characterized by obtaining a film in which the difference between the maximum thickness and the minimum thickness in the film thickness measured in accordance with JIS K 7130 (1999) is within 20% of the average thickness. Production method.
前記原料の溶融押出時において、前記樹脂組成物のうちから選択される異なる複数の前記原料を層状に溶融押出することを特徴とする請求項1に記載のポリプロピレン系縦一軸延伸フィルムの製造方法。 The method for producing a polypropylene-based longitudinally uniaxially stretched film according to claim 1, wherein a plurality of different raw materials selected from the resin compositions are melt-extruded in layers at the time of melt extrusion of the raw materials. 請求項1又は2に記載の製造方法により得たポリプロピレン系縦一軸延伸フィルムであるシーラント層と、1ないし複数層の基材フィルムとを備えたことを特徴とする積層体。 A laminate comprising a sealant layer, which is a polypropylene-based longitudinally uniaxially stretched film obtained by the production method according to claim 1 or 2, and one or more layers of a base film.
JP2019050900A 2019-03-19 2019-03-19 Method for producing polypropylene-based longitudinally uniaxially stretched film Active JP7273564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050900A JP7273564B2 (en) 2019-03-19 2019-03-19 Method for producing polypropylene-based longitudinally uniaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050900A JP7273564B2 (en) 2019-03-19 2019-03-19 Method for producing polypropylene-based longitudinally uniaxially stretched film

Publications (2)

Publication Number Publication Date
JP2020151889A true JP2020151889A (en) 2020-09-24
JP7273564B2 JP7273564B2 (en) 2023-05-15

Family

ID=72557219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050900A Active JP7273564B2 (en) 2019-03-19 2019-03-19 Method for producing polypropylene-based longitudinally uniaxially stretched film

Country Status (1)

Country Link
JP (1) JP7273564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116176018A (en) * 2023-02-23 2023-05-30 河北海伟电子新材料科技股份有限公司 Polypropylene capacitor film applied to electronic anti-monitoring tag and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179800A (en) * 1997-12-25 1999-07-06 Tokuyama Corp Polypropylene film
JP2016032911A (en) * 2014-07-31 2016-03-10 フタムラ化学株式会社 Tear-directionality sealant film, and film laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179800A (en) * 1997-12-25 1999-07-06 Tokuyama Corp Polypropylene film
JP2016032911A (en) * 2014-07-31 2016-03-10 フタムラ化学株式会社 Tear-directionality sealant film, and film laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116176018A (en) * 2023-02-23 2023-05-30 河北海伟电子新材料科技股份有限公司 Polypropylene capacitor film applied to electronic anti-monitoring tag and preparation method thereof
CN116176018B (en) * 2023-02-23 2023-11-14 河北海伟电子新材料科技股份有限公司 Polypropylene capacitor film applied to electronic anti-monitoring tag and preparation method thereof

Also Published As

Publication number Publication date
JP7273564B2 (en) 2023-05-15

Similar Documents

Publication Publication Date Title
EP2598326B1 (en) Heat sealable film with linear tear properties
JP4894340B2 (en) Heat-sealable laminated polypropylene resin film and package
US9669591B2 (en) Heat sealable film with linear tear properties
TW201509663A (en) Stretchable polypropylene laminated film
JP6996554B2 (en) Biaxially oriented polypropylene resin film
JP7416137B2 (en) Polypropylene resin multilayer film
EP3317104B1 (en) Methods of preparing a peelable seal layer
US8920914B2 (en) Enhanced processing oriented polypropylene films
JP7273564B2 (en) Method for producing polypropylene-based longitudinally uniaxially stretched film
JP4747538B2 (en) Heat-sealable laminated polypropylene resin film and package
JP6994398B2 (en) Polypropylene film
JP4239067B2 (en) Laminated polypropylene resin film and package using the same
JPH09150488A (en) Laminated film
JP7018794B2 (en) Polypropylene-based stretched film that provides good peelability
JP4239079B2 (en) Heat-sealable laminated polypropylene resin film and package
TW202026133A (en) Polyethylene pouch and the fabrication method thereof
JP2005104152A (en) Heat-sealable laminated polypropylene resin film and package
JP6415837B2 (en) Laminated film and package
US11866572B2 (en) Polyolefin-based resin film and laminate including the same
JP7018793B2 (en) Polypropylene-based stretched film
JP2004345136A (en) Polypropylene resin film and package
CN116710281A (en) Laminate and package using same
TW202327893A (en) Resin laminate for packaging materials
TW202327892A (en) Resin laminate for packaging material
TW201919900A (en) Polypropylene-based laminate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230428

R150 Certificate of patent or registration of utility model

Ref document number: 7273564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150