JP3441927B2 - Slip-on type earthquake-resistant pipe joint and its joining method - Google Patents

Slip-on type earthquake-resistant pipe joint and its joining method

Info

Publication number
JP3441927B2
JP3441927B2 JP19054297A JP19054297A JP3441927B2 JP 3441927 B2 JP3441927 B2 JP 3441927B2 JP 19054297 A JP19054297 A JP 19054297A JP 19054297 A JP19054297 A JP 19054297A JP 3441927 B2 JP3441927 B2 JP 3441927B2
Authority
JP
Japan
Prior art keywords
pipe
slip
lock ring
force
pipe joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19054297A
Other languages
Japanese (ja)
Other versions
JPH1122879A (en
Inventor
哲二 下保
芳樹 岡本
一郎 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP19054297A priority Critical patent/JP3441927B2/en
Publication of JPH1122879A publication Critical patent/JPH1122879A/en
Application granted granted Critical
Publication of JP3441927B2 publication Critical patent/JP3441927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水道、ガスならびに
下水道に用いる流体輸送用配管において、地震や水圧に
よる離脱や入り込みを防止する耐震管継手に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic resistant pipe joint for preventing separation and entry due to an earthquake or water pressure in a pipe for fluid transportation used for water supply, gas and sewerage.

【0002】[0002]

【従来の技術】スリップオンタイプによる継合は狭隘な
竪坑内へ作業員が入って不自然な姿勢で各部材を組合わ
せ締結作業を行なう手順から開放され、特に専用の装置
を準備すれば地上からの操作で管同士を継合していける
から、作業性の向上と安全作業の確保、省力化などの点
で高く評価される管路形成の方式である。
2. Description of the Related Art The slip-on type joint is freed from the procedure in which a worker enters a narrow vertical shaft and assembles each member in an unnatural posture to perform fastening work. Since the pipes can be spliced together by the operation from the above, this is a method of forming a pipeline that is highly evaluated in terms of improving workability, ensuring safe work, and saving labor.

【0003】しかし、敷設した後に地震などの直撃のた
めに激しい縦揺れ、横揺れに遭遇しても、相互の管継手
から離脱が生じて管路の機能を失わないように予防する
ことは最低限の要請である。その他、地盤の不同沈下や
重車両の通過に伴う一時的、または恒常的な動荷重、静
荷重によって地下に敷設された管路には常に縦・横方向
の外力が不均等に掛かり、かつ、異形管部においては水
圧による不平均力が作用するため、これらの応力に対応
できる構成を採らなければ、如何に敷設施工時に利点が
あったとしても到底信頼できる工法とは言い難い。
However, even if severe pitching and rolling are encountered due to a direct hit such as an earthquake after being laid, it is at least necessary to prevent the pipes from losing their function due to disconnection from each other. It is a limit request. In addition, temporary or constant dynamic load due to uneven settlement of the ground or passage of heavy vehicles, pipelines laid underground under static load always apply uneven external force in the vertical and horizontal directions, and Since a non-uniform force due to water pressure acts on the deformed pipe portion, it cannot be said that it is a reliable construction method even if there is an advantage in laying construction unless a structure that can cope with these stresses is adopted.

【0004】スリップオンタイプに使用する管継手につ
いてはこの課題を重視して離脱の防止と伸縮性に重点を
おいた種々の対案を提起している。たとえば、図4に示
す従来技術は実開平4−133090号に係り、受口1
01の開口端近くにロックリング溝102を周設してロ
ックリング103を嵌入し、さらに挿口104には挿口
リング105を固着し、受口内周面と挿口外周面間の中
空部にゴム輪106を介装して継合部の水密を維持する
構成としている。地震などの揺動が襲来して管同士の継
合を引抜く方向の応力が掛かって受口、挿口の相対的な
位置関係に変動が生じたたときでも、受口のロックリン
グ103と挿口の挿口リング105とが係合してそれ以
上の移動を阻止するから、管同士の離脱が防止され管の
機能を失うことがないと謳っている。
With respect to the pipe joint used for the slip-on type, various countermeasures have been proposed with emphasis on this problem and emphasis on prevention of disengagement and elasticity. For example, the conventional technique shown in FIG.
A lock ring groove 102 is provided near the opening end of 01, a lock ring 103 is fitted therein, and an insertion ring 105 is fixed to the insertion opening 104, in the hollow portion between the receiving inner peripheral surface and the insertion outer peripheral surface. A rubber ring 106 is interposed to maintain the watertightness of the joint. Even when a swing such as an earthquake strikes and stress is applied in the direction of pulling out the joint between the pipes, and the relative positional relationship between the socket and the socket changes, the lock ring 103 of the socket and It is stated that the insertion opening ring 105 of the insertion opening is engaged to prevent further movement, so that the tubes are prevented from being separated from each other and the function of the tubes is not lost.

【0005】図5の従来技術は実開平4−133091
号に係り、図(A)では通常の接合状態の各部材の位置
関係を示し、受口201に開口側突条202と深部に奥
側突条203をそれぞれ周設して奥側突条203の内側
にゴム輪204を嵌合する。一方、挿口205には凹溝
206を周設し、この凹溝内にロックリング207を嵌
め込んでいる。挿口の先端から受口の最深部までの距離
が図示のように入込み代L1と設定して管同士の位置決
めを行なっている。図(B)は管路が地震などの揺動を
受け継合している管軸方向へ引抜く応力が係ったときの
態様を示したもので、両管は水平方向に相対的に横滑離
脱防止、挿口の先端が移動して受口の最深部にまで達す
ると共に、受口の奥側突条203の開口側側面が挿口の
凹溝206に嵌入したロックリング207の先端側側面
と当接し、これ以上の移動を阻止するストッパーの役割
を果たすから、管同士が離脱して管路が中断する懸念が
なくなる効果が得られる。
The prior art shown in FIG.
(A) shows the positional relationship of each member in a normal joined state, and the opening side projection 202 and the deep side projection 203 are provided around the receiving port 201, respectively. The rubber ring 204 is fitted to the inside of the. On the other hand, a concave groove 206 is provided around the insertion opening 205, and a lock ring 207 is fitted in the concave groove. The distance from the tip of the insertion opening to the deepest part of the receiving opening is set as the insertion allowance L1 as shown in the figure to position the tubes. Figure (B) shows the situation when the pipe is subjected to the stress of pulling out in the axial direction of the pipe that has been joined due to shaking due to an earthquake, etc. Both pipes are relatively horizontal in the horizontal direction. Preventing slipping-off, the tip of the insertion opening moves to reach the deepest part of the receiving opening, and the opening-side side surface of the projection 203 on the back side of the receiving opening inserts into the concave groove 206 of the insertion opening. Since it plays a role of a stopper that comes into contact with the side surface and prevents further movement, it is possible to obtain an effect that there is no concern that the pipes are separated from each other and the pipeline is interrupted.

【0006】図6はパイプインパイプ工法の概要を示す
断面図であり、老朽化した既設管T1を取り替えるに当
り、従来のように管路全体を掘り起こして既設管T1を
取り出すと交通渋滞や通行の妨げとなって工事も煩瑣を
極め、きわめて非能率な作業となるので、最近ではコス
ト削減と工期短縮、および開削工法が不可能な幹線道路
や交差点などの管の更新を目的として、パイプインパイ
プ工法が注目され次第に多用される傾向にある。図のよ
うに既設管路の中間に発進坑301および到達坑302
の竪坑を地面から掘り下げ発進坑に露呈した既設管の一
部を取り除き、先端に先導ソリ303を装着した新管T
2を油圧ジャッキ304によって地中に埋設したままの
既設管の管内へ水平に押込んで推進し、次々と新管T2
を継ぎ足して旧管路の中に新管路を形成する非開削管路
敷設工法である。
FIG. 6 is a cross-sectional view showing the outline of the pipe-in-pipe construction method. When replacing an old pipe T1 that has deteriorated, if the existing pipe T1 is dug up and the existing pipe T1 is taken out as in the conventional case, traffic jams and traffic will occur. It is a very inefficient work because it hinders the construction work, and it is extremely inefficient work.Recently, pipes have been installed for the purpose of cost reduction, shortening the construction period, and updating pipes such as main roads and intersections where the excavation method is impossible. The pipe method tends to be used more and more as it gets more attention. As shown in the figure, the starting pit 301 and the reaching pit 302 are located in the middle of the existing pipeline.
The new pipe T, in which the vertical shaft was dug down from the ground, part of the existing pipe exposed at the starting shaft was removed, and the leading sled 303 was attached to the tip.
2 is pushed horizontally into the pipe of the existing pipe which is still buried in the ground by the hydraulic jack 304, and the new pipe T2 is successively pushed.
It is a non-excavation pipeline laying method in which a new pipeline is formed in the old pipeline.

【0007】この場合の管継手として、図7で示すよう
に挿口の外周面に比較的長い範囲に亘って挿口溝401
を設け、受口内面のロックリング溝402にロックリン
グ403を嵌合し、セットボルト404によってロック
リングを挿口溝の溝底に押し付けるように構成したPII
形ダクタイル鋳鉄管(JIS G 5526)が規定さ
れている。この構成によって前記の発進坑から水平の押
圧力が掛かっても、ロックリング403とロックリング
溝端部端部405が掛かり合うことにより押圧力が伝え
られ、既設管内部を新管が押し進められ、工法が円滑に
進行するとされている。
As a pipe joint in this case, as shown in FIG. 7, the insertion groove 401 is formed over a relatively long range on the outer peripheral surface of the insertion hole.
PII configured so that the lock ring 403 is fitted in the lock ring groove 402 on the inner surface of the receiving opening, and the lock ring is pressed against the groove bottom of the insertion opening groove by the set bolt 404.
A ductile cast iron pipe (JIS G 5526) is specified. With this configuration, even if a horizontal pressing force is applied from the starting shaft, the pressing force is transmitted by the lock ring 403 and the end portion 405 of the lock ring groove being engaged with each other, and the new pipe is pushed inside the existing pipe. Is said to proceed smoothly.

【0008】[0008]

【発明が解決しようとする課題】ここに例示した従来技
術は何れも管継手部に引抜く方向の外力が掛かったと
き、管軸方向に移動を許容する一定の範囲を設けて対応
するが、限度まで横滑りが進むと相互の凸部が当接して
ストッパの作用を果たし、限度以上の移動を妨げるか
ら、管の離脱防止の作用が働くことに疑問の余地がな
い。しかしながら、近年の大震災において水道水や家庭
用ガス、下水道の管路が甚大な被害を蒙り被災者に多大
の労苦を強いた状態を仔細に調べてみると、管路の破壊
は単純な管継手からの引抜き離脱だけには留まらず、さ
らに複雑な諸条件の合成された結果であると認識する必
要性が改めて問われるようになった。
In all of the prior arts illustrated here, when an external force in the pulling direction is applied to the pipe joint portion, a certain range for allowing movement in the pipe axis direction is provided to deal with the problem. There is no doubt that when the sideslip reaches the limit, the mutual convex portions come into contact with each other to act as a stopper and prevent movement beyond the limit, thus acting to prevent the pipe from coming off. However, a detailed examination of the situation in which the pipes for tap water, household gas, and sewer have suffered enormous damage due to the recent earthquake and tsunami, and the victims have suffered a great deal of labor, have found that pipe breakage is a simple pipe joint. The necessity of recognizing that it is a combined result of more complicated conditions has come to be questioned again.

【0009】たとえば図4の従来技術の場合であれば、
図8(A)のように挿口リング105が受口内部まで入
り込み過ぎると、ゴム輪106と接触して軟質のゴム材
を痛めて止水性を損う可能性が憂慮される。また、地震
などで挿口104が受口内を移動し、図8(B)のよう
に先端が受口の最深部に接触するまで押し込まれると、
相互に擦過し合って防食塗装を傷つけたり剥離して防食
性を失い、通水を汚す赤水発生の原因となる虞れも起こ
り得る。
For example, in the case of the prior art shown in FIG.
As shown in FIG. 8 (A), if the insertion ring 105 gets too far into the inside of the receiving opening, there is a concern that it may come into contact with the rubber ring 106 and damage the soft rubber material, impairing the water blocking performance. Further, when the insertion slot 104 moves inside the receiving opening due to an earthquake or the like and is pushed in until the tip comes into contact with the deepest part of the receiving opening as shown in FIG. 8B,
There is a possibility that they may rub against each other to damage or peel off the anticorrosion coating, losing anticorrosion properties and causing the generation of red water that pollutes water flow.

【0010】図5に示した従来技術の場合には、挿口外
周面に凹溝206を周設しているから管体の肉厚が局部
的に薄くなり、管継手に引抜く外力や曲げモーメントが
作用した場合には、強度が不足して挿口の肉薄部分に応
力が集中し破断する懸念が否定できない。もし、凹溝部
の肉厚を厚くするなら、管体全体の肉厚は必要以上に厚
くなり不経済な条件となる。さらに受口内へ挿口を挿入
する継合時点の状態を考えると、受口の開口側突条20
2と奥側突条203との間の段差内面に自由に収められ
ている締り勝手のロックリング207が、挿口先端の傾
斜面で拡径され挿口外周面を擦過しつつロックリング用
の凹溝206に出会ってここへ嵌まり込む手順を経るか
ら、少なくとも挿口先端からゴム輪までの接水部分の外
周面に傷が入って防食塗装を痛めたり剥離する危険性が
ないわけではない。
In the case of the prior art shown in FIG. 5, since the concave groove 206 is provided around the outer peripheral surface of the insertion port, the wall thickness of the pipe body is locally thinned, and the external force or bending to pull out the pipe joint is increased. When a moment acts, there is an undeniable concern that the strength is insufficient and stress concentrates on the thin portion of the insertion slot, causing breakage. If the wall thickness of the groove is increased, the wall thickness of the entire tube will be unnecessarily increased, which is an uneconomical condition. Furthermore, considering the state at the time of joining when the insertion port is inserted into the receiving port, the protrusion 20 on the opening side of the receiving port is considered.
The lock ring 207, which can be tightened freely, is housed freely on the inner surface of the step between the rear side 2 and the rear projection 203. There is a risk that at least the outer peripheral surface of the water contact portion from the tip of the insertion opening to the rubber ring will be damaged and the anticorrosion coating will be damaged or peeled off, because the procedure for encountering the concave groove 206 and fitting it there is performed. .

【0011】耐震性を具えた管継手の要件としては、非
定常的な外力が加わったときでも受口、挿口の相対的な
位置の変動による屈曲性と伸縮性によって対応できるこ
と、および如何なる引き抜き力が負荷しても相互の離脱
が阻止されて管路の機能が維持されることの2点が両立
しなければならないが、この伸縮性が災いして掘削溝内
にスリップオンタイプの耐震性管継手を接合し管路を形
成したとき、管を埋め戻して管同士の位置関係を固定し
ない限り、水圧テストができない点が課題となる。仮に
埋め戻し前に水圧テストをすれば継手の伸縮作用が働い
て管路が蛇行したり、軸線が狂ったりする可能性がある
し、埋め戻し後に水圧テストを行なって、もし漏水を発
見した場合には再び管を掘り起こして修正するなど煩瑣
な作業を強いられる。
The requirements for a pipe joint equipped with earthquake resistance are that it can be dealt with by the flexibility and stretchability due to the change in the relative positions of the receiving port and the insertion port even when an unsteady external force is applied, and any withdrawal It is necessary to balance the two points of preventing mutual separation and maintaining the function of the pipeline even if a force is applied, but this stretchability causes damage and slip-on type seismic resistance in the excavation trench. The problem is that when a pipe joint is joined to form a pipe, a hydraulic test cannot be performed unless the pipes are backfilled to fix the positional relationship between the pipes. If a water pressure test is performed before backfilling, the expansion and contraction of the joint may cause the pipe to meander or the axis may be misaligned, and if a water pressure test is performed after backfilling and leakage is found. Is forced to perform complicated work such as digging up the pipe again and correcting it.

【0012】パイプインパイプ工法において耐震性管継
手として規格化された前記のPII形継手では、挿口に長
い溝を形成するため地震などによる抜け出し力に充分に
耐えられるように管厚を厚くする必要があり、重量の増
加を招き経済的に不利な条件となる。また既設管にPII
形ダクタイル鋳鉄管を圧入するときには、図7において
ロックリング403が挿口溝の溝端面405に係止した
状態となり、地震が発生すれば押し込み余裕量がないた
め、大地震が発生すれば地盤の動きに順応できなくなる
可能性がある。またこのとき急激な抜け出し力や押込み
力が作用して衝撃を伴ってロックリングが挿口溝と端面
で係止するため、この部分に衝撃力が集中する可能性も
あり、一般的にパイプインパイプ工法用のPII形ダクタ
イル鋳鉄管は、通常の耐震性管継手として定義されるS
形、SII形管継手のほぼ1/2程度の離脱防止力しか具
えていないことが経験的および実験的に知られている。
In the above-mentioned PII type joint, which is standardized as a seismic resistant pipe joint in the pipe-in-pipe construction method, a long groove is formed in the insertion port, so that the pipe thickness is made thick enough to withstand the pull-out force due to an earthquake or the like. It is necessary to increase the weight, which is an economically disadvantageous condition. In addition, PII on the existing pipe
When the ductile cast iron pipe is press-fitted, the lock ring 403 is locked to the groove end surface 405 of the insertion slot in FIG. 7, and if there is an earthquake, there is no margin to push in, so if a large earthquake occurs, the You may not be able to adapt to movement. At this time, a sudden pull-out force or push-in force acts and the lock ring engages with the insertion groove and the end face with a shock, so that the shock force may concentrate on this part, and in general, the pipe PII type ductile cast iron pipes for pipe construction are defined as ordinary seismic resistant pipe joints.
It is empirically and experimentally known that it has a separation preventing force which is about 1/2 of that of the S type and SII type pipe joints.

【0013】本発明は以上の課題を解決するために敷設
工法自体としては高い生産性を評価されているスリップ
オンタイプ用の耐震性管継手が、通常の管路用の耐震性
管継手、たとえばS形、SII形管継手に比べてほぼ半分
の離脱防止力しか認めなれなかったのを、ほぼ前記S形
などに遜色のない離脱防止機能を具えた耐震管路を形成
し、かつ管路敷設時の高施工性を誇るパイプインパイプ
工法も含めて、とくに交通量の激しい都会地などの管路
の耐震化に有効な管継手とその接合方法の提供を目的と
する。
In order to solve the above problems, the present invention provides a slip-on type seismic resistant pipe joint, which is evaluated for its high productivity as a laying method itself, and is a seismic resistant pipe joint for ordinary pipelines, for example, Only about half the separation prevention force was recognized compared to the S type and SII type pipe joints. However, the seismic resistant pipeline with the separation prevention function comparable to that of the S type was formed and the pipeline was laid. The purpose of the present invention is to provide a pipe joint and its joining method that are effective for earthquake resistance of pipelines, especially in urban areas with heavy traffic, including the pipe-in-pipe construction method, which boasts high workability.

【0014】[0014]

【課題を解決するための手段】本発明に係るスリップオ
ンタイプの耐震性管継手は、受口1と、該受口1内へ挿
入する挿口2と、両者の中空部へ介装する弾性のゴム輪
3よりなり、無締結で相互に継合して管路を形成するス
リップオンタイプであって外力によって管軸方向に移動
を許容する伸縮性を具えた管継手であり、受口1の外端
11近くにロックリング4を嵌合する凹溝12と、受口
の端面より内側、挿し口が入りこむ長さの概略2分の1
の位置に受口突起13とを設ける一方、前記ロックリン
グ4と受口突起13との間に対向する範囲の挿口外周面
に挿口突起21を周設し、ロックリング4は受口1を貫
通する複数のセットボルトで押し込み挿口外周面と咬止
して埋め戻して管同士の位置を固定しなくても水圧テス
トによる抜け出し力に対抗して受口1、挿口2の位置関
係を不動に拘束する尖鋭な係止爪41を両側面に具え、
かつ、地震などの前記水圧テストを超えるより大きな外
力が負荷したときは前記係止爪41の咬止が外れて挿口
突起21とロックリング4または受口突起13とが係止
するまで相互の管移動を可能とする伸縮性と、係止した
後は0.3×D(ton)以上の離脱阻止力を具えたこ
とを構成上の特徴とする。ただしここでDは当該管の呼
び径(mm)である。
DISCLOSURE OF THE INVENTION A slip-on type seismic resistant pipe joint according to the present invention is provided with a receiving opening 1, an insertion opening 2 inserted into the receiving opening 1, and an elastic member interposed in the hollow portions of both. It is a slip-on type that consists of the rubber ring 3 and is joined to each other without fastening to form a pipe line and moves in the pipe axis direction by an external force.
It is a pipe joint having elasticity allowing the above , and a groove 12 for fitting the lock ring 4 near the outer end 11 of the receiving port 1 and an outline of the length inside the end face of the receiving port, into which the insertion port is inserted. One-third
While the receiving projection 13 is provided at the position of 1, the insertion projection 21 is provided around the outer peripheral surface of the insertion opening in a range facing between the lock ring 4 and the receiving projection 13, Positional relationship between the receiving port 1 and the receiving port 2 against the withdrawal force by the water pressure test without pressing the outer peripheral surface of the insertion port with multiple set bolts penetrating the hole and backfilling to fix the positions of the pipes. Equipped with sharp locking claws 41 for immovably restraining
And a larger outside that exceeds the water pressure test such as an earthquake.
When a force is applied, the locking claw 41 is disengaged and the insertion projection 21 and the lock ring 4 or the receiving projection 13 are stretchable to allow mutual pipe movement until they are locked. After that, it is characterized by having a separation preventing force of 0.3 × D (ton) or more. Here, D is the nominal diameter (mm) of the pipe.

【0015】図1(A)(B)(C)は本発明の基本的
作用を示す縦断正面図であり、図1(A)はスリップオ
ンタイプの耐震性管継手を掘削した管路溝内で接合した
標準状態の位置関係を示す。すなわち受口1内へ挿口2
を挿入し、ロックリング4の係止爪41で挿口の外周面
に咬止して両管の位置を固定したとき、挿口の先端22
と受口の最深部の内端16までの入り込み代L1と、挿
口突起の外周面23と対向するロックリング4の内側面
43までの抜け出し代L2とがほぼ等しくバランスを保
った状態となっている。この状態は埋め戻し前の水圧テ
ストによる水圧が管継手に負荷されても、係止爪が挿口
の外周面に食い込んでおり、ロックリングの両側面にそ
れぞれ係止爪が突出しているから、抜け出し力、押込み
力の何れの方向に対しても拘束力を発揮して受口、挿口
の位置が不動に保たれる原動力となる。
1 (A), (B) and (C) are vertical front views showing the basic operation of the present invention, and FIG. 1 (A) is a pipeline groove excavated from a slip-on type seismic resistant pipe joint. The positional relationship of the standard state joined by is shown. That is, the insertion opening 2 into the receiving opening 1
When the tube is inserted and the locking claws 41 of the lock ring 4 bite the outer peripheral surface of the insertion port to fix the positions of both tubes,
And the allowance L1 to the inner end 16 of the deepest part of the receiving opening and the allowance L2 to the inner side surface 43 of the lock ring 4 facing the outer peripheral surface 23 of the insertion protrusion are approximately equal and balanced. ing. This state is the hydraulic pressure before backfilling.
Even if the water pressure due to the strike is applied to the pipe joint, the locking claws bite into the outer peripheral surface of the insertion port, and the locking claws project on both side surfaces of the lock ring. It also exerts a restraining force in the direction and serves as a driving force for keeping the positions of the receiving port and the insertion port immovable.

【0016】図1(B)は地震など非定常的な大きな外
力が負荷して大きな押込み力が働いた場合、過度の押圧
力(図の右方向)のために挿口外周面に噛み込んでいた
ロックリングの係止爪41が座屈したりリング本体から
破断して、挿口外周面とロックリングとの咬止が外れ係
止爪が外力に引き摺られて受口と挿口の位置関係が変動
し、受口突起13と挿口突起21とが衝き当ってこれ以
上の移動を阻止した状態を示す。図1(C)は逆に大き
な引き抜き力が作用した場合を示し、挿口突起21とロ
ックリングの内側面43とが衝き当りそれ以上の引き抜
きを阻止する状態を示したものである。
FIG. 1 (B) shows that when an unsteady large external force such as an earthquake is applied and a large pushing force is exerted, it is caught in the outer peripheral surface of the insertion opening due to excessive pushing force (right direction in the figure). from the ring body or the locking claw 41 is buckling of the locking ring that had
When it breaks , the bite between the outer peripheral surface of the insertion opening and the lock ring is released, the locking claw is dragged by an external force, and the positional relationship between the reception opening and the insertion opening changes, and the reception projection 13 and the insertion projection 21 collide. It shows a state in which it has been hit and prevented from moving further. On the contrary, FIG. 1C shows a case where a large pulling force is applied, and shows a state in which the insertion protrusion 21 and the inner side surface 43 of the lock ring collide with each other and further pulling is prevented.

【0017】また、パイプインパイプ工法に対して本発
明のスリップオンタイプの耐震性管継手を適用すると
き、ロックリング4の係止爪41の挿口外周面との拘束
力を、新管T2の管端を押圧する推進力より大きく設定
すれば、図1(A)の状態のままで後管が先管を押圧し
て既設管T1内を進行して行くから、従来技術のPII形
管継手では不可能であった引き抜き代と入り込み代とを
同時に確保すると共に、過大な引き抜き力、押し込み力
が作用したとしても離脱や押し込まれることはない。
Further, when the slip-on type seismic resistant pipe joint of the present invention is applied to the pipe-in-pipe construction method, the constraint force between the locking claw 41 of the lock ring 4 and the outer peripheral surface of the insertion opening is changed to the new pipe T2. If it is set to be larger than the propulsive force that pushes the pipe end, the rear pipe pushes the front pipe and advances in the existing pipe T1 in the state of FIG. 1 (A). The pulling allowance and the entering allowance, which were impossible with the joint, are secured at the same time, and even if an excessive pulling force or pushing force is applied, the joint is not detached or pushed in.

【0018】[0018]

【発明の実施の形態】さらに図1によってより詳しく本
発明の実施の形態を説明すると、既述のように図1
(A)が接合した標準の位置関係、図1(B)が地震、
地盤沈下などの原因で押込み力が作用して管同士の相対
的な位置が変動した場合、図1(C)が逆に引き抜き力
が作用して管同士の位置が変動した場合をそれぞれ現わ
す。図(A)の標準状態の形態から説明すれば、受口1
の外端11のすぐ近くに凹溝12が周設されているか
ら、外端から容易にロックリング4が嵌入される。受口
1の端面より内側、挿し口が入りこむ長さの概略2分の
1の位置には受口突起13が周設されている。その内部
にシール材として弾性のゴム輪3が嵌入され、受口の内
周面から突出した小突起14と係合して拘束されてい
る。一方、挿口2には挿口突起21が周設され、接合後
の位置は受口のロックリング4と受口突起13との間に
突出した状態となり、図1(A)のように抜け出し代L
2と入込み代L1とがほぼ均衡を保つことが最も望ましい
形態である。図1(B)では管継手を押し縮める方向に
大きな外力が作用して挿口突起21と受口突起13の側
面同士が衝き当り、ここで相互の管の離脱が防止される
状態となるのであるが、この位置になっても受口内端1
6と挿口先端22との間には余裕L0があって相互に衝
き当って変形や防食塗装を傷付ける事態を誘発するよう
な状態とはならないように設定しておくことが望まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiment of the present invention will be described in more detail with reference to FIG.
The standard positional relationship where (A) is joined, Fig. 1 (B) is an earthquake,
When the pushing force acts due to ground subsidence and the relative positions of the pipes fluctuate, Fig. 1 (C) shows the pulling force on the contrary and the positions of the pipes fluctuate. . If explaining from the form of the standard state of FIG.
Since the concave groove 12 is provided in the immediate vicinity of the outer end 11, the lock ring 4 is easily fitted from the outer end. Inside the end face of the receiving port 1, a receiving port projection 13 is provided at a position of approximately ½ of the length into which the insertion port is inserted. An elastic rubber ring 3 as a seal member is fitted in the inside thereof, and is engaged with and restrained by a small protrusion 14 protruding from the inner peripheral surface of the receiving port. On the other hand, an insertion protrusion 21 is provided around the insertion port 2, and the position after joining is in a state of protruding between the lock ring 4 of the reception port and the reception port protrusion 13 and is pulled out as shown in FIG. 1 (A). Teens L
It is the most desirable form that the 2 and the entrance fee L1 are almost balanced. In FIG. 1 (B), a large external force acts in the direction in which the pipe joint is compressed, so that the side surfaces of the insertion projection 21 and the reception projection 13 collide with each other, and the mutual pipe separation is prevented here. There is, however, the inner end of the socket 1 even at this position
It is desirable to set a margin L0 between 6 and the tip 22 of the insertion slot so that they do not collide with each other and cause deformation or damage to the anticorrosion coating.

【0019】図2(A)(B)(C)は本発明の実施形
態のうち、ロックリング4を例示したもので、(A)は
全体の側面図、(B)は断面図、(C)は該断面図の部
分的拡大図である。ロックリングは挿口外周面に咬止す
るために管体(ダクタイル鋳鉄のうちFCD400相
当)よりも硬い素材の金属製、たとえばFCD600や
SUS材を使用した一つ割部44を具えた開き勝手に付
勢された環状体からなり、また受口の凹溝12へ嵌合し
やすいように切り欠き45を左右に具え、凹溝12内へ
嵌め込むと溝底に張り付くように緊着する。図2(C)
のようにロックリングの内側面43、外側面46には鋭
く尖った係止爪41が下方へ突出し、この係止爪が挿口
外周面に噛み込んで通常の水圧に対抗する。
2 (A), (B) and (C) exemplify the lock ring 4 in the embodiment of the present invention, (A) is a side view of the whole, (B) is a sectional view, and (C). 4) is a partially enlarged view of the cross-sectional view. The lock ring bites on the outer peripheral surface of the insertion slot
In order to make the pipe body (FCD400 phase of the ductile cast iron
Hard material made of metal than the equivalent), for example FCD600 Ya
It is composed of a ring-shaped body that is biased freely and has a split portion 44 made of SUS material, and is provided with notches 45 on the left and right so that it can be easily fitted into the recessed groove 12 of the receiving port. When it is fitted inside, it sticks to the bottom of the groove. Figure 2 (C)
As described above, the sharply pointed locking claws 41 project downward on the inner side surface 43 and the outer side surface 46 of the lock ring, and the locking claws are engaged with the outer peripheral surface of the insertion opening to counteract normal water pressure.

【0020】通常の耐震性管継手、たとえばS形やSII
形継手の場合最高の離脱防止力Fは、F≧0.3×Dで
表わされるが、本発明のスリップオンタイプの耐震性管
継手についても同様の水準を保つことを要件として設計
し、実験を重ねた結果、図1に示す構成に到達したので
ある。すなわちロックリングの係止爪41にはパイプイ
ンパイプ工法における必要推力F1(呼び径300m
m、推進長さ100mで約4Ton)や、管路供用時の
内水圧による抜け出し力F2(呼び径300mmで約5
Ton)が加わるからこれらの力以下で継手部が伸縮し
たり、係止爪が座屈しないことが要件となる。同時に地
震などの大きな外力F3が発生したときは、継手部が移
動して変位を吸収しなければならない。たとえば呼び径
300mmの管において90Ton程度の圧縮、または
引張りの軸力が加わることを想定し、そのレベルまでは
管体を拘束できるように設計する。係止爪による継手部
の拘束力をF0とすれば、F1またはF2の大きい方の力
<F0<F3の関係が成立するように設定し、呼び径30
0mmで90Tonの軸力は伸縮形の耐震性管継手の最
高ランクに位置付けられる基準として前記の0.3×D
で示される。係止爪による拘束力を上回る軸力が作用し
たとき、受口と挿口とは相対移動して抜け出した場合は
挿口突起がロックリングと接触し、入込んだ場合は挿口
突起が受口突起と接触するが、何れの場合も0.3×D
Ton以上の離脱阻止力を具えるように設計すべきこと
はいうまでもない。
Conventional seismic resistant pipe fittings such as S type and SII
In the case of a shaped joint, the maximum separation prevention force F is represented by F ≧ 0.3 × D, but the slip-on type seismic resistant pipe joint of the present invention was designed and tested under the condition that the same level be maintained. As a result, the structure shown in FIG. 1 was reached. That is, the locking claw 41 of the lock ring has a required thrust F1 (nominal diameter 300 m) in the pipe-in-pipe construction method.
m, propulsion length of 100 m is about 4 Ton), and withdrawal force F2 due to internal water pressure when the pipeline is in service (about 5 at a nominal diameter of 300 mm)
Since Ton) is applied, it is necessary that the joint portion does not expand or contract under these forces or the locking claw does not buckle. At the same time, when a large external force F3 such as an earthquake occurs, the joint portion must move to absorb the displacement. For example, assuming that a tube having a nominal diameter of 300 mm is subjected to a compressive or tensile axial force of about 90 Ton, the tube is designed to be restrained up to that level. Assuming that the restraining force of the joint portion by the locking claw is F0, it is set so that the larger force of F1 or F2 <F0 <F3 is established, and the nominal diameter 30
Axial force of 90Ton at 0mm is 0.3 × D as the standard to be positioned as the highest rank of expansion type seismic resistant pipe joints.
Indicated by. When an axial force that exceeds the restraining force of the locking claws acts, if the receiving opening and the insertion opening move relative to each other and come out, the insertion opening protrusion contacts the lock ring, and if it enters, the insertion opening protrusion receives. It comes in contact with the mouth protrusion, but in any case 0.3 × D
It goes without saying that it should be designed so as to have a separation prevention force equal to or greater than Ton.

【0021】図3(A)(B)(C)は本発明の耐震性
管継手の接合手順を示した工程別の縦断正面図である。
図3(A)ではあらかじめゴム輪3、ロックリング4、
セットボルト5を受口1に預け入れた状態であり、受口
1に挿口2を矢印方向に挿入している。図3(B)では
規定の胴隙間隔L1(入り込み代)まで挿口を挿入しL2
とほぼ等しい距離に調整する。図3(C)ではセットボ
ルト5を締めつけてロックリングの係止爪を挿口外周面
に噛み込ませ接合を完了する。
3 (A), (B) and (C) are vertical sectional front views showing the joining procedure of the seismic resistant pipe joint according to the present invention.
In FIG. 3A, the rubber ring 3, the lock ring 4, and the
The set bolt 5 is in a state of being deposited in the receiving port 1, and the insertion port 2 is inserted into the receiving port 1 in the arrow direction. In FIG. 3 (B), the insertion opening is inserted up to the specified body gap L1 (entry margin) L2.
Adjust to a distance approximately equal to. In FIG. 3 (C), the set bolt 5 is tightened to engage the locking claw of the lock ring with the outer peripheral surface of the insertion port to complete the joining.

【0022】[0022]

【発明の効果】本発明に係るスリップオンタイプの耐震
性管継手は、管同士を締結しないで簡便に接合して管路
を形成できるにも拘らず、管内水圧による軸力の掛かる
定常的な使用状態においては、ロックリング内面の係止
爪が挿口外周面に咬止して充分に対抗し、管が離脱する
虞れが全くなく管同士の相対的な位置関係も不動に保た
れる。このことはスリップオンタイプ工法において管接
合後、給水前の水圧テストを行なうために埋め戻しして
管同士の位置関係を固定してからという条件がなくな
り、敷設後で管が露呈したままで試験水圧を掛けて継手
部の機能を確認することができ、施工上に及ぼす効果は
きわめて大きい。
EFFECTS OF THE INVENTION The slip-on type seismic resistant pipe joint according to the present invention can form a pipe path by simply connecting pipes without fastening them together, but can maintain a steady force exerted by an axial force due to water pressure in the pipes. In use, the locking claws on the inner surface of the lock ring bite against the outer peripheral surface of the insertion opening to sufficiently oppose each other, and there is no risk of the tubes coming off, and the relative positional relationship between the tubes is kept immobile. . This means that the slip-on type construction method eliminates the condition that the pipes should be backfilled to fix the positional relationship between the pipes for water pressure testing before water supply after the pipes have been joined. The function of the joint can be confirmed by applying water pressure, and the effect on construction is extremely large.

【0023】また、押輪を使用する締結方式の耐震性管
継手として定評のあるS形やSII形の継手に拮抗するだ
けの離脱防止力F0を具えているから、無締結方式の最
高の利点である管路敷設時の高生産性を維持しながら、
時代の要求でもある耐震構造の地下管路を構成すること
が可能となり、二つの要請に同時に応えられる理想的な
管継手として広く社会に貢献する資質を具えている。
Further, since it has a detachment prevention force F0 sufficient to antagonize the S-type and SII-type joints which are well-established as seismic resistant pipe joints of the fastening system using a push ring, it is the maximum advantage of the non-fastening system. While maintaining high productivity when laying a pipeline,
It has become possible to construct underground pipes with an earthquake-resistant structure, which is a requirement of the times, and it has the qualities of widely contributing to society as an ideal pipe joint that can meet two requirements at the same time.

【0024】非開削工法もまた、時代の要求する大きな
技術的な流れであるが、その代表例とされるパイプイン
パイプ工法に対しても、従来技術の規定によるPII形耐
震性管継手に比べると、挿口外周面の肉厚を減小させる
長い挿口溝の形成が不要であるから、管強度の低下やそ
れを補うための増肉の必要がない。また、パイプインパ
イプ工法のために既設管内へ新管を挿入するとき、係止
爪が確実に挿口外周面に咬止して両者の位置関係を固定
したままで全体として前進していくから、抜け出し代お
よび入り込み代がそれぞれ確保された状態で挿入が完了
し、受口内へ挿口が押込まれる懸念がなくなり、地盤の
動きに十分に対応できる効果がある。
The non-open cutting method is also a large technological flow required by the times, but the pipe-in-pipe method, which is a typical example of the non-open cutting method, is compared with the PII type earthquake-resistant pipe joint defined by the prior art. In addition, since it is not necessary to form a long insertion groove for reducing the wall thickness of the outer peripheral surface of the insertion opening, it is not necessary to reduce the pipe strength or increase the thickness to compensate for it. Also, when inserting a new pipe into an existing pipe due to the pipe-in-pipe construction method, the locking claw surely bites on the outer peripheral surface of the insertion opening and moves forward as a whole with the positional relationship between the two fixed. In addition, the insertion is completed in the state where the withdrawal allowance and the entrance allowance are secured, there is no concern that the insertion allowance is pushed into the receiving mouth, and there is an effect that it is possible to sufficiently cope with the movement of the ground.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の定常状態(A)、押込み力
の負荷した状態(B)、および引き抜き力の負荷した状
態(C)をそれぞれ縦断正面図で示す。
FIG. 1 is a vertical sectional front view showing a steady state (A), a pushing force applied state (B), and a pulling force applied state (C) according to an embodiment of the present invention.

【図2】本発明ロックリング実施形態の正面図(A)、
縦断図(B)、断面要部の拡大図(C)である。
FIG. 2 is a front view (A) of a lock ring embodiment of the present invention,
It is a longitudinal section (B) and an enlarged view (C) of an important section.

【図3】本発明の接合手順を(A)(B)(C)によっ
て工程別に示す縦断正面図である。
FIG. 3 is a vertical cross-sectional front view showing the joining procedure of the present invention in steps by (A), (B), and (C).

【図4】従来技術の耐震性管継手を示す縦断正面図であ
る。
FIG. 4 is a vertical sectional front view showing a conventional earthquake-resistant pipe joint.

【図5】(A)(B)によって別の従来技術の耐震性管
継手の異なる状態を示す縦断正面図である。
FIG. 5 is a vertical sectional front view showing a different state of another conventional seismic resistant pipe joint according to FIGS.

【図6】パイプインパイプ工法の原理を示す縦断正面図
である。
FIG. 6 is a vertical sectional front view showing the principle of the pipe-in-pipe construction method.

【図7】パイプインパイプ工法で使用する従来技術の耐
震性管継手を示す縦断正面図である。
FIG. 7 is a vertical sectional front view showing a conventional earthquake-resistant pipe joint used in a pipe-in-pipe construction method.

【図8】図5の従来技術における2つの課題を(A)
(B)の縦断正面図で示す。
FIG. 8 shows two problems in the conventional technique of FIG.
It is shown by a vertical sectional front view of (B).

【符号の説明】[Explanation of symbols]

1 受口 2 挿口 3 ゴム輪 4 ロックリング 5 セットボルト 11 外端 12 凹溝 13 受口突起 14 小突起 15 ボルト孔 16 内端 21 挿口突起 22 先端 23 外側面 41 係止爪 42 頂面 43 内側面 44 一つ割部 45 切欠き 46 外側面 L1 入り込み代 L2 抜け出し代 T1 既設管 T2 新管1 Receptacle 2 Insertion mouth 3 Rubber ring 4 Lock ring 5 Set bolt 11 Outer end 12 Recessed groove 13 Receiving mouth protrusion 14 Small protrusion 15 Bolt hole 16 Inner end 21 Insertion protrusion 22 Tip 23 Outer side surface 41 Locking claw 42 Top surface 43 Inner side surface 44 Split section 45 Notch 46 Outer side surface L1 Entry margin L2 Exiting margin T1 Existing pipe T2 New pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩見 一郎 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 (56)参考文献 特開 平5−172278(JP,A) 特開 平9−126355(JP,A) 実開 平4−133091(JP,U) 実開 昭59−59590(JP,U) 実開 昭49−148529(JP,U) 実開 昭59−59584(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16L 1/00 - 1/11 F16L 21/00 - 21/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Shiomi 1-12-19 Kitahorie, Nishi-ku, Osaka City, Osaka Prefecture Kurimoto Iron Works Co., Ltd. (56) References JP-A-5-172278 (JP, A) Kaihei 9-126355 (JP, A) Actually open 4-133091 (JP, U) Actually open 59-59590 (JP, U) Actually open 49-148529 (JP, U) Actually open 59-59584 ( (58) Fields surveyed (Int.Cl. 7 , DB name) F16L 1/00-1/11 F16L 21/00-21/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 受口1と、該受口1内へ挿入する挿口2
と、両者の中空部へ介装する弾性のゴム輪3よりなり、
無締結で相互に継合して管路を形成するスリップオンタ
イプであって外力によって管軸方向に移動を許容する伸
縮性を具えた耐震性管継手において、受口1の外端11
近くにロックリング4を嵌合する凹溝12と、受口の端
面より内側、挿し口が入りこむ長さの概略2分の1の位
置に受口突起13とを設ける一方、前記ロックリング4
と受口突起13との間に対向する範囲の挿口外周面に挿
口突起21を周設し、ロックリング4は受口1を貫通す
る複数のセットボルトで押し込み挿口外周面と咬止し
埋め戻して管同士の位置を固定しなくても水圧テス
トによる抜け出し力に対抗して受口1、挿口2の位置関
係を不動に拘束する尖鋭な係止爪41を両側面に具え、
かつ、地震などの前記水圧テストを超えるより大きな外
力が負荷したときは前記係止爪41の咬止が外れて挿口
突起21とロックリング4または受口突起13とが係止
するまで相互の管移動を可能とする伸縮性と、係止した
後は0.3×D(ton)以上の離脱阻止力を具えたこ
とを特徴とするスリップオンタイプの耐震性管継手。た
だしDは当該管の呼び径(mm)
1. A receptacle 1 and an insertion slot 2 to be inserted into the receptacle 1.
And an elastic rubber ring 3 interposed in the hollow portions of both,
In a slip-on type, which is joined together to form a pipe without fastening, and which has elasticity to allow movement in the pipe axial direction by an external force, an outer end 11 of the socket 1 is provided.
A recessed groove 12 for fitting the lock ring 4 is provided nearby, and a socket projection 13 is provided inside the end face of the socket and at a position of approximately ½ of the length into which the socket is inserted.
The insertion protrusion 21 is provided on the outer peripheral surface of the insertion opening in a range facing between the reception opening 13 and the reception projection 13, and the lock ring 4 is pushed by a plurality of set bolts penetrating the reception opening 1 and bites against the insertion insertion outer peripheral surface. Then, even if the positions of the pipes are not backfilled and the positions of the pipes are fixed, sharp locking claws 41 that immovably restrain the positional relationship between the receiving port 1 and the inserting port 2 on both sides against the exit force by the water pressure test are provided on both side surfaces. Equipment
Moreover, when a larger external force that exceeds the water pressure test such as an earthquake is applied, the locking claw 41 is disengaged and the insertion protrusion 21 and the lock ring 4 or the reception protrusion 13 are locked to each other. A slip-on type seismic resistant pipe joint that is stretchable to allow pipe movement and has a detachment prevention force of 0.3 x D (ton) or more after locking. However, D is the nominal diameter of the pipe (mm)
【請求項2】 管路敷設用の掘削溝へスリップオンタイ
プの耐震性管継手を使用して管を接合する方法におい
て、受口1内へ挿入する挿口2の位置を、挿口の先端2
2と受口の最深部の内端16までの入り込み代L1と、
挿口突起の外側面23と対向するロックリング4の内側
面43までの抜け出し代L2とがほぼ等しくなるまで挿
入することを特徴とする請求項1に記載のスリップオン
タイプの耐震性管継手を使用した管の接合方法。
2. A method for joining a pipe to a digging trench for laying a pipe using a slip-on type seismic resistant pipe joint, wherein the position of the insertion port 2 to be inserted into the receiving port 1 is set to the tip of the insertion port. Two
2 and the entrance margin L1 to the innermost end 16 of the deepest part of the socket,
The slip-on type seismic resistant pipe joint according to claim 1 , characterized in that the slip-on type seismic resistant pipe joint is inserted until the outer side surface 23 of the insertion port projection and the withdrawal allowance L2 to the inner side surface 43 of the lock ring 4 facing each other become substantially equal. How to join the pipes used.
【請求項3】 既設の管路の一部に発進抗と到達抗を掘
削して露呈した管の一部を取り外し、該既設管T1の内
径よりも小径の外径よりなる受口1Aを具えた新管T2
を前記発進坑から水平に押圧して既設管内へ挿通するパ
イプインパイプ工法において、新管T2の管端を押圧す
る推進力よりロックリング4の係止爪41の挿口外周面
との拘束力を大きく設定することにより、入り込み代お
よび抜け出し代を同時に保持したまま、新管T2を挿入
可能とすることを特徴とする請求項1又は2記載のスリ
ップオンタイプの耐震性管継手を使用した管の接合方
法。
3. A part of the existing pipe is excavated from a starting resistance and a reaching resistance to remove a part of the exposed pipe, and a receiving port 1A having an outer diameter smaller than the inner diameter of the existing pipe T1 is provided. New tube T2
In the pipe-in-pipe construction method of horizontally pushing from the starting pit and inserting it into the existing pipe, the force of pushing the pipe end of the new pipe T2 is restrained by the locking claw 41 of the lock ring 4 with the outer peripheral surface of the insertion port. The slip-on type seismic resistant pipe joint according to claim 1 or 2 , characterized in that the new pipe T2 can be inserted while holding the entrance and exit margins at the same time. How to join the pipes used.
JP19054297A 1997-06-30 1997-06-30 Slip-on type earthquake-resistant pipe joint and its joining method Expired - Lifetime JP3441927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19054297A JP3441927B2 (en) 1997-06-30 1997-06-30 Slip-on type earthquake-resistant pipe joint and its joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19054297A JP3441927B2 (en) 1997-06-30 1997-06-30 Slip-on type earthquake-resistant pipe joint and its joining method

Publications (2)

Publication Number Publication Date
JPH1122879A JPH1122879A (en) 1999-01-26
JP3441927B2 true JP3441927B2 (en) 2003-09-02

Family

ID=16259825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19054297A Expired - Lifetime JP3441927B2 (en) 1997-06-30 1997-06-30 Slip-on type earthquake-resistant pipe joint and its joining method

Country Status (1)

Country Link
JP (1) JP3441927B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159183A (en) * 1999-12-02 2001-06-12 Kubota Corp Earthquake resisting joint for existing pipe correction method
KR100704248B1 (en) 2005-10-14 2007-04-06 한국주철관공업주식회사 Earthquake-resistant type piping connector
KR100696402B1 (en) 2005-10-14 2007-03-19 한국주철관공업주식회사 Earthquake-resistant type piping connector
CN101788089B (en) * 2010-03-17 2012-04-11 沈阳建筑大学 Flexible interface of underground spheroidal graphite cast iron pipe

Also Published As

Publication number Publication date
JPH1122879A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US5662360A (en) Interlocked restraint for a plastic pipe joining system
US7404872B2 (en) PVC seismic coupling and method of installation
JP3441927B2 (en) Slip-on type earthquake-resistant pipe joint and its joining method
CN110730883A (en) Novel positive locking system for restrained joints of spheroidal graphite cast iron centrifugally cast pipes and fittings
JP3710391B2 (en) Sheath pipe propulsion method and pipe joint structure used for it
US5499660A (en) Relining pipe having pipe elements interconnected by pipe couplings
JPH11148582A (en) Plastic pipe fitting
JP3324550B2 (en) Seismic propulsion method and pipe fittings
JP3436864B2 (en) Captive fittings
JP3173718B2 (en) Slip-on type earthquake resistant pipe fittings
JP3764323B2 (en) Plug-in type propulsion pipe
JP3402171B2 (en) Captive fittings
JP2005344505A (en) Sheath pipe jacking method and pipe joint structure used for the same
JP2000266260A (en) Aseismatic propulsion construction method and pipe joint
JP2019138449A (en) Earthquake proof pipe propulsion laying construction method and propulsive force transmission device
JP3916413B2 (en) Pipe promotion method
JP3650904B2 (en) Anti-seismic deformed pipe joint
JP3373396B2 (en) Propulsion method and pipe joint structure
JP3756876B2 (en) Propulsion method and earthquake-resistant propulsion pipe fittings used in it
JP3979838B2 (en) Seismic joint for existing pipe rehabilitation method
JP2864206B2 (en) Packing for propulsion pipe
JP3398060B2 (en) Propulsion method and pipe joints used for it
JP2003278967A (en) Earthquake resistant fitting
JPH0953775A (en) Buried pipe line
JP3303069B2 (en) Captive fittings

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term