JP2020140929A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2020140929A
JP2020140929A JP2019037487A JP2019037487A JP2020140929A JP 2020140929 A JP2020140929 A JP 2020140929A JP 2019037487 A JP2019037487 A JP 2019037487A JP 2019037487 A JP2019037487 A JP 2019037487A JP 2020140929 A JP2020140929 A JP 2020140929A
Authority
JP
Japan
Prior art keywords
battery pack
temperature
cell
heat
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019037487A
Other languages
Japanese (ja)
Inventor
孝徳 山添
Takanori Yamazoe
孝徳 山添
井上 健士
Takeshi Inoue
健士 井上
大輝 小松
Daiki Komatsu
大輝 小松
修子 山内
Shuko Yamauchi
修子 山内
茂樹 牧野
Shigeki Makino
茂樹 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019037487A priority Critical patent/JP2020140929A/en
Priority to PCT/JP2019/050240 priority patent/WO2020179196A1/en
Publication of JP2020140929A publication Critical patent/JP2020140929A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To level the temperature of cells in a battery pack (reduce the temperature difference between a cell in the center of the battery pack and a cell at the end, suppress the temperature rise of the cell in the center, and make the temperature of the cell in the battery pack equal to the temperature of the cell at the end) to extend the life of the battery pack.SOLUTION: A battery pack (100) according to the present invention includes a laminated body in which cells (110) and heat absorbing materials (130, 140) are alternately arranged and laminated, and the volume or material of the heat absorbing material (130) arranged at the center of the laminated body in the stacking direction is different from that of the heat absorbing material (140) arranged at the end of the laminated body in the stacking direction.SELECTED DRAWING: Figure 1

Description

本発明は、電池パックに関する。 The present invention relates to a battery pack.

従来、車載用、産業用などで複数セル(単電池)から構成される電池パックが知られている。一般的に、リチウムイオン電池などの2次電池は、高温で充放電を繰り返したり高温で放置されると、電池容量が低下したり電池内部の抵抗が上昇し、出力が低下するなどの電池劣化が加速される傾向にある。そのため、セルの充放電による温度上昇を抑制する為に、冷却構造を備えたものがある。 Conventionally, a battery pack composed of a plurality of cells (cell cells) for in-vehicle use, industrial use, etc. has been known. In general, when a secondary battery such as a lithium-ion battery is repeatedly charged and discharged at a high temperature or left at a high temperature, the battery capacity decreases, the resistance inside the battery increases, and the output decreases. Tends to be accelerated. Therefore, some have a cooling structure in order to suppress a temperature rise due to charging / discharging of the cell.

例えば、特許文献1には、複数の電池セル(1)の間に、電池セル(1)の表面に熱結合状態に接触してなるセパレータ(12)、(32)、(42)が挟着され、かつ複数の電池セル(1)が、電池セル(1)の間に冷却隙間(3)を設けてなるセパレータ(12)、(32)、(42)を介して積層するように固定してなる電池ブロック(10)、(30)、(40)と、この電池ブロック(10)、(30)、(40)の冷却隙間(3)に冷却気体を強制送風する送風機構(9)とを備える車両用のバッテリシステムであって、上記電池セル(1)と前記セパレータ(12)、(32)、(42)との間の熱抵抗、又はセパレータ(12)、(32)、(42)自体の熱抵抗が積層方向に配置される上記セパレータ(12)、(32)、(42)で異なり、上記熱抵抗の差で電池セル(1)の温度を均等化するようにしてなる車両用のバッテリシステムが開示されている。 For example, in Patent Document 1, separators (12), (32), and (42) formed in contact with the surface of a battery cell (1) in a thermally coupled state are sandwiched between a plurality of battery cells (1). The plurality of battery cells (1) are fixed so as to be laminated via separators (12), (32), and (42) provided with a cooling gap (3) between the battery cells (1). The battery blocks (10), (30), and (40), and the ventilation mechanism (9) that forcibly blows the cooling gas into the cooling gaps (3) of the battery blocks (10), (30), and (40). A vehicle battery system comprising the thermal resistance between the battery cell (1) and the separators (12), (32), (42), or separators (12), (32), (42). ) The thermal resistance of itself differs between the separators (12), (32), and (42) arranged in the stacking direction, and the difference in thermal resistance equalizes the temperature of the battery cell (1). The battery system for is disclosed.

特許文献2には、複数配列された電池と、配列した複数の上記電池を拘束して収容する電池収容ケースと、上記電池からの熱によって相変化可能な相変化材および上記相変化材を封入する袋体を有し、内部に上記袋体の変形に応じて体積変化可能な隙間が形成され、上記電池同士の間に、それぞれの上記電池または上記電池に当接する熱伝導部材に密着するようにして挟み込まれた吸熱体と、を備える電池モジュールが開示されている。 Patent Document 2 encloses a plurality of arranged batteries, a battery accommodating case for restraining and accommodating the plurality of arranged batteries, a phase change material capable of phase change by heat from the battery, and the phase change material. A gap that can change in volume according to the deformation of the bag body is formed inside, so that the batteries are in close contact with each other or the heat conductive member in contact with the batteries. A battery module including a heat absorber sandwiched between the two and the battery module is disclosed.

特許文献3には、隣り合って配置された複数の単電池を備える組電池であって、上記単電池の通常使用時の温度域よりも高く、かつ、上記単電池が熱破壊される破壊温度よりも低い融点を有する相変化物質を、互いに隣り合う上記単電池同士の間に、上記単電池のうちの1つが上記融点よりも高い温度まで発熱した場合に、その熱を吸収して溶融する形態に配置してなる組電池が開示されている。 Patent Document 3 describes a set battery including a plurality of cells arranged adjacent to each other, which is higher than the temperature range of the cells during normal use and has a breakdown temperature at which the cells are thermally destroyed. A phase-changing substance having a lower melting point is melted by absorbing the heat when one of the cells generates heat between the cells adjacent to each other to a temperature higher than the melting point. An assembled battery arranged in a form is disclosed.

特開2010−272378号公報JP-A-2010-272378 特開2013−178966号公報Japanese Unexamined Patent Publication No. 2013-178966 特開2010−73406号公報JP-A-2010-73406

上記特許文献1は、電池セルの熱を冷却するための冷却機構を設けているが、電池パックの更なる小型化を目指す場合、冷却機構を設けない構成が有利である。 The above-mentioned Patent Document 1 provides a cooling mechanism for cooling the heat of the battery cell, but when aiming at further miniaturization of the battery pack, a configuration without a cooling mechanism is advantageous.

また、電池パックの中心部に位置するセルは周囲のセルからの熱を受けると共に、冷却風が届かなかったり、冷却水が中心部のセルに行くまでに周囲のセルからの熱で温まったりして、十分な冷却効果が得られない事がある。その為、電池パック中心部に位置するセルの温度が、電池パックの端に位置するセルの温度よりも高くなってしまうことが予想される。一般的に、リチウムイオン電池などの2次電池は、温度が高い状態で放置され、または、充放電が繰り返されると劣化(電池容量が少なくなる、または充放電電流が少なくなる)が早くなってしまう。すなわち、電池パックの寿命は、電池パックの端に位置するセルは劣化が少ないにも関わらず、電池パック中心部に位置するセルの劣化の度合いで決まってしまう。 In addition, the cell located in the center of the battery pack receives heat from the surrounding cells, and the cooling air does not reach it, or the cooling water is warmed by the heat from the surrounding cells before it reaches the center cell. Therefore, a sufficient cooling effect may not be obtained. Therefore, it is expected that the temperature of the cell located at the center of the battery pack will be higher than the temperature of the cell located at the end of the battery pack. In general, a secondary battery such as a lithium-ion battery deteriorates faster (the battery capacity decreases or the charge / discharge current decreases) when the battery is left in a high temperature state or when charging / discharging is repeated. It ends up. That is, the life of the battery pack is determined by the degree of deterioration of the cell located at the center of the battery pack, although the cell located at the end of the battery pack has little deterioration.

特許文献2および特許文献3では、吸熱体または相変化物質が熱を吸収するため、特許文献1のように冷却機構を設ける必要が無いが、電池パックの中心部のセルと端部のセルの温度差の低減について、具体的な検討がなされていない。 In Patent Document 2 and Patent Document 3, since the heat absorber or the phase change substance absorbs heat, it is not necessary to provide a cooling mechanism as in Patent Document 1, but the cell at the center and the cell at the end of the battery pack do not need to be provided. No specific study has been made on the reduction of temperature difference.

本発明は、上記従来の課題を鑑みてなされたものであって、電池パック内のセルの温度を平準化し(電池パック中央部のセルと端部のセルとの温度差を小さくし、かつ、中央部のセルの温度上昇を抑制し、端部のセルの温度と同等にする)、電池パックの寿命を延ばすことを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and the temperature of the cells in the battery pack is leveled (the temperature difference between the cell at the center of the battery pack and the cell at the end is reduced, and the temperature difference is reduced. The purpose is to suppress the temperature rise of the cell in the center and make it equal to the temperature of the cell at the end) and extend the life of the battery pack.

上記目的を達成するための本発明の電池パックの一態様は、セルと、吸熱材とが交互に配置されて積層された積層体を備え、積層体の積層方向中央部に配置された吸熱材と、積層体の積層方向端部に配置された吸熱材との体積または材料が異なることを特徴とする。 One aspect of the battery pack of the present invention for achieving the above object includes a laminated body in which cells and heat absorbing materials are alternately arranged and laminated, and the heat absorbing material is arranged in the center of the laminated body in the stacking direction. It is characterized in that the volume or material is different from that of the heat absorbing material arranged at the end in the stacking direction of the laminated body.

本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the present invention are described in the claims.

本発明によれば、電池パック内のセルの温度を平準化し、電池パックの寿命を延ばすことができる。 According to the present invention, the temperature of the cells in the battery pack can be leveled and the life of the battery pack can be extended.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.

本発明の実施例1の電池パックの模式図Schematic diagram of the battery pack of Example 1 of the present invention 図1の電池パックを構成するセル(単電池)を示す模式図Schematic diagram showing cells (cells) constituting the battery pack of FIG. 吸熱材(PCM)の体積または材料が同じ時のセルの温度の経時変化を示すグラフGraph showing the time course of cell temperature when the volume or material of the endothermic material (PCM) is the same 本発明の実施例1のセルの温度の経時変化を示すグラフA graph showing the time course of the cell temperature of Example 1 of the present invention. 本発明の実施例2の電池パックの模式図Schematic diagram of the battery pack of Example 2 of the present invention 本発明の実施例2のセルの温度の経時変化を示すグラフA graph showing the time course of the cell temperature of Example 2 of the present invention. 本発明の実施例3の電池パックの模式図Schematic diagram of the battery pack of Example 3 of the present invention 本発明の実施例3のセルの温度の経時変化を示すグラフA graph showing the time course of the cell temperature of Example 3 of the present invention. 本発明の実施例4の電池パックの模式図 本発明の実施形態4の電池パックの概略を示す図である。Schematic diagram of the battery pack of Example 4 of the present invention It is a figure which shows the outline of the battery pack of Embodiment 4 of this invention.

以下、本発明の実施の形態を、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1の電池パックの模式図であり、図2は図1の電池パックを構成するセル(単電池)を示す模式図である。図1に示すように、実施例1の電池パック100は、複数のセル110が積層された構成を有する。このような電池パック100は、ハイブリッドカーや電気自動車(EV)に搭載されて、その動力源として利用される。 FIG. 1 is a schematic view of a battery pack according to a first embodiment of the present invention, and FIG. 2 is a schematic view showing cells (cell cells) constituting the battery pack of FIG. As shown in FIG. 1, the battery pack 100 of the first embodiment has a configuration in which a plurality of cells 110 are stacked. Such a battery pack 100 is mounted on a hybrid car or an electric vehicle (EV) and used as a power source thereof.

図1に示すように、電池パック100は、セル110と吸熱材130,140とが交互に配置されて積層された積層体を有する。図1では、セル110と吸熱材130,140とが紙面の横方向に積層されており、積層体の積層方向中央部に配置された吸熱材130と、積層体の積層方向端部に配置された吸熱材140との体積が異なっている。 As shown in FIG. 1, the battery pack 100 has a laminated body in which cells 110 and heat absorbing materials 130 and 140 are alternately arranged and laminated. In FIG. 1, the cell 110 and the heat absorbing materials 130 and 140 are laminated in the lateral direction of the paper surface, and are arranged at the heat absorbing material 130 arranged at the center of the laminated body in the stacking direction and at the end of the laminated body in the stacking direction. The volume is different from that of the heat absorbing material 140.

上述したように、電池パックの中央部の温度は端部の温度より高い傾向にある。そこで、本実施例のように、積層体の積層方向中央部に配置された吸熱材130の体積を、積層体の積層方向端部に配置された吸熱材140よりも大きくすることで、電池パックの中央部付近に配置された吸熱材の熱吸収量を、電池パックの端部付近に配置された吸熱材よりも大きくし、電池パック100全体の温度差を低減することができる。 As mentioned above, the temperature at the center of the battery pack tends to be higher than the temperature at the edges. Therefore, as in the present embodiment, the volume of the heat absorbing material 130 arranged at the center of the laminated body in the stacking direction is made larger than the volume of the heat absorbing material 140 arranged at the end of the laminated body in the stacking direction, thereby making the battery pack. The heat absorption amount of the heat absorbing material arranged near the central portion of the battery pack can be made larger than that of the heat absorbing material arranged near the end portion of the battery pack, and the temperature difference of the entire battery pack 100 can be reduced.

吸熱材130,140は、蓄熱材とも称され、相変化材料(Phase Change Material,PCM)を用いる。PCMは、固体から液体、液体から固体に変化する(凝固・融解を繰り返す)特性を持つ材料である。PCMは、所定の温度域で吸熱量が大きくなる材料であり、本実施例では、この所定の温度(PCMの相変化温度(融点))を、電池パックを使用する環境温度よりも高く、電池パックの通常使用時の最高温度よりも低い温度とする。ここで、環境温度とは、電池パックが置かれている温度で、国内の夏季においては35℃程度である。また、一般的なリチウムイオン電池では、通常使用時の温度域は−30℃〜60℃程度なので、通常使用時の最高温度は60℃となる。よって、本発明の「所定の温度」(PCMの相変化温度)の一例としては、40℃〜55℃である。 The heat absorbing materials 130 and 140 are also referred to as heat storage materials, and a phase change material (Phase Change Material, PCM) is used. PCM is a material having the property of changing from a solid to a liquid and from a liquid to a solid (repeating solidification and melting). PCM is a material that absorbs a large amount of heat in a predetermined temperature range. In this embodiment, the predetermined temperature (phase change temperature (melting point) of PCM) is higher than the environmental temperature at which the battery pack is used, and the battery is used. The temperature should be lower than the maximum temperature during normal use of the pack. Here, the environmental temperature is the temperature at which the battery pack is placed, and is about 35 ° C. in the summer in Japan. Further, in a general lithium ion battery, the temperature range during normal use is about −30 ° C. to 60 ° C., so the maximum temperature during normal use is 60 ° C. Therefore, as an example of the "predetermined temperature" (phase change temperature of PCM) of the present invention, it is 40 ° C. to 55 ° C.

PCMは、相変化の際に、大きなエネルギー(融解潜熱(kJ/kg))の出入りがある。このエネルギーの出入りを利用して、セルの温度上昇を所定の温度域(相変化温度近辺)で抑えることが可能である。このPCMを冷却材として使用することで、冷却体積を低減できると共に、冷却のための電力やメンテナンスが不要となる。 PCM has a large amount of energy (latent heat of melting (kJ / kg)) in and out during a phase change. By utilizing this energy inflow and outflow, it is possible to suppress the temperature rise of the cell in a predetermined temperature range (near the phase change temperature). By using this PCM as a coolant, the cooling volume can be reduced, and power and maintenance for cooling are not required.

吸熱材130,140は、具体的には、日本ブロアー株式会社製のPCM−C48(相変化温度:約40℃)、日本ブロアー株式会社製のPCM−C58(相変化温度:55℃以上60℃未満)、酢酸ナトリウム三水塩(相変化温度:60℃以下)、無機水和塩(相変化温度:60℃以下)などが挙げられる。その他、上述した所定の温度の相変化温度を有する相変化材料ならば、特に限定なく使用することができる。 Specifically, the heat absorbing materials 130 and 140 are PCM-C48 (phase change temperature: about 40 ° C.) manufactured by Nippon Blower Co., Ltd. and PCM-C58 (phase change temperature: 55 ° C. or higher and 60 ° C.) manufactured by Nippon Blower Co., Ltd. (Less than), sodium acetate trihydrate (phase change temperature: 60 ° C or less), inorganic hydrate (phase change temperature: 60 ° C or less) and the like. In addition, any phase change material having the above-mentioned phase change temperature of a predetermined temperature can be used without particular limitation.

なお、ここでは図示していないが、セル110とPCM130,140とは、それぞれが密着するように、複数のセル単位を、または電池パック全体を拘束バントなどで固縛されていることが好ましい。 Although not shown here, it is preferable that the cells 110 and the PCMs 130 and 140 are tightly bound to each other in a plurality of cell units or the entire battery pack with a restraint bunt or the like.

セル110は、リチウムイオン電池であり、図2に示すように、直方体状をなす角形電池である。セル110は、最も面積が大きい側壁部110c、110dとPCM130,140が接触するように配置される。セル110には正極端子111、負極端子112があり、図示しない金属バスバーなどを介して、隣り合うセルの正極端子111、負極端子112が電気的に接続される。 The cell 110 is a lithium ion battery, and as shown in FIG. 2, is a rectangular parallelepiped square battery. The cell 110 is arranged so that the side wall portions 110c and 110d having the largest area come into contact with the PCM 130 and 140. The cell 110 has a positive electrode terminal 111 and a negative electrode terminal 112, and the positive electrode terminal 111 and the negative electrode terminal 112 of adjacent cells are electrically connected via a metal bus bar (not shown) or the like.

上述したように、実施例1の電池パック100の通常使用時の温度は−30℃〜60℃程度である。この動作温度範囲を超えて、充放電や放置されるとセル劣化が加速することになり、セル寿命が短くなる。また、電池パック内のセルの温度がばらつくことにより、セルの劣化もばらつく。通常、電池パックの中央部に配置されたセルは、周囲のセルの熱を受けて、電池パックの端に配置されたセルよりも温度は上昇する。すなわち、電池パック中央部に配置されたセルは、端に配置されたセルよりも劣化が早くなる。 As described above, the temperature of the battery pack 100 of Example 1 during normal use is about −30 ° C. to 60 ° C. If the operating temperature range is exceeded and the battery is charged / discharged or left unattended, cell deterioration will be accelerated and the cell life will be shortened. In addition, the deterioration of the cell also varies due to the variation in the temperature of the cell in the battery pack. Normally, the cell located in the center of the battery pack receives the heat of the surrounding cells, and the temperature rises higher than that of the cell located at the edge of the battery pack. That is, the cell arranged at the center of the battery pack deteriorates faster than the cell arranged at the end.

そこで実施例1では、電池パック100内のセル温度の平準化、劣化の平準化の為に、電池パック100の中央部に配置されるPCM130は、端に配置されるPCM140よりも体積を大きくして、熱吸収量を大きくしている。 Therefore, in the first embodiment, the PCM 130 arranged at the center of the battery pack 100 has a larger volume than the PCM 140 arranged at the ends in order to level the cell temperature and the deterioration in the battery pack 100. Therefore, the amount of heat absorption is increased.

図3は吸熱材(PCM)の体積または材料が同じ時のセル温度の経時変化を示すグラフであり、図4は本発明の実施例1のセルの温度の経時変化を示すグラフである。図3および図4を比較して分かるように、本実施例では、電池パックの中央部のセルと端部のセルとの温度差が少なくなることがわかる。 FIG. 3 is a graph showing the time course of the cell temperature when the volume or material of the heat absorbing material (PCM) is the same, and FIG. 4 is a graph showing the time course of the cell temperature of Example 1 of the present invention. As can be seen by comparing FIGS. 3 and 4, in this embodiment, it can be seen that the temperature difference between the cell at the center and the cell at the end of the battery pack is small.

なお、実施例1では吸熱材130,140の体積を変えて熱吸収量を変えているが、材料を変えて熱吸収量を変えてもよい。 In Example 1, the volume of the heat absorbing materials 130 and 140 is changed to change the heat absorption amount, but the material may be changed to change the heat absorption amount.

図5は本発明の実施例2の電池パックの模式図である。図5に示す電池パック200の構成は、実施例1の構成に加えて、積層体の底面に接触して設けられた第1の熱伝導体150(熱伝導板a)を設ける構成とした。熱伝導板aは、熱伝導率が高いアルミ板などを使用する。 FIG. 5 is a schematic view of the battery pack of the second embodiment of the present invention. In the configuration of the battery pack 200 shown in FIG. 5, in addition to the configuration of the first embodiment, the first heat conductor 150 (heat conduction plate a) provided in contact with the bottom surface of the laminated body is provided. As the heat conductive plate a, an aluminum plate or the like having a high thermal conductivity is used.

本構成によれば、各セル110および吸熱材130,140の熱が、熱伝導体150を伝達することで、さらに平準化される効果がある。 According to this configuration, the heat of each cell 110 and the heat absorbing materials 130 and 140 is further leveled by transferring the heat conductor 150.

図6は本発明の実施例2のセルの温度の経時変化を示すグラフである。図6に示すように、本実施例の電池パック200は、実施例1の電池パック100よりも各セルの温度差がさらに少なくなることがわかる。 FIG. 6 is a graph showing the time course of the cell temperature of Example 2 of the present invention. As shown in FIG. 6, it can be seen that the battery pack 200 of the present embodiment has a smaller temperature difference between cells than the battery pack 100 of the first embodiment.

図7は本発明の実施例2の電池パックの模式図である。図7に示す電池パック300の構成は、実施例2の構成に加えて、電池パックの中央部付近において、セル110と吸熱材130との間に設けられた第2の熱伝導体160(熱伝導板b)を有する。熱伝導板bは、熱伝導板aと接触させる。熱伝導板bは、熱伝導板aと同様に、熱伝導率が高いアルミ板などを使用する。 FIG. 7 is a schematic view of the battery pack of the second embodiment of the present invention. In the configuration of the battery pack 300 shown in FIG. 7, in addition to the configuration of the second embodiment, a second heat conductor 160 (heat) provided between the cell 110 and the heat absorbing material 130 near the center of the battery pack It has a conduction plate b). The heat conductive plate b is brought into contact with the heat conductive plate a. As the heat conductive plate b, an aluminum plate or the like having a high thermal conductivity is used, similarly to the heat conductive plate a.

本構成により、熱伝導板b、熱伝導板aを経由して、吸熱材130に蓄積された熱を効率良く電池パック外に逃がすことができ、更なるセル温度の平準化と共に、EV充電後のセル温度を早く低下させることができる。 With this configuration, the heat accumulated in the heat absorbing material 130 can be efficiently released to the outside of the battery pack via the heat conductive plate b and the heat conductive plate a, further leveling the cell temperature and after EV charging. The cell temperature can be lowered quickly.

図8は本発明の実施例2のセルの温度の経時変化を示すグラフである。図8に示すように、本実施例の電池パック200は、実施例1の電池パック100よりも各セルの温度差がさらに少なくなることがわかる。 FIG. 8 is a graph showing the time course of the cell temperature of Example 2 of the present invention. As shown in FIG. 8, it can be seen that the battery pack 200 of the present embodiment has a smaller temperature difference between cells than the battery pack 100 of the first embodiment.

図9は本発明の実施例3の電池パックの模式図である。図9に示す電池パック400の構成は、実施例3の構成に加えて、電池パック400の中央部付近において、吸熱材130の間に配置された第3の熱伝導体170(熱伝導板c)を有する構成である。このような構成によって、実施例3よりもさらに各セルの温度差を低減できることが期待される。 FIG. 9 is a schematic view of the battery pack of the third embodiment of the present invention. In addition to the configuration of the third embodiment, the configuration of the battery pack 400 shown in FIG. 9 is a third thermal conductor 170 (heat conductive plate c) arranged between the heat absorbing materials 130 in the vicinity of the central portion of the battery pack 400. ). With such a configuration, it is expected that the temperature difference of each cell can be further reduced as compared with Example 3.

本実施例では、吸熱材を設けない従来の構成(比較例1)、セル間に電池パック全体で体積または材料が同じ吸熱材を設けた構成(比較例2)、実施例1の構成および実施例2に構成の電池パックについて、電池パック中央部と端部の温度差と、サイクル数を測定した。それぞれのセルのサイズは横55mm、高さ100mm、幅25mmとした。比較例2は吸熱材の厚さは全て1mmとした。実施例1および実施例2は、電池パック中央部の吸熱材130の厚さを1mmとし、電池パック端部の吸熱材140の厚さを0.5mmとした。結果を表1に示す。 In this embodiment, a conventional configuration in which a heat absorbing material is not provided (Comparative Example 1), a configuration in which a heat absorbing material having the same volume or material as the entire battery pack is provided between cells (Comparative Example 2), a configuration and implementation of Example 1. For the battery pack configured in Example 2, the temperature difference between the center and the end of the battery pack and the number of cycles were measured. The size of each cell was 55 mm in width, 100 mm in height, and 25 mm in width. In Comparative Example 2, the thickness of the heat absorbing material was set to 1 mm. In Examples 1 and 2, the thickness of the heat absorbing material 130 at the center of the battery pack was 1 mm, and the thickness of the heat absorbing material 140 at the end of the battery pack was 0.5 mm. The results are shown in Table 1.

Figure 2020140929
Figure 2020140929

比較例1では、電池パック中央部のセルの温度は60℃、電池パック端部のセルの温度は50℃となり、温度差(電池パック内ばらつき)は10℃であった。一方、実施例1は電池パック中央部のセルの温度は53.75℃、電池パック端部のセルの温度は50℃となり、温度差(電池パック内ばらつき)は3.75℃であった。実施例2は電池パック中央部のセルの温度は52.5℃、電池パック端部のセルの温度は50℃となり、温度差(電池パック内ばらつき)は2.5℃となり、実施例1よりもさらに温度差を低減できている。 In Comparative Example 1, the temperature of the cell at the center of the battery pack was 60 ° C, the temperature of the cell at the end of the battery pack was 50 ° C, and the temperature difference (variation within the battery pack) was 10 ° C. On the other hand, in Example 1, the temperature of the cell at the center of the battery pack was 53.75 ° C, the temperature of the cell at the end of the battery pack was 50 ° C, and the temperature difference (variation in the battery pack) was 3.75 ° C. In Example 2, the temperature of the cell in the center of the battery pack is 52.5 ° C, the temperature of the cell at the end of the battery pack is 50 ° C, and the temperature difference (variation in the battery pack) is 2.5 ° C, as compared with Example 1. The temperature difference can be further reduced.

電池パック内に体積または材料が同じPCMを設けた構成を有する比較例2は、比較例1よりも温度差は低減できているが、実施例1および実施例2に比べるとその効果は低い。 Comparative Example 2, which has a configuration in which PCM having the same volume or material is provided in the battery pack, can reduce the temperature difference as compared with Comparative Example 1, but the effect is lower than that of Example 1 and Example 2.

サイクル数はセル温度から算出した。温度とサイクル数との関係は、文献:“Synergistic Effect of Charge/Discharge Cycle and Storage in Degradation of Lithium−ion Batteries for Mobile Phones”Published in: INTELEC 05−Twenty−Seventh International Telecommunications ConferenceDate of Conference: 18−22 Sept.2005に示されている。 The number of cycles was calculated from the cell temperature. Relationship between the temperature and the number of cycles, the literature: "Synergistic Effect of Charge / Discharge Cycle and Storage in Degradation of Lithium-ion Batteries for Mobile Phones" Published in: INTELEC 05-Twenty-Seventh International Telecommunications ConferenceDate of Conference: 18-22 Sept. It is shown in 2005.

実施例1では、比較例と比べて、サイクル数が24.2%アップ(サイクル数:190→236しており、比較例2と比べて11.3%アップしている(サイクル数:212→236)。実施例2は、実施例1よりもさらにサイクル数がアップしている。 In Example 1, the number of cycles is increased by 24.2% as compared with Comparative Example (number of cycles: 190 → 236, and 11.3% is increased as compared with Comparative Example 2 (number of cycles: 212 →). 236). In Example 2, the number of cycles is further increased as compared with Example 1.

以上、説明したように、本発明によれば、電池パック内のセルの温度を平準化し、電池パックの寿命を延ばすことができる電池パックを提供できることが示された。 As described above, according to the present invention, it has been shown that it is possible to provide a battery pack capable of leveling the temperature of cells in the battery pack and extending the life of the battery pack.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of a certain embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of a certain embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

100,200,300,400…電池パック、110…セル(単電池)、111…正極端子、112…負極端子、130,140…吸熱材(相変化材料,PCM)、150…第1の熱伝導体、160…第2の熱伝導体、170…第3の熱伝導体。 100, 200, 300, 400 ... Battery pack, 110 ... Cell (cell), 111 ... Positive terminal, 112 ... Negative terminal, 130, 140 ... Heat absorbing material (phase change material, PCM), 150 ... First heat conduction Body, 160 ... second heat conductor, 170 ... third heat conductor.

Claims (7)

セルと、吸熱材とが交互に配置されて積層された積層体を備え、
前記積層体の積層方向中央部に配置された吸熱材と、前記積層体の積層方向端部に配置された吸熱材との体積または材料が異なることを特徴とする電池パック。
A laminate in which cells and heat absorbing materials are alternately arranged and laminated is provided.
A battery pack characterized in that the volume or material of the heat absorbing material arranged at the center of the laminated body in the stacking direction is different from that of the heat absorbing material arranged at the end of the laminated body in the stacking direction.
前記積層体の積層方向の中央部に位置する前記吸熱材は、前記積層体の積層方向の端部に位置する前記吸熱材よりも熱吸収量が大きいことを特徴とする請求項1に記載の電池パック。 The first aspect of the present invention, wherein the heat absorbing material located at the central portion of the laminated body in the laminating direction has a larger heat absorption amount than the heat absorbing material located at the end portion of the laminated body in the laminating direction. Battery pack. 前記吸熱材は所定の温度域で吸熱量が大きくなる材料であり、前記所定の温度域は、前記電池パックを使用する環境の温度よりも高く、前記電池パックの通常使用時の最高温度よりも低い温度であることを特徴とする請求項1に記載の電池パック。 The endothermic material is a material that absorbs a large amount of heat in a predetermined temperature range, and the predetermined temperature range is higher than the temperature of the environment in which the battery pack is used and higher than the maximum temperature during normal use of the battery pack. The battery pack according to claim 1, wherein the temperature is low. 前記積層体の底面に接触して設けられた第1の熱伝導体を有することを特徴とする請求項1に記載の電池パック。 The battery pack according to claim 1, further comprising a first heat conductor provided in contact with the bottom surface of the laminated body. 前記セルと前記吸熱材との間に設けられた第2の熱伝導体を有することを特徴とする請求項1に記載の電池パック。 The battery pack according to claim 1, further comprising a second heat conductor provided between the cell and the endothermic material. 前記吸熱材は、2つの吸熱材と、前記2つの吸熱材の間に設けられた第3の熱伝導体を有することを特徴とする請求項1に記載の電池パック。 The battery pack according to claim 1, wherein the heat absorbing material has two heat absorbing materials and a third heat conductor provided between the two heat absorbing materials. 前記第2の熱伝導体または第3の熱伝導体は、電池パックの中央部に設けられることを特徴とする請求項5または6に記載の電池パック。 The battery pack according to claim 5 or 6, wherein the second heat conductor or the third heat conductor is provided in the central portion of the battery pack.
JP2019037487A 2019-03-01 2019-03-01 Battery pack Pending JP2020140929A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019037487A JP2020140929A (en) 2019-03-01 2019-03-01 Battery pack
PCT/JP2019/050240 WO2020179196A1 (en) 2019-03-01 2019-12-23 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037487A JP2020140929A (en) 2019-03-01 2019-03-01 Battery pack

Publications (1)

Publication Number Publication Date
JP2020140929A true JP2020140929A (en) 2020-09-03

Family

ID=72280521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037487A Pending JP2020140929A (en) 2019-03-01 2019-03-01 Battery pack

Country Status (2)

Country Link
JP (1) JP2020140929A (en)
WO (1) WO2020179196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220115728A1 (en) * 2020-10-12 2022-04-14 Wings Ev Private Limited Battery pack assembly
WO2022249890A1 (en) * 2021-05-25 2022-12-01 Dic株式会社 Secondary battery
WO2023042505A1 (en) * 2021-09-17 2023-03-23 株式会社村田製作所 Battery pack

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162438A1 (en) * 2022-02-22 2023-08-31 株式会社村田製作所 Battery pack
CN115133103B (en) * 2022-07-27 2023-10-20 深圳安培时代数字能源科技有限公司 Integrated lithium battery assembly
CN116488313B (en) * 2023-06-25 2024-04-19 深圳市力生美半导体股份有限公司 Energy storage system and management method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018915A (en) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery module
JP2013178966A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Battery module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018915A (en) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery module
JP2013178966A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Battery module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220115728A1 (en) * 2020-10-12 2022-04-14 Wings Ev Private Limited Battery pack assembly
WO2022249890A1 (en) * 2021-05-25 2022-12-01 Dic株式会社 Secondary battery
JPWO2022249890A1 (en) * 2021-05-25 2022-12-01
JP7388596B2 (en) 2021-05-25 2023-11-29 Dic株式会社 secondary battery
WO2023042505A1 (en) * 2021-09-17 2023-03-23 株式会社村田製作所 Battery pack

Also Published As

Publication number Publication date
WO2020179196A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
WO2020179196A1 (en) Battery pack
JP5621111B2 (en) Battery cell with improved thermal stability and medium- or large-sized battery module using the same
EP3136497B1 (en) Battery module including water cooling structure
JP5143909B2 (en) Battery module and heat exchange member with excellent heat dissipation characteristics
KR102201342B1 (en) Battery module, battery pack including the same, and vehicle including the same
KR101252944B1 (en) Battery pack with enhanced radiating ability
KR101252963B1 (en) Battery pack with enhanced radiating ability
CN111418085B (en) Battery module
JP4730705B2 (en) Battery pack
US10950835B2 (en) Battery pack
KR101960922B1 (en) Battery module
JP2007311124A (en) Battery pack and vehicle
KR102055852B1 (en) Pouch-typed secondary battery comprising modified leads and battery module comprising the same
KR20120048938A (en) Battery module and lithium secondary battery pack comprising the same
WO2020079965A1 (en) Battery pack
CN111226344B (en) Battery module and battery pack including the same
JP6860449B2 (en) Battery module
KR101654800B1 (en) Secondary battery with cooling structure
KR20170052059A (en) Battery module
JP2009016235A (en) Power storage device
KR102308168B1 (en) Battery module, battery pack including the same, and vehicle including the same
KR20240062815A (en) Battery pack and device including the same
CN118104041A (en) Battery pack with improved safety
CN117581413A (en) Battery module, battery pack, and vehicle including the battery pack
JP2001351670A (en) Cell with excellent safety

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606