JP2020150102A - Component loading device and component loading method - Google Patents

Component loading device and component loading method Download PDF

Info

Publication number
JP2020150102A
JP2020150102A JP2019045528A JP2019045528A JP2020150102A JP 2020150102 A JP2020150102 A JP 2020150102A JP 2019045528 A JP2019045528 A JP 2019045528A JP 2019045528 A JP2019045528 A JP 2019045528A JP 2020150102 A JP2020150102 A JP 2020150102A
Authority
JP
Japan
Prior art keywords
component
mounting
mounted component
imaging
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019045528A
Other languages
Japanese (ja)
Inventor
園田 知幸
Tomoyuki Sonoda
知幸 園田
山内 直樹
Naoki Yamauchi
直樹 山内
哲平 小塩
Teppei Koshio
哲平 小塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019045528A priority Critical patent/JP2020150102A/en
Publication of JP2020150102A publication Critical patent/JP2020150102A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a component loading device and a component loading method capable of improving loading accuracy of each of loaded components while keeping high connection reliability between vertically adjacent loaded components.SOLUTION: A lower component which is loaded just before is imaged from an upper side (step ST2), and an upper component to be loaded is imaged from a lower side (step ST3). Thus, a post-loading position of the lower component is calculated and a pre-loading position of the upper component is calculated (step ST4). When a post-loading position of a reference loaded component (lowermost layer component 2A) which is positioned at a lower layer side than the lower component is read out of a storage section 14b (step ST5), an alignment amount of the upper component with respect to the lower component is set based on the post-loading position of the lower component, the pre-loading position of the upper component and the post-loading position of the reference loaded component (step ST6). The other loaded component is aligned according to the set alignment amount, and the upper component is loaded on the lower component (step ST7).SELECTED DRAWING: Figure 5

Description

本発明は、一の搭載部品の上に他の搭載部品を搭載する動作を繰り返し実行する部品搭載装置および部品搭載方法に関する。 The present invention relates to a component mounting device and a component mounting method for repeatedly executing an operation of mounting another mounted component on one mounted component.

従来、一の搭載部品の上に他の搭載部品を搭載する動作を繰り返し実行することで上下方向に複数の搭載部品を積層していく部品搭載装置が知られている。搭載部品は下面と上面のそれぞれに電極を備えており、部品搭載装置は、これから搭載しようとする搭載部品(上側部品と称する)の下面側に設けられた下面側電極が、直前に搭載された搭載部品(下側部品と称する)の上面側に設けられた上面側電極に接触するようにして上側部品を下側部品の上に搭載する。 Conventionally, there has been known a component mounting device that stacks a plurality of mounted components in the vertical direction by repeatedly executing an operation of mounting another mounted component on one mounted component. The mounted parts are provided with electrodes on the lower surface and the upper surface, respectively, and in the component mounting device, the lower surface side electrodes provided on the lower surface side of the mounted component (referred to as the upper component) to be mounted are mounted immediately before. The upper component is mounted on the lower component so as to come into contact with the upper surface electrode provided on the upper surface side of the mounted component (referred to as the lower component).

このような部品搭載装置では、下側部品の上面側に設けられたアライメントマークを上方から撮像してその位置を算出するとともに、上側部品の下面側に設けられたアライメントマークを下側から撮像してその位置を算出し、これらのアライメントマーク同士が合致するようにして上側部品を下側部品の上に搭載するようにしている(例えば、下記の特許文献1)。このような手順で搭載部品を搭載していくと、上下に隣接する搭載部品間では十分な大きさの電極接触面積が確保されるので、電気な接続信頼性の高い製品を製造することが可能である。 In such a component mounting device, the alignment mark provided on the upper surface side of the lower component is imaged from above to calculate the position, and the alignment mark provided on the lower surface side of the upper component is imaged from the lower side. The position of the upper component is calculated so that the alignment marks match each other so that the upper component is mounted on the lower component (for example, Patent Document 1 below). When the mounted parts are mounted in this procedure, a sufficiently large electrode contact area is secured between the mounted parts adjacent to the top and bottom, so that it is possible to manufacture a product with high electrical connection reliability. Is.

再表2011/087003号公報Re-table 2011/087003

しかしながら、上記のように、下側部品との間の位置関係に基づいて上側部品を搭載していくと、上層側にいくほど下側部品に対する上側部品の位置ずれが累積していき、各搭載部品の搭載精度(最下層の搭載部品を基準とした搭載精度)が大きく低下してしまうおそれがあるという問題点があった。 However, as described above, when the upper parts are mounted based on the positional relationship with the lower parts, the misalignment of the upper parts with respect to the lower parts accumulates toward the upper layer side, and each mounting There is a problem that the mounting accuracy of parts (mounting accuracy based on the mounting parts of the lowest layer) may be significantly lowered.

そこで本発明は、上下に隣接する搭載部品間における高い接続信頼性を保ちつつ、各搭載部品の搭載精度を向上させることができる部品搭載装置および部品搭載方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a component mounting device and a component mounting method capable of improving the mounting accuracy of each mounted component while maintaining high connection reliability between vertically adjacent mounted components.

本発明の部品搭載装置は、一の搭載部品の上面側に設けられた上面側電極に他の搭載部品の下面側に設けられた下面側電極が接触するように前記一の搭載部品の上に前記他の搭載部品を搭載する動作を繰り返し実行する部品搭載装置であって、前記一の搭載部品を上方から撮像する第1の撮像部と、前記他の搭載部品を下方から撮像する第2の撮像部と、前記第1の撮像部により撮像した結果に基づいて前記一の搭載部品の位置を前記一の搭載部品の搭載後位置として算出するとともに、前記第2の撮像部により撮像した結果に基づいて前記他の搭載部品の位置を前記他の搭載部品の搭載前位置として算出する位置算出部と、前記位置算出部により算出された前記一の搭載部品の搭載後位置、前記位置算出部により算出された前記他の搭載部品の搭載前位置および前記一の搭載部品より下層側に位置する特定の搭載部品である基準搭載部品の搭載後位置に基づいて、前記一の搭載部品に対する前記他の搭載部品の位置合わせ量を設定する位置合わせ量設定部と、前記位置合わせ
量設定部で設定された前記位置合わせ量で前記他の搭載部品を前記一の搭載部品に対して位置合わせしたうえで、前記他の搭載部品を前記一の搭載部品の上に搭載させる搭載制御部とを備えた。
The component mounting device of the present invention is placed on the one mounted component so that the lower surface side electrode provided on the lower surface side of the other mounted component is in contact with the upper surface side electrode provided on the upper surface side of the one mounted component. A component mounting device that repeatedly executes the operation of mounting the other mounted components, the first imaging unit that images the one mounted component from above, and the second imaging unit that images the other mounted components from below. Based on the results of imaging by the imaging unit and the first imaging unit, the position of the one mounted component is calculated as the post-mounting position of the one mounted component, and the result of imaging by the second imaging unit is obtained. Based on the position calculation unit that calculates the position of the other mounted component as the pre-mounting position of the other mounted component, the post-mounting position of the one mounted component calculated by the position calculation unit, and the position calculation unit. Based on the calculated pre-mounting position of the other mounted component and the post-mounting position of the reference mounted component, which is a specific mounted component located on the lower layer side of the one mounted component, the other mounted component with respect to the one mounted component. After aligning the other mounted parts with respect to the one mounted component with the alignment amount setting unit for setting the alignment amount of the mounted parts and the alignment amount set by the alignment amount setting unit. , The mounting control unit for mounting the other mounting component on the one mounting component is provided.

本発明の部品搭載方法は、一の搭載部品の上面側に設けられた上面側電極に他の搭載部品の下面側に設けられた下面側電極が接触するように前記一の搭載部品の上に前記他の搭載部品を搭載する動作を繰り返し実行する部品搭載方法であって、前記一の搭載部品を上方から撮像する第1の撮像工程と、前記他の搭載部品を下方から撮像する第2の撮像工程と、前記第1の撮像工程で撮像した結果に基づいて前記一の搭載部品の位置を前記一の搭載部品の搭載後位置として算出するとともに、前記第2の撮像工程で撮像した結果に基づいて前記他の搭載部品の位置を前記他の搭載部品の搭載前位置として算出する位置算出工程と、前記位置算出工程で算出した前記一の搭載部品の搭載後位置、前記位置算出工程で算出した前記他の搭載部品の搭載前位置および前記一の搭載部品より下層側に位置する特定の搭載部品である基準搭載部品の搭載後位置に基づいて、前記一の搭載部品に対する前記他の搭載部品の位置合わせ量を設定する位置合わせ量設定工程と、前記位置合わせ量設定工程で設定した前記位置合わせ量で前記他の搭載部品を前記一の搭載部品に対して位置合わせしたうえで、前記他の搭載部品を前記一の搭載部品の上に搭載する搭載工程とを含む。 In the component mounting method of the present invention, the upper surface side electrode provided on the upper surface side of one mounted component is placed on the one mounted component so that the lower surface side electrode provided on the lower surface side of the other mounted component is in contact with the upper surface side electrode. A component mounting method for repeatedly executing the operation of mounting the other mounted components, wherein the first mounted component is imaged from above and the other mounted component is imaged from below. Based on the result of imaging in the imaging step and the first imaging step, the position of the one mounted component is calculated as the position after mounting of the one mounted component, and the result of imaging in the second imaging step is obtained. Based on this, the position calculation step of calculating the position of the other mounted component as the pre-mounting position of the other mounted component, the post-mounting position of the one mounted component calculated in the position calculation step, and the position calculation step are calculated. The other mounted component with respect to the one mounted component based on the position before mounting of the other mounted component and the post-mounted position of the reference mounted component which is a specific mounted component located on the lower layer side of the one mounted component. After aligning the other mounted parts with respect to the one mounted component by the alignment amount setting step for setting the alignment amount and the alignment amount set in the alignment amount setting step, the other Includes a mounting process of mounting the mounted component of the above on the one mounted component.

本発明によれば、上下に隣接する搭載部品間における高い接続信頼性を保ちつつ、各搭載部品の搭載精度を向上させることができる。 According to the present invention, it is possible to improve the mounting accuracy of each mounted component while maintaining high connection reliability between the mounted components adjacent to the top and bottom.

本発明の一実施の形態における部品搭載装置の構成図Configuration diagram of the component mounting device according to the embodiment of the present invention 本発明の一実施の形態における部品搭載装置により製造される積層型構造体の斜視図Perspective view of a laminated structure manufactured by the component mounting device according to the embodiment of the present invention. 本発明の一実施の形態における部品搭載装置により搭載部品を搭載している状態を示す斜視図A perspective view showing a state in which a mounted component is mounted by the component mounting device according to the embodiment of the present invention. 本発明の一実施の形態における部品搭載装置が備える制御装置の位置算出部が算出する(a)下側部品の搭載後位置を説明する図(b)上側部品の搭載前位置を説明する図A diagram calculated by a position calculation unit of a control device included in the component mounting device according to the embodiment of the present invention (a) a diagram for explaining a position after mounting of a lower component (b) a diagram for explaining a position before mounting of an upper component. 本発明の一実施の形態における部品搭載装置により搭載部品を搭載していく手順を示すフローチャートA flowchart showing a procedure for mounting mounted components by the component mounting device according to the embodiment of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における部品搭載装置1を示している。部品搭載装置1は、複数の搭載部品2を上下方向に積層して積層型構造体3(図2)を製造する装置である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a component mounting device 1 according to an embodiment of the present invention. The component mounting device 1 is a device for manufacturing a laminated structure 3 (FIG. 2) by laminating a plurality of mounted components 2 in the vertical direction.

図1および図3において、部品搭載装置1は、作業ステージ11、搭載ヘッド12およびカメラ13を備えている。作業ステージ11の上面には複数の吸着開口(図示せず)が形成されており、作業ステージ11の内部にはそれら吸着開口と繋がる真空チャック機構(図示せず)が設けられている。作業ステージ11の上面に作業対象が載置された状態で真空チャック機構が吸着開口から真空吸引すると、作業ステージ11の上面に作業対象が吸着保持される。 In FIGS. 1 and 3, the component mounting device 1 includes a work stage 11, a mounting head 12, and a camera 13. A plurality of suction openings (not shown) are formed on the upper surface of the work stage 11, and a vacuum chuck mechanism (not shown) connected to these suction openings is provided inside the work stage 11. When the vacuum chuck mechanism vacuum sucks the work object from the suction opening while the work object is placed on the upper surface of the work stage 11, the work object is sucked and held on the upper surface of the work stage 11.

搭載ヘッド12は下方に延びたノズル12aを備えている。搭載ヘッド12は内部に設けられたノズル駆動機構(図示せず)によってノズル12aを昇降させ、また、内部に設けられた吸着機構(図示せず)によってノズル12aの下端に真空吸着力を発生させる。
搭載ヘッド12はヘッド移動機構12K(図1)の作動によって、作業ステージ11の上方を含む一定の領域を水平方向に移動する。
The mounting head 12 includes a nozzle 12a extending downward. The mounting head 12 raises and lowers the nozzle 12a by a nozzle drive mechanism (not shown) provided inside, and generates a vacuum suction force at the lower end of the nozzle 12a by a suction mechanism (not shown) provided inside. ..
The mounting head 12 moves horizontally in a certain area including the upper part of the work stage 11 by the operation of the head moving mechanism 12K (FIG. 1).

図1および図3において、カメラ13は下方に撮像視野を向けてカメラ13の下方領域を撮像する第1の撮像部13aと、上方に撮像視野を向けてカメラ13の上方領域を撮像する第2の撮像部13bを有している。第1の撮像部13aと第2の撮像部13bは上下方向に延びた同一の軸を共通の撮像光軸としている。カメラ13は第1の撮像部13aと第2の撮像部13bでカメラ13の下方に位置するものとカメラ13の上方に位置するものを順次または同時に撮像することができる。カメラ13はカメラ移動機構13K(図1)の作動によって、作業ステージ11の上方を含む一定の領域を水平方向に移動する。 In FIGS. 1 and 3, the camera 13 has a first imaging unit 13a that directs the imaging field of view downward to image the lower region of the camera 13, and a second imaging unit 13a that directs the imaging field of view upward to image the upper region of the camera 13. It has an imaging unit 13b of the above. The first imaging unit 13a and the second imaging unit 13b use the same axis extending in the vertical direction as a common imaging optical axis. The camera 13 can sequentially or simultaneously image the first imaging unit 13a and the second imaging unit 13b located below the camera 13 and above the camera 13. The camera 13 moves horizontally in a certain area including the upper part of the work stage 11 by the operation of the camera moving mechanism 13K (FIG. 1).

図2および図3において、部品搭載装置1によって製造される積層型構造体3は、いわゆるチップオンチップ型の電子部品であり、最下層の搭載部品2(最下層部品2Aと称する)の上に複数の搭載部品2が積層され、更にその上に最上層の搭載部品2(最上層部品2Bと称する)が積層された構成となっている。ここで、最下層部品2Aと最上層部品2Bとを除く各搭載部品2は、下面側に複数の電極(下面側電極21)を備えるとともに、上面側に複数の電極(上面側電極22)を備えたチップ部品から成る。ひとつの下面側電極21とその下面側電極21の上方に位置するひとつの上面側電極22とは搭載部品2を厚さ方向に貫通したひとつの部材から構成されている。このため、下面側電極21の位置と上面側電極22の位置は、搭載部品2を上方(或いは下方)から見た場合に互いに一致する。 In FIGS. 2 and 3, the laminated structure 3 manufactured by the component mounting device 1 is a so-called chip-on-chip type electronic component, which is placed on the lowermost mounted component 2 (referred to as the lowest layer component 2A). A plurality of mounted components 2 are laminated, and the uppermost mounted component 2 (referred to as the uppermost layer component 2B) is further laminated on the plurality of mounted components 2. Here, each mounted component 2 except for the lowermost layer component 2A and the uppermost layer component 2B is provided with a plurality of electrodes (lower surface side electrodes 21) on the lower surface side and a plurality of electrodes (upper surface side electrodes 22) on the upper surface side. Consists of equipped chip parts. One lower surface side electrode 21 and one upper surface side electrode 22 located above the lower surface side electrode 21 are composed of one member that penetrates the mounting component 2 in the thickness direction. Therefore, the position of the lower surface side electrode 21 and the position of the upper surface side electrode 22 coincide with each other when the mounted component 2 is viewed from above (or below).

最下層部品2Aは上面側に複数の電極(上面側電極22)を備えたチップ部品または基板から成る。最下層部品2Aは直下に他の搭載部品2がないために下面側電極21は備えていない(図2)。最上層部品2Bは下面側に複数の電極(下面側電極21)を備えたチップ部品から成る。最上層部品2Bは直上に他の搭載部品2がないために上面側電極22は備えていない(図2)。 The lowermost layer component 2A is composed of a chip component or a substrate having a plurality of electrodes (upper surface side electrodes 22) on the upper surface side. The lowermost layer component 2A does not have the lower surface side electrode 21 because there is no other mounted component 2 directly underneath (FIG. 2). The uppermost layer component 2B is composed of a chip component having a plurality of electrodes (bottom side electrodes 21) on the lower surface side. The uppermost layer component 2B does not have the upper surface side electrode 22 because there is no other mounted component 2 directly above it (FIG. 2).

図1において、部品搭載装置1が備える制御装置14は、作業ステージ11が備える前述の真空チャック機構による作業対象の保持動作と、ヘッド移動機構12Kによる搭載ヘッド12の移動動作をそれぞれ制御する。また制御装置14は、搭載ヘッド12によるノズル12aを介した吸着動作、カメラ移動機構13Kによるカメラ13の移動動作およびカメラ13による撮像動作をそれぞれ制御する。 In FIG. 1, the control device 14 included in the component mounting device 1 controls the holding operation of the work object by the above-mentioned vacuum chuck mechanism included in the work stage 11 and the moving operation of the mounting head 12 by the head moving mechanism 12K. Further, the control device 14 controls the suction operation of the mounting head 12 via the nozzle 12a, the moving operation of the camera 13 by the camera moving mechanism 13K, and the imaging operation of the camera 13.

カメラ13は、直前に搭載された一の搭載部品2(下側部品と称する)と、これから搭載しようとする他の搭載部品2(上側部品称する)とが上下に対向して配置された状態で、下側部品と上側部品との間に進出するようにカメラ移動機構13Kによって移動される。そして、下側部品と上側部品との間に進出したカメラ13は、第1の撮像部13aによって下側部品を上から撮像し、その撮像によって得られた画像データを制御装置14に送信する。また、カメラ13は、第2の撮像部13bによって上側部品を下方から撮像し、その撮像によって得られた画像データを制御装置14に送信する。 The camera 13 is in a state in which one mounted component 2 (referred to as a lower component) mounted immediately before and another mounted component 2 (referred to as an upper component) to be mounted are arranged vertically facing each other. , It is moved by the camera moving mechanism 13K so as to advance between the lower part and the upper part. Then, the camera 13 that has advanced between the lower component and the upper component captures the lower component from above by the first imaging unit 13a, and transmits the image data obtained by the imaging to the control device 14. Further, the camera 13 images the upper component from below by the second imaging unit 13b, and transmits the image data obtained by the imaging to the control device 14.

図1において、制御装置14は、位置算出部14a、記憶部14b、位置合わせ量設定部14cおよび搭載制御部14dを備えている。カメラ13より画像データを受け取った制御装置14は、位置算出部14aにおいて画像データの画像処理を行うことで、カメラ13が撮像した下側部品と上側部品それぞれの位置の算出を行う。 In FIG. 1, the control device 14 includes a position calculation unit 14a, a storage unit 14b, an alignment amount setting unit 14c, and a mounting control unit 14d. The control device 14 that has received the image data from the camera 13 calculates the positions of the lower component and the upper component imaged by the camera 13 by performing image processing of the image data in the position calculation unit 14a.

図4(a)は、下側部品の上面を上から見た図であり、図4(b)は上側部品を下面から見た図である。図4(b)では、下から見た図を上から見た図に変換して表している。各搭載部品2の上面側と下面側のそれぞれには相互に対応する2つのアライメントマーク
M1,M2が設けられている(図3も参照)。これら2つのアライメントマークM1,M2は搭載部品2のひとつの対角線上に設けられている。
FIG. 4A is a view of the upper surface of the lower component viewed from above, and FIG. 4B is a view of the upper component viewed from the bottom surface. In FIG. 4B, the view viewed from below is converted into the view viewed from above. Two alignment marks M1 and M2 corresponding to each other are provided on the upper surface side and the lower surface side of each mounted component 2 (see also FIG. 3). These two alignment marks M1 and M2 are provided on one diagonal line of the mounting component 2.

位置算出部14aは、第1の撮像部13aにより撮像した下側部品について、2つのアライメントマークM1,M2の中点の座標(X1,Y1)と、2つのアライメントマークM1,M2を結ぶ直線Lの傾きΘ1を求める(図4(a))。また、位置算出部14aは、第2の撮像部13bにより撮像した上側部品について、2つのアライメントマークM1,M2の中点の座標(X2,Y2)と、2つのアライメントマークM1,M2を結ぶ直線Lの傾きΘ2を求める(図4(b))。ここで、図4(a)および図4(b)における「X」及び「Y」は、部品搭載装置1に定められた共通のXY座標(水平面内の直交座標)を基準とした各座標であり、「Θ」はXY面内のX軸からの傾き角である。 The position calculation unit 14a is a straight line L connecting the coordinates (X1, Y1) of the midpoints of the two alignment marks M1 and M2 and the two alignment marks M1 and M2 for the lower component imaged by the first imaging unit 13a. The slope Θ1 of is obtained (FIG. 4 (a)). Further, the position calculation unit 14a is a straight line connecting the coordinates (X2, Y2) of the midpoints of the two alignment marks M1 and M2 and the two alignment marks M1 and M2 for the upper component imaged by the second imaging unit 13b. The slope Θ2 of L is obtained (FIG. 4 (b)). Here, "X" and "Y" in FIGS. 4 (a) and 4 (b) are coordinates based on the common XY coordinates (orthogonal coordinates in the horizontal plane) defined in the component mounting device 1. Yes, "Θ" is the tilt angle from the X axis in the XY plane.

位置算出部14aは、下側部品(直前に搭載された一の搭載部品2)を上から撮像した画像に基づいてその下側部品の位置(X1,Y1,Θ1)を「下側部品の搭載後位置」として算出する。また位置算出部14aは、上側部品(これから搭載しようとする他の搭載部品2)を下から撮像した画像に基づいてその上側部品の位置(X2,Y2,Θ2)を「上側部品の搭載前位置」として算出する。ここで算出された下側部品の搭載後位置(X1,Y1,Θ1)のデータは、記憶部14bに記憶される。 The position calculation unit 14a sets the position (X1, Y1, Θ1) of the lower component (X1, Y1, Θ1) of the lower component (one mounted component 2 mounted immediately before) based on the image taken from above to "mount the lower component". Calculated as "rear position". Further, the position calculation unit 14a determines the position (X2, Y2, Θ2) of the upper component (X2, Y2, Θ2) based on the image of the upper component (the other mounted component 2 to be mounted) from below. Is calculated as. The data of the positions (X1, Y1, Θ1) after mounting of the lower component calculated here are stored in the storage unit 14b.

このように本実施の形態において、位置算出部14aは、第1の撮像部13aにより撮像した結果に基づいて一の搭載部品2(下側部品)の位置を一の搭載部品2の搭載後位置(X1,Y1,Θ1)として算出するとともに、第2の撮像部13bにより撮像した結果に基づいて他の搭載部品2(上側部品)の位置を他の搭載部品の搭載前位置(X2,Y2,Θ2)として算出するようになっている。 As described above, in the present embodiment, the position calculation unit 14a sets the position of one mounted component 2 (lower component) as the position after mounting of the one mounted component 2 based on the result of imaging by the first imaging unit 13a. It is calculated as (X1, Y1, Θ1), and the position of the other mounted component 2 (upper component) is set to the position before mounting of the other mounted component (X2, Y2, based on the result of imaging by the second imaging unit 13b). It is calculated as Θ2).

制御装置14の位置合わせ量設定部14cは、位置算出部14aにおいて算出された一の搭載部品2(下側部品)の搭載後位置(X1,Y1,Θ1)、位置算出部14aにおいて算出された他の搭載部品2(上側部品)の搭載前位置(X2,Y2,Θ2)および一の搭載部品2より下層側に位置する特定の搭載部品2として任意に設定される基準搭載部品(ここでは最下層部品2Aとする)の搭載後位置(X0,Y0,Θ0)に基づいて、一の搭載部品2に対する他の搭載部品2の位置合わせ量(ΔX,ΔY,ΔΘ)を設定する。基準搭載部品の搭載後位置(X0,Y0,Θ0)は、各搭載部品2の実際の搭載位置のばらつき範囲(平面視におけるばらつき範囲)の中心となる位置である。ここで、上記基準搭載部品としての最下層部品2Aの搭載後位置(X0,Y0,Θ0)のデータは、その基準搭載部品(最下層部品2A)の上面側が第1の撮像部13aによって撮像された際に、記憶部14bに記憶されたデータである。 The alignment amount setting unit 14c of the control device 14 was calculated by the position calculation unit 14a at the post-mounting position (X1, Y1, Θ1) of one mounting component 2 (lower component) calculated by the position calculation unit 14a. A reference mounting component (here, the most) that is arbitrarily set as a specific mounting component 2 located on the lower layer side of the other mounting component 2 (upper component) before mounting (X2, Y2, Θ2) and one mounting component 2. The alignment amount (ΔX, ΔY, ΔΘ) of the other mounted component 2 with respect to one mounted component 2 is set based on the post-mounted position (X0, Y0, Θ0) of the lower layer component 2A). The post-mounting position (X0, Y0, Θ0) of the reference mounting component is the center of the variation range (variation range in the plan view) of the actual mounting position of each mounting component 2. Here, as for the data of the position (X0, Y0, Θ0) after mounting of the lowest layer component 2A as the reference mounting component, the upper surface side of the reference mounting component (bottom layer component 2A) is imaged by the first imaging unit 13a. At that time, the data is stored in the storage unit 14b.

位置合わせ量設定部14cは、位置算出部14aにより算出された上側部品の搭載前位置(X2,Y2,Θ2)と下側部品の搭載後位置(X1,Y1,Θ1)とに基づいて、それぞれの差をとった
PX=X2−X1
PY=Y2−Y1
PΘ=Θ2−Θ1
から成る(PX,PY,PΘ)を、上側部品の搭載前位置と下側部品の搭載後位置との間の位置ずれ量(第1の位置ずれ量と称する)として算出する。
The alignment amount setting unit 14c is based on the position before mounting the upper component (X2, Y2, Θ2) and the position after mounting the lower component (X1, Y1, Θ1) calculated by the position calculation unit 14a, respectively. PX = X2-X1
PY = Y2-Y1
PΘ = Θ2-Θ1
(PX, PY, PΘ) consisting of (PX, PY, PΘ) is calculated as a misalignment amount (referred to as a first misalignment amount) between the position before mounting of the upper component and the position after mounting of the lower component.

また、位置合わせ量設定部14cは、位置算出部14aにより算出された上側部品の搭載前位置(X2,Y2,Θ2)と記憶部14bから読み出された基準搭載部品(最下層部品2A)の搭載後位置(X0,Y0,Θ0)とに基づいて、それぞれの差をとった
QX=X2−X0
QY=Y2−Y0
QΘ=Θ2−Θ0
から成る(QX,QY,QΘ)を、上側部品の搭載前位置と基準搭載部品の搭載後位置との間の位置ずれ量(第2の位置ずれ量と称する)として算出する。
Further, the alignment amount setting unit 14c is a reference mounting component (bottom layer component 2A) read from the storage unit 14b and the pre-mounting position (X2, Y2, Θ2) of the upper component calculated by the position calculation unit 14a. Based on the position after mounting (X0, Y0, Θ0), the difference between them was taken. QX = X2-X0
QY = Y2-Y0
QΘ = Θ2-Θ0
(QX, QY, QΘ) is calculated as a misalignment amount (referred to as a second misalignment amount) between the pre-mounting position of the upper component and the post-mounting position of the reference mounting component.

位置合わせ量設定部14cは、上記のようにして第1の位置ずれ量(PX,PY,PΘ)と第2の位置ずれ量(QX,QY,QΘ)を算出したら、第1の位置ずれ量に重みmを乗じるとともに第2の位置ずれ量に重みn(m+m=1、m>0、n>0)を乗じてその和をとった
ΔX=mPX+nQX= m(X2−X1)+n(X2−X0)
ΔY=mPY+nQY= m(Y2−Y1)+n(Y2−Y0)
ΔΘ=mPΘ+nQΘ= m(Θ2−Θ1)+n(Θ2−Θ0)
から成る(ΔX,ΔY,ΔΘ)を、下側部品に対する上側部品の位置合わせ量として設定する。位置合わせ量設定部14cで設定された位置合わせ量(ΔX,ΔY,ΔΘ)は、記憶部14bに記憶される。
When the alignment amount setting unit 14c calculates the first position shift amount (PX, PY, PΘ) and the second position shift amount (QX, QY, QΘ) as described above, the first position shift amount is calculated. Is multiplied by the weight m and the second misalignment amount is multiplied by the weight n (m + m = 1, m> 0, n> 0) and the sum is taken. ΔX = mPX + nQX = m (X2-X1) + n (X2- X0)
ΔY = mPY + nQY = m (Y2-Y1) + n (Y2-Y0)
ΔΘ = mPΘ + nQΘ = m (Θ2-Θ1) + n (Θ2-Θ0)
(ΔX, ΔY, ΔΘ) consisting of (ΔX, ΔY, ΔΘ) is set as the alignment amount of the upper component with respect to the lower component. The alignment amount (ΔX, ΔY, ΔΘ) set by the alignment amount setting unit 14c is stored in the storage unit 14b.

このように、本実施の形態において、位置合わせ量設定部14cは、他の搭載部品2の搭載前位置(X2,Y2,Θ2)と一の搭載部品2の搭載後位置(X1,Y1,Θ1)と間の第1の位置ずれ量(PX,PY,PΘ)および他の搭載部品の搭載後位置(X2,Y2,Θ2)と基準搭載部品の搭載後位置(X0,Y0,Θ0)との間の第2の位置ずれ量(QX,QY,QΘ)に基づいて位置合わせ量(ΔX,ΔY,ΔΘ)を設定するようになっている。 As described above, in the present embodiment, the alignment amount setting unit 14c is the position before mounting of the other mounting component 2 (X2, Y2, Θ2) and the position after mounting of one mounting component 2 (X1, Y1, Θ1). ) And the first misalignment amount (PX, PY, PΘ) and the post-mounting position (X2, Y2, Θ2) of other mounted components and the post-mounting position (X0, Y0, Θ0) of the reference mounting component. The alignment amount (ΔX, ΔY, ΔΘ) is set based on the second misalignment amount (QX, QY, QΘ) between them.

ここで、上記位置合わせ量(ΔX,ΔY,ΔΘ)の中の重みm,nの値を変えることで、位置合わせ量(ΔX,ΔY,ΔΘ)における、第1の位置ずれ量による寄与分と第2の位置ずれ量による寄与分との割合を変更することができる。具体的には、mの値をnの値よりも大きくすると、第1の位置ずれ量による寄与分が大きくなり、これから搭載しようとする搭載部品2(上側部品)を近づける対象が主として直前に搭載した搭載部品2(下側部品)となる。このため、上下に隣接する搭載部品2間の電極同士の接触面積が大きくなって、上下に隣接する搭載部品2間の電気的接続信頼性が高められる。 Here, by changing the values of the weights m and n in the alignment amount (ΔX, ΔY, ΔΘ), the contribution of the first misalignment amount in the alignment amount (ΔX, ΔY, ΔΘ) can be obtained. The ratio of the second misalignment to the contribution can be changed. Specifically, when the value of m is made larger than the value of n, the contribution of the first misalignment amount becomes large, and the target to be mounted is mainly immediately before the mounting component 2 (upper component) to be mounted. It becomes the mounted part 2 (lower part). Therefore, the contact area between the electrodes between the vertically adjacent mounted components 2 becomes large, and the reliability of the electrical connection between the vertically adjacent mounted components 2 is enhanced.

一方、nの値をmの値よりも大きくすると、第2の位置ずれ量による寄与分が大きくなり、これから搭載しようとする搭載部品2(上側部品)を近づける対象が主として基準搭載部品となる。このため、各搭載部品2の搭載位置のばらつきを、基準搭載部品の搭載後位置を中心とした一定範囲内に収めるようにすることができ、各搭載部品2の搭載精度を高めるとともに、積層型構造体3の全体としての安定性を高めることができる。なお、重みm,nを等分に設定すると(m=n=0.5)、位置合わせ量(ΔX,ΔY,ΔΘ)は「第1の位置ずれ量」と「第2の位置ずれ量」の中間の値に設定され、両効果をバランスよく得ることができる。 On the other hand, when the value of n is made larger than the value of m, the contribution due to the second misalignment amount becomes large, and the target to be brought closer to the mounting component 2 (upper component) to be mounted is mainly the reference mounting component. For this reason, it is possible to keep the variation in the mounting position of each mounted component 2 within a certain range centered on the position after mounting the reference mounted component, improve the mounting accuracy of each mounted component 2, and the laminated type. The overall stability of the structure 3 can be enhanced. When the weights m and n are set equally (m = n = 0.5), the alignment amounts (ΔX, ΔY, ΔΘ) are the “first misalignment amount” and the “second misalignment amount”. It is set to an intermediate value of, and both effects can be obtained in a well-balanced manner.

制御装置14の搭載制御部14dは、ヘッド移動機構12Kおよび搭載ヘッド12を制御することによって、位置合わせ量設定部14cで設定された位置合わせ量(ΔX,ΔY,ΔΘ)で他の搭載部品2(上側部品)を位置合わせする。そして、そのうえで、一の搭載部品2(下側部品)の上に、他の搭載部品2(上側部品)を搭載させる。これにより下側部品の上面側電極22に上側部品の下面側電極21が接触し、下側部品と上側部品が電気的に接続された状態となる。 By controlling the head moving mechanism 12K and the mounting head 12, the mounting control unit 14d of the control device 14 controls the mounting head 12 to use the alignment amount (ΔX, ΔY, ΔΘ) set by the alignment amount setting unit 14c, and the other mounted component 2 Align (upper part). Then, on top of that, another mounting component 2 (upper component) is mounted on one mounting component 2 (lower component). As a result, the lower surface side electrode 21 of the upper component comes into contact with the upper surface side electrode 22 of the lower component, and the lower component and the upper component are electrically connected.

次に、図5のフローチャートを用いて、部品搭載装置1により搭載部品2を積層していく手順(部品搭載方法)を説明する。制御装置14は、搭載ヘッド12によりこれから搭載しようとする搭載部品2である上側部品をノズル12aに吸着させて、下側部品(最初
に搭載部品2の搭載を行う場合は最下層部品2A)の上方に移動させる(ステップST1)。そして、下側部品と上側部品との間にカメラ13を進出させたうえで、第1の撮像部13aによって下側部品を撮像するとともに(ステップST2。第1の撮像工程)、第2の撮像部13bによって上側部品を撮像する(ステップST3。第2の撮像工程)。ステップST2の下側部品の撮像とステップST3の上側部品の撮像は同時に行ってもよい。
Next, a procedure (component mounting method) for stacking the mounted components 2 by the component mounting device 1 will be described with reference to the flowchart of FIG. The control device 14 attracts the upper component, which is the mounting component 2 to be mounted, to the nozzle 12a by the mounting head 12, and causes the lower component (the lowest layer component 2A when the mounting component 2 is mounted first). Move it upward (step ST1). Then, after the camera 13 is advanced between the lower component and the upper component, the lower component is imaged by the first imaging unit 13a (step ST2, the first imaging step), and the second imaging is performed. The upper component is imaged by the part 13b (step ST3, the second imaging step). Imaging of the lower component in step ST2 and imaging of the upper component in step ST3 may be performed at the same time.

制御装置14は、ステップST2で下側部品を撮像し、ステップST3で上側部品を撮像したら、得られた結果(画像データ)に基づいて、下側部品の搭載後位置(X1,Y1,Θ1)と、上側部品の搭載前位置(X2,Y2,Θ2)を算出する。そして、それら算出した結果を記憶部14bに記憶させる(ステップST4。位置算出工程)。 The control device 14 images the lower component in step ST2, images the upper component in step ST3, and based on the obtained result (image data), the position after mounting the lower component (X1, Y1, Θ1). And, the position (X2, Y2, Θ2) before mounting of the upper component is calculated. Then, the calculated results are stored in the storage unit 14b (step ST4, position calculation step).

制御装置14は、算出した下側部品の搭載後位置(X1,Y1,Θ1)と上側部品の搭載前位置(X2,Y2,Θ2)それぞれのデータを記憶部14bに記憶させたら、基準搭載部品(ここでは最下層部品2A)の搭載後位置(X0,Y0,Θ0)のデータを記憶部14bから読み出す(ステップST5)。ステップST5を最初に行う場合には、記憶部14bから読み出す基準搭載部品の搭載後位置(X0,Y0,Θ0)のデータは、直前のステップS4で算出して記憶した最下層部品2Aの搭載後位置のデータと同じものとなる。 When the control device 14 stores the calculated data of the lower component mounting position (X1, Y1, Θ1) and the upper component pre-mounting position (X2, Y2, Θ2) in the storage unit 14b, the control device 14 is the reference mounting component. The data at the position (X0, Y0, Θ0) after mounting (here, the lowest layer component 2A) is read from the storage unit 14b (step ST5). When step ST5 is performed for the first time, the data of the reference mounting component post-mounting position (X0, Y0, Θ0) read from the storage unit 14b is calculated and stored in the immediately preceding step S4 after mounting the lowest layer component 2A. It will be the same as the position data.

制御装置14は、ステップST4で算出して記憶した下側部品の搭載後位置(X1,Y1,Θ1)および上側部品の搭載前位置(X2,Y2,Θ2)と、ステップST5で読み出した基準搭載部品(最下層部品2A)の搭載後位置(X0,Y0,Θ0)とに基づいて、前述の要領により、下側部品に対する上側部品の位置合わせ量(ΔX,ΔY,ΔΘ)を設定する(ステップST6。位置合わせ量設定工程)。そして、制御装置14は、その設定した位置合わせ量(ΔX,ΔY,ΔΘ)で上側部品を下側部品に対して位置合わせしたうえで、上側部品を下側部品の上に搭載する(ステップST7。搭載工程)。 The control device 14 includes the position after mounting the lower component (X1, Y1, Θ1) and the position before mounting the upper component (X2, Y2, Θ2) calculated and stored in step ST4, and the reference mounting read in step ST5. Based on the post-mounting position (X0, Y0, Θ0) of the component (bottom layer component 2A), the alignment amount (ΔX, ΔY, ΔΘ) of the upper component with respect to the lower component is set according to the above procedure (step). ST6. Alignment amount setting process). Then, the control device 14 aligns the upper component with respect to the lower component with the set alignment amount (ΔX, ΔY, ΔΘ), and then mounts the upper component on the lower component (step ST7). . Mounting process).

この搭載工程における上側部品の搭載では、位置合わせ量(ΔX,ΔY,ΔΘ)に、上側部品の搭載前位置と下側部品の搭載後位置と間の位置ずれ量(第1の位置ずれ量)が加味されているので、電極同士(下側部品の上面側電極22と上側部品の下面側電極21)の接触面積が過度に小さくならず、搭載部品2間の十分な電気的な接続信頼性を確保できる。また、位置合わせ量(ΔX,ΔY,ΔΘ)に、上側部品の搭載前位置と基準搭載部品(最下層部品2A)の搭載後位置との間の位置ずれ量(第2の位置ずれ量)が加味されているので、搭載される各搭載部品2は積層するごとに基準搭載部品から離れていくことはなく、搭載部品2を搭載する際の基準搭載部品(最下層部品2A)からのばらつきが小さくなって、その搭載部品2の搭載精度が向上する。 In the mounting of the upper component in this mounting process, the alignment amount (ΔX, ΔY, ΔΘ) is the amount of misalignment between the position before mounting the upper component and the position after mounting the lower component (first misalignment amount). Therefore, the contact area between the electrodes (the upper surface side electrode 22 of the lower component and the lower surface side electrode 21 of the upper component) is not excessively small, and sufficient electrical connection reliability between the mounted components 2 is sufficient. Can be secured. In addition, the alignment amount (ΔX, ΔY, ΔΘ) includes the amount of misalignment (second misalignment) between the position before mounting the upper component and the position after mounting the reference mounting component (bottom layer component 2A). Since it is taken into consideration, each mounted component 2 does not separate from the standard mounted component each time it is stacked, and there is a variation from the standard mounted component (bottom layer component 2A) when mounting the mounted component 2. As the size becomes smaller, the mounting accuracy of the mounted component 2 is improved.

制御装置14は、上側部品を下側部品の上に搭載したら、搭載すべき全ての搭載部品2を搭載したか(すなわち、最上層部品2Bを搭載したか)否かを判断する(ステップST8)。その結果、最上層部品2Bを搭載していない場合にはステップST1に戻り、最上層部品2Bを搭載した場合には、一連の作業を終了する。 When the upper component is mounted on the lower component, the control device 14 determines whether or not all the mounted components 2 to be mounted are mounted (that is, whether the top layer component 2B is mounted) (step ST8). .. As a result, if the top layer component 2B is not mounted, the process returns to step ST1, and if the top layer component 2B is mounted, a series of operations is completed.

このように、本実施の形態における部品搭載装置1(部品搭載方法)では、これから搭載しようとする上側部品(他の搭載部品2)を直前に搭載した下側部品(一の搭載部品2)に対して位置合わせするための位置合わせ量を、下側部品の搭載後位置と、上側部品の搭載前位置と、基準搭載部品の搭載後位置とに基づいて設定するようにしている。すなわち、位置合わせ量を設定する要素として、上下に隣接する2つの搭載部品2間の電気的接続性に関連する上側部品と下側部品との間の位置関係だけでなく、各搭載部品2のばらつきを一定範囲内に収めることに関連する上側部品と基準搭載部品位との間の位置関係を加味するようになっている。このようにして設定された位置合わせ量で下側部品に上側部品
を搭載した場合、上下に隣接する搭載部品2間における接続信頼性は高く、各搭載部品2の搭載精度も非常に高いものとなる。
As described above, in the component mounting device 1 (component mounting method) in the present embodiment, the upper component (other mounted component 2) to be mounted is mounted on the lower component (one mounted component 2) immediately before. On the other hand, the alignment amount for alignment is set based on the position after mounting the lower component, the position before mounting the upper component, and the position after mounting the reference mounted component. That is, as an element for setting the alignment amount, not only the positional relationship between the upper component and the lower component related to the electrical connectivity between the two vertically adjacent mounted components 2, but also each mounted component 2 The positional relationship between the upper component and the reference mounted component position, which is related to keeping the variation within a certain range, is taken into consideration. When the upper component is mounted on the lower component with the alignment amount set in this way, the connection reliability between the vertically adjacent mounted components 2 is high, and the mounting accuracy of each mounted component 2 is also very high. Become.

以上説明したように、本実施の形態における部品搭載装置1(部品搭載方法)では、これから搭載しようとする上側部品(他の搭載部品2)を直前に搭載した下側部品(一の搭載部品2)に対して位置合わせするための位置合わせ量が、下側部品の搭載後位置と、上側部品の搭載前位置と、下側部品より下層側に位置する特定の搭載部品2である基準搭載部品搭載後位置とに基づいて設定されるので、上下に隣接する搭載部品2間における高い接続信頼性を保ちつつ、各搭載部品2の搭載精度を向上させることができる。 As described above, in the component mounting device 1 (component mounting method) in the present embodiment, the lower component (one mounted component 2) on which the upper component (other mounted component 2) to be mounted is mounted immediately before is mounted. ), The amount of alignment for the lower component is the position after mounting the lower component, the position before mounting the upper component, and the specific mounting component 2 located on the lower layer side of the lower component. Since the setting is based on the position after mounting, it is possible to improve the mounting accuracy of each mounted component 2 while maintaining high connection reliability between the vertically adjacent mounted components 2.

これまで本発明の実施の形態について説明してきたが、本発明は上述したものに限定されず、種々の変形等が可能である。例えば、上述の実施の形態では、最下層の搭載部品(最下層部品2A)を基準搭載部品(特定の搭載部品2)としていたが、基準搭載部品はこれから搭載しようとする一の搭載部品2よりも下層側に位置する搭載部品2であればよく、必ずしも最下層部品2Aである必要はない。 Although the embodiments of the present invention have been described so far, the present invention is not limited to those described above, and various modifications and the like are possible. For example, in the above-described embodiment, the lowest layer mounted component (bottom layer component 2A) is used as the reference mounted component (specific mounted component 2), but the standard mounted component is more than one mounted component 2 to be mounted. It does not have to be the lowest layer component 2A as long as it is the mounted component 2 located on the lower layer side.

また、上述の実施の形態において示した、位置算出部14aが一の搭載部品2の搭載後位置と他の搭載部品2の搭載前位置とを算出する手順は一例であり、上述したものに限定されない。また、上述の形態において示した、位置合わせ量設定部14cが一の搭載部品2に対する他の搭載部品2の位置合わせ量を設定する手順は一例であり、上述したものに限定されない。 Further, the procedure in which the position calculation unit 14a calculates the post-mounting position of one mounted component 2 and the pre-mounting position of the other mounted component 2 shown in the above-described embodiment is an example, and is limited to the above-described one. Not done. Further, the procedure for setting the alignment amount of the other mounted component 2 with respect to the mounted component 2 by the alignment amount setting unit 14c shown in the above-described embodiment is an example, and is not limited to the above-described one.

上下に隣接する搭載部品間における高い接続信頼性を保ちつつ、各搭載部品の搭載精度を向上させることができる部品搭載装置および部品搭載方法を提供する。 Provided are a component mounting device and a component mounting method capable of improving the mounting accuracy of each mounted component while maintaining high connection reliability between vertically adjacent mounted components.

1 部品搭載装置
2 搭載部品
2A 最下層部品(最下層の搭載部品)
13a 第1の撮像部
13b 第2の撮像部
14a 位置算出部
14c 位置合わせ量設定部
14d 搭載制御部
21 下面側電極
22 上面側電極
1 Parts mounting device 2 Mounted parts 2A Bottom layer parts (bottom layer mounted parts)
13a First imaging unit 13b Second imaging unit 14a Position calculation unit 14c Alignment amount setting unit 14d Mounting control unit 21 Bottom side electrode 22 Top surface side electrode

Claims (8)

一の搭載部品の上面側に設けられた上面側電極に他の搭載部品の下面側に設けられた下面側電極が接触するように前記一の搭載部品の上に前記他の搭載部品を搭載する動作を繰り返し実行する部品搭載装置であって、
前記一の搭載部品を上方から撮像する第1の撮像部と、
前記他の搭載部品を下方から撮像する第2の撮像部と、
前記第1の撮像部により撮像した結果に基づいて前記一の搭載部品の位置を前記一の搭載部品の搭載後位置として算出するとともに、前記第2の撮像部により撮像した結果に基づいて前記他の搭載部品の位置を前記他の搭載部品の搭載前位置として算出する位置算出部と、
前記位置算出部により算出された前記一の搭載部品の搭載後位置、前記位置算出部により算出された前記他の搭載部品の搭載前位置および前記一の搭載部品より下層側に位置する特定の搭載部品である基準搭載部品の搭載後位置に基づいて、前記一の搭載部品に対する前記他の搭載部品の位置合わせ量を設定する位置合わせ量設定部と、
前記位置合わせ量設定部で設定された前記位置合わせ量で前記他の搭載部品を前記一の搭載部品に対して位置合わせしたうえで、前記他の搭載部品を前記一の搭載部品の上に搭載させる搭載制御部とを備えた部品搭載装置。
The other mounted component is mounted on the one mounted component so that the lower surface side electrode provided on the lower surface side of the other mounted component contacts the upper surface side electrode provided on the upper surface side of the one mounted component. It is a component-mounted device that repeatedly executes operations.
A first imaging unit that images the one mounted component from above,
A second imaging unit that images the other mounted components from below,
The position of the one mounted component is calculated as the post-mounting position of the one mounted component based on the result of imaging by the first imaging unit, and the other is based on the result of imaging by the second imaging unit. A position calculation unit that calculates the position of the mounted component of the above as the position before mounting of the other mounted component,
The position after mounting of the one mounted component calculated by the position calculation unit, the position before mounting of the other mounted component calculated by the position calculating unit, and the specific mounting located on the lower layer side of the one mounted component. An alignment amount setting unit that sets the alignment amount of the other mounted component with respect to the one mounted component based on the post-mounting position of the reference mounted component which is a component.
After aligning the other mounted component with respect to the one mounted component with the alignment amount set by the alignment amount setting unit, the other mounted component is mounted on the one mounted component. A component mounting device equipped with a mounting control unit.
前記特定の搭載部品は最下層の搭載部品である請求項1に記載の部品搭載装置。 The component mounting device according to claim 1, wherein the specific mounted component is a mounted component of the lowest layer. 前記位置合わせ量設定部は、前記他の搭載部品の搭載前位置と前記一の搭載部品の搭載後位置と間の第1の位置ずれ量および前記他の搭載部品の搭載前位置と前記基準搭載部品の搭載後位置との間の第2の位置ずれ量に基づいて前記位置合わせ量を設定する請求項1または2に記載の部品搭載装置。 The alignment amount setting unit includes a first displacement amount between the pre-mounting position of the other mounted component and the post-mounting position of the one mounted component, and the pre-mounting position of the other mounted component and the reference mounting. The component mounting device according to claim 1 or 2, wherein the alignment amount is set based on a second misalignment amount with respect to the position after mounting the component. 前記位置合わせ量は、前記第1の位置ずれ量による寄与分と前記第2の位置ずれ量による寄与分との割合を変更して設定できる請求項3に記載の部品搭載装置。 The component mounting device according to claim 3, wherein the alignment amount can be set by changing the ratio of the contribution due to the first misalignment amount and the contribution due to the second misalignment amount. 一の搭載部品の上面側に設けられた上面側電極に他の搭載部品の下面側に設けられた下面側電極が接触するように前記一の搭載部品の上に前記他の搭載部品を搭載する動作を繰り返し実行する部品搭載方法であって、
前記一の搭載部品を上方から撮像する第1の撮像工程と、
前記他の搭載部品を下方から撮像する第2の撮像工程と、
前記第1の撮像工程で撮像した結果に基づいて前記一の搭載部品の位置を前記一の搭載部品の搭載後位置として算出するとともに、前記第2の撮像工程で撮像した結果に基づいて前記他の搭載部品の位置を前記他の搭載部品の搭載前位置として算出する位置算出工程と、
前記位置算出工程で算出した前記一の搭載部品の搭載後位置、前記位置算出工程で算出した前記他の搭載部品の搭載前位置および前記一の搭載部品より下層側に位置する特定の搭載部品である基準搭載部品の搭載後位置に基づいて、前記一の搭載部品に対する前記他の搭載部品の位置合わせ量を設定する位置合わせ量設定工程と、
前記位置合わせ量設定工程で設定した前記位置合わせ量で前記他の搭載部品を前記一の搭載部品に対して位置合わせしたうえで、前記他の搭載部品を前記一の搭載部品の上に搭載する搭載工程とを含む部品搭載方法。
The other mounted component is mounted on the one mounted component so that the lower surface side electrode provided on the lower surface side of the other mounted component contacts the upper surface side electrode provided on the upper surface side of the one mounted component. It is a component mounting method that repeatedly executes operations.
The first imaging step of imaging the one mounted component from above, and
A second imaging step of imaging the other mounted components from below, and
The position of the one mounted component is calculated as the post-mounting position of the one mounted component based on the result of imaging in the first imaging step, and the other is based on the result of imaging in the second imaging step. The position calculation process of calculating the position of the mounted component of the above as the position before mounting of the other mounted component, and
With the post-mounting position of the one mounted component calculated in the position calculation process, the pre-mounting position of the other mounted component calculated in the position calculation process, and the specific mounted component located on the lower layer side of the one mounted component. An alignment amount setting process for setting the alignment amount of the other mounted component with respect to the one mounted component based on the post-mounting position of a certain reference mounted component.
After aligning the other mounted component with respect to the one mounted component with the alignment amount set in the alignment amount setting step, the other mounted component is mounted on the one mounted component. Parts mounting method including mounting process.
前記特定の搭載部品は最下層の搭載部品である請求項5に記載の部品搭載方法。 The component mounting method according to claim 5, wherein the specific mounted component is a mounted component of the lowest layer. 前記位置算出工程で、前記位置合わせ量を、前記他の搭載部品の搭載前位置と前記一の搭載部品の搭載後位置との間の第1の位置ずれ量および前記他の搭載部品の搭載前位置と
前記基準搭載部品の搭載後位置との間の第2の位置ずれ量に基づいて設定する請求項5または6に記載の部品搭載方法。
In the position calculation step, the alignment amount is determined by the first misalignment amount between the pre-mounting position of the other mounted component and the post-mounting position of the one mounted component and before mounting of the other mounted component. The component mounting method according to claim 5 or 6, which is set based on a second misalignment amount between the position and the post-mounting position of the reference mounting component.
前記位置合わせ量は、前記第1の位置ずれ量による寄与分と前記第2の位置ずれ量による寄与分との割合を変更して設定できる請求項7に記載の部品搭載方法。 The component mounting method according to claim 7, wherein the alignment amount can be set by changing the ratio of the contribution due to the first misalignment amount and the contribution due to the second misalignment amount.
JP2019045528A 2019-03-13 2019-03-13 Component loading device and component loading method Pending JP2020150102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045528A JP2020150102A (en) 2019-03-13 2019-03-13 Component loading device and component loading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045528A JP2020150102A (en) 2019-03-13 2019-03-13 Component loading device and component loading method

Publications (1)

Publication Number Publication Date
JP2020150102A true JP2020150102A (en) 2020-09-17

Family

ID=72429870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045528A Pending JP2020150102A (en) 2019-03-13 2019-03-13 Component loading device and component loading method

Country Status (1)

Country Link
JP (1) JP2020150102A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228153A (en) * 2003-01-20 2004-08-12 Fujitsu Ltd Method of aligning between pattern layers, alignment process apparatus, and method of manufacturing semiconductor device
JP2014187220A (en) * 2013-03-25 2014-10-02 Toshiba Corp Semiconductor device manufacturing method
JP2016062958A (en) * 2014-09-16 2016-04-25 株式会社東芝 Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228153A (en) * 2003-01-20 2004-08-12 Fujitsu Ltd Method of aligning between pattern layers, alignment process apparatus, and method of manufacturing semiconductor device
JP2014187220A (en) * 2013-03-25 2014-10-02 Toshiba Corp Semiconductor device manufacturing method
JP2016062958A (en) * 2014-09-16 2016-04-25 株式会社東芝 Semiconductor device manufacturing method and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US7290331B2 (en) Component mounting apparatus and component mounting method
US7281322B2 (en) Component mounting method
US6931717B2 (en) Apparatus for mounting an electronic part onto a circuit substrate
JP2013065627A (en) Die bonder and bonding method
JP2019102771A (en) Electronic component mounting device and electronic component mounting method
JP3301347B2 (en) Apparatus and method for mounting conductive ball
US7897481B2 (en) High throughput die-to-wafer bonding using pre-alignment
JP2020150102A (en) Component loading device and component loading method
WO2020153204A1 (en) Mounting device and mounting method
JP6008419B2 (en) Component stacking accuracy measurement jig set, method of using the same, component stacking accuracy measuring device of component mounting machine, and method of producing three-dimensional mounting board
JP2007266425A (en) Mounting device and mounting method
JPH11289199A (en) Electronic parts recognizing device
WO2019097675A1 (en) Component mounter, component inspection method, component inspection program, and recording medium
KR102336342B1 (en) Systems and methods for bonding semiconductor elements
JPH0837209A (en) Method of mounting electronic part with bump
JP4852513B2 (en) Component mounting system
JP2000340998A (en) Method of positioning and supplying electrical component and device thereof
JP2006073814A (en) Equipment and method for mounting semiconductor chip
JP6902974B2 (en) Electronic component mounting device and mounting method
JP2005026499A (en) Center-positioning carrier jig for substrate, method for positioning center and holding method after center positioning
CN112331582A (en) Chip mounting device and method for manufacturing semiconductor device
WO2024057887A1 (en) Mounting device
KR20160054856A (en) Method of adjusting a bonding position for a die bonder
JP2003031994A (en) Method and device for loading electronic component
JP2003168892A (en) Verification method for mounting accuracy, method and device for mounting, and fixture for verifying mounting accuracy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606