JP2020149885A - 走査型電子顕微鏡および分析装置 - Google Patents

走査型電子顕微鏡および分析装置 Download PDF

Info

Publication number
JP2020149885A
JP2020149885A JP2019046992A JP2019046992A JP2020149885A JP 2020149885 A JP2020149885 A JP 2020149885A JP 2019046992 A JP2019046992 A JP 2019046992A JP 2019046992 A JP2019046992 A JP 2019046992A JP 2020149885 A JP2020149885 A JP 2020149885A
Authority
JP
Japan
Prior art keywords
electron
sample
objective
electron beam
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019046992A
Other languages
English (en)
Inventor
坂前 浩
Hiroshi Sakamae
浩 坂前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2019046992A priority Critical patent/JP2020149885A/ja
Publication of JP2020149885A publication Critical patent/JP2020149885A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】試料から放出される二次電子を検出する二次電子検出器を備えた走査型電子顕微鏡および分析装置において、対物絞りから放出される二次電子が二次電子検出器に引き寄せられることを抑制する。【解決手段】走査型電子顕微鏡は、電子線を発生する電子源(1)と、電子線を集束させる集束レンズ(3a,3b)と、集束レンズ(3a,3b)により集束された電子線の一部を通過させる開口部(41)が形成され、電子線径を調整する対物絞り(4)と、対物絞り(4)の開口部(41)を通過した電子線を試料の表面に集束させる対物レンズ(6)と、試料から放出される二次電子を検出するように構成された二次電子検出器(8)と、対物絞り(4)に対して二次電子検出器(8)よりも近接して配置され、対物絞り(4)から放出される二次電子を捕捉するように構成された捕捉部材(30)とを備える。【選択図】図1

Description

この発明は、走査型電子顕微鏡および分析装置に関する。
走査型電子顕微鏡(SEM:Scanning Electron Microscope)を備えた分析装置として、電子プローブマイクロアナライザ(EPMA:Electron Probe Micro Analyzer)がある(例えば、特開2015−153630号公報(特許文献1)参照)。EPMAでは、一般的に、電子銃から出射した電子線を集束レンズで一旦集束させ、集束後に発散する電子線を、対物絞りを通して電子線径を絞って対物レンズに導入する。そして、対物レンズにより電子線を絞って試料表面に照射する。
走査型電子顕微鏡には、試料表面から放出される二次電子を検出するための二次電子検出器が設けられる。二次電子検出器には、一般的にシンチレータ(蛍光体)と光電子倍増管とを組み合わせたものが用いられる。シンチレータに高圧の正電圧を印加することで試料から発生した二次電子を二次電子検出器に引き寄せている。
特開2015−153630号公報
しかしながら、上述した走査型電子顕微鏡においては、集束レンズから導かれた電子線の一部が対物絞りの開口部を通過する一方で、残りの電子線が当該開口部の外縁部分に照射されることにより二次電子が放出する。この二次電子が二次電子検出器に引き寄せられると、二次電子検出器の出力信号のSN比を低下させることになり、結果的に試料表面の観察に支障を来すことが懸念される。
この発明はこのような課題を解決するためになされたものであって、その目的は、試料から放出される二次電子を検出する二次電子検出器を備えた走査型電子顕微鏡および分析装置において、対物絞りから放出される二次電子が二次電子検出器に引き寄せられることを抑制することである。
本発明の第1の態様に係る走査型電子顕微鏡は、電子線を発生する電子源と、電子線を集束させる集束レンズと、集束レンズにより集束された電子線の一部を通過させる開口部が形成され、電子線径を調整する対物絞りと、対物絞りの開口部を通過した電子線を試料の表面に集束させる対物レンズと、試料から放出される二次電子を検出するように構成された二次電子検出器と、対物絞りに対して二次電子検出器よりも近接して配置され、対物絞りから放出される二次電子を捕捉するように構成された捕捉部材とを備える。
本発明によれば、試料から放出される二次電子を検出する二次電子検出器を備えた走査型電子顕微鏡および分析装置において、対物絞りから放出される二次電子が二次電子検出器に引き寄せられることを抑制することができる。
実施の形態に係る走査型電子顕微鏡を備えた分析装置の構成を概略的に示す図である。 図1に示した捕捉部材の構成を模式的に示す図である。 図2に示した捕捉部材の具体的な構成を示す図である。 図3の構成例に適用される捕捉部材の第1構成例を示す外観図である。 図3の構成例に適用される捕捉部材の第2構成例を示す外観図である。 図2に示した捕捉部材の他の構成例を示す図である。 比較例に係る走査型電子顕微鏡を備えた分析装置の構成を概略的に示す図である。
以下に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下では図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
(比較例に係る走査電子顕微鏡の構成およびその課題)
最初に、本実施の形態の比較例に係る走査電子顕微鏡の構成およびその課題について説明する。
図7は、比較例に係る走査型電子顕微鏡を備えた分析装置の構成を概略的に示す図である。本願明細書では、走査型電子顕微鏡を備えた分析装置として、EPMAを代表的に説明する。
図6を参照して、比較例に係るEPMA200は、試料ステージ7上に設置された試料Sに電子線を照射する電子光学系110と、二次電子検出器8と、分光結晶9と、X線検出器10と、光学顕微鏡16と、制御装置20と、表示部22と、入力部24とを備える。電子光学系110、二次電子検出器8、分光結晶9およびX線検出器10は試料室14内に収められている。試料室14の内部は真空ポンプ12で排気されることにより真空に保たれている。
電子光学系110は、電子源1と、第1偏向部2aと、第1集束レンズ3aと、第2集束レンズ3bと、第2偏向部2bと、対物絞り4と、走査コイル5と、対物レンズ6とを有する。電子源1は、電子線Eを照射する電子銃を有する。第1偏向部2a、第1集束レンズ3a、第2集束レンズ3b、第2偏向部2b、対物絞り4、走査コイル5および対物レンズ6は、電子源1と試料Sとを結ぶ軸Cに沿って配置される。
第1偏向部2aおよび第2偏向部2bは、電子線Eを偏向して軸合わせを行なう。第1偏向部2aおよび第2偏向部2bは基本的に同じ構成である。第1偏向部2aは、軸Cの方向に沿って所定間隔離して配置された2段の偏向器を有する。2段の偏向器は、軸Cに直交し、かつ互いに直交する方向に配置された1組のアライメントコイルである。これら1組のアライメントコイルに供給する電流の大きさおよび両者の比率を調整することにより、通過する電子線Eを任意の方向に任意の角度で曲げることができる。したがって、第1偏向部2aおよび第2偏向部2bの各々は、軸C方向に所定距離離れた2箇所の位置で互いに異なる方向および互いに異なる角度で電子線Eを偏向させることができる。
なお、比較例では、アライメントコイルにより形成される磁場の作用により電子線Eを偏向させるようにしているが、電場の作用により電子線Eを偏向させる構成としてもよい。すなわち、アライメントコイルに代えて、軸Cを挟んで互いに直交する方向(X、Y方向)に配置した電極板を用い、該電極板に印加する電圧を調整することで電子線Eの偏向方向および角度を制御することができる。
第1集束レンズ3aおよび第2集束レンズ3bは電磁レンズであり、電子線Eの通過領域を制限するアパーチャを有する。通常、第2集束レンズ3bのアパーチャの開口サイズは第1集束レンズ3aのアパーチャの開口サイズよりも一回り大きい。第1集束レンズ3aおよび第2集束レンズ3bは軸C方向に所定距離離した状態で一体化されている。したがって、第1集束レンズ3aおよび第2集束レンズ3bの相対位置関係は固定されており、一方を他方に対して位置調整することはできない。
対物絞り4は、薄い金属板で構成され、電子線Eが通過する開口部41が形成されている。走査コイル5は、試料ステージ7上に載置される試料S上で電子線Eの照射位置を走査する。対物レンズ6は、電子線Eを試料S上に集束させる。
分光結晶9およびX線検出器10は、電子線Eが照射された試料Sから放出される特性X線を検出するための分光器を構成する。なお、図7では、1組の分光器のみが示されているが、実際には、EPMA200には、試料Sを取り囲むように複数組の分光器が設けられている。各分光器の構成は、分光結晶を除いて同じである。
二次電子検出器8は、試料Sに近接して配置され、電子線Eの照射により試料Sから放出される二次電子を検出する。試料Sから放出される二次電子はエネルギーが小さいため、自力で二次電子検出器8に到達することが困難である。そのため、試料Sに対して正電圧を二次電子検出器8に印加することで、二次電子検出器8に二次電子を引き寄せている。二次電子検出器8の構成については後述する。
光学顕微鏡16は、試料室14の壁面に取り付けられる。光学顕微鏡16は、試料Sの高さ調整に用いることができる。具体的には、光学顕微鏡16の焦点位置を試料Sの表面に合わせることで、試料Sにおける特性X線の発生点を分光器の測定条件の高さに一致させることができる。EPMA200には、光学顕微鏡16の視野中心で電子線Eの照射位置が観察されるように、光学顕微鏡16の視野を試料室14の外側から調節できる機構が備わっている。また、EPMA200には、光学顕微鏡16の像分解能が最も良くなるように、凹面鏡に対する凸面鏡の位置を微調整する機構が備わっている。さらに、EPMA200には、最適な電子線径を得るために、軸Cに沿って対物絞り4の位置を調整する機構も備わっている。これらの調整機構を実現するため、光学顕微鏡16は試料室14とは別体として設けられ、単独で駆動可能に構成されている。
制御装置20は、CPU(Central Processing Unit)と、メモリ(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファとを含んで構成される。CPUは、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置20の処理手順が記されたプログラムである。制御装置20は、このプログラムに従って、EPMA101における各種処理を実行する。処理については、ソフトウェアによるものに限られず、専用のハードウェア(電子回路)で実行することも可能である。
入力部24は、EPMAに対して分析者が各種指示を与えるための入力機器であり、例えばマウスまたはキーボード等を含む。表示部22は、分析者に対して各種情報を提供するための出力機器であり、例えば、分析者が操作可能なタッチパネルを備えるディスプレイによって構成される。なお、このタッチパネルを入力部24としてもよい。
制御装置20は、入力部24からの操作に従って、集束レンズ3a,3bおよび対物レンズ6に供給する電流を制御するとともに、偏向部2a,2bおよび走査コイル5に供給する電流を制御する。
また、制御装置20は、各X線検出器10による分析対象のX線の波長走査に応じたX線スペクトルを作成し、これに基づく定性分析および定量分析等を行なう。制御装置20は、試料S上の分析対象領域における電子線Eの位置走査に応じて、分析対象領域における分析対象元素の分布画像(X線像)を生成する。制御装置20は、さらに、二次電子検出器8から出力される電気信号に基づいて、試料S上の分析対象領域の二次電子像を生成する。
次に、比較例に係るEPMA200の動作の概要について説明する。
電子源1から出射した電子線は軸Cに沿って拡がりつつ進み、集束レンズ3a,3bにより一旦集束される。実際には、図7に示すように、第1集束レンズ3aと第2集束レンズ3bとの間に第1集束レンズ3aによる焦点が存在する。この焦点に一旦集束された後に電子線Eが拡がると、第2集束レンズ3bにより電子線Eは対物絞り4の手前の焦点に集束される。対物絞り4の開口部41を通過する際、電子線Eの外縁部が遮蔽され、開口部41を通過した電子線Eが対物レンズ6により試料S上に集束される。
制御装置20が、走査コイル5に供給する駆動電流を所定のパターンに従って変化させる(走査する)と、走査コイル5により形成される磁場の作用により電子線Eが偏向され、試料S上で電子線Eの当たる位置が二次元座標面内で走査される。これにより、試料S上に順次電子線Eを照射して、その範囲における試料Sの表面を示す情報を取得することができる。
しかしながら、比較例に係るEPMA200においては、第2集束レンズ3bを通った電子線Eが対物絞り4に当たると、一部の電子線Eのみが開口部41を通過し、対物レンズ6により試料S上に集束される。このとき、対物絞り4においては、開口部41の外縁部に位置する金属板に電子線Eが照射されることにより、当該金属板から二次電子が発生する。この対物絞り4から放出された二次電子は、図中に矢印Aで示すように、高電圧が印加された二次電子検出器8に引き寄せられることがある。引き寄せられた二次電子は二次電子検出器8から出力される電気信号におけるノイズ成分となるため、電気信号のSN比を低下させる。これにより、二次電子像の画質が低下してしまい、試料Sの表面観察に支障を来すことが懸念される。特に、高倍率の二次電子像を観察しようとするときには、電子線E内を流れる電流を小さくして電子線Eをより細く絞る必要があるため、電気信号のノイズ成分が相対的に大きくなり、二次電子像の画質の低下が顕著となることが懸念される。
なお、対物絞り4からは二次電子以外に反射電子も放出されるが、この反射電子は二次電子に比べてエネルギーが高く、対物絞り4から第2偏向部2b側に向かって直線状に飛び出すため、矢印Aに示すルートで二次電子検出器8に引き寄せられる可能性が低い。ただし、対物絞り4から飛び出した反射電子が他のレンズまたはコイル等に衝突することで二次電子が発生することがある。この二次電子も二次電子検出器8に引き寄せられることでノイズ成分となり得る。
そこで、本実施の形態では、対物絞り4で発生する二次電子が二次電子検出器8に引き寄せられることを抑制することができる走査型電子顕微鏡の構成について説明する。
(実施の形態に係る走査電子顕微鏡の構成)
図1は、実施の形態に係る走査型電子顕微鏡を備えた分析装置の構成を概略的に示す図である。実施の形態に係る分析装置の代表例としてEPMAを示す。
図1を参照して、実施の形態に係るEPMA100は、図7に示す比較例に係るEPMA200と比較して、捕捉部材30を備える点が異なる。なお、実施の形態に係るEMPA100の構成は、捕捉部材30を除いて、図7に示すEPMA200と同じであるため説明は省略する。
図1を参照して、捕捉部材30は、対物絞り4に対して、二次電子検出器8よりも近接して配置される。捕捉部材30は、高電圧が印加された状態において、対物絞り4から放出される二次電子を捕捉するように構成される。具体的には、捕捉部材30は、対物絞り4の開口部41を囲むように配置された導電部材を有する。図1の例では、導電部材は円環形状を有しており、対物絞り4と第2偏向部2bとの間の空間に配置されている。
図2は、図1に示した捕捉部材30の構成を模式的に示す図である。
図2を参照して、二次電子検出器8は、シンチレータ(蛍光体)82と、ライトガイド84と、光電子倍増管86とを有する。シンチレータ82は、二次電子検出器8の先端に設けられ、電源88から10kV程度の高電圧が印加される。
試料Sから放出された二次電子は、この高電圧に引き寄せられてシンチレータ82に衝突して発光する。その光はライトガイド84を通して光電子倍増管86に導かれると、電子に変換され、かつ増幅されて電気信号になる。
なお、図示は省略するが、シンチレータ82の前方に収集電極を配置してもよい。収集電極には−50〜+300V程度の電圧を印加することができる。この収集電極に印加する電圧を変えることで、二次電子を収集する、または二次電子をカットすることができる。
捕捉部材30は、導電部材32および配線34を有する。導電部材32は、銅またはステンレス等の金属材料で形成することができる。導電部材32に印加する電圧には、二次電子検出器8のシンチレータ82(または収集電極)に印加される電圧を利用することができる。具体的には、導電部材32は、配線34を介してシンチレータ82の電源88と電気的に接続される。これにより、シンチレータ82に印加される10kV程度の高電圧が捕捉部材30の導電部材32にも印加されることになる。
このようにすると、捕捉部材に高電圧を印加するための専用の電源の設置が不要となるため、捕捉部材30の設置による部品点数の増加を抑えることができる。また、試料Sから放出される二次電子を二次電子検出器8で検出する場面では、捕捉部材30(導電部材32)も高電圧が印加されている状態となるため、対物絞り4から放出される二次電子を捕捉することができる。その結果、対物絞り4から放出されて二次電子検出器8に引き寄せられる二次電子を抑制できるため、二次電子検出器8の出力信号に含まれるノイズ成分を低減することができる。
なお、二次電子検出器8においては、シンチレータ82への高電圧の印加を停止すると(すなわち、電源88を遮断すると)、エネルギーの低い二次電子が検出困難となる一方で、エネルギーの高い反射電子を検出することが可能となる。二次電子検出器8で反射電子を検出する場合、捕捉部材30で二次電子を捕捉する必要がない。本実施の形態では、二次電子検出器8と捕捉部材30とで電源が共通化されているため、二次電子検出器8に対する高電圧の印加および停止と、捕捉部材30に対する高電圧の印加および停止とを連動させることができる。
図3は、図2に示した捕捉部材30の具体的な構成を示す図である。図3は、電子光学系110の軸C方向の部分断面図である。
図3を参照して、本実施の形態に係る走査型電子顕微鏡は、第1遮蔽部材40および第2遮蔽部材42をさらに備える。本実施の形態に係る走査型電子顕微鏡は、試料室14に光学顕微鏡16を外部から組み付ける構造を採用しているため、第2偏向部2bと対物絞り4との間に隙間が設けられている。そのため、対物絞り4から放出された二次電子および反射電子がこの隙間から試料室14内に漏れ出てしまうことが懸念される。
そこで、二次電子および反射電子が漏れ出ることがないように、第2偏向部2bと対物絞り4との隙間を取り囲むように第1遮蔽部材40および第2遮蔽部材42を配置している。図3の例では、第1遮蔽部材40および第2遮蔽部材42はともに円筒形状を有する。第1遮蔽部材40および第2遮蔽部材42は、例えばステンレスまたは真鍮などの金属材料で形成される。
第2遮蔽部材42は第2偏向部2b側から起立するように配置され、第1遮蔽部材40は対物絞り4側から起立するように配置される。図3の例では、第1遮蔽部材40は第2遮蔽部材42の内側に配置されるが、第2遮蔽部材42が第1遮蔽部材40の内側に配置されていてもよい。第1遮蔽部材40および第2遮蔽部材42はともに接地されている。
上述したように、第1遮蔽部材40および第2遮蔽部材42は、対物絞り4から放出される二次電子および反射電子が電子光学系110から漏れ出ることを抑制するために設けられているが、第1遮蔽部材40および第2遮蔽部材42で、第2偏向部2bおよび対物絞り4の間の隙間を完全に封止することが難しく、わずかな隙間ができることがある。そのため、対物絞り4から放出された二次電子がこの隙間を通って漏れ出る可能性がある。この漏れ出た二次電子が二次電子検出器8に引き寄せられると、ノイズ成分となってしまう。
捕捉部材30は、第1遮蔽部材40および第2遮蔽部材42に近接して配置される。図3の例では、捕捉部材30の導電部材32は、第2遮蔽部材42の内周面と第1遮蔽部材40の外周面との間に形成される間隙に配置されている。図4は、図3の構成例に適用される捕捉部材30の第1構成例を示す外観図である。図4に示すように、第1構成例では、捕捉部材30は、円環形状を有する導電部材32と、導電部材32および二次電子検出器8の電源88(図2参照)の間に接続される配線34とを有する。
導電部材32は、絶縁材料からなる接続部材44を介して第2遮蔽部材42の内周面に固定される。配線34は、第2遮蔽部材42に形成された貫通孔43を通して第2遮蔽部材42の外側に引き出されている。導電部材32は、第1遮蔽部材40および第2遮蔽部材42の間の隙間から漏れ出る二次電子を効率良く捕捉することができる。なお、導電部材32は、第1遮蔽部材40の外周面に固定されてもよい。
図5は、図3の構成例に適用される捕捉部材30の第2構成例を示す外観図である。図5に示すように、第2構成例では、捕捉部材30は、複数(例えば4個)の導電部材32Aと、複数の配線34とを有する。複数の導電部材32Aは、接続部材44を介して第2遮蔽部材42の内周面に固定される。複数の配線34は、複数の導電部材32Aにそれぞれ接続される。第2構成例においても複数の導電部材32Aは対物絞り4の開口部41を囲むように配置されるため、開口部41の外縁部分から放出される二次電子を捕捉することができる。
なお、図3の例では、導電部材32を第1遮蔽部材40および第2遮蔽部材42の間の間隙に配置する構成としたが、導電部材32が配置される位置はこれに限定されない。例えば、第1遮蔽部材40および第2遮蔽部材42の間の間隙から第2遮蔽部材42の外側に繋がる部分に導電部材32を配置してもよい。図6に、図2に示した捕捉部材30の他の構成例を示す。図6は、電子光学系110の軸C方向の部分断面図である。
図6の例では、導電部材32は、接続部材44を介して第2遮蔽部材42の端面に接続されている。このようにすると、第1遮蔽部材40および第2遮蔽部材42の間の間隙から漏れ出る二次電子を導電部材32によって捕捉することができる。
[態様]
上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)一態様に係る走査型電子顕微鏡は、電子線を発生する電子源と、電子線を集束させる集束レンズと、集束レンズにより集束された電子線の一部を通過させる開口部が形成され、電子線径を調整する対物絞りと、対物絞りの開口部を通過した電子線を試料の表面に集束させる対物レンズと、試料から放出される二次電子を検出するように構成された二次電子検出器と、対物絞りに対して二次電子検出器よりも近接して配置され、対物絞りから放出される二次電子を捕捉するように構成された捕捉部材とを備える。
第1項に記載の走査型電子顕微鏡によれば、対物絞りから放出される二次電子は、捕捉部材により捕捉されるため、二次電子検出器に引き寄せられることを抑制することができる。これにより、二次電子検出器の出力信号におけるノイズ成分が低減されるため、出力信号から生成される二次電子像の画質の低下を抑制することができる。
(第2項)第1項に記載の走査型電子顕微鏡において、二次電子検出器は、試料に対して正電圧が印加された状態で二次電子を収集して電気信号として出力するように構成される。捕捉部材には、二次電子検出器に印加される正電圧が印加される。
第2項に記載の走査型電子顕微鏡によれば、二次電子検出器に印加される正電圧を利用して捕捉部材に正電圧を印加することで、捕捉部材専用の電源の設置が不要となる。よって、捕捉部材の設置による部品点数の増加を抑えることができる。また、二次電子検出器と捕捉部材とで電源を共通化することで、二次電子検出器に対する正電圧の印加および停止と、捕捉部材に対する正電圧の印加および停止とを連動させることができる。これによると、試料から放出される二次電子を二次電子検出器で検出する場面において、対物絞りから放出される二次電子を捕捉することができるため、二次電子検出器の出力信号に含まれるノイズ成分を低減することができる。
(第3項)第2項に記載の走査型電子顕微鏡において、捕捉部材は、対物絞りの開口部を囲むように配置された導電部材と、二次電子検出器と導電部材とを電気的に接続する配線とを含む。
第3項に記載の走査型電子顕微鏡によれば、二次電子検出器に印加される正電圧を導電部材に印加することができる。
(第4項)第1項から第3項に記載の走査型電子顕微鏡は、集束レンズと対物絞りとの間の空間を取り囲むように配置された管状の遮蔽部材をさらに備える。捕捉部材は、遮蔽部材に近接して配置される。
第4項に記載の走査型電子顕微鏡によれば、対物絞りから放出され遮蔽部材の間隙を通して漏れ出る二次電子を捕捉することができる。
(第5項)一態様に係る分析装置は、第1項から第4項に記載の走査型電子顕微鏡を備える。
第5項に記載の分析装置によれば、二次電子検出器の出力信号から生成される二次電子像の画質の低下を抑制することができるため、試料の表面観察の精度を確保することができる。
なお、上述した実施の形態では、本発明に係る分析装置の代表例としてEPMAの構成について説明したが、本発明は基本的に、走査型電子顕微鏡を備える分析装置全般に広く適用することができる。
また、上述した実施の形態および変更例について、明細書内で言及されていない組み合わせを含めて、不都合または矛盾が生じない範囲内で、実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電子源、2a 第1偏向部、2b 第2偏向部、3a 第1集束レンズ、3b 第2集束レンズ、4 対物絞り、5 走査コイル、6 対物レンズ、7 試料ステージ、20 制御装置、22 表示部、24 入力部、30 捕捉部材、32,32A 導電部材、34 配線、41 開口部、40 第1遮蔽部材、42 第2遮蔽部材、43 貫通孔、44 接続部材、100,200 EPMA、110 電子光学系、S 試料。

Claims (5)

  1. 電子線を発生する電子源と、
    前記電子線を集束させる集束レンズと、
    前記集束レンズにより集束された前記電子線の一部を通過させる開口部が形成され、電子線径を調整する対物絞りと、
    前記対物絞りの前記開口部を通過した前記電子線を試料の表面に集束させる対物レンズと、
    前記試料から放出される二次電子を検出するように構成された二次電子検出器と、
    前記対物絞りに対して前記二次電子検出器よりも近接して配置され、前記対物絞りから放出される二次電子を捕捉するように構成された捕捉部材とを備える、走査型電子顕微鏡。
  2. 前記二次電子検出器は、前記試料に対して正電圧が印加された状態で二次電子を収集して電気信号として出力するように構成され、
    前記捕捉部材には、前記二次電子検出器に印加される前記正電圧が印加される、請求項1に記載の走査型電子顕微鏡。
  3. 前記捕捉部材は、
    前記対物絞りの前記開口部を囲むように配置された導電部材と、
    前記二次電子検出器と前記導電部材とを電気的に接続する配線とを含む、請求項2に記載の走査型電子顕微鏡。
  4. 前記集束レンズと前記対物絞りとの間の空間を取り囲むように配置された管状の遮蔽部材をさらに備え、
    前記捕捉部材は、前記遮蔽部材に近接して配置される、請求項1から3のいずれか1項に記載の走査型電子顕微鏡。
  5. 請求項1から請求項4のいずれか1項に記載の走査型電子顕微鏡を備える、分析装置。
JP2019046992A 2019-03-14 2019-03-14 走査型電子顕微鏡および分析装置 Pending JP2020149885A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019046992A JP2020149885A (ja) 2019-03-14 2019-03-14 走査型電子顕微鏡および分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046992A JP2020149885A (ja) 2019-03-14 2019-03-14 走査型電子顕微鏡および分析装置

Publications (1)

Publication Number Publication Date
JP2020149885A true JP2020149885A (ja) 2020-09-17

Family

ID=72432121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046992A Pending JP2020149885A (ja) 2019-03-14 2019-03-14 走査型電子顕微鏡および分析装置

Country Status (1)

Country Link
JP (1) JP2020149885A (ja)

Similar Documents

Publication Publication Date Title
US11087955B2 (en) System combination of a particle beam system and a light-optical system with collinear beam guidance, and use of the system combination
US7294834B2 (en) Scanning electron microscope
JP4302316B2 (ja) 走査形電子顕微鏡
JP6177915B2 (ja) 走査電子顕微鏡
JP6437020B2 (ja) 荷電粒子顕微鏡を使用する方法及び荷電粒子顕微鏡
JP5689259B2 (ja) 絞りユニットを有する粒子ビーム装置および粒子ビーム装置のビーム電流を調整する方法
US20090309024A1 (en) Electron-beam device and detector system
US8183526B1 (en) Mirror monochromator for charged particle beam apparatus
JP6620170B2 (ja) 荷電粒子線装置およびその光軸調整方法
JP6586525B2 (ja) 荷電粒子線装置
CZ309547B6 (cs) Způsob provozu přístroje pro vyzařování částic a přístroj pro vyzařování částic k provádění tohoto způsobu
JP2019194585A (ja) 電子顕微鏡におけるeels検出技術
US4358680A (en) Charged particle spectrometers
JP4354197B2 (ja) 走査電子顕微鏡
JP2021162590A (ja) 電子エネルギー損失分光検出器を備えた透過型荷電粒子顕微鏡
US10049855B2 (en) Detecting charged particles
US10460904B2 (en) Imaging device for imaging an object and for imaging a structural unit in a particle beam apparatus
JP6950088B2 (ja) 荷電粒子線装置及び荷電粒子線装置の検出器位置調整方法
US9269533B2 (en) Analysis apparatus and analysis method
JP2020149885A (ja) 走査型電子顕微鏡および分析装置
JP2000299078A (ja) 走査型電子顕微鏡
JPWO2018220809A1 (ja) 荷電粒子線装置
JP6959969B2 (ja) 荷電粒子線装置
JP3814968B2 (ja) 検査装置
GB2064213A (en) Electron Spectrometer