JP2020142221A - catalyst - Google Patents

catalyst Download PDF

Info

Publication number
JP2020142221A
JP2020142221A JP2019042506A JP2019042506A JP2020142221A JP 2020142221 A JP2020142221 A JP 2020142221A JP 2019042506 A JP2019042506 A JP 2019042506A JP 2019042506 A JP2019042506 A JP 2019042506A JP 2020142221 A JP2020142221 A JP 2020142221A
Authority
JP
Japan
Prior art keywords
catalyst
solution
added
unsaturated
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019042506A
Other languages
Japanese (ja)
Other versions
JP7322433B2 (en
Inventor
拓真 西尾
Takuma Nishio
拓真 西尾
貢悦 伊藤
Koetsu Ito
貢悦 伊藤
守 目黒
Mamoru Meguro
守 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019042506A priority Critical patent/JP7322433B2/en
Publication of JP2020142221A publication Critical patent/JP2020142221A/en
Application granted granted Critical
Publication of JP7322433B2 publication Critical patent/JP7322433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a catalyst having a high conversion rate and a high selectivity and allowing for production, at a high yield, an unsaturated aldehyde and an unsaturated carboxylic acid, as a catalyst used for gas phase catalytic oxidation for producing the unsaturated aldehyde and the unsaturated carboxylic acid from an unsaturated compound.SOLUTION: The catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid includes molybdenum (Mo), bismuth (Bi), and iron (Fe) and has a ratio of 0.37 or more and 0.54 or less of a maximum value at 940 cm-1±5 cm-1 to a maximum value at 898 cm-1±5 cm-1 measured by Raman spectroscopy.SELECTED DRAWING: None

Description

この発明は、プロピレン、イソブテン、ターシャリーブタノール等の不飽和化合物からアクロレイン、メタクロレイン等の不飽和アルデヒドや、アクリル酸、メタクリル酸等の不飽和カルボン酸を製造する気相接触酸化反応に用いられる触媒、及びその製造方法に関する。 The present invention is used in a vapor phase catalytic oxidation reaction for producing unsaturated aldehydes such as acrolein and methacrolein and unsaturated carboxylic acids such as acrylic acid and methacrylic acid from unsaturated compounds such as propylene, isobutene and tertiary butanol. The present invention relates to a catalyst and a method for producing the same.

プロピレン、イソブテン、ターシャリーブタノール等の不飽和化合物からアクロレイン、メタクロレイン等の不飽和アルデヒド、及びアクリル酸、メタクリル酸等の不飽和カルボン酸を製造する気相接触酸化反応において、モリブデン系の触媒が有用な触媒であることは良く知られており、工業的にも広く実用化されている。 Molybdenum-based catalysts are used in vapor-phase catalytic oxidation reactions to produce unsaturated aldehydes such as achlorein and methacrolein and unsaturated carboxylic acids such as acrylic acid and methacrolein from unsaturated compounds such as propylene, isobutene, and tertiary butanol. It is well known that it is a useful catalyst, and it is widely used industrially.

これら各種反応におけるモリブデン系触媒の組成及び製造方法に関する特許文献としては、特許文献1、2等が知られている。特許文献1では、触媒調製時の温度や濁度の条件を調製し、また、特許文献2では、触媒の細孔分布を調製することにより、原料転化率や生成物選択率を向上させることを実現する。 Patent documents 1 and 2 are known as patent documents relating to the composition and production method of the molybdenum-based catalyst in these various reactions. In Patent Document 1, the conditions of temperature and turbidity at the time of catalyst preparation are prepared, and in Patent Document 2, the raw material conversion rate and product selectivity are improved by adjusting the pore distribution of the catalyst. Realize.

特開2015−147188号公報Japanese Unexamined Patent Publication No. 2015-147188 特開2017−176931号公報Japanese Unexamined Patent Publication No. 2017-176931

しかしながら、これらの方法を用いても、目的とする酸化生成物収率は必ずしも満足すべきものではなかった。 However, even with these methods, the desired oxidation product yield was not always satisfactory.

そこで、この発明は、プロピレン、イソブテン、ターシャリーブタノール等の不飽和化合物からアクロレイン、メタクロレイン等の不飽和アルデヒド、及びアクリル酸、メタクリル酸等の不飽和カルボン酸を製造する気相接触酸化反応に用いられる触媒として、転化率及び選択率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製造できる触媒を提供することを目的とする。 Therefore, the present invention is used for a vapor-phase catalytic oxidation reaction for producing unsaturated aldehydes such as achlorine and metachlorine and unsaturated carboxylic acids such as acrylic acid and methacrylic acid from unsaturated compounds such as propylene, isobutene and tertiary butanol. As the catalyst to be used, it is an object of the present invention to provide a catalyst having a high conversion rate and selectivity and capable of producing an unsaturated aldehyde and an unsaturated carboxylic acid in a high yield.

本発明者らが検討を行った結果、触媒を改良することにより、前記課題を解決することができることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of studies by the present inventors, they have found that the above problems can be solved by improving the catalyst, and have completed the present invention.
That is, the gist of the present invention is as follows.

[1]不飽和アルデヒド及び不飽和カルボン酸を製造するための触媒であって、モリブデン(Mo)、ビスマス(Bi)及び鉄(Fe)を含み、ラマン分光法により測定された898cm−1±5cm−1における最大値に対する、940cm−1±5cm−1における最大値の比が0.37以上0.54以下である触媒。 [1] A catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids, which contains molybdenum (Mo), bismuth (Bi) and iron (Fe), and is 898 cm -1 ± 5 cm measured by Raman spectroscopy. to maximum at -1, the catalyst the ratio of the maximum value in the 940 cm -1 ± 5 cm -1 is 0.37 or more 0.54 or less.

[2]更にコバルト(Co)及び/又はニッケル(Ni)を含む[1]に記載の触媒。
[3]前記のMo,Bi,Fe,Co,Niの組成が下記式(1)で示される[1]又は[2]に記載の触媒。
MoBiFeCoNi (1)
(a=12のとき、b=0.5〜7.0、c=0.05〜3.0、d=0〜10、e=0〜10(但しd+e=0〜10))
[4][1]乃至[3]のいずれかに記載の触媒の存在下、気相接触酸化により、プロピレンからアクロレイン及びアクリル酸を製造する方法。
[2] The catalyst according to [1], which further contains cobalt (Co) and / or nickel (Ni).
[3] The catalyst according to [1] or [2], wherein the composition of Mo, Bi, Fe, Co, and Ni is represented by the following formula (1).
Mo a Bi b Fe c Co d Ni e (1)
(When a = 12, b = 0.5 to 7.0, c = 0.05 to 3.0, d = 0 to 10, e = 0 to 10 (however, d + e = 0 to 10))
[4] A method for producing acrolein and acrylic acid from propylene by vapor phase catalytic oxidation in the presence of the catalyst according to any one of [1] to [3].

[5]各供給源化合物を溶媒又は溶液に添加し一体化及び加熱することにより調製液とする調製工程、該調製液を乾燥処理して粉体とする乾燥工程、該粉体を成形し触媒前駆体とする成形工程及び該触媒前駆体を焼成して触媒とする焼成工程を含むMo、Bi及びFe含有不飽和アルデヒド及び不飽和カルボン酸合成用触媒を製造する方法であって、Feの供給源化合物の溶媒又は溶液への添加が複数回であり、前記Feの供給源化合物を添加する複数回のうち少なくとも2回の添加において、添加される溶媒の種類又は溶液の組成が相違する、不飽和アルデヒド及び不飽和カルボン酸を製造するための触媒の製造方法。 [5] A preparation step of adding each source compound to a solvent or solution, integrating and heating to prepare a preparation solution, a drying step of drying the preparation solution to obtain a powder, and a molding of the powder to obtain a catalyst. A method for producing a catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids containing Mo, Bi and Fe, which comprises a molding step of using a precursor and a firing step of firing the catalyst precursor to serve as a catalyst, wherein Fe is supplied. The source compound is added to the solvent or solution a plurality of times, and the type of the solvent added or the composition of the solution is different in at least two of the multiple additions of the Fe source compound. A method for producing a solvent for producing a saturated aldehyde and an unsaturated carboxylic acid.

この発明によれば、プロピレン、イソブテン、ターシャリーブタノール等の不飽和化合物からアクロレイン、メタクロレイン等の不飽和アルデヒド、及びアクリル酸、メタクリル酸等の不飽和カルボン酸を製造する気相接触酸化反応に用いられる触媒として、原料転化率及び生成物選択率が高く、高収率で不飽和アルデヒド及び不飽和カルボン酸を製造できる触媒を得ることができる。 According to the present invention, in a vapor phase catalytic oxidation reaction for producing unsaturated aldehydes such as achlorein and methacrolein and unsaturated carboxylic acids such as acrylic acid and methacrolein from unsaturated compounds such as propylene, isobutene and tertiary butanol. As the catalyst used, a catalyst having a high raw material conversion rate and product selectivity and capable of producing unsaturated aldehydes and unsaturated carboxylic acids in high yield can be obtained.

この発明に係る触媒について詳細に説明する。
この発明にかかる触媒は、プロピレン、イソブテン、ターシャリーブタノール等の不飽和化合物を原料とし、アクロレイン、メタクロレイン等の不飽和アルデヒドを主に製造し、同時にアクリル酸、メタクリル酸等の不飽和カルボン酸も製造する複合酸化物触媒である。
この複合酸化物触媒は、モリブデン(Mo)、ビスマス(Bi)及び鉄(Fe)を必須成分として含み、更にコバルト(Co)、ニッケル(Ni)等を含んでもよい触媒である。
The catalyst according to the present invention will be described in detail.
The catalyst according to the present invention uses unsaturated compounds such as propylene, isobutene, and tertiary butanol as raw materials, and mainly produces unsaturated aldehydes such as acrolein and methacrolein, and at the same time, unsaturated carboxylic acids such as acrylic acid and methacrolein. Is also a composite oxide catalyst produced.
This composite oxide catalyst is a catalyst that contains molybdenum (Mo), bismuth (Bi), iron (Fe) as essential components, and may further contain cobalt (Co), nickel (Ni), and the like.

このようなMo、Bi、Fe、Co、Niの組成を有する触媒としては、下記の式(1)で示される触媒をあげることができる。
MoBiFeCoNi (1)
なお、a=12のとき、b=0.5〜7.0、c=0.05〜3.0、d=0〜10、e=0〜10(但しd+e=0〜10)を満たす。
Examples of the catalyst having such a composition of Mo, Bi, Fe, Co, and Ni include a catalyst represented by the following formula (1).
Mo a Bi b Fe c Co d Ni e (1)
When a = 12, b = 0.5 to 7.0, c = 0.05 to 3.0, d = 0 to 10, e = 0 to 10 (provided that d + e = 0 to 10) are satisfied.

そして、本発明に係る触媒は、この触媒を構成する各成分として、その成分たる元素(以下、「触媒成分元素」と称する。)を有する所定の化合物を、触媒の供給源となる化合物(以下、「供給源化合物」と称する。)として用い、この触媒成分元素を有する各供給源化合物を溶媒又は溶液に添加して一体化し、加熱して調製液を得(調製工程)、この調製液を乾燥処理して粉体を得(乾燥工程)、次いで、成形して触媒前駆体を得(成形工程)、そして、焼成すること(焼成工程)により、製造することができる。 The catalyst according to the present invention uses a predetermined compound having an element as a component (hereinafter, referred to as "catalyst component element") as each component constituting the catalyst, and a compound as a source of the catalyst (hereinafter referred to as "catalyst component element"). , "Source compound"), each source compound having this catalytic component element is added to a solvent or solution, integrated, and heated to obtain a preparation solution (preparation step), and this preparation solution is used. It can be produced by drying to obtain a powder (drying step), then molding to obtain a catalyst precursor (molding step), and firing (baking step).

[供給源化合物]
モリブデン(Mo)の供給源化合物としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等が挙げられる。
ビスマス(Bi)の供給源化合物としては、塩化ビスマス、硝酸ビスマス、酸化ビスマ、次炭酸ビスマス等が挙げられ、ビスマス添加量は、上記組成式(1)において、a=12のとき、b=0.5〜7となるように添加することが好ましく、より好ましくはb=0.7〜5.0、更に好ましくはb=1.0〜4.9となるように添加する。bが前記範囲内であることにより転化率に優れ、高選択率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる触媒とすることができる。
[Source compound]
Examples of the source compound of molybdenum (Mo) include ammonium paramolybdate, molybdenum trioxide, molybdenum acid, ammonium phosphomolybdate, and phosphomolybdic acid.
Examples of the source compound of bismuth (Bi) include bismuth chloride, bismuth nitrate, bismuth oxide, bismuth subcarbonate and the like, and the amount of bismuth added is b = 0 when a = 12 in the above composition formula (1). It is preferably added so as to be .5 to 7, more preferably b = 0.7 to 5.0, and further preferably b = 1.0 to 4.9. When b is within the above range, it can be used as a catalyst capable of producing unsaturated aldehydes and unsaturated carboxylic acids with excellent conversion and high selectivity.

鉄(Fe)の供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸第二鉄等が挙げられ、鉄添加量は、前記組成式(1)において、a=12のとき、c=0.05〜3となるように添加することが好ましく、より好ましくはc=0.1〜3、更に好ましくはc=0.2〜2となるように添加される。cが前記範囲内であることにより転化率に優れ、高選択率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる触媒とすることができる。 Examples of the source compound of iron (Fe) include ferric nitrate, ferric sulfate, ferric chloride, ferric acetate and the like, and the amount of iron added is a = in the composition formula (1). When 12, it is preferably added so that c = 0.05 to 3, more preferably c = 0.1 to 3, and even more preferably c = 0.2 to 2. When c is within the above range, it can be used as a catalyst capable of producing unsaturated aldehydes and unsaturated carboxylic acids with excellent conversion and high selectivity.

コバルト(Co)の供給源化合物としては、硝酸コバルト、硫酸コバルト、塩化コバルト、炭酸コバルト、酢酸コバルト等が挙げられ、コバルト添加量は、上記組成式(1)において、a=12のとき、d=0〜10となるように添加することが好ましく、より好ましくはd=0.3〜5.0、更に好ましくはd=0.5〜3.0となるように添加される。dが前記範囲内であることにより転化率に優れ、高選択率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる触媒とすることができる。 Examples of the source compound of cobalt (Co) include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, cobalt acetate, and the like, and the amount of cobalt added is d when a = 12 in the above composition formula (1). It is preferably added so that = 0 to 10, more preferably d = 0.3 to 5.0, and even more preferably d = 0.5 to 3.0. When d is within the above range, it can be used as a catalyst capable of producing unsaturated aldehydes and unsaturated carboxylic acids with excellent conversion and high selectivity.

ニッケル(Ni)の供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル等が挙げられ、ニッケル添加量は、前記組成式(1)において、a=12のとき、e=0〜10なるように添加することが好ましく、より好ましくはe=0.3〜8、更に好ましくはe=0.5〜5となるように添加される。eが前記範囲内であることにより転化率に優れ、高選択率で不飽和アルデヒド及び不飽和カルボン酸を製造することができる触媒とすることができる。 Examples of the source compound of nickel (Ni) include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate and the like, and the amount of nickel added is e when a = 12 in the composition formula (1). It is preferably added so that = 0 to 10, more preferably e = 0.3 to 8, and even more preferably e = 0.5 to 5. When e is within the above range, it can be used as a catalyst capable of producing unsaturated aldehydes and unsaturated carboxylic acids with excellent conversion and high selectivity.

なお、d+eは、0〜10の条件を有する。d+eが前記範囲内であると、その他の触媒成分元素の含有割合が低くなりすぎず、bやcの範囲を満たすことによる効果をより高く享受することができる。 Note that d + e has a condition of 0 to 10. When d + e is within the above range, the content ratio of other catalyst component elements does not become too low, and the effect of satisfying the ranges of b and c can be enjoyed higher.

[触媒の製造方法]
次に、本発明にかかる触媒の製造方法について説明する。
本発明に係る触媒は、前記の通り、調製工程、乾燥工程、成形工程及び焼成工程によって製造することができる。
[Catalyst manufacturing method]
Next, a method for producing the catalyst according to the present invention will be described.
As described above, the catalyst according to the present invention can be produced by a preparation step, a drying step, a molding step and a firing step.

[調製工程]
前記調製工程は、前記触媒成分元素を有する各供給源化合物を溶媒又は溶液に添加して一体化し、加熱して調製液を得る工程である。
前記溶媒は、各供給源化合物を溶解又は懸濁させるための媒体であり、水、若しくはメタノール、エタノール等の水と相溶性を有する有機溶媒、又はこれらの混合物からなる水性溶媒をあげることができる。
前記溶液とは、前記溶媒に1種又は複数種の供給源化合物を溶解、懸濁、又は一体化させた液である。
[Preparation process]
The preparation step is a step of adding each source compound having the catalyst component element to a solvent or a solution, integrating them, and heating to obtain a preparation liquid.
The solvent is a medium for dissolving or suspending each source compound, and examples thereof include water, an organic solvent compatible with water such as methanol and ethanol, or an aqueous solvent composed of a mixture thereof. ..
The solution is a solution in which one or more source compounds are dissolved, suspended, or integrated in the solvent.

前記の一体化とは、前記各触媒成分元素の供給源化合物の水溶液あるいは水分散液を一括に、あるいは段階的に混合し、加熱を行うことをいう。具体的には、前記の各供給源化合物を一括して混合し、次いで加熱する方法、前記の各供給源化合物を段階的に混合・加熱処理を繰り返す方法、及びこれらの方法を組み合わせる方法があげられ、これらのいずれもが、各触媒成分元素の供給源化合物の一体化という概念に含まれる。 The above-mentioned integration means that an aqueous solution or an aqueous dispersion of a source compound of each catalyst component element is mixed all at once or stepwise and heated. Specifically, a method of collectively mixing each of the above-mentioned source compounds and then heating, a method of repeating mixing and heat treatment of each of the above-mentioned source compounds step by step, and a method of combining these methods can be mentioned. All of these are included in the concept of integration of source compounds for each catalytic component element.

前記の加熱とは、前記の一体化工程で得られた混合液又は混合分散液を所定温度で所定時間、撹拌することをいう。この加熱により、混合液又は混合分散液の粘度が上昇し、混合分散液の場合、その中の固体成分の沈降を緩和し、とりわけ次の乾燥工程での成分の不均一化を抑制するのに有効となり、得られる最終製品である触媒の原料転化率や選択率等の触媒活性がより良好となる。 The heating means stirring the mixed solution or the mixed dispersion obtained in the integration step at a predetermined temperature for a predetermined time. By this heating, the viscosity of the mixed solution or the mixed dispersion is increased, and in the case of the mixed dispersion, the sedimentation of the solid component in the mixed dispersion is alleviated, and in particular, the non-uniformity of the component in the next drying step is suppressed. It becomes effective, and the catalytic activity such as the raw material conversion rate and the selectivity of the obtained final product catalyst becomes better.

前記加熱における温度は、60℃〜95℃が好ましく、70℃〜90℃がより好ましい。熟成温度が60℃未満では、加熱処理の効果が十分ではなく、良好な活性を得られない場合がある。一方、95℃を超えると、加熱処理中の水の蒸発が多く、工業的な実施には不利である。更に100℃を超えると、溶解槽に耐圧容器が必要となり、また、ハンドリングも複雑になり、経済性及び操作性の面で著しく不利となる。 The temperature in the heating is preferably 60 ° C. to 95 ° C., more preferably 70 ° C. to 90 ° C. If the aging temperature is less than 60 ° C., the effect of the heat treatment is not sufficient and good activity may not be obtained. On the other hand, if the temperature exceeds 95 ° C., water evaporates a lot during the heat treatment, which is disadvantageous for industrial practice. Further, if the temperature exceeds 100 ° C., a pressure-resistant container is required for the melting tank, and handling becomes complicated, which is significantly disadvantageous in terms of economy and operability.

前記加熱にかける時間は、2時間〜12時間がよく、3時間〜8時間が好ましい。加熱時間が2時間未満では、触媒の活性及び選択性が十分に発現しない場合がある。一方、12時間を超えても加熱の効果が増大することはなく、工業的な実施には不利である。
前記撹拌方法としては、任意の方法を採用することができ、例えば、撹拌翼を有する撹拌機による方法や、ポンプによる外部循環による方法等が挙げられる。
The heating time is preferably 2 hours to 12 hours, preferably 3 hours to 8 hours. If the heating time is less than 2 hours, the activity and selectivity of the catalyst may not be sufficiently expressed. On the other hand, the effect of heating does not increase even if it exceeds 12 hours, which is disadvantageous for industrial implementation.
As the stirring method, any method can be adopted, and examples thereof include a method using a stirrer having a stirring blade and a method using an external circulation using a pump.

[乾燥工程]
得られた調製液は、乾燥工程にかけることにより、固形物が得られる。この乾燥工程における乾燥方法及び得られる乾燥物の状態については特に限定はなく、例えば、通常のスプレードライヤー、スラリードライヤー、ドラムドライヤー等を用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器、トンネル型焼成炉を用いてブロック状又はフレーク状の乾燥物を得てもよい。
[Drying process]
The obtained preparation liquid is subjected to a drying step to obtain a solid product. The drying method in this drying step and the state of the obtained dried product are not particularly limited, and for example, a powdered dried product may be obtained using a normal spray dryer, slurry dryer, drum dryer, or the like. , Ordinary box-type dryers and tunnel-type baking furnaces may be used to obtain block-shaped or flake-shaped dried products.

[加熱処理工程]
前記乾燥工程で得られた固形物は、必要に応じて、加熱処理工程が行われる。この加熱処理は、空気中で200℃〜400℃、好ましくは250℃〜350℃の温度域で短時間に行われる処理である。その際の炉の形式及びその方法については特に限定はなく、例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾燥物を固定した状態で加熱してもよいし、また、ロータリーキルン等を用いて乾燥物を流動させながら加熱してもよい。
[Heat treatment process]
The solid matter obtained in the drying step is subjected to a heat treatment step, if necessary. This heat treatment is a treatment performed in air in a temperature range of 200 ° C. to 400 ° C., preferably 250 ° C. to 350 ° C. for a short time. The type and method of the furnace at that time are not particularly limited, and for example, a normal box-type heating furnace, a tunnel-type heating furnace, or the like may be used to heat the dried product in a fixed state, or a rotary kiln. The dried product may be heated while flowing using the above method.

[成形工程及び焼成工程]
前記の乾燥工程又は加熱処理工程で得られた固形物又は加熱処理物は、押出し成形、打錠成形、あるいは担持成形等の方法により任意の形状に賦形することにより、成形体が得られる。次いで、この成形体を、好ましくは450℃〜650℃の温度条件にて1時間〜16時間程度の最終熱処理に付す。焼成方法としては、前記の加熱処理工程で用いられる方法を採用することができる。
以上のようにして、高活性で、かつ目的とする酸化生成物を高い収率で与える複合酸化物の触媒が得られる。
[Molding process and firing process]
The solid or heat-treated product obtained in the drying step or the heat treatment step is shaped into an arbitrary shape by a method such as extrusion molding, tableting molding, or support molding to obtain a molded product. Next, this molded product is subjected to final heat treatment for about 1 hour to 16 hours under a temperature condition of preferably 450 ° C. to 650 ° C. As the firing method, the method used in the above-mentioned heat treatment step can be adopted.
As described above, a catalyst of a composite oxide having high activity and providing the desired oxidation product in a high yield can be obtained.

[供給源化合物の添加方法]
前記の調製工程において、各供給源化合物の全てを1つの調製工程にかけてもいいが、各供給源化合物をそれぞれ単独で又はいくつかのグループに分けて調製工程を行って複数の調製液を得、得られた複数の調製液を一度に、又は順番に混合してもよく、また、1つ又は複数の調製液を前記乾燥工程にかけ、得られた固形物を残りの供給源化合物の調製工程において、溶媒又は溶液に添加してもよい。
[Method of adding source compound]
In the above preparation step, all of each source compound may be subjected to one preparation step, but each source compound may be subjected to the preparation step individually or in several groups to obtain a plurality of preparation solutions. The resulting multiple preparations may be mixed at once or in sequence, or the one or more preparations may be subjected to the drying step and the resulting solids may be used in the preparation of the remaining source compounds. , May be added to the solvent or solution.

[鉄(Fe)の供給源化合物の添加方法]
特に、本発明においては、鉄(Fe)の供給源化合物が調製工程に複数回、かけられる。すなわち、鉄(Fe)の供給源化合物の溶媒又は溶液への添加は、複数回行われる。これは、この方法を採用することにより、不飽和化合物の転化率、不飽和アルデヒド及び不飽和カルボン酸の選択率をより高くすることができる。
[Method of adding iron (Fe) source compound]
In particular, in the present invention, the iron (Fe) source compound is applied multiple times in the preparation step. That is, the addition of the iron (Fe) source compound to the solvent or solution is performed a plurality of times. It is possible to increase the conversion rate of unsaturated compounds and the selectivity of unsaturated aldehydes and unsaturated carboxylic acids by adopting this method.

ところで、鉄(Fe)の供給源化合物の添加がおこなわれる複数回のうち、少なくとも2回は、添加される対象の溶媒又は溶液の組成が相違する。これは、同じ組成の溶媒又は溶液に鉄(Fe)の供給源化合物を添加した場合、その後の工程を経ても、結果的に同じ状態の触媒としての鉄成分が得られ、1回にまとめて添加した場合と差が生じず、また、後記する本発明の触媒のラマン分光法の測定において生じる特徴を生じさせない。 By the way, the composition of the solvent or solution to be added is different at least twice out of a plurality of times when the iron (Fe) source compound is added. This is because when an iron (Fe) source compound is added to a solvent or solution having the same composition, an iron component as a catalyst in the same state is obtained as a result even after the subsequent steps, and all at once. It does not make a difference from the case of addition, and does not cause the characteristics that occur in the Raman spectroscopy measurement of the catalyst of the present invention described later.

[本発明の触媒の特徴]
本願発明にかかる触媒は、ラマン分光法により測定された特定の波長幅の最大値に対する別の特定の波長幅の最大値との比に特徴を有する。具体的には、ラマン分光法により測定された898cm−1±5cm−1における最大値に対する、940cm−1±5cm−1における最大値の比が0.37以上となり、0.39以上が好ましく、0.41以上がより好ましい。一方、この最大値の比の上限は、0.54以下であり、0.52以下が好ましく、0.50以下がより好ましい。この範囲を外れると、不飽和化合物の転化率や、不飽和アルデヒド及び不飽和カルボン酸の選択率等の触媒性能を十分に向上させることが難しくなる傾向がある。
[Characteristics of the catalyst of the present invention]
The catalyst according to the present invention is characterized by the ratio of the maximum value of a specific wavelength width measured by Raman spectroscopy to the maximum value of another specific wavelength width. Specifically, with respect to the maximum value at 898cm -1 ± 5cm -1 measured by Raman spectroscopy, it is the ratio of the maximum value in the 940 cm -1 ± 5 cm -1 is 0.37 or more, preferably 0.39 or more, 0.41 or more is more preferable. On the other hand, the upper limit of the ratio of the maximum value is 0.54 or less, preferably 0.52 or less, and more preferably 0.50 or less. If it is out of this range, it tends to be difficult to sufficiently improve the catalytic performance such as the conversion rate of unsaturated compounds and the selectivity of unsaturated aldehydes and unsaturated carboxylic acids.

[用途]
本発明にかかる触媒を用いることにより、原料転化率や生成物選択率等の触媒性能をより向上させることができ、プロピレン、イソブテン、ターシャリーブタノール等の不飽和化合物を分子状酸素含有ガスにより気相接触酸化して、対応するアクロレイン、メタクロレイン等の不飽和アルデヒドや、アクリル酸、メタクロレイン等の不飽和アルデヒドを高収率で製造することができる。
[Use]
By using the catalyst according to the present invention, catalytic performance such as raw material conversion rate and product selectivity can be further improved, and unsaturated compounds such as propylene, isobutene, and tertiary butanol are vaporized by a molecular oxygen-containing gas. By phase-contact oxidation, the corresponding unsaturated aldehydes such as achlorine and methacrolein and unsaturated aldehydes such as acrylic acid and methacrolein can be produced in high yield.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に何ら限定されるものではない。
なお、プロピレン転化率、アクロレイン選択率、アクリル酸選択率、アクロレイン収率、アクリル酸収率、合計収率の定義は、下記の通りである。
・プロピレン転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
・アクロレイン選択率(モル%)=(生成したアクロレインのモル数/反応したプロピレンのモル数)×100
・アクリル酸選択率(モル%)=(生成したアクリル酸のモル数/反応したプロピレンのモル数)×100
・アクロレイン収率(モル%)=(生成したアクロレインのモル数/供給したプロピレンのモル数)×100
・アクリル酸収率(モル%)=(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
・合計収率(モル%)=アクロレイン収率(モル%)+アクリル酸収率(モル%)
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
The definitions of propylene conversion rate, acrolein selectivity, acrylic acid selectivity, acrolein yield, acrylic acid yield, and total yield are as follows.
-Propylene conversion rate (mol%) = (number of moles of reacted propylene / number of moles of supplied propylene) x 100
-Acrolein selectivity (mol%) = (number of moles of acrolein produced / number of moles of reacted propylene) x 100
Acrylic acid selectivity (mol%) = (number of moles of produced acrylic acid / number of moles of reacted propylene) x 100
Acrolein yield (mol%) = (number of moles of acrolein produced / number of moles of supplied propylene) x 100
Acrylic acid yield (mol%) = (number of moles of produced acrylic acid / number of moles of supplied propylene) x 100
-Total yield (mol%) = acrolein yield (mol%) + acrylic acid yield (mol%)

<ラマンスペクトルの測定>
触媒サンプルナノフォトン(株)製、RAMANtouchを用い、励起レーザー波長532nm、回折格子1200gr/mmの条件でラマンスペクトル測定を行った。測定により898cm−1±5cm−1における最大値、及び940cm−1±5cm−1における最大値をそれぞれ求め、898cm−1±5cm−1における最大値に対する、940cm−1±5cm−1における最大値の比((940cm−1±5cm−1における最大値)/(898cm−1±5cm−1における最大値))を計算した。
<Measurement of Raman spectrum>
Raman spectrum measurement was performed using a catalyst sample Nanophoton Corporation, RAMANtouch, under the conditions of an excitation laser wavelength of 532 nm and a diffraction grating of 1200 gr / mm. Maximum at 898cm -1 ± 5cm -1 by measuring, and 940 cm -1 determined maximum value, respectively, in ± 5 cm -1, relative to the maximum value at 898cm -1 ± 5cm -1, maximum at 940 cm -1 ± 5 cm -1 the ratio of ((a maximum value at the maximum value) / (898cm -1 ± 5cm -1 in the 940cm -1 ± 5cm -1)) was calculated.

(実施例1)
<触媒の調製>
容器に温水14.6Lを入れ、更にパラモリブデン酸アンモニウム四水和物2.31kgを加えて溶解させ、溶液とした。次いで、該溶液にヒュームドシリカの水分散液3.98kgを加えて、撹拌し、懸濁液とした(以下、「懸濁液A」と称する)。該ヒュームドシリカ水分散液は、ヒュームドシリカ5kg(比表面積200m/g)をイオン交換水20Lに加えてヒュームドシリカ懸濁液とした後に、該ヒュームドシリカ懸濁液を、ホモジナイザーであるULTRA−TURRAX T115KT(IKA社製)により、60分間分散処理を行い、ヒュームドシリカ水分散液としたものであり、ケイ素の供給源化合物とした。
別の容器に純水2.90Lを入れ、更に硝酸鉄九水和物0.35kg、硝酸コバルト六水和物1.41kg及び硝酸ニッケル六水和物1.43kgを加えて、加温して溶解させた(以下、「溶液B」と称する)。溶液Bを懸濁液Aに添加し、均一になるように攪拌し、加熱乾燥し、固形物を得た。次いで該固形物を空気雰囲気で300℃、1時間熱処理し、熱処理した固形物Aを得た。
更に、別の容器に純水8.70L、25%アンモニア水0.32kgを入れ、パラモリブデン酸アンモニウム四水和物0.64kgを加えて溶解し、「溶液C」とした。次いで、溶液Cに炭酸ナトリウム14.1g及び硝酸カリウム18.9gを加えて溶解し、「溶液D」とした。前記熱処理した固形物Aを3.10kg及び硝酸鉄九水和物0.10kgを溶液Dに添加し、均一になるように混合した。次いでNaを0.53%固溶した次炭酸ビスマス0.95kgを加えて30分間混合し、触媒活性成分とした。該触媒活性成分を加熱して水分を除去し、乾燥品とし、次いで該乾燥品を粉砕し、触媒活性成分の粉体を得た(以下、「粉体A」と称する)。
(Example 1)
<Catalyst preparation>
14.6 L of warm water was placed in a container, and 2.31 kg of ammonium paramolybdate tetrahydrate was further added and dissolved to prepare a solution. Next, 3.98 kg of an aqueous dispersion of fumed silica was added to the solution, and the mixture was stirred to prepare a suspension (hereinafter referred to as "suspension A"). The fumed silica aqueous dispersion is prepared by adding 5 kg of fumed silica (specific surface area 200 m 2 / g) to 20 L of ion-exchanged water to prepare a fumed silica suspension, and then using a homogenizer to prepare the fumed silica suspension. A certain ULTRA-TURRAX T115KT (manufactured by IKA) was subjected to a dispersion treatment for 60 minutes to prepare a fumed silica aqueous dispersion, which was used as a silicon source compound.
Put 2.90 L of pure water in another container, add 0.35 kg of iron nitrate nineahydrate, 1.41 kg of cobalt nitrate hexahydrate and 1.43 kg of nickel nitrate hexahydrate, and heat. It was dissolved (hereinafter referred to as "solution B"). Solution B was added to suspension A, stirred to be uniform, and dried by heating to obtain a solid product. Next, the solid substance was heat-treated at 300 ° C. for 1 hour in an air atmosphere to obtain a heat-treated solid substance A.
Further, 8.70 L of pure water and 0.32 kg of 25% aqueous ammonia were placed in another container, and 0.64 kg of ammonium paramolybdate tetrahydrate was added and dissolved to prepare "Solution C". Then, 14.1 g of sodium carbonate and 18.9 g of potassium nitrate were added to the solution C and dissolved to obtain "Solution D". 3.10 kg of the heat-treated solid A and 0.10 kg of iron nitrate nineahydrate were added to the solution D and mixed so as to be uniform. Next, 0.95 kg of bismuth subcarbonate in which Na was dissolved in 0.53% was added and mixed for 30 minutes to prepare a catalytically active ingredient. The catalytically active ingredient was heated to remove water to obtain a dried product, and then the dried product was pulverized to obtain a powder of the catalytically active ingredient (hereinafter referred to as "powder A").

得られた粉体Aを最高温度440℃で6時間事前焼成した。事前焼成粉体に対して5重量%分の結晶セルロース及び5重量%分の鱗片状ガラスを添加し、十分混合した後、30重量%グリセリン水溶液、アルミナ及びシリカを主成分とする球状の担体を用いて、転動造粒法により、担持成形体を調製した。(株)ダルトン製マルメライザーQJ−230T−2型(円筒直径23cm)に直径4.0mmの球状の担体(気孔率50%、吸水率20%)を投入し、150rpmで回転させた。次いで結晶セルロースと鱗片状ガラスを添加した事前焼成粉体とグリセリン水溶液を交互に添加することを40分間繰り返すことにより担体に担持させ、担持成形体を得た。このとき使用したグリセリン水溶液の量は、事前焼成粉体100重量部に対して、36重量部であった。該担持成形体を空気雰囲気下、505℃で2時間、焼成を行い、球状触媒を得た。担持された触媒を担体から剥がし、1.0mm〜2.0mmの篩を通し顆粒状の触媒Aを得た。 The obtained powder A was pre-baked at a maximum temperature of 440 ° C. for 6 hours. 5% by weight of crystalline cellulose and 5% by weight of scaly glass are added to the pre-baked powder, and after sufficient mixing, a 30% by weight aqueous solution of glycerin, a spherical carrier containing alumina and silica as main components is added. Using, a supported molded body was prepared by a rolling granulation method. A spherical carrier (porosity 50%, water absorption 20%) having a diameter of 4.0 mm was put into Malmölyzer QJ-230T-2 type (cylindrical diameter 23 cm) manufactured by Dalton Co., Ltd. and rotated at 150 rpm. Next, the pre-fired powder to which crystalline cellulose and scaly glass were added and the glycerin aqueous solution were alternately added for 40 minutes to support the carrier to obtain a supported molded product. The amount of the glycerin aqueous solution used at this time was 36 parts by weight with respect to 100 parts by weight of the pre-baked powder. The supported molded product was calcined at 505 ° C. for 2 hours in an air atmosphere to obtain a spherical catalyst. The supported catalyst was peeled off from the carrier and passed through a 1.0 mm to 2.0 mm sieve to obtain a granular catalyst A.

触媒Aの組成比(モル比)は以下の通りであった。
Mo/Bi/Fe/Co/Ni/Na/K/Si=12/2.9/0.8/3.4/3.4/0.4/0.15/8.4
The composition ratio (molar ratio) of the catalyst A was as follows.
Mo / Bi / Fe / Co / Ni / Na / K / Si = 12 / 2.9 / 0.8 / 3.4 / 3.4 / 0.4 / 0.15 / 8.4

<プロピレンの気相接触酸化反応>
プロピレンの気相接触酸化反応には、ステンレス鋼製内径7mmの反応管を用いた。反応管内に触媒Aを3.0g充填し、原料混合ガスを導入する入口側にはムライトボール1.5φを充填した。熱媒にはナイターを用い、320℃で反応を行った。
プロピレン10体積%、スチーム12体積%、酸素15体積%、窒素63体積%の原料混合ガスを圧力70kPaで該反応管内にいる入口側より導入し、触媒層との接触時間1.8秒にて、プロピレンの気相接触酸化を実施した。この時、プロピレンの空間速度は191h−1であった。反応結果を表1にまとめた。
<Vaic contact oxidation reaction of propylene>
A stainless steel reaction tube having an inner diameter of 7 mm was used for the vapor-phase catalytic oxidation reaction of propylene. 3.0 g of catalyst A was filled in the reaction tube, and 1.5φ of mullite ball was filled on the inlet side into which the raw material mixed gas was introduced. A night game was used as a heat medium, and the reaction was carried out at 320 ° C.
A raw material mixed gas of 10% by volume of propylene, 12% by volume of steam, 15% by volume of oxygen, and 63% by volume of nitrogen was introduced at a pressure of 70 kPa from the inlet side in the reaction tube, and the contact time with the catalyst layer was 1.8 seconds. , Vapor phase catalytic oxidation of propylene was carried out. At this time, the space velocity of propylene was 191h- 1 . The reaction results are summarized in Table 1.

(比較例1)
<触媒の調製>
硝酸鉄九水和物を0.46kg加えた以外は、実施例1と同様に熱処理した固形物Aを得た。
更に、別の容器に純水1.17L、25%アンモニア水42.8gを入れ、パラモリブデン酸アンモニウム四水和物86.5gを加えて溶解し、溶液Cとした。次いで、溶液Cに炭酸ナトリウム2.0g及び硝酸カリウム2.6gを加えて溶解し、溶液Dとした。前記熱処理した固形物0.42kgを溶液Dに添加し、均一になるように混合した。次いでNaを0.53%固溶した次炭酸ビスマス0.13kgを加えて30分間混合し、触媒活性成分とした。該触媒活性成分を加熱して水分を除去し、乾燥品とし、次いで該乾燥品を粉砕し、触媒活性成分の粉体Aを得た。
粉体Aに対し、0.5重量%分のポリエチレンオキサイド、5重量%分の鱗片状ガラス及び5重量%分のレーヨン短繊維を添加し、十分混合した後、純水、アルミナ及びシリカを主成分とする球状の担体を用いて、回転数150rpmで転動造粒法により、担持成形体を調製した。該担持成形体を空気雰囲気下、505℃で2時間、焼成を行い、球状触媒を得た。担持された触媒を担体から剥がし、1.0mm〜2.0mmの篩を通し顆粒状の触媒Bを得た。
触媒Bの組成比(モル比)は以下の通りであった。
Mo/Bi/Fe/Co/Ni/Na/K/Si=12/2.9/0.8/3.4/3.4/0.4/0.15/8.4
(Comparative Example 1)
<Catalyst preparation>
A solid substance A was obtained by heat treatment in the same manner as in Example 1 except that 0.46 kg of iron nitrate nineahydrate was added.
Further, 1.17 L of pure water and 42.8 g of 25% aqueous ammonia were placed in another container, and 86.5 g of ammonium paramolybdate tetrahydrate was added and dissolved to prepare a solution C. Then, 2.0 g of sodium carbonate and 2.6 g of potassium nitrate were added to the solution C and dissolved to obtain a solution D. 0.42 kg of the heat-treated solid was added to the solution D and mixed so as to be uniform. Next, 0.13 kg of bismuth subcarbonate in which Na was dissolved in 0.53% was added and mixed for 30 minutes to prepare a catalytically active ingredient. The catalytically active ingredient was heated to remove water to obtain a dried product, and then the dried product was pulverized to obtain powder A of the catalytically active ingredient.
To powder A, 0.5% by weight of polyethylene oxide, 5% by weight of scaly glass and 5% by weight of rayon short fibers were added, and after sufficient mixing, pure water, alumina and silica were mainly used. A supported molded body was prepared by a rolling granulation method at a rotation speed of 150 rpm using a spherical carrier as a component. The supported molded product was calcined at 505 ° C. for 2 hours in an air atmosphere to obtain a spherical catalyst. The supported catalyst was peeled off from the carrier and passed through a 1.0 mm to 2.0 mm sieve to obtain a granular catalyst B.
The composition ratio (molar ratio) of the catalyst B was as follows.
Mo / Bi / Fe / Co / Ni / Na / K / Si = 12 / 2.9 / 0.8 / 3.4 / 3.4 / 0.4 / 0.15 / 8.4

<プロピレンの気相接触酸化反応>
実施例1と同様に反応を行った。反応結果を表1にまとめた。
<Vaic contact oxidation reaction of propylene>
The reaction was carried out in the same manner as in Example 1. The reaction results are summarized in Table 1.

(比較例2)
容器に温水3.20Lを入れ、更にパラモリブデン酸アンモニウム四水和物0.32kgを加えて溶解させ、溶液とした。次いで、該溶液にヒュームドシリカの水分散液0.55kgを加えて、撹拌し、懸濁液Aとした。
別の容器に純水0.38Lを入れ、更に硝酸コバルト六水和物0.20kg及び硝酸ニッケル六水和物0.20kgを加えて、加温して溶解させ、溶液Bとした。溶液Bを懸濁液Aに添加し、均一になるように攪拌し、加熱乾燥し、固形物を得た。次いで該固形物を空気雰囲気で300℃、1時間熱処理し、熱処理した固形物Aを得た。
更に、別の容器に純水0.13L、25%アンモニア水15.6gを入れ、パラモリブデン酸アンモニウム四水和物31.5gを加えて溶解し、溶液Cとした。次いで、溶液Cに炭酸ナトリウム0.7g及び硝酸カリウム0.9gを加えて溶解し、溶液Dとした。前記熱処理した固形物Aを0.15kg及び硝酸鉄九水和物20.2gを溶液Dに添加し、均一になるように混合した。次いでNaを0.53%固溶した次炭酸ビスマス46.6gを加えて30分間混合し、触媒活性成分とした。該触媒活性成分を加熱して水分を除去し、乾燥品とし、次いで該乾燥品を粉砕し、触媒活性成分の粉体Aを得た。
粉体Aの事前焼成、及び転動造粒は実施例1と同様に行い、触媒Cを得た。
触媒Cの組成比(モル比)は以下の通りであった。
Mo/Bi/Fe/Co/Ni/Na/K/Si=12/2.9/0.8/3.4/3.4/0.4/0.15/8.4
(Comparative Example 2)
3.20 L of warm water was placed in a container, and 0.32 kg of ammonium paramolybdate tetrahydrate was further added and dissolved to prepare a solution. Next, 0.55 kg of an aqueous dispersion of fumed silica was added to the solution and stirred to obtain suspension A.
0.38 L of pure water was placed in another container, 0.20 kg of cobalt nitrate hexahydrate and 0.20 kg of nickel nitrate hexahydrate were further added, and the mixture was heated and dissolved to prepare a solution B. Solution B was added to suspension A, stirred to be uniform, and dried by heating to obtain a solid product. Next, the solid substance was heat-treated at 300 ° C. for 1 hour in an air atmosphere to obtain a heat-treated solid substance A.
Further, 0.13 L of pure water and 15.6 g of 25% aqueous ammonia were placed in another container, and 31.5 g of ammonium paramolybdate tetrahydrate was added and dissolved to prepare a solution C. Then, 0.7 g of sodium carbonate and 0.9 g of potassium nitrate were added to the solution C and dissolved to obtain a solution D. 0.15 kg of the heat-treated solid A and 20.2 g of iron nitrate nineahydrate were added to the solution D and mixed so as to be uniform. Next, 46.6 g of bismuth subcarbonate in which Na was dissolved in 0.53% was added and mixed for 30 minutes to prepare a catalytically active ingredient. The catalytically active ingredient was heated to remove water to obtain a dried product, and then the dried product was pulverized to obtain powder A of the catalytically active ingredient.
Pre-baking of powder A and rolling granulation were carried out in the same manner as in Example 1 to obtain catalyst C.
The composition ratio (molar ratio) of the catalyst C was as follows.
Mo / Bi / Fe / Co / Ni / Na / K / Si = 12 / 2.9 / 0.8 / 3.4 / 3.4 / 0.4 / 0.15 / 8.4

<プロピレンの気相接触酸化反応>
実施例1と同様に反応を行った。反応結果を表1にまとめた。
<Vaic contact oxidation reaction of propylene>
The reaction was carried out in the same manner as in Example 1. The reaction results are summarized in Table 1.

(比較例3)
容器に温水4.23Lを入れ、更にパラモリブデン酸アンモニウム四水和物0.42kg、炭酸ナトリウム2.2gを加えて溶解させ、溶液とした。別の容器に純水0.15Lを入れ、硝酸カリウム3.0gを溶解させ、前記溶液に添加した。次いで、該溶液にヒュームドシリカの水分散液0.55kgを加えて、撹拌し、懸濁液Aとした。
別の容器に純水0.44Lを入れ、更に硝酸鉄九水和物64.5g、硝酸コバルト六水和物0.20kg及び硝酸ニッケル六水和物0.20kgを加えて、加温して溶解させ、溶液Bとした。溶液Bを懸濁液Aに添加し、均一になるように攪拌した。更に、Naを0.53%固溶した次炭酸ビスマス0.15kgを加えて撹拌し、加熱乾燥し、固形物を得た。次いで該固形物を空気雰囲気で300℃、1時間熱処理し、熱処理した固形物Aを得た。次いで固形物Aを粉砕し、触媒活性成分の粉体Aを得た。
粉体Aの事前焼成、及び転動造粒は実施例1と同様に行い、触媒Dを得た。触媒Dの組成比(モル比)は以下の通りであった。
Mo/Bi/Fe/Co/Ni/Na/K/Si=12/2.9/0.8/3.4/3.4/0.4/0.15/8.4
(Comparative Example 3)
4.23 L of warm water was placed in a container, and 0.42 kg of ammonium paramolybdate tetrahydrate and 2.2 g of sodium carbonate were further added and dissolved to prepare a solution. 0.15 L of pure water was placed in another container to dissolve 3.0 g of potassium nitrate, and the mixture was added to the solution. Next, 0.55 kg of an aqueous dispersion of fumed silica was added to the solution and stirred to obtain suspension A.
Put 0.44 L of pure water in another container, add 64.5 g of iron nitrate nineahydrate, 0.20 kg of cobalt nitrate hexahydrate and 0.20 kg of nickel nitrate hexahydrate, and heat. It was dissolved to give solution B. Solution B was added to suspension A and stirred to homogenize. Further, 0.15 kg of bismuth subcarbonate in which Na was dissolved in 0.53% was added, stirred, and dried by heating to obtain a solid substance. Next, the solid substance was heat-treated at 300 ° C. for 1 hour in an air atmosphere to obtain a heat-treated solid substance A. Next, the solid material A was pulverized to obtain a powder A as a catalytically active ingredient.
Pre-baking of powder A and rolling granulation were carried out in the same manner as in Example 1 to obtain catalyst D. The composition ratio (molar ratio) of the catalyst D was as follows.
Mo / Bi / Fe / Co / Ni / Na / K / Si = 12 / 2.9 / 0.8 / 3.4 / 3.4 / 0.4 / 0.15 / 8.4

<プロピレンの気相接触酸化反応>
実施例1と同様に反応を行った。反応結果を表1にまとめた。
<Vaic contact oxidation reaction of propylene>
The reaction was carried out in the same manner as in Example 1. The reaction results are summarized in Table 1.

Figure 2020142221
Figure 2020142221

Claims (5)

不飽和アルデヒド及び不飽和カルボン酸を製造するための触媒であって、
モリブデン(Mo)、ビスマス(Bi)及び鉄(Fe)を含み、
ラマン分光法により測定された898cm−1±5cm−1における最大値に対する、940cm−1±5cm−1における最大値の比が0.37以上0.54以下である触媒。
A catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids.
Contains molybdenum (Mo), bismuth (Bi) and iron (Fe)
To maximum at 898cm -1 ± 5cm -1 measured by Raman spectroscopy, the catalyst the ratio of the maximum value in the 940 cm -1 ± 5 cm -1 is 0.37 or more 0.54 or less.
更にコバルト(Co)及び/又はニッケル(Ni)を含む請求項1に記載の触媒。 The catalyst according to claim 1, further comprising cobalt (Co) and / or nickel (Ni). 前記のMo,Bi,Fe,Co,Niの組成が下記式(1)で示される請求項1又は2に記載の触媒。
MoBiFeCoNi (1)
(a=12のとき、b=0.5〜7.0、c=0.05〜3.0、d=0〜10、e=0〜10(但しd+e=0〜10))
The catalyst according to claim 1 or 2, wherein the composition of Mo, Bi, Fe, Co, and Ni is represented by the following formula (1).
Mo a Bi b Fe c Co d Ni e (1)
(When a = 12, b = 0.5 to 7.0, c = 0.05 to 3.0, d = 0 to 10, e = 0 to 10 (however, d + e = 0 to 10))
請求項1乃至3のいずれか1項に記載の触媒の存在下、気相接触酸化により、プロピレンからアクロレイン及びアクリル酸を製造する方法。 A method for producing acrolein and acrylic acid from propylene by vapor phase catalytic oxidation in the presence of the catalyst according to any one of claims 1 to 3. 各供給源化合物を溶媒又は溶液に添加し一体化及び加熱することにより調製液とする調製工程、該調製液を乾燥処理して粉体とする乾燥工程、該粉体を成形し触媒前駆体とする成形工程及び該触媒前駆体を焼成して触媒とする焼成工程を含むMo、Bi及びFe含有不飽和アルデヒド及び不飽和カルボン酸合成用触媒を製造する方法であって、
Feの供給源化合物の溶媒又は溶液への添加が複数回であり、
前記Feの供給源化合物を添加する複数回のうち少なくとも2回の添加において、添加される溶媒の種類又は溶液の組成が相違する、不飽和アルデヒド及び不飽和カルボン酸を製造するための触媒の製造方法。
A preparation step of adding each source compound to a solvent or solution, integrating and heating to prepare a preparation solution, a drying step of drying the preparation solution to obtain a powder, and molding the powder to form a catalyst precursor. A method for producing a catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids containing Mo, Bi and Fe, which comprises a molding step of calcination and a firing step of calcining the catalyst precursor to serve as a catalyst.
The addition of the Fe source compound to the solvent or solution is multiple times.
Production of catalysts for producing unsaturated aldehydes and unsaturated carboxylic acids in which the type of solvent added or the composition of the solution is different in at least two additions of the plurality of additions of the Fe source compound. Method.
JP2019042506A 2019-03-08 2019-03-08 catalyst Active JP7322433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042506A JP7322433B2 (en) 2019-03-08 2019-03-08 catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042506A JP7322433B2 (en) 2019-03-08 2019-03-08 catalyst

Publications (2)

Publication Number Publication Date
JP2020142221A true JP2020142221A (en) 2020-09-10
JP7322433B2 JP7322433B2 (en) 2023-08-08

Family

ID=72355260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042506A Active JP7322433B2 (en) 2019-03-08 2019-03-08 catalyst

Country Status (1)

Country Link
JP (1) JP7322433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186032A1 (en) 2021-03-03 2022-09-09 日本化薬株式会社 Catalyst, and method for producing compound through gas-phase oxidation reaction using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157837A1 (en) * 2016-03-14 2017-09-21 Evonik Degussa Gmbh Method for the hydrothermal preparation of molybdenum-bismuth-cobalt-iron-based mixed oxide catalysts
JP2018158314A (en) * 2017-03-23 2018-10-11 三菱ケミカル株式会社 Method for producing composite oxide catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157837A1 (en) * 2016-03-14 2017-09-21 Evonik Degussa Gmbh Method for the hydrothermal preparation of molybdenum-bismuth-cobalt-iron-based mixed oxide catalysts
JP2018158314A (en) * 2017-03-23 2018-10-11 三菱ケミカル株式会社 Method for producing composite oxide catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186032A1 (en) 2021-03-03 2022-09-09 日本化薬株式会社 Catalyst, and method for producing compound through gas-phase oxidation reaction using same
JP7209901B1 (en) * 2021-03-03 2023-01-20 日本化薬株式会社 Catalyst and method for producing compound by gas-phase oxidation reaction using the same
KR20230150817A (en) 2021-03-03 2023-10-31 닛뽄 가야쿠 가부시키가이샤 Catalyst and method for producing compounds by gas phase oxidation reaction using the same

Also Published As

Publication number Publication date
JP7322433B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP5570142B2 (en) Method for producing methacrylic acid production catalyst and method for producing methacrylic acid
KR20160032037A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2006104155A1 (en) Catalyst for producing methacrylic acid and method for preparation thereof
JP2008264766A (en) Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP7322433B2 (en) catalyst
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP7170375B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same
WO2016147324A1 (en) Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP7480671B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7480672B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468291B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP7105395B1 (en) Catalyst precursor, catalyst using the same, method for producing compound, and method for producing catalyst
JP7468290B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7375638B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7347282B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7375639B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7347283B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7459589B2 (en) Method for producing catalyst for acrylic acid synthesis
JP7532841B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R151 Written notification of patent or utility model registration

Ref document number: 7322433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151