JP2020148256A - Driving force transmission device for earthquake-resistant pipe propulsion laying method - Google Patents

Driving force transmission device for earthquake-resistant pipe propulsion laying method Download PDF

Info

Publication number
JP2020148256A
JP2020148256A JP2019046037A JP2019046037A JP2020148256A JP 2020148256 A JP2020148256 A JP 2020148256A JP 2019046037 A JP2019046037 A JP 2019046037A JP 2019046037 A JP2019046037 A JP 2019046037A JP 2020148256 A JP2020148256 A JP 2020148256A
Authority
JP
Japan
Prior art keywords
propulsion
pipe
force transmission
transmission device
laying method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019046037A
Other languages
Japanese (ja)
Other versions
JP7299042B2 (en
Inventor
誠二 松島
Seiji Matsushima
誠二 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chutetsukan KK
Original Assignee
Nippon Chutetsukan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chutetsukan KK filed Critical Nippon Chutetsukan KK
Priority to JP2019046037A priority Critical patent/JP7299042B2/en
Publication of JP2020148256A publication Critical patent/JP2020148256A/en
Application granted granted Critical
Publication of JP7299042B2 publication Critical patent/JP7299042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

To provide a driving force transmission device for earthquake-resistant pipe propulsion laying method that the driving force transmission device can be equipped to a grafting spout of succeeding pipe on ground and can check the fitting state of rubber band into a groove for rubber band of a socket.SOLUTION: A device consists of a plurality of driving force transmission means 13 and ring-like clamping means 12 fixed to an outside peripheral surface of a spout 3. The driving force transmission means 13 consists of: a driving force transmission member 17 contacting to an edge face 1a of a socket 1 and transmitting push-in force of a succeeding pipe 5 to a preceding pipe 2; a bracket 18 fixed to the clamping means 12; a wheel 20 as a supporting member supporting the succeeding pipe 5 in a shell pipe; and a fixed shaft 21 fixing the wheel 20 to the bracket 18 and attached to the bracket 18 at one end.SELECTED DRAWING: Figure 1

Description

この発明は、耐震管推進敷設工法用推進力伝達装置、特に、地上で推進力伝達装置を後行管の挿し口に装着することができ、しかも、推進力伝達装置の装着後であっても、ゴム輪の嵌め込み状態をチェックゲージにより確認することができる等の効果を備えた耐震管推進敷設工法用推進力伝達装置に関するものである。 According to the present invention, a propulsion force transmission device for a seismic tube propulsion laying method, particularly a propulsion force transmission device on the ground, can be attached to an insertion port of a trailing pipe, and even after the propulsion force transmission device is attached. The present invention relates to a propulsion force transmission device for a seismic pipe propulsion laying method, which has an effect that the fitted state of a rubber ring can be confirmed by a check gauge.

近年、道路工事による交通障害や掘削残土の処理等の問題が少なく、しかも、軌道下等の開削工事が行えない場所であっても管の敷設が可能なさや管式耐震管推進敷設工法が実施されている。 In recent years, there have been few problems such as traffic obstacles due to road construction and disposal of excavated soil, and pipes can be laid even in places where excavation work cannot be performed, such as under tracks. Has been done.

さや管式耐震管推進敷設工法の一例が特許文献1に開示されている。以下、このさや管式耐震管推進敷設工法を、従来推進敷設工法といい、図面を参照しながら説明する。 An example of a sheath pipe type seismic tube propulsion laying method is disclosed in Patent Document 1. Hereinafter, this sheath pipe type seismic tube propulsion laying method is referred to as a conventional propulsion laying method, and will be described with reference to the drawings.

図9は、従来推進敷設工法により受け口内に挿し口が挿入された接合部を示す部分断面図、図10は、図9のA−A線断面図、図11は、チェックゲージを示す平面図、図12は、チェックゲージによるゴム輪の挿入状態の確認方法を示す断面図である。 9 is a partial cross-sectional view showing a joint in which an insertion port is inserted into a socket by a conventional propulsion laying method, FIG. 10 is a sectional view taken along line AA of FIG. 9, and FIG. 11 is a plan view showing a check gauge. , FIG. 12 is a cross-sectional view showing a method of confirming the inserted state of the rubber ring by the check gauge.

図9から図12において、31は、先行管32の受け口、33は、先端部に抜け止め用突起34が形成された、後行管35の挿し口、36は、受け口31の内周面に形成されたロックリング用溝37内に、芯出し用リング38を介して嵌め込まれたロックリング、39は、受け口31の内周面に形成されたゴム輪用溝40内に嵌め込まれたゴム輪、41は、推進力伝達装置である。 9 to 12, 31 is a socket for the leading pipe 32, 33 is an insertion port for the trailing pipe 35 having a retaining protrusion 34 formed at the tip thereof, and 36 is an inner peripheral surface of the socket 31. The lock ring 39 fitted in the formed lock ring groove 37 via the centering ring 38 is a rubber ring fitted in the rubber ring groove 40 formed on the inner peripheral surface of the receiving port 31. , 41 are propulsion force transmission devices.

推進力伝達装置41は、受け口31の端面にあてがわれる、接合部内へのグラウト材の侵入を防止する防護リング42と、挿し口33に固定される、さや管43内を転動する車輪44が取り付けられた、ボルト45によりリング状に連結可能なフランジ46と、防護リング42とフランジ46との間の挿し口33に介在されるリング状の推力伝達部材47とからなっている。 The propulsion force transmission device 41 includes a protective ring 42 applied to the end face of the receiving port 31 to prevent the grout material from entering the joint portion, and a wheel 44 fixed to the insertion port 33 and rolling in the sheath pipe 43. It is composed of a flange 46 to which a bolt 45 is attached and which can be connected in a ring shape by a bolt 45, and a ring-shaped thrust transmitting member 47 interposed in an insertion port 33 between the protective ring 42 and the flange 46.

推力伝達部材47は、ポリスチレンやポリウレタン等の発泡樹脂からなり、管接合の際の後行管の推進力に対しては塑性変形せず、これにより、先行管に推進力を伝達し、一方、地震等による過大な押し込み力に対しては塑性変形し、これにより、接合部の収縮を可能にして、管の破壊を防止する機能を有している。 The thrust transmission member 47 is made of a foamed resin such as polystyrene or polyurethane and does not plastically deform with respect to the propulsive force of the trailing pipe at the time of pipe joining, whereby the propulsive force is transmitted to the leading pipe, while It is plastically deformed by an excessive pushing force due to an earthquake or the like, which enables the joint to contract and has a function of preventing the pipe from breaking.

従来推進敷設工法により管を接合するには、予め後行管35の挿し口33に推進力伝達装置41の防護リング42と推力伝達部材47を差し込んでおき、この後、後行管35を地下に吊り下ろして先行管32の受け口31に嵌め込む。次いで、推進力伝達装置41のフランジ46を挿し口33にボルト45により仮締めし、防護リング42を介して推力伝達部材47を受け口1の端面に密着させ、そして、フランジ46をボルト45により本締めする。 In order to join the pipes by the conventional propulsion laying method, the protective ring 42 of the propulsion force transmission device 41 and the thrust transmission member 47 are inserted into the insertion port 33 of the trailing pipe 35 in advance, and then the trailing pipe 35 is underground. It is hung from the above and fitted into the receiving port 31 of the leading pipe 32. Next, the flange 46 of the propulsion force transmission device 41 is temporarily tightened to the insertion port 33 with a bolt 45, the thrust transmission member 47 is brought into close contact with the end face of the receiving port 1 via the protective ring 42, and the flange 46 is attached with the bolt 45. Tighten.

このようにして、先行管32と後行管35とが、接合部に収縮代T(図9参照)を維持した状態で接合される。 In this way, the leading pipe 32 and the trailing pipe 35 are joined in a state where the contraction allowance T (see FIG. 9) is maintained at the joint portion.

特開2002−295723号公報Japanese Unexamined Patent Publication No. 2002-295723

上述した従来推進敷設工法によれば、管接合の際の後行管35の推進力に対して、推力伝達部材47は、塑性変形しないので、先行管32に推進力を伝達することができる。 According to the conventional propulsion laying method described above, the thrust transmitting member 47 does not plastically deform with respect to the propulsive force of the trailing pipe 35 at the time of pipe joining, so that the propulsive force can be transmitted to the leading pipe 32.

一方、地震等による過大な押し込み力に対して、推力伝達部材47は、塑性変形する結果、接合部の収縮が可能となる。このようにして、管の耐震機能は維持されている。しかしながら、以下のような問題があった。 On the other hand, the thrust transmitting member 47 is plastically deformed in response to an excessive pushing force due to an earthquake or the like, and as a result, the joint portion can be contracted. In this way, the seismic function of the pipe is maintained. However, there are the following problems.

挿し口33は、ゴム輪用溝40内に嵌め込まれたゴム輪39の弾性力に抗して受け口31に挿入されるが、この際、ゴム輪39のゴム輪用溝40内への嵌め込み位置がずれると、接合部における止水効果が阻害されるおそれがある。従って、挿し口33を受け口31に嵌め込んだ後に、ゴム輪39が正確にゴム輪用溝40内に嵌め込まれているか否かを確認することは、重要である。 The insertion port 33 is inserted into the receiving port 31 against the elastic force of the rubber ring 39 fitted in the rubber ring groove 40, and at this time, the fitting position of the rubber ring 39 into the rubber ring groove 40. If it is displaced, the water blocking effect at the joint may be impaired. Therefore, it is important to confirm whether or not the rubber ring 39 is accurately fitted in the rubber ring groove 40 after fitting the insertion port 33 into the receiving port 31.

受け口31への挿し口33の嵌め込み後、ゴム輪39が正確にゴム輪用溝40内に嵌め込まれ、正しい位置にあるか否かの確認は、図11に示すような専用のチェックゲージ48を使用して行われる。すなわち、図12に示すように、チェックゲージ48を受け口31から挿し口33に沿って挿入し、受け口31の端面までの挿入長さb(図11参照)によって、ゴム輪39が正しい位置にあるか否かを判断する。 After fitting the insertion port 33 into the receiving port 31, the rubber ring 39 is accurately fitted into the rubber ring groove 40, and a dedicated check gauge 48 as shown in FIG. 11 is used to check whether or not the rubber ring 39 is in the correct position. Made using. That is, as shown in FIG. 12, the rubber ring 39 is in the correct position according to the insertion length b (see FIG. 11) of the check gauge 48 inserted from the socket 31 along the insertion slot 33 and to the end face of the socket 31. Judge whether or not.

従来推進敷設工法においては、チェックゲージ48による確認作業は、推進力伝達装置41を挿し口33に装着した後では行えない。何故なら、推進力伝達装置41を挿し口33に装着した後では、フランジ46の内周面と挿し口33の外周面との間に、チェックゲージ48を挿入する隙間がないからである。 In the conventional propulsion laying method, the confirmation work by the check gauge 48 cannot be performed after the propulsion force transmission device 41 is attached to the insertion port 33. This is because, after the propulsive force transmission device 41 is attached to the insertion port 33, there is no gap for inserting the check gauge 48 between the inner peripheral surface of the flange 46 and the outer peripheral surface of the insertion port 33.

この結果、従来推進敷設工法においては、推進力伝達装置41は、後行管35を地下に吊り下し、後行管35の挿し口33を先行管32の受け口31に嵌め込んだ後でないと、挿し口33に装着することができなかった。 As a result, in the conventional propulsion laying method, the propulsion force transmission device 41 must be after the trailing pipe 35 is suspended underground and the insertion port 33 of the trailing pipe 35 is fitted into the receiving port 31 of the leading pipe 32. , Could not be attached to the insertion port 33.

地上で推進力伝達装置41の装着作業が行なえれば、推進力伝達装置41の装着作業と、地下での受け口31への挿し口33の嵌め込み作業とが別々に行えるので、地上で複数本の後行管35の挿し口33への推進力伝達装置41の装着が行なえる結果、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 If the propulsion force transmission device 41 can be mounted on the ground, the propulsion force transmission device 41 can be mounted and the insertion port 33 can be fitted into the receiving port 31 underground. As a result of being able to attach the propulsion force transmission device 41 to the insertion port 33 of the trailing pipe 35, the entire work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、地下での推進力伝達装置41の装着作業は、作業空間が狭いことから時間を要するが、地上で推進力伝達装置41の装着作業が行なえれば、地下では受け口31への挿し口33の嵌め込み作業とチェックゲージ48による確認作業のみですむので、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 Further, the installation work of the propulsion force transmission device 41 underground requires time because the work space is narrow, but if the installation work of the propulsion force transmission device 41 can be performed on the ground, the insertion port 33 to the socket 31 is underground. Since only the fitting work and the confirmation work with the check gauge 48 are required, the entire work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、従来推進敷設工法によれば、さや管43内を転動する車輪44は、フランジ46をリング状に連結するボルト45を軸にして取り付けられているので、先行管32の重量や管推進抵抗がボルト45に作用する結果、ボルト45の締め付け力に影響を及ぼし、挿し口33へのフランジ46の固定力が低下するおそれがある。 Further, according to the conventional propulsion laying method, the wheels 44 that roll in the sheath pipe 43 are attached around the bolts 45 that connect the flanges 46 in a ring shape, so that the weight of the preceding pipe 32 and the pipe propulsion As a result of the resistance acting on the bolt 45, the tightening force of the bolt 45 may be affected, and the fixing force of the flange 46 to the insertion port 33 may decrease.

従って、この発明の目的は、地上で推進力伝達装置を後行管の挿し口に装着することができ、しかも、推進力伝達装置の装着後であっても、ゴム輪の嵌め込み状態をチェックゲージにより確認することができる結果、管接合に要する作業時間を短縮することができ、しかも、先行管の重量や管推進抵抗により、挿し口への締め付け手段の固定力が低下するおそれがない耐震管推進敷設工法用推進力伝達装置を提供することにある。 Therefore, an object of the present invention is that the propulsion force transmission device can be mounted on the ground at the insertion port of the trailing pipe, and even after the propulsion force transmission device is mounted, the fitted state of the rubber ring is checked by a check gauge. As a result, the work time required for pipe joining can be shortened, and there is no risk that the fixing force of the tightening means to the insertion port will decrease due to the weight of the preceding pipe and the pipe propulsion resistance. The purpose is to provide a propulsion force transmission device for the propulsion laying method.

この発明は、上記目的を達成するためになされたものであり、下記を特徴とする。 The present invention has been made to achieve the above object, and is characterized by the following.

請求項1に記載の発明は、先行管の受け口に後行管の挿し口を嵌め込むことにより接合した管を、順次、さや管内に押し込んで、新設管を前記さや管内に敷設する耐震管推進敷設工法に使用される推進力伝達装置において、前記挿し口の外周面に沿って間隔をあけて配される複数個の推進力伝達手段と、前記挿し口の外周面に固定されるリング状の締め付け手段とからなり、前記推進力伝達手段は、前記受け口の端面に当接し、前記後行管の押し込み力を前記先行管に伝達する推進力伝達部材と、前記締め付け手段に固定されたブラケットと、前記さや管内において前記後行管を支持する支持部材と、前記支持部材を前記ブラケットに固定する、一端が前記ブラケットに取り付けられた固定軸とからなり、前記固定軸の他端は、前記推進力伝達部材に形成された長孔の一方端に抜け出し不可に挿入され、前記固定軸の前記他端が挿入された前記長孔は、仕切壁により仕切られ、前記締め付け手段と前記受け口の端面との間には、隙間が形成され、前記推進力伝達部材に過大な押し込み力が作用した場合に、前記固定軸により前記仕切壁が破断することに特徴を有するものである。 The invention according to claim 1 is a seismic pipe propulsion for laying a new pipe in the sheath pipe by sequentially pushing the pipes joined by fitting the insertion port of the trailing pipe into the socket of the preceding pipe into the sheath pipe. In the propulsion force transmission device used in the laying method, a plurality of propulsion force transmission means arranged at intervals along the outer peripheral surface of the insertion port and a ring shape fixed to the outer peripheral surface of the insertion port. The propulsive force transmitting means includes a propulsive force transmitting member that abuts on the end surface of the receiving port and transmits the pushing force of the trailing pipe to the preceding pipe, and a bracket fixed to the tightening means. A support member that supports the trailing pipe in the sheath pipe and a fixed shaft that fixes the support member to the bracket, one end of which is attached to the bracket, and the other end of the fixed shaft is the propulsion. The elongated hole, which is inserted into one end of the elongated hole formed in the force transmitting member so as not to be pulled out and the other end of the fixed shaft is inserted, is partitioned by a partition wall, and the tightening means and the end surface of the receiving port are A gap is formed between the two, and when an excessive pushing force is applied to the propulsive force transmitting member, the partition wall is broken by the fixed shaft.

請求項2に記載の発明は、請求項1に記載の発明において、前記締め付け手段は、一本のバンドと、前記バンドを締め付ける締め付け具からなっていることに特徴を有するものである。 The invention according to claim 2 is characterized in that, in the invention according to claim 1, the tightening means includes one band and a tightening tool for tightening the band.

請求項3に記載の発明は、請求項1に記載の発明において、前記締め付け手段は、複数本のバンドと、前記バンド同士を締め付ける締め付け具とからなっていることに特徴を有するものである。 The invention according to claim 3 is characterized in that, in the invention according to claim 1, the tightening means includes a plurality of bands and a tightening tool for tightening the bands.

請求項4に記載の発明は、請求項2または3記載の発明において、前記締め付け具は、前記バンドの端部間に通されるボルトと、前記ボルトに螺合するナットとからなることに特徴を有するものである。 The invention according to claim 4 is characterized in that, in the invention according to claim 2 or 3, the fastener comprises a bolt passed between the ends of the band and a nut screwed onto the bolt. It has.

請求項5に記載の発明は、請求項1から4の何れか1つに記載の発明において、前記推進力伝達手段は、2個以上であることに特徴を有するものである。 The invention according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the number of the propulsive force transmitting means is two or more.

請求項6に記載の発明は、請求項1から5の何れか1つに記載の発明において、前記支持部材は、車輪からなることに特徴を有するものである。 The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the support member is composed of wheels.

請求項7に記載の発明は、請求項1から6の何れか1つに記載の発明において、前記仕切壁には、破断用の溝が形成されていることに特徴を有するものである。 The invention according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 6, a groove for breaking is formed in the partition wall.

請求項8に記載の発明は、請求項1から7の何れか1つに記載の発明において、前記推進力伝達部材の先端部は、前記受け口の前記端面と当接するように折れ曲がっていることに特徴を有するものである。 The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the tip end portion of the propulsion force transmitting member is bent so as to be in contact with the end face of the receiving port. It has characteristics.

この発明によれば、挿し口の外周面に沿って間隔をあけて複数個の推進力伝達手段を配するとともに、締め付け手段と受け口の端面との間に隙間を形成することによって、地上で推進力伝達装置を後行管の挿し口に装着した後であっても、チェックゲージによりゴム輪の嵌め込み状態を確認することができるので、地上で推進力伝達装置の装着作業が行なえる。これによって、推進力伝達装置の装着作業と、地下での受け口への挿し口の嵌め込み作業とが別々に行えるので、地上で複数本の後行管の挿し口への推進力伝達装置の装着が行なえる。この結果、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 According to the present invention, a plurality of propulsive force transmitting means are arranged at intervals along the outer peripheral surface of the insertion port, and a gap is formed between the tightening means and the end surface of the receiving port to propel the thrust on the ground. Even after the force transmission device is attached to the insertion port of the trailing pipe, the fitted state of the rubber ring can be confirmed by the check gauge, so that the propulsion force transmission device can be attached on the ground. As a result, the work of attaching the propulsion force transmission device and the work of fitting the insertion port into the socket in the basement can be performed separately, so that the propulsion force transmission device can be attached to the insertion holes of multiple trailing pipes on the ground. You can do it. As a result, the total work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、この発明によれば、地下での推進力伝達装置の装着作業は、作業空間が狭いことから時間を要するが、地上で推進力伝達装置の装着作業が行なえるので、地下では受け口への挿し口の嵌め込み作業とチェックゲージによる確認作業のみですむ。この結果、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 Further, according to the present invention, the installation work of the propulsion force transmission device underground requires time because the work space is narrow, but the installation work of the propulsion force transmission device can be performed on the ground, so that the installation work of the propulsion force transmission device can be performed underground. All you have to do is insert the insertion slot and check with the check gauge. As a result, the total work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、この発明によれば、締め付け手段と推進力伝達部材とを別体とすることによって、締め付け手段による固定力と、推進力伝達部材の仕切壁の強度との力関係を、予め切り離して設定することが可能になるので、作業時に締め付け手段のバンドの締結力にバラツキが生じても、推進力を受ける推進力伝達部材の強度を一定に維持することができる。 Further, according to the present invention, by separating the tightening means and the propulsive force transmitting member, the force relationship between the fixing force by the tightening means and the strength of the partition wall of the propulsive force transmitting member is set separately in advance. Therefore, even if the fastening force of the band of the tightening means varies during work, the strength of the propulsive force transmitting member that receives the propulsive force can be maintained constant.

また、この発明によれば、締め付け手段のバンドの締め付けボルトが、支持部材である車輪の車輪軸と同軸になっていないので、同軸の場合の問題点、すなわち、管重量や推進抵抗がボルトに負荷をかけ、管への固定力に影響を及ぼすといった問題は生じない。すなわち、別軸とすることによって、推進時の挙動があっても当初の固定力を保持することができる。 Further, according to the present invention, since the tightening bolt of the band of the tightening means is not coaxial with the wheel shaft of the wheel which is the support member, the problem in the case of coaxial, that is, the pipe weight and the propulsion resistance become the bolt. There is no problem of applying a load and affecting the fixing force to the pipe. That is, by using a separate axis, the initial fixing force can be maintained even if there is behavior during propulsion.

また、この発明によれば、推進力伝達部材に過大な押し込み力が作用した場合において、仕切壁が破断することによって挿し口の押し込み方向の変位を許容し、締め付け手段は、挿し口に対して滑る構造になっていないので、管の外周面に傷を付けるおそれはない。 Further, according to the present invention, when an excessive pushing force is applied to the propulsive force transmitting member, the partition wall is broken to allow displacement of the insertion port in the pushing direction, and the tightening means is provided with respect to the insertion port. Since it is not a slippery structure, there is no risk of damaging the outer peripheral surface of the pipe.

また、この発明によれば、管接合部直後に支持部材としての車輪が存在するので、さや管がカーブしている場合等の軌道変化に対応しやすく、追従性が良くなる。従来推進敷設工法においては、推力伝達部材の後部に推力伝達装置(図9参照)があり、それに車輪が設置しているので、管接合部から遠い位置に車輪が存在することから屈曲部等では先行管への後行管の追従性が悪い。 Further, according to the present invention, since the wheel as a support member exists immediately after the pipe joint, it is easy to respond to a trajectory change such as when the sheath pipe is curved, and the followability is improved. In the conventional propulsion laying method, there is a thrust transmission device (see Fig. 9) at the rear of the thrust transmission member, and the wheels are installed on it. Therefore, since the wheels are located far from the pipe joint, the bent part or the like Poor followability of the trailing pipe to the leading pipe.

また、この発明によれば、推進力伝達装置のバンドの外面に車輪を設けないことによって、車輪の径を大きくすることができるので、その分、車輪のころがり摩擦抵抗を小さくすることができ、推進力伝達に有利となる。 Further, according to the present invention, since the diameter of the wheel can be increased by not providing the wheel on the outer surface of the band of the propulsion force transmitting device, the rolling frictional resistance of the wheel can be reduced accordingly. It is advantageous for propulsion transmission.

この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す部分断面斜視図である。It is a partial cross-sectional perspective view which shows the pipe joint part which attached the propulsion force transmission device for seismic pipe propulsion laying method of this invention. この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す別の部分断面斜視図である。It is another partial cross-sectional perspective view which shows the pipe joint part which attached the propulsion force transmission device for seismic tube propulsion laying method of this invention. この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す横断面図である。It is sectional drawing which shows the pipe joint part which attached the propulsion force transmission device for the seismic tube propulsion laying method of this invention. この発明の耐震管推進敷設工法用推進力伝達装置を示す斜視図である。It is a perspective view which shows the propulsion force transmission device for the seismic tube propulsion laying method of this invention. この発明の耐震管推進敷設工法用推進力伝達装置を示す部分斜視図である。It is a partial perspective view which shows the propulsion force transmission device for the seismic tube propulsion laying method of this invention. この発明の耐震管推進敷設工法用推進力伝達装置の推進力伝達部材を示す斜視図である。It is a perspective view which shows the propulsion force transmission member of the propulsion force transmission device for seismic tube propulsion laying method of this invention. さや管内の、この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す斜視図である。It is a perspective view which shows the pipe joint part which attached the propulsion force transmission device for the seismic tube propulsion laying method of this invention in a sheath pipe. 推進力伝達部材に過大な押し込み力が作用した場合の推進力伝達部材の移動状態を示す横断面図であり、(a)は、仕切壁の破壊前の状態を示し、(b)は、仕切壁の破壊後の状態を示し、(c)は、推進力伝達部材の移動終了の状態を示す。It is a cross-sectional view which shows the moving state of a propulsion force transmission member when an excessive pushing force acts on a propulsion force transmission member, (a) shows the state before breaking of a partition wall, and (b) is a partition. The state after the destruction of the wall is shown, and (c) shows the state where the movement of the propulsion force transmitting member is completed. 従来推進敷設工法により受け口内に挿し口が挿入された管接合部を示す部分断面図である。It is a partial cross-sectional view which shows the pipe joint part which inserted the insertion opening in the socket by the conventional propulsion laying method. 図9のA−A線断面図である。9 is a cross-sectional view taken along the line AA of FIG. チェックゲージを示す平面図である。It is a top view which shows the check gauge. チェックゲージによるゴム輪の挿入状態の確認方法を示す断面図である。It is sectional drawing which shows the method of confirming the insertion state of the rubber ring by a check gauge.

次に、この発明の耐震管推進敷設工法用推進力伝達装置の一実施態様を、図面を参照しながら説明する。 Next, an embodiment of the propulsion force transmission device for the seismic tube propulsion laying method of the present invention will be described with reference to the drawings.

図1は、この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す部分断面斜視図、図2は、この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す別の部分断面斜視図、図3は、この発明の耐震管推進敷設工法用推進力伝達装置を装着した管接合部を示す横断面図、図4は、この発明の耐震管推進敷設工法用推進力伝達装置を示す斜視図、図5は、この発明の耐震管推進敷設工法用推進力伝達装置を示す部分斜視図、図6は、この発明の耐震管推進敷設工法用推進力伝達装置の推進力伝達部材を示す斜視図である。 FIG. 1 is a partial cross-sectional perspective view showing a pipe joint equipped with the propulsion force transmission device for the seismic tube propulsion laying method of the present invention, and FIG. 2 is a partial cross-sectional perspective view showing the propulsion force transmission device for the seismic tube propulsion laying method of the present invention. Another partial cross-sectional perspective view showing the pipe joint, FIG. 3 is a cross-sectional view showing the pipe joint equipped with the propulsion force transmission device for the seismic pipe propulsion laying method of the present invention, and FIG. 4 is the seismic pipe of the present invention. A perspective view showing the propulsion force transmission device for the propulsion laying method, FIG. 5 is a partial perspective view showing the propulsion force transmission device for the seismic tube propulsion laying method of the present invention, and FIG. 6 is a propulsion for the seismic tube propulsion laying method of the present invention. It is a perspective view which shows the propulsion force transmission member of a force transmission device.

図1から図6において、1は、先行管2の受け口、3は、先端部に抜止め用突起4が形成された、後行管5の挿し口、6は、受け口1の内周面に形成されたロックリング用溝7(図3参照)内に、芯出し用リング8を介して嵌め込まれたロックリング、9は、受け口1の内周面に形成されたゴム輪用溝10(図3参照)内に嵌め込まれたゴム輪、11は、この発明の推進力伝達装置である。 1 to 6, 1 is a socket of the leading pipe 2, 3 is an insertion port of a trailing pipe 5 having a retaining protrusion 4 formed at the tip, and 6 is an inner peripheral surface of the socket 1. The lock ring 9 is fitted into the formed lock ring groove 7 (see FIG. 3) via the centering ring 8. The rubber ring groove 10 (FIG. 3) is formed on the inner peripheral surface of the receiving port 1. The rubber ring 11 fitted in (see 3) is the propulsion force transmitting device of the present invention.

この発明の推進力伝達装置11は、挿し口3の外周面に装着されるリング状の締め付け手段12と、挿し口3の外周面に沿って間隔をあけて配される複数個(この例では3個)の推進力伝達手段13とからなっている。 The propulsion force transmission device 11 of the present invention includes a ring-shaped tightening means 12 mounted on the outer peripheral surface of the insertion port 3 and a plurality of propulsion force transmission devices 11 arranged at intervals along the outer peripheral surface of the insertion port 3 (in this example). It is composed of three) propulsion force transmitting means 13.

締め付け手段12は、一本のバンド14と、バンド14を締め付ける締め付け具としてのボルト15とナット16とからなっている。ボルト15は、バンド14の両端に通され、ボルト15に螺合するナット16を締めることによって、バンド14が締め付けられる。なお、締め付け手段12は、複数本のバンド14同士を締め付け具としてのボルト15とナット16とによりリング状に連結したものであってもよい。 The tightening means 12 includes one band 14, a bolt 15 and a nut 16 as tightening tools for tightening the band 14. The bolt 15 is passed through both ends of the band 14, and the band 14 is tightened by tightening the nut 16 screwed into the bolt 15. The tightening means 12 may have a plurality of bands 14 connected to each other in a ring shape by bolts 15 and nuts 16 as tightening tools.

推進力伝達手段13は、受け口1の端面1aに当接し、後行管5の押し込み力を先行管2に伝達する推進力伝達部材17と、締め付け手段12の外面に固定されたブラケット18と、さや管19(図7参照)内において後行管5を支持する支持部材としての車輪20と、車輪20をブラケット18に回転可能に固定する、一端がブラケット18に取り付けられた固定軸21とからなっている。推進力伝達部材17の先端部は、受け口1の端面1aと当接するように直角に折れ曲がっている。 The propulsion force transmitting means 13 includes a propulsion force transmitting member 17 that abuts on the end surface 1a of the receiving port 1 and transmits the pushing force of the trailing pipe 5 to the leading pipe 2, and a bracket 18 fixed to the outer surface of the tightening means 12. From the wheel 20 as a support member for supporting the trailing pipe 5 in the sheath pipe 19 (see FIG. 7) and the fixed shaft 21 having one end attached to the bracket 18 for rotatably fixing the wheel 20 to the bracket 18. It has become. The tip of the propulsion force transmitting member 17 is bent at a right angle so as to come into contact with the end surface 1a of the receiving port 1.

固定軸21は、ボルトからなり、固定軸21の他端は、推進力伝達部材17に形成された長孔17aの一方端に、ナット22により抜け出し不可に挿入されている。固定軸21の他端が挿入された長孔17aは、過大な押し込み力により破断する仕切壁23により仕切られ、これによって、固定軸21の他端は、推進力伝達部材17の長孔17aに保持され、推進力伝達部材17は、仕切壁23が過大な押し込み力により破壊された場合、ブラケット18に対して長孔17aの長さ分だけ後退可能になっている。仕切壁23は、推進力伝達部材17と一体に形成しても、別体としてもよい。また、仕切壁23に破断用の溝を形成しておいてもよい。 The fixed shaft 21 is made of a bolt, and the other end of the fixed shaft 21 is inserted into one end of an elongated hole 17a formed in the propulsion force transmitting member 17 so as not to be pulled out by a nut 22. The elongated hole 17a into which the other end of the fixed shaft 21 is inserted is partitioned by a partition wall 23 that breaks due to an excessive pushing force, whereby the other end of the fixed shaft 21 is inserted into the elongated hole 17a of the propulsive force transmitting member 17. The propulsion force transmitting member 17 is held and can be retracted by the length of the elongated hole 17a with respect to the bracket 18 when the partition wall 23 is broken by an excessive pushing force. The partition wall 23 may be formed integrally with the propulsion force transmitting member 17 or may be a separate body. Further, a groove for breaking may be formed in the partition wall 23.

上述したように推進力伝達手段13を構成することによって、締め付け手段12と受け口1の端面1aとの間には、チェックゲージ48を挿入するための隙間(T1)(図3参照)が形成される。 By configuring the propulsion force transmitting means 13 as described above, a gap (T1) (see FIG. 3) for inserting the check gauge 48 is formed between the tightening means 12 and the end surface 1a of the receiving port 1. To.

また、車輪20は、締め付け手段12のボルト15を軸にして取り付けられていないので、先行管2の重量や管推進抵抗がボルト15に作用することはない。この結果、挿し口3への締め付け手段12の固定力が低下するおそれはない。すなわち、別軸とすることによって、推進時の挙動があっても当初の固定力を保持することができる。 Further, since the wheel 20 is not attached around the bolt 15 of the tightening means 12, the weight of the preceding pipe 2 and the pipe propulsion resistance do not act on the bolt 15. As a result, there is no risk that the fixing force of the tightening means 12 to the insertion port 3 will decrease. That is, by using a separate axis, the initial fixing force can be maintained even if there is behavior during propulsion.

次に、この発明の推進力伝達装置11を使用した耐震管推進敷設工法について説明する。 Next, a seismic tube propulsion laying method using the propulsion force transmission device 11 of the present invention will be described.

この発明の推進力伝達装置11を使用した耐震管推進敷設工法により管を接合するには、地上で後行管5の挿し口3に推進力伝達装置11を固定する。すなわち、締め付け手段12のバンド14をボルト15とナット16とにより締め付けて、推進力伝達装置11を挿し口3に固定する。 In order to join the pipes by the seismic pipe propulsion laying method using the propulsion force transmission device 11 of the present invention, the propulsion force transmission device 11 is fixed to the insertion port 3 of the trailing pipe 5 on the ground. That is, the band 14 of the tightening means 12 is tightened by the bolt 15 and the nut 16, and the propulsive force transmission device 11 is fixed to the insertion port 3.

推進力伝達装置11の固定位置は、挿し口3を受け口1に嵌め込んだときに、先行管2と後行管5との管接合部が伸縮可能となる位置で、推進力伝達手段13の先端部が受け口1の端面1aに当接する位置とする。 The fixed position of the propulsion force transmitting device 11 is a position where the pipe joint between the leading pipe 2 and the trailing pipe 5 can be expanded and contracted when the insertion port 3 is fitted into the receiving port 1, and the propulsive force transmitting means 13 The position where the tip portion abuts on the end surface 1a of the receiving port 1 is set.

このようにして、地上で推進力伝達装置11を後行管5の挿し口3に固定したら、後行管5を地下に吊り下ろして、先行管2の受け口1に嵌め込む。これによって、先行管2と後行管5とが、管接合部に収縮代T2(図3参照)を維持した状態で接合される。 In this way, after the propulsive force transmission device 11 is fixed to the insertion port 3 of the trailing pipe 5 on the ground, the trailing pipe 5 is hung underground and fitted into the receiving port 1 of the leading pipe 2. As a result, the leading pipe 2 and the trailing pipe 5 are joined in a state where the contraction allowance T2 (see FIG. 3) is maintained at the pipe joining portion.

このようにして、先行管2と後行管5とを接合したら、チェックゲージ48(図10参照)を、締め付け手段12と受け口1の端面1aとの間の隙間(T1)(図3参照)から受け口1内に挿入して、ゴム輪9が正しい位置にあるか否かを判断する(図12参照)。 After joining the leading pipe 2 and the trailing pipe 5 in this way, the check gauge 48 (see FIG. 10) is fitted with a gap (T1) (see FIG. 3) between the tightening means 12 and the end surface 1a of the receiving port 1. It is inserted into the socket 1 to determine whether or not the rubber ring 9 is in the correct position (see FIG. 12).

このようにして、チェックゲージ48を受け口1の全周に亘ってゴム輪9に到達するまで挿入することができるので、チェックゲージ48によりゴム輪9の嵌め込み状態を確実に確認することができる。 In this way, the check gauge 48 can be inserted all around the receiving port 1 until it reaches the rubber ring 9, so that the check gauge 48 can reliably confirm the fitted state of the rubber ring 9.

このように、地上で推進力伝達装置11の装着作業が行なえるので、推進力伝達装置11の装着作業と、地下での受け口1への挿し口3の嵌め込み作業とが別々に行える。この結果、地上で複数本の後行管5の挿し口3への推進力伝達装置11の装着が行なえるので、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 Since the propulsion force transmission device 11 can be mounted on the ground in this way, the propulsion force transmission device 11 mounting work and the underground fitting work of the insertion port 3 into the receiving port 1 can be performed separately. As a result, since the propulsion force transmission device 11 can be attached to the insertion port 3 of the plurality of trailing pipes 5 on the ground, the total work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、地下での推進力伝達装置11の装着作業は、作業空間が狭いことから時間を要するが、地上で推進力伝達装置11の装着作業が行なえるので、地下では受け口1への挿し口3の嵌め込み作業とチェックゲージ48による確認作業のみですむ。この結果、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 Further, the installation work of the propulsion force transmission device 11 underground requires time because the work space is narrow, but since the installation work of the propulsion force transmission device 11 can be performed on the ground, the insertion port 3 to the socket 1 is underground. Only the fitting work and the confirmation work with the check gauge 48 are required. As a result, the total work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

この発明の推進力伝達装置11を使用した耐震管推進敷設工法によれば、さや管19内への管敷設の際の後行管5の推進力は、後行管5の挿し口3に、締め付け手段12を介して取り付けられた推進力伝達部材17により先行管2に伝達することができる。すなわち、図8(a)に示すように、推進力伝達部材17が受け口1の端面1aに当接することによって、先行管2に伝達することができる。 According to the seismic pipe propulsion laying method using the propulsion force transmission device 11 of the present invention, the propulsive force of the trailing pipe 5 when laying the pipe in the sheath pipe 19 is applied to the insertion port 3 of the trailing pipe 5. It can be transmitted to the leading pipe 2 by the propulsion force transmitting member 17 attached via the tightening means 12. That is, as shown in FIG. 8A, the propulsive force transmitting member 17 can be transmitted to the leading pipe 2 by abutting on the end surface 1a of the receiving port 1.

一方、地震等により管の推進力を超える過大な押し込み力が管接合部に作用した場合には、図8(b)に示すように、推進力伝達部材17の長孔17a内に挿入された固定軸21が仕切壁23を破壊し、図8(c)に示すように、長孔17aの長さ分だけ後退する。この結果、管接合部は、収縮代T2(図3参照)だけ収縮することになる。 On the other hand, when an excessive pushing force exceeding the propulsive force of the pipe acts on the pipe joint due to an earthquake or the like, it is inserted into the elongated hole 17a of the propulsive force transmitting member 17 as shown in FIG. 8 (b). The fixed shaft 21 breaks the partition wall 23 and retracts by the length of the elongated hole 17a as shown in FIG. 8C. As a result, the pipe joint contracts by the contraction allowance T2 (see FIG. 3).

また、管接合部に過大な引っ張り力が作用した場合には、挿し口3の抜け止め用突起4がロックリング6に当接するまで管接合部が伸びる。図3に、管接合部の伸び代をT3で示す。 Further, when an excessive tensile force acts on the pipe joint, the pipe joint extends until the retaining protrusion 4 of the insertion port 3 comes into contact with the lock ring 6. In FIG. 3, the extension allowance of the pipe joint is shown by T3.

なお、この発明の推進力伝達装置11を使用した耐震管推進敷設工法では、工事の都合により地上で作業スペースがない場合でも、従来工法と同様の作業により、地下での推進力伝達装置11の装着も可能である。 In the seismic tube propulsion laying method using the propulsion force transmission device 11 of the present invention, even if there is no work space on the ground due to construction reasons, the propulsion force transmission device 11 in the underground can be operated in the same manner as the conventional method. It can also be installed.

以上説明したように、この発明によれば、挿し口3の外周面に沿って間隔をあけ複数個の推進力伝達手段13を配するとともに、締め付け手段12と受け口1の端面との間に隙間(T1)を形成することによって、地上で推進力伝達装置11を後行管5の挿し口3に装着した後であっても、チェックゲージ48によりゴム輪9の嵌め込み状態を確認することができるので、地上で推進力伝達装置11の装着作業が行なえる。これによって、推進力伝達装置11の装着作業と、地下での受け口1への挿し口3の嵌め込み作業とが別々に行えるので、地上で複数本の後行管5の挿し口3への推進力伝達装置11の装着が行なえる。この結果、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 As described above, according to the present invention, a plurality of propulsive force transmitting means 13 are arranged at intervals along the outer peripheral surface of the insertion port 3, and a gap is provided between the tightening means 12 and the end surface of the receiving port 1. By forming (T1), the fitted state of the rubber ring 9 can be confirmed by the check gauge 48 even after the propulsive force transmission device 11 is mounted on the insertion port 3 of the trailing pipe 5 on the ground. Therefore, the installation work of the propulsion force transmission device 11 can be performed on the ground. As a result, the work of mounting the propulsion force transmission device 11 and the work of fitting the insertion port 3 into the receiving port 1 underground can be performed separately, so that the propulsive force of a plurality of trailing pipes 5 to the insertion port 3 on the ground can be performed separately. The transmission device 11 can be attached. As a result, the total work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、この発明によれば、地下での推進力伝達装置11の装着作業は、作業空間が狭いことから時間を要するが、地上で推進力伝達装置11の装着作業が行なえるので、地下では受け口1への挿し口3の嵌め込み作業とチェックゲージ48による確認作業のみですむ。この結果、管接合に要する全体の作業時間が短縮される。特に、地下で行う作業時間が大幅に短縮される。 Further, according to the present invention, the installation work of the propulsion force transmission device 11 underground requires time because the work space is narrow, but the installation work of the propulsion force transmission device 11 can be performed on the ground, so that the socket is underground. All that is required is the work of fitting the insertion port 3 into 1 and the work of checking with the check gauge 48. As a result, the total work time required for pipe joining is shortened. In particular, the work time performed underground is greatly reduced.

また、この発明によれば、締め付け手段12と推進力伝達部材17とを別体とすることによって、締め付け手段12による固定力と、推進力伝達部材17の仕切壁23の強度との力関係を、予め切り離して設定することが可能になるので、作業時に締め付け手段12のバンド14の締結力にバラツキが生じても、一定の推進力を維持することができる。 Further, according to the present invention, by separating the tightening means 12 and the propulsive force transmitting member 17, the force relationship between the fixing force of the tightening means 12 and the strength of the partition wall 23 of the propulsive force transmitting member 17 can be determined. Since it is possible to separate and set in advance, it is possible to maintain a constant propulsive force even if the fastening force of the band 14 of the tightening means 12 varies during work.

また、この発明によれば、締め付け手段12のバンド14の締め付けボルト15が車輪20の軸と同軸になっていないので、同軸の場合の問題点、すなわち、管重量や推進抵抗がボルトに負荷をかけ、管への固定力に影響を及ぼすといった問題は生じない。すなわち、別軸とすることによって、推進時の挙動があっても当初の固定力を保持することができる。 Further, according to the present invention, since the tightening bolt 15 of the band 14 of the tightening means 12 is not coaxial with the axis of the wheel 20, the problem in the case of coaxial, that is, the pipe weight and the propulsion resistance put a load on the bolt. There is no problem of affecting the fixing force to the pipe. That is, by using a separate axis, the initial fixing force can be maintained even if there is behavior during propulsion.

また、この発明によれば、推進力伝達部材17に過大な押し込み力が作用した場合において、仕切壁23が破壊することによって挿し口3の押し込み方向の変位を許容し、締め付け手段12は、挿し口3に対して滑る構造になっていないので、管の外周面に傷を付けるおそれはない。 Further, according to the present invention, when an excessive pushing force is applied to the propulsive force transmitting member 17, the partition wall 23 is broken to allow displacement of the insertion port 3 in the pushing direction, and the tightening means 12 is inserted. Since the structure does not slide with respect to the mouth 3, there is no risk of damaging the outer peripheral surface of the pipe.

また、この発明によれば、管接合部直後に支持部材としての車輪21が存在するので、軌道変化に対応しやすく、追従性が良くなる。 Further, according to the present invention, since the wheel 21 as a support member exists immediately after the pipe joint, it is easy to respond to a change in track and the followability is improved.

また、この発明によれば、推進力伝達装置11のバンド14の外面に車輪20を設けないことによって、車輪20の径を大きくすることができるので、その分、車輪20のころがり摩擦抵抗を小さくすることができ、推進力伝達に有利となる。 Further, according to the present invention, the diameter of the wheel 20 can be increased by not providing the wheel 20 on the outer surface of the band 14 of the propulsion force transmitting device 11, so that the rolling frictional resistance of the wheel 20 can be reduced accordingly. It is advantageous for propulsion transmission.

1:受け口
1a:端面
2:先行管
3:挿し口
4:抜け止め用突起
5:後行管
6:ロックリング
7:ロックリング用溝
8:芯出し用リング
9:ゴム輪
10:ゴム輪用溝
11:この発明の推進力伝達装置
12:締め付け手段
13:推進力伝達手段
14:バンド
15:ボルト
16:ナット
17:推進力伝達部材
17a:長孔
18:ブラケット
19:さや管
20:車輪
21:固定軸
22:ナット
23:仕切壁
31:受け口
32:先行管
33:挿し口
34:抜け止め用突起
35:後行管
36:ロックリング
37:ロックリング用溝
38:芯出し用リング
39:ゴム輪
40:ゴム輪用溝
41:推進力伝達装置
42:防護リング
43:さや管
44:車輪
45:ボルト
46:フランジ
47:推力伝達部材
48:チェックゲージ
1: Receptacle 1a: End face 2: Preceding pipe 3: Insertion port 4: Protrusion for retaining 5: Trailing pipe 6: Lock ring 7: Groove for lock ring
8: Centering ring 9: Rubber ring 10: Rubber ring groove 11: Propulsion force transmission device of the present invention 12: Tightening means 13: Propulsion force transmission means 14: Band 15: Bolt 16: Nut 17: Propulsion force transmission member 17a: Long hole 18: Bracket 19: Scabbard 20: Wheel 21: Fixed shaft 22: Nut 23: Partition wall 31: Receptacle 32: Leading pipe 33: Insertion 34: Retaining protrusion 35: Trailing pipe 36: Lock Ring 37: Lock ring groove 38: Centering ring 39: Rubber ring 40: Rubber ring groove 41: Propulsion force transmission device 42: Protective ring 43: Sheath tube 44: Wheel 45: Bolt 46: Flange 47: Thrust transmission Member 48: Check gauge

Claims (8)

先行管の受け口に後行管の挿し口を嵌め込むことにより接合した管を、順次、さや管内に押し込んで、新設管を前記さや管内に敷設する耐震管推進敷設工法に使用される推進力伝達装置において、
前記挿し口の外周面に沿って間隔をあけて配される複数個の推進力伝達手段と、前記挿し口の外周面に固定されるリング状の締め付け手段とからなり、前記推進力伝達手段は、前記受け口の端面に当接し、前記後行管の押し込み力を前記先行管に伝達する推進力伝達部材と、前記締め付け手段に固定されたブラケットと、前記さや管内において前記後行管を支持する支持部材と、前記支持部材を前記ブラケットに固定する、一端が前記ブラケットに取り付けられた固定軸とからなり、前記固定軸の他端は、前記推進力伝達部材に形成された長孔の一方端に抜け出し不可に挿入され、前記固定軸の前記他端が挿入された前記長孔は、仕切壁により仕切られ、前記締め付け手段と前記受け口の端面との間には、隙間が形成され、前記推進力伝達部材に過大な押し込み力が作用した場合に、前記固定軸により前記仕切壁が破断することを特徴とする耐震管推進敷設工法用推進力伝達装置。
Propulsion transmission used in the seismic tube propulsion laying method in which new pipes are laid in the sheath pipe by sequentially pushing the pipes joined by fitting the insertion port of the trailing pipe into the socket of the preceding pipe into the sheath pipe. In the device
The propulsive force transmitting means is composed of a plurality of propulsive force transmitting means arranged at intervals along the outer peripheral surface of the insertion port and a ring-shaped tightening means fixed to the outer peripheral surface of the insertion port. Supports the trailing pipe in the sheath pipe, a propulsion force transmitting member that comes into contact with the end face of the receiving port and transmits the pushing force of the trailing pipe to the leading pipe, a bracket fixed to the tightening means, and the sheath pipe. It consists of a support member and a fixed shaft having one end attached to the bracket for fixing the support member to the bracket, and the other end of the fixed shaft is one end of an elongated hole formed in the propulsive force transmission member. The elongated hole into which the other end of the fixed shaft is inserted is partitioned by a partition wall, and a gap is formed between the tightening means and the end face of the receiving port to form the propulsion. A propulsion force transmission device for a seismic pipe propulsion laying method, characterized in that the partition wall is broken by the fixed shaft when an excessive pushing force is applied to the force transmission member.
前記締め付け手段は、一本のバンドと、前記バンドを締め付ける締め付け具からなっていることを特徴とする、請求項1に記載の耐震管推進敷設工法用推進力伝達装置。 The propulsive force transmission device for a seismic tube propulsion laying method according to claim 1, wherein the tightening means includes one band and a tightening tool for tightening the band. 前記締め付け手段は、複数本のバンドと、前記バンド同士を締め付ける締め付け具とからなっていることを特徴とする、請求項1に記載の耐震管推進敷設工法用推進力伝達装置。 The propulsion force transmission device for a seismic tube propulsion laying method according to claim 1, wherein the tightening means includes a plurality of bands and a tightening tool for tightening the bands. 前記締め付け具は、前記バンドの端部間に通されるボルトと、前記ボルトに螺合するナットとからなることを特徴とする、請求項2または3に記載の耐震管推進敷設工法用推進力伝達装置。 The propulsive force for the seismic tube propulsion laying method according to claim 2 or 3, wherein the fastener comprises a bolt passed between the ends of the band and a nut screwed into the bolt. Transmission device. 前記推進力伝達手段は、2個以上であることを特徴とする、請求項1から4の何れか1つに記載の耐震管推進敷設工法用推進力伝達装置。 The propulsion force transmission device for a seismic tube propulsion laying method according to any one of claims 1 to 4, wherein the propulsion force transmission means is two or more. 前記支持部材は、車輪からなることを特徴とする、請求項1から5の何れか1つに記載の耐震管推進敷設工法用推進力伝達装置。 The propulsion force transmission device for a seismic tube propulsion laying method according to any one of claims 1 to 5, wherein the support member is composed of wheels. 前記仕切壁には、破断用の溝が形成されていることを特徴とする、請求項1から6の何れか1つに記載の耐震管推進敷設工法用推進力伝達装置。 The propulsion force transmission device for a seismic tube propulsion laying method according to any one of claims 1 to 6, wherein a groove for breaking is formed in the partition wall. 前記推進力伝達部材の先端部は、前記受け口の前記端面と当接するように折れ曲がっていることを特徴とする、請求項1から7の何れか1つに記載の耐震管推進敷設工法用推進力伝達装置。 The propulsive force for the seismic tube propulsion laying method according to any one of claims 1 to 7, wherein the tip end portion of the propulsive force transmitting member is bent so as to abut the end surface of the receiving port. Transmission device.
JP2019046037A 2019-03-13 2019-03-13 Propulsion force transmission device for seismic pipe propulsion installation method Active JP7299042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019046037A JP7299042B2 (en) 2019-03-13 2019-03-13 Propulsion force transmission device for seismic pipe propulsion installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046037A JP7299042B2 (en) 2019-03-13 2019-03-13 Propulsion force transmission device for seismic pipe propulsion installation method

Publications (2)

Publication Number Publication Date
JP2020148256A true JP2020148256A (en) 2020-09-17
JP7299042B2 JP7299042B2 (en) 2023-06-27

Family

ID=72431885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046037A Active JP7299042B2 (en) 2019-03-13 2019-03-13 Propulsion force transmission device for seismic pipe propulsion installation method

Country Status (1)

Country Link
JP (1) JP7299042B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159370A (en) * 2019-03-25 2020-10-01 日本鋳鉄管株式会社 Propulsive force transmission device for earthquake-resistant pipe propulsion laying method
CN113175561A (en) * 2021-03-15 2021-07-27 中国一冶集团有限公司 Anti-tilting device and pipe jacking system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985726U (en) * 1972-11-15 1974-07-25
JPS59164434U (en) * 1983-04-19 1984-11-05 大同電機工業株式会社 Tension clamp for strain relief
JP2002059853A (en) * 2000-08-18 2002-02-26 Yamada Seisakusho Co Ltd Rotational support structure of tilt steering
JP2002309890A (en) * 2001-04-18 2002-10-23 Kubota Corp Earthquake-resisting pipe joint for pipe jacking method having pipe-jacking jig
JP2003202093A (en) * 2001-10-30 2003-07-18 Kubota Corp Quake-resistant pipe joint in sheath pipe propelling construction method
JP2003214087A (en) * 2002-01-22 2003-07-30 Kubota Corp Antiseismic pipe joint for jacking method
JP2006322611A (en) * 2005-04-22 2006-11-30 Kurimoto Ltd Sheath pipe jacking method
JP2011163434A (en) * 2010-02-09 2011-08-25 Kurimoto Ltd Caster for jacking method
JP2013102583A (en) * 2011-11-08 2013-05-23 Chugoku Electric Power Co Inc:The Impact load relaxation device of wiring
JP2016164420A (en) * 2015-03-06 2016-09-08 株式会社栗本鐵工所 Sheath pipe jacking construction method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985726U (en) * 1972-11-15 1974-07-25
JPS59164434U (en) * 1983-04-19 1984-11-05 大同電機工業株式会社 Tension clamp for strain relief
JP2002059853A (en) * 2000-08-18 2002-02-26 Yamada Seisakusho Co Ltd Rotational support structure of tilt steering
JP2002309890A (en) * 2001-04-18 2002-10-23 Kubota Corp Earthquake-resisting pipe joint for pipe jacking method having pipe-jacking jig
JP2003202093A (en) * 2001-10-30 2003-07-18 Kubota Corp Quake-resistant pipe joint in sheath pipe propelling construction method
JP2003214087A (en) * 2002-01-22 2003-07-30 Kubota Corp Antiseismic pipe joint for jacking method
JP2006322611A (en) * 2005-04-22 2006-11-30 Kurimoto Ltd Sheath pipe jacking method
JP2011163434A (en) * 2010-02-09 2011-08-25 Kurimoto Ltd Caster for jacking method
JP2013102583A (en) * 2011-11-08 2013-05-23 Chugoku Electric Power Co Inc:The Impact load relaxation device of wiring
JP2016164420A (en) * 2015-03-06 2016-09-08 株式会社栗本鐵工所 Sheath pipe jacking construction method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159370A (en) * 2019-03-25 2020-10-01 日本鋳鉄管株式会社 Propulsive force transmission device for earthquake-resistant pipe propulsion laying method
JP7199275B2 (en) 2019-03-25 2023-01-05 日本鋳鉄管株式会社 Propulsion force transmission device for seismic pipe propulsion installation method
CN113175561A (en) * 2021-03-15 2021-07-27 中国一冶集团有限公司 Anti-tilting device and pipe jacking system
CN113175561B (en) * 2021-03-15 2022-08-19 中国一冶集团有限公司 Anti-tilting device and pipe jacking system

Also Published As

Publication number Publication date
JP7299042B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
US6550819B2 (en) Pressure relieving arch having split pipe sleeves
JP2020148256A (en) Driving force transmission device for earthquake-resistant pipe propulsion laying method
JP7144241B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
US20180231145A1 (en) Clamp-on directional anchor
JP7199275B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP7213066B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP7397702B2 (en) Propulsion force transmission device for propulsion laying method
JP2019138449A (en) Earthquake proof pipe propulsion laying construction method and propulsive force transmission device
JP4421210B2 (en) Propulsion transmission device
JP4773745B2 (en) Seismic joint device for manhole
JP3441927B2 (en) Slip-on type earthquake-resistant pipe joint and its joining method
JPS6227594Y2 (en)
JP7284027B2 (en) Propulsion power transmission device for jacking laying method
JP3916413B2 (en) Pipe promotion method
JPH0236758B2 (en)
JP3821619B2 (en) Seismic joint structure for pipe-in-pipe method
JP3874678B2 (en) Pipe propulsion guide for sheath propulsion method and its attachment
JP2864206B2 (en) Packing for propulsion pipe
JP3652147B2 (en) Liner for earthquake-resistant pipe propulsion method
JPH0621995Y2 (en) Pipe for retracting method
JP3614292B2 (en) Anti-seismic propellant liner
JPH1047568A (en) Earthquake resistant pipe joint for cable laying pipe line
JP2880413B2 (en) Fixing method and fixture for propulsion pipe at shaft shaft
JP3916412B2 (en) Seismic pipe joint for propulsion method with propulsion jig
JP3713396B2 (en) Manhole fitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7299042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150