JP2020148443A - 廃棄物処理設備 - Google Patents

廃棄物処理設備 Download PDF

Info

Publication number
JP2020148443A
JP2020148443A JP2019048938A JP2019048938A JP2020148443A JP 2020148443 A JP2020148443 A JP 2020148443A JP 2019048938 A JP2019048938 A JP 2019048938A JP 2019048938 A JP2019048938 A JP 2019048938A JP 2020148443 A JP2020148443 A JP 2020148443A
Authority
JP
Japan
Prior art keywords
outside air
compressor
air
waste treatment
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019048938A
Other languages
English (en)
Other versions
JP7157687B2 (ja
Inventor
圭 渡邉
Kei Watanabe
圭 渡邉
文宏 眞野
Fumihiro Mano
文宏 眞野
修史 山口
Shuji Yamaguchi
修史 山口
健吾 迫田
Kengo Sakota
健吾 迫田
俊康 尾家
Toshiyasu Oie
俊康 尾家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2019048938A priority Critical patent/JP7157687B2/ja
Publication of JP2020148443A publication Critical patent/JP2020148443A/ja
Application granted granted Critical
Publication of JP7157687B2 publication Critical patent/JP7157687B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

【課題】過給機の自立運転を容易に維持することが可能な廃棄物処理設備を提供する。【解決手段】廃棄物処理設備は、廃棄物を焼却する焼却炉と、廃棄物の焼却に用いられる燃焼用空気を前記焼却炉に導く経路であって、前記焼却炉に接続された一方の端部と、前記燃焼用空気として外気を経路内に取り込む他方の端部と、を有する空気導入経路と、前記空気導入経路を通じて前記焼却炉に導かれる前記外気を、前記焼却炉から排出される排ガスにより加熱する予熱器と、前記空気導入経路に配置された過給機であって、前記外気を吸入すると共に圧縮した前記外気を前記予熱器側に吐出するコンプレッサと、前記予熱器で加熱された前記外気によって回転することにより前記コンプレッサを駆動させるタービンと、を有する前記過給機と、前記コンプレッサに吸入される前の前記外気を冷却することにより前記外気の密度を冷却前よりも上げる冷却機構と、を有する。【選択図】図1

Description

本発明は、廃棄物処理設備に関する。
従来、特許文献1に記載されているように、下水汚泥等の廃棄物を燃焼処理する廃棄物処理設備が知られている。特許文献1には、廃棄物を燃焼する燃焼炉と、当該燃焼炉の後段に設けられた予熱器と、当該予熱器に連結された過給機と、を有する廃棄物処理設備が記載されている。この設備では、過給機のコンプレッサから吐出された圧縮空気が、予熱器において燃焼炉からの排ガスにより加熱され、その後、過給機のタービンを通過して燃焼炉内に供給される。
特開2007−170703号公報
本発明者等は、特許文献1に記載された廃棄物処理設備において、コンプレッサが一定回転数で作動しているにも関わらず、過給機の自立運転が困難になる場合があることに着目し、その原因について詳細な検討を行った。その結果、本発明者等は、夏場等においてコンプレッサに吸入される空気の温度が上昇すると、それに伴って空気の密度が下がり、これが自立運転の維持を阻害することを見出した。すなわち、空気の密度が下がると、一定回転数で作動するコンプレッサが単位時間当たりに圧縮する空気の質量が低下する。その結果、タービンに流入する単位時間当たりの空気の質量も低下し、タービンの回転数が下がってコンプレッサの駆動力も低下するため、過給機の自立運転が困難な状況に陥る場合がある。
本発明は、上記課題に鑑みてなされたものであり、その目的は、過給機の自立運転を容易に維持することが可能な廃棄物処理設備を提供することである。
本発明の一局面に係る廃棄物処理設備は、廃棄物を焼却する焼却炉と、廃棄物の焼却に用いられる燃焼用空気を前記焼却炉に導く経路であって、前記焼却炉に接続された一方の端部と、前記燃焼用空気として外気を経路内に取り込む他方の端部と、を有する空気導入経路と、前記空気導入経路を通じて前記焼却炉に導かれる前記外気を、前記焼却炉から排出される排ガスにより加熱する予熱器と、前記空気導入経路に配置された過給機であって、前記外気を吸入すると共に圧縮した前記外気を前記予熱器側に吐出するコンプレッサと、前記予熱器で加熱された前記外気によって回転することにより前記コンプレッサを駆動させるタービンと、を有する前記過給機と、前記コンプレッサに吸入される前の前記外気を冷却することにより前記外気の密度を冷却前よりも上げる冷却機構と、を有する。
この廃棄物処理設備によれば、夏場等の外気温が高い状況下においても、コンプレッサに吸入される前に外気を冷却することにより、コンプレッサに吸入される外気の温度を適切な温度に下げることができる。これにより、コンプレッサに吸入される外気の密度が冷却前よりも上がるため、一定回転数で作動するコンプレッサが単位時間当たりに圧縮する外気の質量低下を抑制することができる。したがって、タービンに流入する外気の質量流量の低下が抑制され、コンプレッサの駆動力を維持できるため、過給機の自立運転を容易に維持することが可能になる。
上記廃棄物処理設備において、前記冷却機構は、前記コンプレッサに吸入される前の前記外気に水を噴霧する水噴霧部を有していてもよい。
この構成によれば、冷却機構として水噴霧式のものを採用することにより、水滴の蒸発潜熱により外気温を効果的に下げて密度を上げると共に、外気の湿度を上げることができる。これにより、外気の熱容量が増加するため、他の冷却方式を採用した場合に比べて、予熱器において外気が排ガスから回収する熱エネルギーの量を増加させることができる。その結果、タービンに流入する外気のエネルギー量が増加し、コンプレッサを回転させる駆動力を高めることができるため、過給機の自立運転の維持がより容易になる。
上記廃棄物処理設備は、前記コンプレッサに吸入される前の前記外気の温度を測定する外気温測定部と、前記外気温測定部により測定された温度が予め定められた設定値よりも大きい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有していてもよい。
この構成によれば、冷却機構による外気の冷却能力を必要限度に抑えて省エネ化を図りつつ、過給機の自立運転を維持することができる。
上記廃棄物処理設備は、前記予熱器から流出した前記外気の温度を測定する出口温度測定部と、前記出口温度測定部により測定された温度が予め定められた設定値よりも小さい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有していてもよい。
予熱器から流出した後の外気温が低いことは、外気が排ガスから回収できる熱エネルギーが少ないことを意味し、この場合、タービンの回転が不十分になるため過給機の自立運転が困難になる。これは、外気が排ガスから回収できる熱エネルギー量が、焼却炉で焼却される廃棄物の性状等によって変動するためである。上記構成によれば、予熱器の出口温度に基づいて過給機のコンプレッサの状態を把握し、自立運転を維持できるように冷却機構の冷却能力を適切に制御することができる。
上記廃棄物処理設備は、前記空気導入経路における前記コンプレッサの下流側で且つ前記予熱器の上流側の位置から前記空気導入経路の外に前記外気を排出するためのコンプレッサ出口側排気路と、前記コンプレッサ出口側排気路に配置され、前記コンプレッサ出口側排気路を通じた前記外気の排気率を調整するコンプレッサ出口側排気弁と、前記空気導入経路における前記外気の流量が所定の流量に維持されるように前記コンプレッサ出口側排気弁を制御すると共に、前記コンプレッサ出口側排気路による前記外気の排気率が予め定められた設定値よりも小さい時に、又は、前記コンプレッサの出口側における前記外気の非排気率が予め定められた設定値よりも大きい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有していてもよい。
コンプレッサ出口側排気弁により空気導入経路における外気の流量を維持する制御を行う場合において、コンプレッサ出口側における外気の排気率が低い(つまり外気の非排気率が高い)ことは、コンプレッサから吐出される外気の流量が少なく、過給機の自立運転の維持が困難であることを意味する。上記構成によれば、コンプレッサ出口側の排気率又は非排気率に基づいてコンプレッサの状態を把握し、自立運転を維持できるように冷却機構の冷却能力を適切に制御することができる。
上記廃棄物処理設備は、前記空気導入経路における前記タービンの下流側の位置から前記空気導入経路の外に前記外気を排出するためのタービン出口側排気路と、前記タービン出口側排気路に配置され、前記タービン出口側排気路を通じた前記外気の排気率を調整するタービン出口側排気弁と、前記空気導入経路における前記外気の流量が所定の流量に維持されるように前記タービン出口側排気弁を制御すると共に、前記タービン出口側排気路による前記外気の排気率が予め定められた設定値よりも小さい時に、又は、前記タービンの出口側における前記外気の非排気率が予め定められた設定値よりも大きい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有していてもよい。
タービン出口側排気弁により空気導入経路における外気の流量を維持する制御を行う場合において、タービン出口側における外気の排気率が低い(つまり外気の非排気率が高い)ことは、タービンから流出する外気の流量が少なく、過給機の自立運転の維持が困難であることを意味する。上記構成によれば、タービン出口側の排気率又は非排気率に基づいてコンプレッサの状態を把握し、自立運転を維持できるように冷却機構の冷却能力を適切に制御することができる。
上記廃棄物処理設備は、前記コンプレッサに吸入される前記外気の流量と、前記コンプレッサに吸入される前記外気の圧力に対する前記コンプレッサから吐出された前記外気の圧力の比である圧縮比と、の関係を示すマップであって、前記コンプレッサの動作が安定する安定領域と前記コンプレッサの動作が不安定になる不安定領域との境界ラインと、前記圧縮比が前記境界ラインの値から所定値低い値に設定された予防ラインと、を示す前記マップの情報を格納し、前記マップ上における前記コンプレッサの現在値が前記マップの前記予防ラインを超えている時に、冷却能力を上げるように前記冷却機構を制御する制御部をさらに有していてもよい。
この構成によれば、コンプレッサの現在値が境界ラインを超えて不安定領域に至る前に冷却能力を上げることにより、コンプレッサの駆動力を上げて外気の流量を増加させることができるため、過給機の運転を安定させることができる。
以上の説明から明らかなように、本発明によれば、過給機の自立運転を容易に維持することが可能な廃棄物処理設備を提供することができる。
本発明の実施形態1に係る廃棄物処理設備の構成を模式的に示す図である。 上記廃棄物処理設備の機能的構成を示すブロック図である。 上記廃棄物処理設備における冷却機構の制御を説明するためのフローチャートである。 本発明の実施形態2に係る廃棄物処理設備における冷却機構の制御を説明するためのフローチャートである。 本発明の実施形態3に係る廃棄物処理設備における冷却機構の制御を説明するためのフローチャートである。 本発明の実施形態4に係る廃棄物処理設備における冷却機構の制御を説明するためのフローチャートである。 本発明の実施形態5に係る廃棄物処理設備における過給機のコンプレッサマップを示すグラフである。 本発明の実施形態5に係る廃棄物処理設備における冷却機構の制御を説明するためのフローチャートである。
以下、図面に基づいて、本発明の実施形態に係る廃棄物処理設備を詳細に説明する。
(実施形態1)
まず、本発明の実施形態1に係る廃棄物処理設備1の構成について、図1及び図2を参照して説明する。本実施形態に係る廃棄物処理設備1は、下水汚泥等の廃棄物を焼却処理する設備である。図1に示すように、廃棄物処理設備1は、焼却炉10と、空気導入経路20と、予熱器30と、コンプレッサ41及びタービン42を含む過給機40と、冷却機構50と、を主に有している。
焼却炉10は、下水汚泥等の廃棄物を焼却するものであり、例えば流動床式焼却炉である。焼却炉10において廃棄物の焼却時に発生した高温の排ガスG1は、排ガス経路11を通じて予熱器30に導入される。予熱器30から流出した排ガスG1は、灰分や硫黄酸化物(SOx)等が除去された後、煙突(図示しない)から大気中に放出される。
空気導入経路20は、廃棄物の焼却に用いられる燃焼用空気を焼却炉10に導く経路(配管)である。この燃焼用空気は、外気A1(屋外空間における常温の大気)である。図1に示すように、空気導入経路20は、焼却炉10の下部に接続された一方の端部20Aと、燃焼用空気として外気A1を経路内に取り込む他方の端部20Bと、を有している。当該他方の端部20B(外気A1の取込口)は、屋外空間に開放されている。
より具体的には、空気導入経路20は、第1〜第4経路21〜24を含み、外気A1は、第1〜第4経路21〜24を順に通過して焼却炉10内に導入される。第1経路21は、上流端に外気A1の取込口が設けられていると共に、下流端がコンプレッサ41の吸入口に接続されている。第2経路22は、上流端がコンプレッサ41の吐出口に接続されていると共に、下流端が予熱器30の入口に接続されている。第3経路23は、上流端が予熱器30の出口に接続されていると共に、下流端がタービン42の入口に接続されている。第4経路24は、上流端がタービン42の出口に接続されていると共に、下流端が焼却炉10の下部に設けられた空気入口に接続されている。
予熱器30は、空気導入経路20を通じて焼却炉10に導かれる外気A1を、焼却炉10から排出される排ガスG1により加熱するものである。具体的に、予熱器30は、熱交換器であり、排ガス経路11から流入する排ガスG1と空気導入経路20(第2経路22)から流入する外気A1との間で間接的に熱交換することにより、外気A1を加熱する。
過給機40は、空気導入経路20に配置されており、燃焼用空気である外気A1を焼却炉10に向かって送り出す。図1に示すように、過給機40は、空気導入経路20において予熱器30の上流側に配置されたコンプレッサ41と、空気導入経路20において予熱器30の下流側に配置されたタービン42と、を有している。
コンプレッサ41は、空気導入経路20(第1経路21)から外気A1を吸入すると共に当該外気A1を所定の圧力まで圧縮し、圧縮した外気A1を予熱器30側(第2経路22内)に吐出する。コンプレッサ41は、例えば遠心圧縮機であり、軸周りに回転して外気A1を昇圧する羽根車(図示しない)と、当該羽根車を収容するケーシング(図示しない)と、を含む。
タービン42は、予熱器30で加熱された外気A1によって回転することによりコンプレッサ41を駆動させる。具体的に、タービン42は、外気A1の流れを受けて軸周りに回転可能な翼車(図示しない)を有し、当該翼車の回転が回転軸43を介してコンプレッサ41の羽根車に伝達されることによりコンプレッサ41が駆動する。
冷却機構50は、コンプレッサ41に吸入される前の外気A1を冷却することにより当該外気A1の密度を冷却前よりも上げるものである。具体的に、本実施形態における冷却機構50は、コンプレッサ41に吸入される前の外気A1に水W1を噴霧する水噴霧部51を有している。水噴霧部51は、微粒化された水滴状の水W1を外気A1に噴霧するものであり、ノズル等により構成されている。水W1の温度は、外気A1の温度よりも低く(例えば、外気A1の温度よりも5〜10℃低く)、例えば外気A1の温度が30℃であれば20℃程度である。また水噴霧部51は、外気A1の温度が28℃以上である時に水W1を噴霧する。
水噴霧部51により噴霧された水W1は、外気A1がコンプレッサ41に吸入される前に第1経路21内又は屋外空間において蒸発し、その蒸発潜熱により外気A1が冷却される。つまり、水噴霧部51は、外気A1がコンプレッサ41に吸入される前に水W1が全て蒸発する量だけ当該水W1を噴霧する。これにより、コンプレッサ41内に水滴が付着して錆等が生じるのを抑制することができる。
しかし、外気A1がコンプレッサ41に吸入される前に、噴霧された水W1が全て蒸発する場合に限定されず、コンプレッサ41内への水の付着が継続しない程度に、水W1の噴霧量を増加することも可能である。具体的には、コンプレッサ41内に水滴が多少付着するが、付着した水滴が外気A1の流れによって直ちに吹き飛ばされ、コンプレッサ41内に水滴が付着した状態が継続しないように、水W1の噴霧量が調整されてもよい。また、コンプレッサ41内の吸入口側では液状態の水W1が残っているが、コンプレッサ41内の吐出口側において水W1が気体状態となるように、水W1の噴霧量が調整されてもよい。なお、水W1の供給源は特に限定されないが、廃棄物処理設備1内の他の箇所で用いられた後の水(例えば、排ガスG1のSOx除去処理に用いられた後の水等)を利用することができる。
ここで、冷却機構50が設けられず、外気A1が冷却されずにコンプレッサ41に直接吸入される場合には、以下の通り、過給機40の自立運転が困難になる場合がある。すなわち、外気A1の密度は温度上昇に伴って下がるのに対し、コンプレッサ41が一定回転数において単位時間当たりに圧縮する外気A1の体積は一定であるため、夏場等の外気温が高い状況下では、コンプレッサ41が単位時間当たりに圧縮する外気A1の質量が低下する。その結果、タービン42に流入する単位時間当たりの外気A1の質量が低下し、コンプレッサ41の駆動力が低下するため、過給機40の自立状態の維持が困難になる場合がある。
これに対し、本実施形態に係る廃棄物処理設備1では、上述の通り、冷却機構50(水噴霧部51)をコンプレッサ41の吸入口側に設けることにより、コンプレッサ41に吸入される外気A1の密度低下を抑制することができる。このため、夏場等の外気温が高い状況下においても、コンプレッサ41の駆動力の低下を抑制することができるため、過給機40の自立状態を容易に維持することができる。
しかも、外気A1の冷却方式として水噴霧式を採用することにより、コンプレッサ41に吸入される外気A1の密度低下を抑制するだけでなく、外気A1の湿度を上げることもできる。これにより、外気A1の熱容量が増加し、予熱器30において外気A1が排ガスG1から回収可能な熱エネルギーの量を増加させることができる。その結果、タービン42に流入する外気A1のエネルギー量が増加するため、コンプレッサ41の駆動力の低下をより確実に抑制することができる。
図1に示すように、廃棄物処理設備1は、外気温測定部60と、出口温度測定部61と、コンプレッサ出口側排気路80と、コンプレッサ出口側排気弁81と、タービン出口側排気路82と、タービン出口側排気弁83と、をさらに有している。
外気温測定部60は、コンプレッサ41に吸入される前の外気A1の温度を測定する温度センサであり、空気導入経路20(第1経路21)に設けられている。本実施形態では、外気温測定部60は、冷却機構50(水噴霧部51)よりも下流側に設けられており、水W1が噴霧された後の外気A1の温度を測定する。
出口温度測定部61は、予熱器30から流出した外気A1の温度を測定する温度センサであり、空気導入経路20(第3経路23)において予熱器30の出口近傍に設けられている。この出口温度測定部61により、予熱器30で排ガスG1の熱によって加熱された後の外気A1の温度が測定される。
コンプレッサ出口側排気路80は、空気導入経路20(第2経路22)におけるコンプレッサ41の下流側で且つ予熱器30の上流側の位置P1から、当該空気導入経路20の外に外気A1を排出するための経路(配管)である。図1に示すように、コンプレッサ出口側排気路80は、上流端が第2経路22の位置P1に接続されていると共に、下流端が屋外空間に開放されている。
コンプレッサ出口側排気弁81は、コンプレッサ出口側排気路80に配置された弁であり、当該コンプレッサ出口側排気路80を通じた外気A1の排気率を調整する。具体的に、コンプレッサ出口側排気弁81は、開度調整可能な弁であり、その開度により空気導入経路20(第2経路22)からコンプレッサ出口側排気路80に流入する外気A1の流量、すなわち第2経路22からコンプレッサ出口側排気路80を通じて大気中に放出する外気A1の流量を調整する。
コンプレッサ出口側排気弁81により調整される「外気A1の排気率」は、第2経路22における位置P1よりも上流側を流れる外気A1の流量(主流量)に対する、コンプレッサ出口側排気路80を流れる外気A1の流量(分流流量)の比率である。「主流量」は第2経路22における位置P1よりも上流側に設けられた第1流量測定部62により測定され、「分流流量」はコンプレッサ出口側排気路80に設けられた第2流量測定部63により測定される。廃棄物処理設備1は、当該「外気A1の排気率」が0〜15%程度に調整された状態で運転する。
またコンプレッサ41の出口側における「外気A1の非排気率」は、第2経路22における位置P1よりも上流側を流れる外気A1の流量に対する、第2経路22における位置P1よりも下流側を流れる外気A1の流量の比率である。第2経路22における位置P1よりも下流側を流れる外気A1(分流後の外気A1)の流量は、第2経路22における位置P1よりも下流側に設けられた第3流量測定部64により測定される。廃棄物処理設備1は、当該「外気A1の非排気率」が85〜100%程度に調整された状態で運転する。
タービン出口側排気路82は、空気導入経路20(第4経路24)におけるタービン42の下流側の位置P2から、空気導入経路20の外に外気A1を排出するための経路である。図1に示すように、タービン出口側排気路82は、上流端が第4経路24の位置P2に接続されていると共に、下流端が屋外空間に開放されている。
タービン出口側排気弁83は、タービン出口側排気路82に配置された弁であり、タービン出口側排気路82を通じた外気A1の排気率を調整する。具体的に、タービン出口側排気弁83は、開度調整可能な弁であり、その開度により空気導入経路20(第4経路24)からタービン出口側排気路82に流入する外気A1の流量、すなわち第4経路24からタービン出口側排気路82を通じて大気中に放出する外気A1の流量を調整する。
タービン出口側排気弁83により調整される「外気A1の排気率」は、第4経路24における位置P2よりも上流側を流れる外気A1の流量(主流量)に対する、タービン出口側排気路82を流れる外気A1の流量(分流流量)の比率である。「主流量」は第4経路24における位置P2よりも上流側に設けられた第4流量測定部65により測定され、「分流流量」はタービン出口側排気路82に設けられた第5流量測定部66により測定される。廃棄物処理設備1は、当該「外気A1の排気率」が0〜15%程度に調整された状態で運転する。
またタービン42の出口側における「外気A1の非排気率」は、第4経路24における位置P2よりも上流側を流れる外気A1の流量に対する、第4経路24における位置P2よりも下流側を流れる外気A1の流量の比率である。第4経路24における位置P2よりも下流側を流れる外気A1(分流後の外気A1)の流量は、第4経路24における位置P2よりも下流側に設けられた第6流量測定部67により測定される。廃棄物処理設備1は、当該「外気A1の非排気率」が85〜100%程度に調整された状態で運転する。
廃棄物処理設備1は、当該廃棄物処理設備1の各種動作を制御するコントローラである制御部70をさらに有している(図2)。図2に示すように、制御部70は、受付部71と、判定部72と、冷却制御部73と、弁制御部75と、記憶部74と、演算部76と、を有している。受付部71、判定部72、冷却制御部73、弁制御部75及び演算部76は、上記コントローラを構成する中央演算処理装置(CPU;Central Processing Unit)により実行される各機能であり、記憶部74はメモリ等により構成されている。
受付部71は、外気温測定部60により測定された温度データ、出口温度測定部61により測定された温度データ及び第1〜第6流量測定部62〜67により測定された流量データを受け付ける。演算部76は、第1流量測定部62及び第2流量測定部63による測定値に基づいてコンプレッサ出口側排気路80による外気A1の排気率を算出し、また第4流量測定部65及び第5流量測定部66による測定値に基づいてタービン出口側排気路82による外気A1の排気率を算出する。判定部72は、外気温測定部60による外気A1の実測温度と記憶部74に記憶された外気温の設定値とを比較し、また出口温度測定部61による外気A1の実測温度と記憶部74に記憶された外気温の設定値とを比較し、コンプレッサ出口側排気路80による外気A1の排気率と記憶部74に記憶された当該排気率の設定値とを比較し、タービン出口側排気路82による外気A1の排気率と記憶部74に記憶された当該排気率の設定値とを比較する。冷却制御部73は、判定部72による比較判定の結果に基づいて、冷却機構50(水噴霧部51)の動作を制御する。弁制御部75は、コンプレッサ出口側排気弁81及びタービン出口側排気弁83の開度をそれぞれ制御する。
以下、制御部70による冷却機構50の具体的な制御内容について、図3のフローチャートに従って説明する。
まず、廃棄物処理設備1の運転中、すなわち空気導入経路20を通じて焼却炉10に外気A1を燃焼用空気として導入しつつ焼却炉10内で廃棄物の焼却を行っている間に、コンプレッサ41に吸入される前の外気A1の温度を外気温測定部60により測定する。この間、コンプレッサ41に吸入される前の外気A1に対して、水噴霧部51から一定量の水W1が噴霧されている。
外気温測定部60により測定された温度は受付部71に入力され、当該測定値が予め定められた外気温の設定値よりも大きいか否かを判定部72において判定する(ステップS10)。この目標値は特に限定されないが、例えば30℃に設定される。
そして、測定値が設定値よりも大きい時は(ステップS10のYES)、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御する(ステップS20)。具体的には、冷却制御部73が水噴霧部51の動作を制御し、外気A1への水W1の噴霧量を増加させる。
一方、外気温測定部60により測定された温度が設定値よりも大きくない時は(ステップS10のNO)、当該測定値が設定値未満であるか否かを判定部72において判定する(ステップS30)。そして、当該測定値が設定値未満である時は(ステップS30のYES)、冷却機構50による冷却能力を下げるように冷却制御部73が冷却機構50を制御する(ステップS40)。具体的には、冷却制御部73が水噴霧部51を制御し、外気A1への水W1の噴霧量を減少させる。一方、当該測定値が設定値である時は(ステップS30のNO)、外気A1への水W1の噴霧量を変動させず、一定に保持する。
その後、例えば冷却制御の時間が経過した時等、冷却制御の停止条件が成立した時は(ステップS50のYES)、制御部70による冷却機構50の制御が終了する。一方、冷却制御の停止条件が未成立の時は(ステップS50のNO)、上述したステップS10〜S40による冷却機構50(水噴霧部51)の制御を継続する。
上記制御によれば、コンプレッサ41への吸入前の外気温が設定値を超えないように冷却機構50の冷却能力を適切に制御することにより、過給機40の自立運転を容易に維持することができる。しかも、当該吸入前の外気温が設定値を下回らないように冷却機構50の冷却能力を制御することにより、自立運転の維持のために必要以上の水W1を噴霧することを抑制し、水噴霧に要する電力量を削減することができる。また、外気温が必要以上に低下して焼却炉10における燃焼状態が悪化するのを防ぎ、予熱器30で外気A1が排ガスG1から回収する熱エネルギーが増加し過ぎることによって当該予熱器30から流出した排ガスG1から回収できるエネルギー量(例えば、発電のためのエネルギー量)が低下するのを抑制することもできる。
なお、上記実施形態では、外気A1の実測温度に応じて水W1の噴霧量を増加又は減少させる場合を説明したが、これに限定されない。例えば、外気A1の実測温度が設定値を超える場合にのみ水W1を噴霧し、それ以外の場合には水W1の噴霧を停止するように、水噴霧部51をオン/オフ制御してもよい。
(実施形態2)
次に、本発明の実施形態2に係る廃棄物処理設備について、図4のフローチャートを参照して説明する。実施形態2に係る廃棄物処理設備は、基本的に上記実施形態1に係る廃棄物処理設備1と同様の構成を備えるものであるが、予熱器30の出口側における外気A1の温度に基づいて冷却機構50の動作を制御する点で上記実施形態1に係る廃棄物処理設備1と異なっている。以下、上記実施形態1と異なる点についてのみ説明する。
図4は、実施形態2に係る廃棄物処理設備における、制御部70による冷却機構50の制御フローを示している。まず、上記実施形態1と同様に水噴霧部51から一定量の水W1を外気A1に噴霧しつつ廃棄物処理設備1を運転している間に、予熱器30から流出した外気A1の温度を出口温度測定部61により測定する。
出口温度測定部61により測定された温度は受付部71に入力され、当該測定値が予め定められた設定値よりも小さいか否かを判定部72において判定する(ステップS11)。そして、当該測定値が設定値よりも小さい時は(ステップS11のYES)、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御する(ステップS21)。具体的には、冷却制御部73が水噴霧部51の動作を制御し、外気A1への水W1の噴霧量を増加させる。
一方、出口温度測定部61により測定された温度が設定値よりも小さくない時は(ステップS11のNO)、当該測定値が設定値を超えるか否かを判定部72において判定する(ステップS31)。そして、当該測定値が設定値を超える時は(ステップS31のYES)、冷却機構50による冷却能力を下げるように冷却制御部73が冷却機構50を制御する(ステップS41)。具体的には、冷却制御部73が水噴霧部51を制御し、外気A1への水W1の噴霧量を減少させる。一方、当該測定値が設定値である時は(ステップS31のNO)、外気A1への水W1の噴霧量を変動させず、一定に保持する。
その後、上記実施形態1と同様に、冷却制御の停止条件が成立した時は(ステップS51のYES)、制御部70による冷却機構50の制御が終了する。一方、冷却制御の停止条件が未成立の時は(ステップS51のNO)、上述したステップS11〜S41による冷却機構50(水噴霧部51)の制御を継続する。本実施形態では、予熱器30の出口温度を過給機40の自立状態を示す指標とし、上述の通り、冷却機構50の動作を適切なタイミングで制御することができる。
(実施形態3)
次に、本発明の実施形態3に係る廃棄物処理設備について、図5のフローチャートを参照して説明する。実施形態3に係る廃棄物処理設備は、基本的に上記実施形態1に係る廃棄物処理設備1と同様の構成を備えるものであるが、コンプレッサ41の出口側における外気A1の排気率に基づいて冷却機構50の動作を制御する点で上記実施形態1に係る廃棄物処理設備1と異なっている。以下、上記実施形態1と異なる点についてのみ説明する。
図5は、実施形態3に係る廃棄物処理設備における、制御部70による冷却機構50の制御フローを示している。まず、上記実施形態1と同様に水噴霧部51から一定量の水W1を外気A1に噴霧しつつ廃棄物処理設備1を運転している間に、空気導入経路20における外気A1の流量が所定の流量に維持されるように(第3流量測定部64による測定流量が所定の流量に維持されるように)、弁制御部75がコンプレッサ出口側排気弁81の開度を制御する。そして、この時のコンプレッサ出口側排気路80による外気A1の排気率が、第1流量測定部62の測定流量(主流量)に対する第2流量測定部63の測定流量(分流流量)の比率として、演算部76において算出される(分流流量/主流量×100%)。そして、算出された排気率が、予め定められた設定値よりも小さいか否かを判定部72において判定する(ステップS12)。
算出された排気率が設定値よりも小さい時は(ステップS12のYES)、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御する(ステップS22)。具体的には、冷却制御部73が水噴霧部51の動作を制御し、外気A1への水W1の噴霧量を増加させる。
一方、算出された排気率が設定値よりも小さくない時は(ステップS12のNO)、当該排気率が設定値を超えるか否かを判定部72において判定する(ステップS32)。そして、当該排気率が設定値を超える時は(ステップS32のYES)、冷却機構50による冷却能力を下げるように冷却制御部73が冷却機構50を制御する(ステップS42)。具体的には、冷却制御部73が水噴霧部51を制御し、外気A1への水W1の噴霧量を減少させる。一方、当該排気率が設定値である時は(ステップS32のNO)、外気A1への水W1の噴霧量を変動させず、一定に保持する。
その後、上記実施形態1と同様に、冷却制御の停止条件が成立した時は(ステップS52のYES)、制御部70による冷却機構50の制御が終了する。一方、冷却制御の停止条件が未成立の時は(ステップS52のNO)、上述したステップS12〜S42による冷却機構50(水噴霧部51)の制御を継続する。本実施形態では、コンプレッサ41の出口側における外気A1の排気率を過給機40の自立状態を示す指標とし、過給機40の自立運転が維持されるように冷却機構50の動作を適切に制御することができる。
またコンプレッサ41の出口側における外気A1の排気率に基づいて冷却制御を行う場合に限定されず、コンプレッサ41の出口側における外気A1の非排気率に基づいて冷却制御が行われてもよい。すなわち、コンプレッサ41の出口側における外気A1の非排気率が予め定められた設定値よりも大きいか否かを判定部72において判定し、当該非排気率が設定値よりも大きい時に、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御してもよい。
(実施形態4)
次に、本発明の実施形態4に係る廃棄物処理設備について、図6のフローチャートを参照して説明する。実施形態4に係る廃棄物処理設備は、基本的に上記実施形態1に係る廃棄物処理設備1と同様の構成を備えるものであるが、タービン42の出口側における外気A1の排気率に基づいて冷却機構50の動作を制御する点で上記実施形態1に係る廃棄物処理設備1と異なっている。以下、上記実施形態1と異なる点についてのみ説明する。
図6は、実施形態4に係る廃棄物処理設備における、制御部70による冷却機構50の制御フローを示している。まず、上記実施形態1と同様に水噴霧部51から一定量の水W1を外気A1に噴霧しつつ廃棄物処理設備1を運転している間に、空気導入経路20における外気A1の流量が所定の流量に維持されるように(第6流量測定部67による測定流量が所定の流量に維持されるように)、弁制御部75がタービン出口側排気弁83の開度を制御する。そして、この時のタービン出口側排気路82による外気A1の排気率が、第4流量測定部65の測定流量(主流量)に対する第5流量測定部66の測定流量(分流流量)の比率として、演算部76により算出される(分流流量/主流量×100%)。そして、算出された排気率が、予め定められた設定値よりも小さいか否かを判定部72において判定する(ステップS13)。
算出された排気率が設定値よりも小さい時は(ステップS13のYES)、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御する(ステップS23)。具体的には、冷却制御部73が水噴霧部51の動作を制御し、外気A1への水W1の噴霧量を増加させる。
一方、算出された排気率が設定値よりも小さくない時は(ステップS13のNO)、当該排気率が設定値を超えるか否かを判定部72において判定する(ステップS33)。そして、当該排気率が設定値を超える時は(ステップS33のYES)、冷却機構50による冷却能力を下げるように冷却制御部73が冷却機構50を制御する(ステップS43)。具体的には、冷却制御部73が水噴霧部51を制御し、外気A1への水W1の噴霧量を減少させる。一方、当該排気率が設定値である時は(ステップS33のNO)、外気A1への水W1の噴霧量を変動させず、一定に保持する。
その後、上記実施形態1と同様に、冷却制御の停止条件が成立した時は(ステップS53のYES)、制御部70による冷却機構50の制御が終了する。一方、冷却制御の停止条件が未成立の時は(ステップS53のNO)、上述したステップS13〜S43による冷却機構50(水噴霧部51)の制御を継続する。本実施形態では、タービン42の出口側における外気A1の排気率を過給機40の自立状態を示す指標とし、過給機40の自立運転が維持されるように冷却機構50の動作を適切に制御することができる。
またタービン42の出口側における外気A1の排気率に基づいて冷却制御を行う場合に限定されず、タービン42の出口側における外気A1の非排気率に基づいて冷却制御が行われてもよい。すなわち、タービン42の出口側における外気A1の非排気率が予め定められた設定値よりも大きいか否かを判定部72において判定し、当該非排気率が設定値よりも大きい時に、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御してもよい。
(実施形態5)
次に、本発明の実施形態5に係る廃棄物処理設備について、図7のグラフ及び図8のフローチャートを参照して説明する。実施形態5に係る廃棄物処理設備は、基本的に上記実施形態1に係る廃棄物処理設備1と同様の構成を備えるものであるが、図7に示す過給機40のコンプレッサマップに基づいて冷却機構50の動作を制御する点で上記実施形態1に係る廃棄物処理設備1と異なっている。以下、上記実施形態1と異なる点についてのみ説明する。
本実施形態に係る廃棄物処理設備において、記憶部74(図2)には、過給機40のコンプレッサマップの情報が格納されている。図7に示すように、当該コンプレッサマップは、コンプレッサ41に吸入される外気A1の流量(横軸)と、コンプレッサ41に吸入される外気A1の圧力に対するコンプレッサ41から吐出された外気A1の圧力の比である圧縮比(縦軸)と、の関係を示すと共に、コンプレッサ41の動作が安定する安定領域R1とコンプレッサ41の動作が不安定になる不安定領域R2との境界ラインB1と、上記圧縮比が境界ラインB1の値から所定値低い値に設定された予防ラインB2と、を示している。
図8は、実施形態5に係る廃棄物処理設備における、制御部70による冷却機構50の制御フローを示している。まず、上記実施形態1と同様に水噴霧部51から一定量の水W1を外気A1に噴霧しつつ廃棄物処理設備1を運転している間に、コンプレッサ41の現在値(コンプレッサ41に吸入される外気A1の流量とコンプレッサ41による外気A1の圧縮比とにより定まる)が、コンプレッサマップの予防ラインB2を超えているか否かを、判定部72において判定する(ステップS14)。そして、現在値が予防ラインB2を超えている時は(ステップS14のYES)、冷却機構50による冷却能力を上げるように、冷却制御部73が冷却機構50の動作を制御する(ステップS24)。具体的には、冷却制御部73が水噴霧部51の動作を制御し、外気A1への水W1の噴霧量を増加させる。
一方、現在値が予防ラインB2を超えていない時は(ステップS14のNO)、現在値が予防ラインB2よりも安定領域R1側にあるか否かを判定部72において判定する(ステップS34)。そして、現在値が予防ラインB2よりも安定領域R1側にある時は(ステップS34のYES)、冷却機構50による冷却能力を下げるように冷却制御部73が冷却機構50を制御する(ステップS44)。具体的には、冷却制御部73が水噴霧部51を制御し、外気A1への水W1の噴霧量を減少させる。一方、現在値が予防ラインB2上にある時は(ステップS34のNO)、外気A1への水W1の噴霧量を変動させず、一定に保持する。
その後、上記実施形態1と同様に、冷却制御の停止条件が成立した時は(ステップS54のYES)、制御部70による冷却機構50の制御が終了する。一方、冷却制御の停止条件が未成立の時は(ステップS54のNO)、上述したステップS14〜S44による冷却機構50(水噴霧部51)の制御を継続する。本実施形態では、コンプレッサマップ上の現在値を過給機40の自立状態を示す指標とし、過給機40の自立運転が維持されるように冷却機構50の動作を適切に制御することができる。
(その他実施形態)
ここで、本発明のその他実施形態について説明する。
上記実施形態1〜5では、冷却機構の一例として水噴霧部51を有する場合を説明したが、これに限定されない。冷却機構としては、例えば、外気A1に冷風を直接当てるスポットクーラ、冷却水との熱交換により外気A1を冷却する冷却塔、チラー又は化学的な吸熱反応を利用して外気A1を冷却するもの等、様々なものを採用することができる。これらの冷却手段が単独で用いられてもよいし、組み合わせて用いられてもよい。
上記実施形態1において、外気A1の流量を調整する流量調整弁が、空気導入経路20(例えば、予熱器30の出口側)に配置されてもよい。そして、当該流量調整弁により空気導入経路20における外気A1の流量が所定の流量に維持されつつ、当該流量調整弁の開度が予め定められた設定開度を超えた時に冷却機構50の冷却能力を上げる制御を行ってもよい。
上記実施形態1では、第1経路21内に取り込まれる前の大気(外気A1)に水W1を予め噴霧しているが、これに限定されない。第1経路21内に取り込まれた後の外気A1に対して水W1が噴霧されてもよい。
上記実施形態1では、水W1を噴霧した後の外気A1の温度を外気温測定部60により測定する場合を説明したが、水W1を噴霧する前の外気A1の温度を外気温測定部60により測定してもよい。
上記実施形態1〜5では、図3〜6及び図8のフローチャートを参照して冷却機構50を制御部70により自動制御する場合を説明したが、当該冷却機構50を手動制御してもよい。
上記実施形態では、下水汚泥を廃棄物の一例として説明したがこれに限定されず、例えば都市ゴミ等の他の廃棄物の焼却処理に本発明の廃棄物処理設備が適用されてもよい。
上記実施形態では、流動床式焼却炉を一例として説明したがこれに限定されず、固定床式の焼却炉が用いられてもよい。
今回開示された実施形態は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 廃棄物処理設備
10 焼却炉
20 空気導入経路
30 予熱器
40 過給機
41 コンプレッサ
42 タービン
50 冷却機構
51 水噴霧部
60 外気温測定部
61 出口温度測定部
80 コンプレッサ出口側排気路
81 コンプレッサ出口側排気弁
82 タービン出口側排気路
83 タービン出口側排気弁
A1 外気
B1 境界ライン
G1 排ガス
R1 安定領域
R2 不安定領域
W1 水

Claims (7)

  1. 廃棄物を焼却する焼却炉と、
    廃棄物の焼却に用いられる燃焼用空気を前記焼却炉に導く経路であって、前記焼却炉に接続された一方の端部と、前記燃焼用空気として外気を経路内に取り込む他方の端部と、を有する空気導入経路と、
    前記空気導入経路を通じて前記焼却炉に導かれる前記外気を、前記焼却炉から排出される排ガスにより加熱する予熱器と、
    前記空気導入経路に配置された過給機であって、前記外気を吸入すると共に圧縮した前記外気を前記予熱器側に吐出するコンプレッサと、前記予熱器で加熱された前記外気によって回転することにより前記コンプレッサを駆動させるタービンと、を有する前記過給機と、
    前記コンプレッサに吸入される前の前記外気を冷却することにより前記外気の密度を冷却前よりも上げる冷却機構と、を有する、廃棄物処理設備。
  2. 前記冷却機構は、前記コンプレッサに吸入される前の前記外気に水を噴霧する水噴霧部を有する、請求項1に記載の廃棄物処理設備。
  3. 前記コンプレッサに吸入される前の前記外気の温度を測定する外気温測定部と、
    前記外気温測定部により測定された温度が予め定められた設定値よりも大きい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有する、請求項1又は2に記載の廃棄物処理設備。
  4. 前記予熱器から流出した前記外気の温度を測定する出口温度測定部と、
    前記出口温度測定部により測定された温度が予め定められた設定値よりも小さい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有する、請求項1又は2に記載の廃棄物処理設備。
  5. 前記空気導入経路における前記コンプレッサの下流側で且つ前記予熱器の上流側の位置から前記空気導入経路の外に前記外気を排出するためのコンプレッサ出口側排気路と、
    前記コンプレッサ出口側排気路に配置され、前記コンプレッサ出口側排気路を通じた前記外気の排気率を調整するコンプレッサ出口側排気弁と、
    前記空気導入経路における前記外気の流量が所定の流量に維持されるように前記コンプレッサ出口側排気弁を制御すると共に、前記コンプレッサ出口側排気路による前記外気の排気率が予め定められた設定値よりも小さい時に、又は、前記コンプレッサの出口側における前記外気の非排気率が予め定められた設定値よりも大きい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有する、請求項1又は2に記載の廃棄物処理設備。
  6. 前記空気導入経路における前記タービンの下流側の位置から前記空気導入経路の外に前記外気を排出するためのタービン出口側排気路と、
    前記タービン出口側排気路に配置され、前記タービン出口側排気路を通じた前記外気の排気率を調整するタービン出口側排気弁と、
    前記空気導入経路における前記外気の流量が所定の流量に維持されるように前記タービン出口側排気弁を制御すると共に、前記タービン出口側排気路による前記外気の排気率が予め定められた設定値よりも小さい時に、又は、前記タービンの出口側における前記外気の非排気率が予め定められた設定値よりも大きい時に、冷却能力を上げるように前記冷却機構を制御する制御部と、をさらに有する、請求項1又は2に記載の廃棄物処理設備。
  7. 前記コンプレッサに吸入される前記外気の流量と、前記コンプレッサに吸入される前記外気の圧力に対する前記コンプレッサから吐出された前記外気の圧力の比である圧縮比と、の関係を示すマップであって、前記コンプレッサの動作が安定する安定領域と前記コンプレッサの動作が不安定になる不安定領域との境界ラインと、前記圧縮比が前記境界ラインの値から所定値低い値に設定された予防ラインと、を示す前記マップの情報を格納し、前記マップ上における前記コンプレッサの現在値が前記マップの前記予防ラインを超えている時に、冷却能力を上げるように前記冷却機構を制御する制御部をさらに有する、請求項1又は2に記載の廃棄物処理設備。
JP2019048938A 2019-03-15 2019-03-15 廃棄物処理設備 Active JP7157687B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019048938A JP7157687B2 (ja) 2019-03-15 2019-03-15 廃棄物処理設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019048938A JP7157687B2 (ja) 2019-03-15 2019-03-15 廃棄物処理設備

Publications (2)

Publication Number Publication Date
JP2020148443A true JP2020148443A (ja) 2020-09-17
JP7157687B2 JP7157687B2 (ja) 2022-10-20

Family

ID=72430115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048938A Active JP7157687B2 (ja) 2019-03-15 2019-03-15 廃棄物処理設備

Country Status (1)

Country Link
JP (1) JP7157687B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501472A (ja) * 1995-11-28 2000-02-08 エービービー カーボン アクチボラゲット 燃焼器に空気を供給する方法および装置
US20070000229A1 (en) * 2003-06-19 2007-01-04 Leopoldo Bevilacqua Water treatment and pressurization system for the adiabatic cooling of comburent
JP2011137575A (ja) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd 加圧流動焼却炉の運転方法及び加圧流動焼却炉設備
JP2017190929A (ja) * 2016-04-15 2017-10-19 メタウォーター株式会社 廃棄物処理設備
JP2018025325A (ja) * 2016-08-09 2018-02-15 株式会社神鋼環境ソリューション 廃棄物処理システム及びその起動方法
JP6473847B1 (ja) * 2018-08-03 2019-02-20 株式会社神鋼環境ソリューション 廃棄物処理設備及びその非常運転方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000501472A (ja) * 1995-11-28 2000-02-08 エービービー カーボン アクチボラゲット 燃焼器に空気を供給する方法および装置
US20070000229A1 (en) * 2003-06-19 2007-01-04 Leopoldo Bevilacqua Water treatment and pressurization system for the adiabatic cooling of comburent
JP2011137575A (ja) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd 加圧流動焼却炉の運転方法及び加圧流動焼却炉設備
JP2017190929A (ja) * 2016-04-15 2017-10-19 メタウォーター株式会社 廃棄物処理設備
JP2018025325A (ja) * 2016-08-09 2018-02-15 株式会社神鋼環境ソリューション 廃棄物処理システム及びその起動方法
JP6473847B1 (ja) * 2018-08-03 2019-02-20 株式会社神鋼環境ソリューション 廃棄物処理設備及びその非常運転方法

Also Published As

Publication number Publication date
JP7157687B2 (ja) 2022-10-20

Similar Documents

Publication Publication Date Title
JP6490466B2 (ja) 廃棄物処理設備及び廃棄物処理設備の操炉方法
JP5401303B2 (ja) 加圧流動焼却炉の運転方法及び加圧流動焼却炉設備
JP5401302B2 (ja) 加圧流動焼却炉の運転方法及び加圧流動焼却炉設備
JP2015227748A (ja) 廃棄物処理設備および廃棄物処理方法
JP6683531B2 (ja) 廃棄物処理設備
JP5909397B2 (ja) 加圧流動炉設備の調節弁制御装置、加圧流動炉設備の調節弁制御方法
JPWO2013136782A1 (ja) 酸素燃焼ボイラシステム
JP6297417B2 (ja) 廃棄物処理設備および廃棄物処理方法
JP2015145738A (ja) 廃棄物処理設備および廃棄物処理設備の制御方法
JP6323286B2 (ja) 加熱炉の排熱回収設備及び加熱炉の排熱回収方法
JP2020148443A (ja) 廃棄物処理設備
JP7156922B2 (ja) 廃棄物処理設備及び廃棄物処理設備の運転方法
JP5320037B2 (ja) ボイラ自動制御装置及びボイラシステム
JP2007163048A (ja) ガス冷却塔および焼却システム
JP6947608B2 (ja) 廃棄物処理設備及び廃棄物処理設備の運転方法
JP2005106370A (ja) 排ガス再循環設備
JP2007139235A (ja) 復水器の制御方法
JP4297430B2 (ja) 非燃焼式ガス回収型排ガス処理装置のガス回収装置及びガス回収方法
JP2010060156A (ja) 加熱炉のNOx抑制制御装置
JP2008051013A (ja) 高湿分ガスタービンプラント及びその制御方法
JP3008614B2 (ja) 給湯機
JP2006266650A (ja) 転炉排ガス冷却装置の温度制御方法
JP7156923B2 (ja) 廃棄物処理設備及び廃棄物処理設備の運転方法
JP2013200087A (ja) 加圧流動炉システムの運転方法
JP2000274637A (ja) 排ガス冷却設備及びその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221007

R150 Certificate of patent or registration of utility model

Ref document number: 7157687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150