WO2020079965A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2020079965A1
WO2020079965A1 PCT/JP2019/033571 JP2019033571W WO2020079965A1 WO 2020079965 A1 WO2020079965 A1 WO 2020079965A1 JP 2019033571 W JP2019033571 W JP 2019033571W WO 2020079965 A1 WO2020079965 A1 WO 2020079965A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
battery pack
temperature
cells
Prior art date
Application number
PCT/JP2019/033571
Other languages
French (fr)
Japanese (ja)
Inventor
孝徳 山添
井上 健士
修子 山内
大輝 小松
茂樹 牧野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020079965A1 publication Critical patent/WO2020079965A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery pack.
  • a secondary battery such as a lithium-ion battery
  • the battery capacity decreases, the internal resistance of the battery increases, and the deterioration of the battery such as a decrease in output is accelerated. There is a tendency.
  • one cell may generate heat abnormally and affect other cells.
  • Patent Document 1 discloses, as an assembled battery having a configuration corresponding to abnormal heat generation of a unit cell, a melting point higher than a temperature range of the unit cell during normal use and lower than a destruction temperature at which the unit cell is thermally destroyed. It is disclosed that the phase change material having the above is arranged between the unit cells adjacent to each other.
  • the phase change substance those having a melting point of 60 ° C. to 120 ° C. are said to be preferable, and erythritol having a melting point of 118 ° C. and the like are mentioned. Also described is the encapsulation of phase change materials.
  • Patent Document 2 discloses a battery pack in which the temperature inside the electrode body is kept lower than the thermal stability limit of the positive electrode, in which an endothermic layer is provided between the inner peripheral wall of the battery housing chamber and the exterior body.
  • the material used for the heat absorption layer an inorganic compound that melts with the generation of latent heat and has a melting point of 70 ° C. or higher and 100 ° C. or lower as a main component, for example, a melting point of 75 ° C.
  • a substance obtained by gelling trisodium phosphate dodecahydrate is mentioned.
  • the environment in which the battery pack is installed can be about 35 ° C, considering the temperature in summer in Japan.
  • the temperature range during normal use is set to approximately -30 ° C to 60 ° C. Therefore, the maximum temperature allowable value during normal use is 60 ° C.
  • the lithium-ion battery will tend to deteriorate faster and its life to shorten.
  • the battery pack described in Patent Document 1 is configured to cope with abnormal heat generation of a single cell, and a material having a melting point of 60 ° C to 120 ° C is suitable as a material used for the heat absorption layer. Therefore, a state in which the temperature exceeds 60 ° C. is allowed.
  • the battery pack described in Patent Document 2 preferably has a melting point of 70 ° C. or higher and 100 ° C. or lower as a material used for the heat absorption layer. Therefore, a state in which the temperature exceeds 60 ° C. is allowed.
  • the present invention has an object to suppress the temperature rise of the cells constituting the battery pack, suppress the deterioration of the cells, and reduce the volume of the heat absorbing material used for cooling the cells.
  • the battery pack of the present invention includes a plurality of single cells and two or more types of endothermic materials having different endothermic temperatures, and two or more types of endothermic materials are sandwiched between adjacent single cells.
  • the present invention it is possible to suppress the temperature rise of the cells constituting the battery pack, suppress the deterioration of the cells, and reduce the volume of the heat absorbing material used for cooling the cells.
  • FIG. 1 It is a schematic perspective view which shows the example of the battery pack of this invention. It is a front view which shows the battery pack of FIG. It is a perspective view which shows the cell which comprises the battery pack of FIG. It is a graph which shows the effect of the battery pack of this invention. It is a front view which shows the phase change material pack of the modification of this invention.
  • the present invention relates to a battery pack composed of a plurality of cells (unit cells).
  • a battery pack is installed in a hybrid car or electric vehicle (EV) and used as a power source.
  • EV electric vehicle
  • phase change material that is an endothermic material
  • PCM is also referred to as “PCM”.
  • PCM is an abbreviation for Phase Change Material.
  • PCM is a material having the property of changing from solid to liquid and from liquid to solid, that is, a material that repeats solidification and melting.
  • the phase change temperature (melting point) of PCM is preferably set to a temperature higher than the ambient temperature and lower than the maximum temperature during normal use.
  • the environmental temperature means the temperature of the place where the battery pack is installed, and is about 35 ° C. in summer in Japan.
  • PCM has a large amount of energy (latent heat of fusion (kJ / kg)) going in and out during a phase change. It is possible to suppress the temperature rise of the cell within a specific temperature range (around the phase change temperature) by utilizing the input and output of this energy. By using this PCM as a cooling material, the cooling volume can be reduced, and power and maintenance for cooling are not required.
  • the electric vehicle has two modes for charging and discharging the battery pack: running and charging.
  • charging power during charging is several times larger than charging and discharging power during traveling.
  • an EV having a battery pack of 36 kWh 360 V, 100 Ah
  • the operation time is 6 hours
  • the charging / discharging electric power is 6 kWh per hour.
  • the charging power is 36 kWh per hour. Therefore, the amount of electric power during charging is 6 times that during traveling. Therefore, as an example, it is conceivable that the temperature rise of the battery pack is about 10 ° C. during traveling, but is 30 ° C. or more during charging.
  • two or more types of PCMs having different phase change temperatures are arranged between adjacent cells in order to suppress the temperature rise of the cells both during traveling and during charging. That is, the PCM having a phase change temperature slightly higher than the ambient temperature in order to suppress the temperature rise during traveling and the temperature slightly lower than the maximum temperature during normal use of the cell in order to suppress the temperature rise during charging. And PCM with phase change temperature.
  • FIG. 1 shows an outline of the battery pack of the present invention.
  • the battery pack 100 has a configuration in which a plurality of cells 110 connected in series are arranged in parallel.
  • a first phase change material 120 and a second phase change material 130 which are two types of endothermic materials having different endothermic temperatures (phase change temperatures), are arranged between adjacent cells 110.
  • the first phase change material 120 is a material that undergoes a phase change at about 40 ° C., which is slightly higher than the ambient temperature
  • the second phase change material 130 is the maximum allowable temperature during normal use of the cell ( The phase change is about 55 ° C. or more and less than 60 ° C., which is slightly lower than 60 ° C.).
  • An example of the first phase change material 120 is PCM-C48 manufactured by Nippon Blower Co., Ltd.
  • An example of the second phase change material 130 is PCM-C58 manufactured by Nippon Blower Co., Ltd.
  • the cells 110, the first phase change material 120, and the second phase change material 130 are fixed to a plurality of cell units or the entire battery pack with a binding bunt so that they are in close contact with each other. ing.
  • FIG. 2 is a front view of the battery pack 100 of FIG.
  • a first phase change material 120 and a second phase change material 130 are sandwiched between adjacent cells 110.
  • the second phase change material 130 is sandwiched between two first phase change materials 120.
  • Each of the first phase change material 120 and the second phase change material 130 is packaged in a sheet shape.
  • Fig. 3 shows one cell that constitutes a battery pack.
  • the cell 110 shown in this figure is a lithium-ion battery, which is a rectangular parallelepiped battery.
  • the cell 110 has an upper surface portion 110a, a lower surface portion 110b, and side wall portions 110c, 110d, 110e, and 110f.
  • the size of the cell 110 is, for example, about 55 mm in width ⁇ 100 mm in height ⁇ 25 mm in width.
  • the thickness of each of the first phase change material 120 and the second phase change material 130 shown in FIG. 2 is preferably about 1 mm or less.
  • the total thickness of the first phase change material 120 and the second phase change material 130 is more preferably 1/10 or less of the width of the cell 110, that is, about 2.5 mm or less.
  • a positive electrode terminal 111 and a negative electrode terminal 112 are installed on the upper surface 110 a of the cell 110.
  • the positive electrode terminal 111 and the negative electrode terminal 112 are electrically connected to the negative electrode terminal and the positive electrode terminal of the adjacent cell via a metal bus bar (not shown) or the like.
  • the side walls 110c and 110d having the largest area of the cell 110 are arranged so as to contact the first phase change material 120 (FIG. 1).
  • the first phase change material 120 and the second phase change material 130 are each enclosed in a bag or case formed of aluminum foil or the like. From the viewpoint of packaging strength, an aluminum foil laminated with a resin or the like may be used.
  • the phase change temperature of the first phase change material 120 is set to a temperature (for example, 48 ° C.) which is slightly higher than the environmental temperature when the hybrid car or the electric vehicle (EV) is running.
  • the phase change temperature of the second phase change material 130 is set to a temperature (for example, 58 ° C.) slightly lower than the maximum temperature in the operating temperature range of the battery pack 100. That is, the phase change temperature of the second phase change material 130 is set to be higher than the phase change temperature of the first phase change material 120.
  • FIG. 4 is a graph showing a change over time in the temperature of the cell 110 (temperature of the side wall portion) when it is assumed that each cell 110 in the battery pack 100 of FIG. 1 generates a certain amount of heat.
  • the solid line indicates the temperature of the cell 110 that constitutes the battery pack 100 of FIG. 1 when the phase change material is installed between the cells, and the dashed line indicates the temperature of the cell when the phase change material is not installed between the cells. Shows the temperature.
  • the temperature rise moderates at the temperatures corresponding to the melting points of the two types of phase change materials.
  • the temperature of each cell stays in the vicinity of the phase change temperature of the first PCM during traveling, and stays in the vicinity of the phase change temperature of the second PCM in the subsequent charging.
  • the total volume (cooling volume) of the first PCM and the second PCM is 10% or less of the cell volume.
  • the total volume of the first PCM and the second PCM is preferably 10% or less of the total volume of the plurality of unit cells.
  • the cooling volume in the case of forced air cooling or water cooling generally exceeds 10% of the cell volume. Therefore, according to the present invention, the cooling volume can be reduced, and the power and maintenance required for cooling can be eliminated.
  • FIG. 5 shows one of the two types of phase change materials used for the battery pack of FIG. 1 (phase change material pack).
  • a material in which a second phase change material 130 is sandwiched between two first phase change materials 120 is packaged by an exterior body 610 (bag or case) formed of aluminum foil or the like.
  • an aluminum foil laminated with a resin or the like may be used.
  • the first phase change material 120 and the second phase change material 130 are respectively packaged in a sheet shape and are configured not to be mixed with each other.
  • the first phase change material 120 and the second phase change material 130 do not have to be sealed by the outer casing 610. That is, the exterior body 610 may be a strip-shaped one.
  • phase change material pack 600 is sandwiched between the adjacent cells 110 to manufacture a battery pack.
  • the thickness ratio of the first phase change material 120 and the second phase change material 130 can be increased or decreased as necessary.
  • the phase change material pack 600 shown in FIG. 5 is easy to handle, and the work of sandwiching the first phase change material 120 and the second phase change material 130 between cells can be simplified.
  • phase change material pack 600 shown in FIG. 5 the change over time in temperature is the same as in the configuration shown in FIG.
  • the sheet-shaped first phase change material and the second phase change material are arranged in the width direction of the cell, but the present invention is not limited to this.
  • the rod-shaped first phase change material and the second phase change material may be alternately stacked in the cell height direction.
  • the rod-shaped first phase change material and the second phase change material are preferably packaged.
  • 100 battery pack
  • 110 cell
  • 111 positive electrode terminal
  • 112 negative electrode terminal
  • 120 first phase change material
  • 130 second phase change material
  • 600 phase change material pack
  • 610 outer package.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

This battery pack includes a plurality of unit cells, and two or more types of heat-absorbing materials having different heat absorption temperatures, wherein the two or more types of heat-absorbing materials are sandwiched between adjacent unit cells. This makes it possible to suppress increases in the temperature of cells constituting the battery pack, suppress deterioration of the cells, and reduce the volume of heat-absorbing materials used in cooling the cells.

Description

電池パックBattery pack
 本発明は、電池パックに関する。 The present invention relates to a battery pack.
 従来、車載用、産業用などで複数個のセル(単電池)を組にした電池パックが知られている。 ▽ Conventionally, a battery pack in which a plurality of cells (single battery) is assembled for in-vehicle use, industrial use, etc. is known.
 リチウムイオン電池などの二次電池は、高温度の状態で充放電の繰り返しや放置をすると、電池容量の低下や、電池の内部抵抗の上昇が生じ、出力の低下などの電池劣化が加速される傾向にある。また、一個のセルが異常発熱をし、他のセルに影響を及ぼす場合もある。 When a secondary battery such as a lithium-ion battery is repeatedly charged and discharged or left at a high temperature, the battery capacity decreases, the internal resistance of the battery increases, and the deterioration of the battery such as a decrease in output is accelerated. There is a tendency. In addition, one cell may generate heat abnormally and affect other cells.
 特許文献1には、単電池の異常発熱に対応する構成を有する組電池として、単電池の通常使用時の温度域よりも高く、かつ、前記単電池が熱破壊される破壊温度よりも低い融点を有する相変化物質を、互いに隣り合う単電池同士の間に配置したものが開示されている。ここで、相変化物質としては、融点60℃~120℃のものが好ましいとされ、融点118℃のエリスリトールなどが挙げられている。また、相変化物質のカプセル化についても説明されている。 Patent Document 1 discloses, as an assembled battery having a configuration corresponding to abnormal heat generation of a unit cell, a melting point higher than a temperature range of the unit cell during normal use and lower than a destruction temperature at which the unit cell is thermally destroyed. It is disclosed that the phase change material having the above is arranged between the unit cells adjacent to each other. Here, as the phase change substance, those having a melting point of 60 ° C. to 120 ° C. are said to be preferable, and erythritol having a melting point of 118 ° C. and the like are mentioned. Also described is the encapsulation of phase change materials.
 特許文献2には、電極体内部の温度を正極の熱安定性限界よりも低く抑える電池パックとして、電池収容室の内周壁と外装体との間に吸熱層を設けたものが開示されている。ここで、吸熱層に用いる材料としては、潜熱の発生を伴って融解する無機化合物であって融点が70℃以上100℃以下であるものを主成分とするもの、例として、融点が75℃の燐酸三ナトリウム12水和物をゲル化した物質が挙げられている。 Patent Document 2 discloses a battery pack in which the temperature inside the electrode body is kept lower than the thermal stability limit of the positive electrode, in which an endothermic layer is provided between the inner peripheral wall of the battery housing chamber and the exterior body. . Here, as the material used for the heat absorption layer, an inorganic compound that melts with the generation of latent heat and has a melting point of 70 ° C. or higher and 100 ° C. or lower as a main component, for example, a melting point of 75 ° C. A substance obtained by gelling trisodium phosphate dodecahydrate is mentioned.
特開2010-73406号公報JP, 2010-73406, A 特開2004-259613号公報JP 2004-259613 A
 電池パックが設置される環境は、国内の夏季における温度を考慮すると、35℃程度になり得る。一般的なリチウムイオン電池の場合、通常使用時の温度域は、-30℃~60℃程度に設定されている。よって、通常使用時の最高温度の許容値は、60℃である。 The environment in which the battery pack is installed can be about 35 ° C, considering the temperature in summer in Japan. In the case of a general lithium-ion battery, the temperature range during normal use is set to approximately -30 ° C to 60 ° C. Therefore, the maximum temperature allowable value during normal use is 60 ° C.
 リチウムイオン電池を最高温度の許容値である60℃を超える環境で使用し続けると、リチウムイオン電池の劣化が速くなり、寿命が短くなる傾向がある。 If you continue to use the lithium-ion battery in an environment that exceeds the maximum allowable temperature of 60 ° C, the lithium-ion battery will tend to deteriorate faster and its life to shorten.
 特許文献1に記載の電池パックは、単電池の異常発熱に対応する構成であり、吸熱層に用いる材料として融点60℃~120℃のものを好適としている。よって、60℃を超える状態を許容することになる。 The battery pack described in Patent Document 1 is configured to cope with abnormal heat generation of a single cell, and a material having a melting point of 60 ° C to 120 ° C is suitable as a material used for the heat absorption layer. Therefore, a state in which the temperature exceeds 60 ° C. is allowed.
 特許文献2に記載の電池パックは、吸熱層に用いる材料として融点70℃以上100℃以下のものを好適としている。よって、60℃を超える状態を許容することになる。 The battery pack described in Patent Document 2 preferably has a melting point of 70 ° C. or higher and 100 ° C. or lower as a material used for the heat absorption layer. Therefore, a state in which the temperature exceeds 60 ° C. is allowed.
 本発明は、電池パックを構成するセルの温度上昇を抑制し、セルの劣化を抑制するとともに、セルの冷却に用いる吸熱材の体積を小さくすることを目的とする。 The present invention has an object to suppress the temperature rise of the cells constituting the battery pack, suppress the deterioration of the cells, and reduce the volume of the heat absorbing material used for cooling the cells.
 本発明の電池パックは、複数個の単電池と、吸熱温度が異なる二種類以上の吸熱材と、を含み、隣り合う単電池の間には、二種類以上の吸熱材が挟み込まれている。 The battery pack of the present invention includes a plurality of single cells and two or more types of endothermic materials having different endothermic temperatures, and two or more types of endothermic materials are sandwiched between adjacent single cells.
 本発明によれば、電池パックを構成するセルの温度上昇を抑制し、セルの劣化を抑制するとともに、セルの冷却に用いる吸熱材の体積を小さくすることができる。 According to the present invention, it is possible to suppress the temperature rise of the cells constituting the battery pack, suppress the deterioration of the cells, and reduce the volume of the heat absorbing material used for cooling the cells.
本発明の電池パックの例を示す概略斜視図である。It is a schematic perspective view which shows the example of the battery pack of this invention. 図1の電池パックを示す正面図である。It is a front view which shows the battery pack of FIG. 図1の電池パックを構成するセルを示す斜視図である。It is a perspective view which shows the cell which comprises the battery pack of FIG. 本発明の電池パックの効果を示すグラフである。It is a graph which shows the effect of the battery pack of this invention. 本発明の変形例の相変化材料パックを示す正面図である。It is a front view which shows the phase change material pack of the modification of this invention.
 本発明は、複数個のセル(単電池)から構成される電池パックに関する。 The present invention relates to a battery pack composed of a plurality of cells (unit cells).
 電池パックは、ハイブリッドカーや電気自動車(EV)に設置され、その動力源として利用される。 A battery pack is installed in a hybrid car or electric vehicle (EV) and used as a power source.
 本明細書においては、吸熱材である相変化材料を「PCM」とも呼ぶ。PCMは、Phase Change Materialの略称である。PCMは、固体から液体、液体から固体に変化する特性を持つ材料、すなわち凝固・融解を繰り返す材料である。PCMの相変化温度(融点)は、環境温度よりも高く、かつ、通常使用時の最高温度よりも低い温度に設定されることが望ましい。ここで、環境温度とは、電池パックが設置されている場所の温度をいい、国内の夏季においては35℃程度である。 In this specification, the phase change material that is an endothermic material is also referred to as “PCM”. PCM is an abbreviation for Phase Change Material. PCM is a material having the property of changing from solid to liquid and from liquid to solid, that is, a material that repeats solidification and melting. The phase change temperature (melting point) of PCM is preferably set to a temperature higher than the ambient temperature and lower than the maximum temperature during normal use. Here, the environmental temperature means the temperature of the place where the battery pack is installed, and is about 35 ° C. in summer in Japan.
 PCMは、相変化の際に、大きなエネルギー(融解潜熱(kJ/kg))の出入りがある。このエネルギーの出入りを利用して、セルの温度上昇を特定の温度域(相変化温度近辺)で抑えることが可能である。このPCMを冷却材として使用することで、冷却体積を低減できると共に、冷却のための電力やメンテナンスが不要となる。 PCM has a large amount of energy (latent heat of fusion (kJ / kg)) going in and out during a phase change. It is possible to suppress the temperature rise of the cell within a specific temperature range (around the phase change temperature) by utilizing the input and output of this energy. By using this PCM as a cooling material, the cooling volume can be reduced, and power and maintenance for cooling are not required.
 電気自動車(EV)は、電池パックへの充放電として、走行と充電の2つのモードがある。一般に、走行時の充放電電力よりも、充電時の充電電力の方が数倍大きくなる。例えば、36kWh(360V,100Ah)の電池パックを有するEVは、電費10km/kWhのとき、360kmの運行距離となる。これを平均速度60km/時で走行すると、6時間の運行時間となり、1時間あたり6kWhの充放電電力となる。一方、充電では、一般に1時間以下で充電できる急速充電器があり、この場合、1時間あたり36kWhの充電電力となる。ゆえに、充電時の方が走行時よりも6倍の電力量となる。よって、一例として、電池パックの温度上昇は、走行時には10℃程度であるのに対し、充電時には30℃以上になることが考えられる。 -The electric vehicle (EV) has two modes for charging and discharging the battery pack: running and charging. Generally, charging power during charging is several times larger than charging and discharging power during traveling. For example, an EV having a battery pack of 36 kWh (360 V, 100 Ah) has an operating distance of 360 km when the electricity consumption is 10 km / kWh. When this is run at an average speed of 60 km / hour, the operation time is 6 hours, and the charging / discharging electric power is 6 kWh per hour. On the other hand, in charging, there is generally a quick charger that can be charged in one hour or less, and in this case, the charging power is 36 kWh per hour. Therefore, the amount of electric power during charging is 6 times that during traveling. Therefore, as an example, it is conceivable that the temperature rise of the battery pack is about 10 ° C. during traveling, but is 30 ° C. or more during charging.
 そこで、本発明においては、走行時及び充電時の両方でセルの温度上昇を抑えるために、隣り合うセルの間に、相変化温度が異なる二種類以上のPCMを配置する。すなわち、走行時の温度上昇を抑えるために環境温度よりも少し高い温度の相変化温度を持つPCMと、充電時の温度上昇を抑えるためにセルの通常使用時の最高温度よりも少し低い温度の相変化温度を持つPCMとを配置する。 Therefore, in the present invention, two or more types of PCMs having different phase change temperatures are arranged between adjacent cells in order to suppress the temperature rise of the cells both during traveling and during charging. That is, the PCM having a phase change temperature slightly higher than the ambient temperature in order to suppress the temperature rise during traveling and the temperature slightly lower than the maximum temperature during normal use of the cell in order to suppress the temperature rise during charging. And PCM with phase change temperature.
 これにより、電池パックにおいて想定される到達温度に対応する温度領域付近でセルの温度を維持することができる。 With this, it is possible to maintain the cell temperature near the temperature range corresponding to the ultimate temperature expected in the battery pack.
 以下、本発明の実施形態について、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 図1は、本発明の電池パックの概略を示したものである。 FIG. 1 shows an outline of the battery pack of the present invention.
 本図において、電池パック100は、複数個のセル110が直列に接続されたものが並列に配置された構成を有する。隣り合うセル110の間には、吸熱温度(相変化温度)が異なる二種類の吸熱材である第一の相変化材料120及び第二の相変化材料130が配置されている。 In the figure, the battery pack 100 has a configuration in which a plurality of cells 110 connected in series are arranged in parallel. A first phase change material 120 and a second phase change material 130, which are two types of endothermic materials having different endothermic temperatures (phase change temperatures), are arranged between adjacent cells 110.
 具体的には、第一の相変化材料120は、環境温度よりも少し高い40℃程度で相変化するものであり、第二の相変化材料130は、セルの通常使用時における許容最高温度(60℃)よりも少し低いおよそ55℃以上60℃未満で相変化するものである。第一の相変化材料120の例としては、日本ブロアー株式会社製のPCM-C48が挙げられる。
また、第二の相変化材料130の例としては、日本ブロアー株式会社製のPCM-C58が挙げられる。
Specifically, the first phase change material 120 is a material that undergoes a phase change at about 40 ° C., which is slightly higher than the ambient temperature, and the second phase change material 130 is the maximum allowable temperature during normal use of the cell ( The phase change is about 55 ° C. or more and less than 60 ° C., which is slightly lower than 60 ° C.). An example of the first phase change material 120 is PCM-C48 manufactured by Nippon Blower Co., Ltd.
An example of the second phase change material 130 is PCM-C58 manufactured by Nippon Blower Co., Ltd.
 なお、図示していないが、セル110、第一の相変化材料120及び第二の相変化材料130は、それぞれが密着するように、複数セル単位または電池パック全体を拘束バントなどで固縛されている。 Although not shown, the cells 110, the first phase change material 120, and the second phase change material 130 are fixed to a plurality of cell units or the entire battery pack with a binding bunt so that they are in close contact with each other. ing.
 図2は、図1の電池パック100を正面から見た図である。 2 is a front view of the battery pack 100 of FIG.
 図2に示すように、直列に接続された複数個のセル110において、隣り合うセル110の間に第一の相変化材料120及び第二の相変化材料130が挟み込まれている。第二の相変化材料130は、2つの第一の相変化材料120の間に挟み込まれている。第一の相変化材料120及び第二の相変化材料130はそれぞれ、シート状に包装されている。 As shown in FIG. 2, in a plurality of cells 110 connected in series, a first phase change material 120 and a second phase change material 130 are sandwiched between adjacent cells 110. The second phase change material 130 is sandwiched between two first phase change materials 120. Each of the first phase change material 120 and the second phase change material 130 is packaged in a sheet shape.
 図3は、電池パックを構成する一個のセルを示したものである。 Fig. 3 shows one cell that constitutes a battery pack.
 本図に示すセル110は、リチウムイオン電池であり、直方体形状をなす角形電池である。セル110は、上面部110a、下面部110b、及び側壁部110c、110d、110e、110fを有する。セル110の寸法は、例えば、横55mm×高さ100mm×幅25mm程度である。この場合、図2に示す第一の相変化材料120及び第二の相変化材料130の厚さは、それぞれ1mm程度以下とすることが望ましい。なお、第一の相変化材料120及び第二の相変化材料130の厚さの合計は、セル110の幅の10分の1以下、すなわち2.5mm程度以下とすることが更に望ましい。 The cell 110 shown in this figure is a lithium-ion battery, which is a rectangular parallelepiped battery. The cell 110 has an upper surface portion 110a, a lower surface portion 110b, and side wall portions 110c, 110d, 110e, and 110f. The size of the cell 110 is, for example, about 55 mm in width × 100 mm in height × 25 mm in width. In this case, the thickness of each of the first phase change material 120 and the second phase change material 130 shown in FIG. 2 is preferably about 1 mm or less. The total thickness of the first phase change material 120 and the second phase change material 130 is more preferably 1/10 or less of the width of the cell 110, that is, about 2.5 mm or less.
 セル110の上面部110aには、正極端子111及び負極端子112が設置されている。正極端子111及び負極端子112はそれぞれ、図示しない金属バスバーなどを介して、隣のセルの負極端子、正極端子に電気的に接続される。 セル110の最も面積が大きい側壁部110c、110dは、第一の相変化材料120(図1)に接触するように配置される。 A positive electrode terminal 111 and a negative electrode terminal 112 are installed on the upper surface 110 a of the cell 110. The positive electrode terminal 111 and the negative electrode terminal 112 are electrically connected to the negative electrode terminal and the positive electrode terminal of the adjacent cell via a metal bus bar (not shown) or the like. The side walls 110c and 110d having the largest area of the cell 110 are arranged so as to contact the first phase change material 120 (FIG. 1).
 第一の相変化材料120及び第二の相変化材料130はそれぞれ、アルミニウム箔などで形成された袋またはケースに封入されている。包装の強度の観点から、アルミニウム箔を樹脂等でラミネート加工したものを用いてもよい。第一の相変化材料120の相変化温度は、ハイブリッドカーや電気自動車(EV)の走行時の環境温度よりも少し高い温度(例えば48℃)に設定する。一方、第二の相変化材料130の相変化温度は、電池パック100の動作温度範囲の最高温度よりも少し低い温度(例えば58℃)に設定する。すなわち、第一の相変化材料120の相変化温度よりも第二の相変化材料130の相変化温度の方が高い設定とする。 The first phase change material 120 and the second phase change material 130 are each enclosed in a bag or case formed of aluminum foil or the like. From the viewpoint of packaging strength, an aluminum foil laminated with a resin or the like may be used. The phase change temperature of the first phase change material 120 is set to a temperature (for example, 48 ° C.) which is slightly higher than the environmental temperature when the hybrid car or the electric vehicle (EV) is running. On the other hand, the phase change temperature of the second phase change material 130 is set to a temperature (for example, 58 ° C.) slightly lower than the maximum temperature in the operating temperature range of the battery pack 100. That is, the phase change temperature of the second phase change material 130 is set to be higher than the phase change temperature of the first phase change material 120.
 図4は、図1の電池パック100において各セル110が一定量の発熱をしていると仮定した場合におけるセル110の温度(側壁部の温度)の経時変化を示すグラフである。
実線は、セル間に相変化材料を設置した場合であって図1の電池パック100を構成するセル110の温度を、一点鎖線は、セル間に相変化材料を設置していない場合におけるセルの温度を示している。
FIG. 4 is a graph showing a change over time in the temperature of the cell 110 (temperature of the side wall portion) when it is assumed that each cell 110 in the battery pack 100 of FIG. 1 generates a certain amount of heat.
The solid line indicates the temperature of the cell 110 that constitutes the battery pack 100 of FIG. 1 when the phase change material is installed between the cells, and the dashed line indicates the temperature of the cell when the phase change material is not installed between the cells. Shows the temperature.
 本図から、セル間に相変化材料を設置していない場合、温度が一定の速度で上昇していることがわかる。 From this figure, it can be seen that the temperature rises at a constant rate when the phase change material is not installed between the cells.
 これに対して、セル間に相変化材料を設置した場合、二種類の相変化材料の融点に対応する温度で、温度上昇が緩やかになることがわかる。言い換えると、各セルの温度は、走行時においては第一のPCMの相変化温度近辺に留まり、その後の充電においては第二のPCMの相変化温度近辺に留まることとなる。 On the other hand, when the phase change material is installed between the cells, it can be seen that the temperature rise moderates at the temperatures corresponding to the melting points of the two types of phase change materials. In other words, the temperature of each cell stays in the vicinity of the phase change temperature of the first PCM during traveling, and stays in the vicinity of the phase change temperature of the second PCM in the subsequent charging.
 また、第一のPCM及び第二のPCMの合計体積(冷却体積)は、セル体積の10%以下にすることが望ましい。言い換えると、第一のPCM及び前記第二のPCMの合計体積は、複数個の単電池の合計体積の10%以下であることが望ましい。強制空冷や水冷の場合における冷却体積は、一般的にはセル体積の10%を超える。よって、本発明は、冷却体積の低減化ができると共に、冷却に要する電力やメンテナンスも不要とすることができる。 Also, it is desirable that the total volume (cooling volume) of the first PCM and the second PCM is 10% or less of the cell volume. In other words, the total volume of the first PCM and the second PCM is preferably 10% or less of the total volume of the plurality of unit cells. The cooling volume in the case of forced air cooling or water cooling generally exceeds 10% of the cell volume. Therefore, according to the present invention, the cooling volume can be reduced, and the power and maintenance required for cooling can be eliminated.
 但し、本発明の電池パックに放熱のための放熱フィン、冷却ファン、冷却ポンプなどを用いることを妨げるものではない。本発明の電池パックに、これらの放熱フィン、冷却ファン、冷却ポンプなどを適用することにより、冷却性能を更に向上させることができる。 However, this does not prevent the use of a radiation fin, a cooling fan, a cooling pump, etc. for heat dissipation in the battery pack of the present invention. The cooling performance can be further improved by applying these heat radiation fins, a cooling fan, a cooling pump, etc. to the battery pack of the present invention.
 つぎに、変形例について説明する。 Next, a modified example will be described.
 図5は、図1の電池パックに用いる二種類の相変化材料を1つのパック(相変化材料パック)としたものを示したものである。 FIG. 5 shows one of the two types of phase change materials used for the battery pack of FIG. 1 (phase change material pack).
 本図においては、2つの第一の相変化材料120の間に第二の相変化材料130を挟んだものが、アルミニウム箔などで形成された外装体610(袋またはケース)により包装されている。包装の強度の観点から、アルミニウム箔を樹脂等でラミネート加工したものを用いてもよい。これらは、相変化材料パック600(吸熱材パック)を構成している。
第一の相変化材料120及び第二の相変化材料130はそれぞれ、シート状に包装され、互いに混合しないように構成されている。なお、第一の相変化材料120及び第二の相変化材料130は、外装体610により密封されていなくてもよい。すなわち、外装体610は、帯状のものでもよい。
In this figure, a material in which a second phase change material 130 is sandwiched between two first phase change materials 120 is packaged by an exterior body 610 (bag or case) formed of aluminum foil or the like. . From the viewpoint of packaging strength, an aluminum foil laminated with a resin or the like may be used. These form the phase change material pack 600 (heat absorbing material pack).
The first phase change material 120 and the second phase change material 130 are respectively packaged in a sheet shape and are configured not to be mixed with each other. The first phase change material 120 and the second phase change material 130 do not have to be sealed by the outer casing 610. That is, the exterior body 610 may be a strip-shaped one.
 この相変化材料パック600を、図1の第一の相変化材料120及び第二の相変化材料130と同様に、隣り合うセル110の間に挟み込むことにより、電池パックを作製する。 Like the first phase change material 120 and the second phase change material 130 of FIG. 1, the phase change material pack 600 is sandwiched between the adjacent cells 110 to manufacture a battery pack.
 相変化材料パック600において、第一の相変化材料120及び第二の相変化材料130の厚さの比率は、必要に応じて増減することができる。 In the phase change material pack 600, the thickness ratio of the first phase change material 120 and the second phase change material 130 can be increased or decreased as necessary.
 図5に示す相変化材料パック600は、取り扱いが容易であり、第一の相変化材料120及び第二の相変化材料130をセル間に挟み込む作業を簡素化することができる。 The phase change material pack 600 shown in FIG. 5 is easy to handle, and the work of sandwiching the first phase change material 120 and the second phase change material 130 between cells can be simplified.
 また、図5に示す相変化材料パック600の場合も、温度の経時変化に関しては、図1に示す構成と同様である。 Also, in the case of the phase change material pack 600 shown in FIG. 5, the change over time in temperature is the same as in the configuration shown in FIG.
 なお、上記の実施形態においては、シート状の第一の相変化材料及び第二の相変化材料をセルの幅方向に配置する構成について示したが、本発明は、これに限定されるものではなく、例えば、棒状の第一の相変化材料及び第二の相変化材料をセルの高さ方向に交互に積層して配置する構成としてもよい。この場合において、棒状の第一の相変化材料及び第二の相変化材料はそれぞれ、包装されていることが望ましい。 In the above embodiments, the sheet-shaped first phase change material and the second phase change material are arranged in the width direction of the cell, but the present invention is not limited to this. Instead, for example, the rod-shaped first phase change material and the second phase change material may be alternately stacked in the cell height direction. In this case, the rod-shaped first phase change material and the second phase change material are preferably packaged.
 100:電池パック、110:セル、111:正極端子、112:負極端子、120:第一の相変化材料、130:第二の相変化材料、600:相変化材料パック、610:外装体。 100: battery pack, 110: cell, 111: positive electrode terminal, 112: negative electrode terminal, 120: first phase change material, 130: second phase change material, 600: phase change material pack, 610: outer package.

Claims (9)

  1.  複数個の単電池と、
     吸熱温度が異なる二種類以上の吸熱材と、を含み、
     隣り合う前記単電池の間には、前記二種類以上の吸熱材が挟み込まれている、電池パック。
    A plurality of cells,
    Including two or more types of endothermic materials having different endothermic temperatures,
    A battery pack in which the two or more types of endothermic materials are sandwiched between the adjacent single cells.
  2.  前記吸熱材は、第一の相変化材料及び第二の相変化材料の二種類であり、
     前記第一の相変化材料及び前記第二の相変化材料はそれぞれ、包装されている、請求項1記載の電池パック。
    The heat absorbing material is of two types, a first phase change material and a second phase change material,
    The battery pack according to claim 1, wherein each of the first phase change material and the second phase change material is packaged.
  3.  前記第一の相変化材料及び前記第二の相変化材料はそれぞれ、アルミニウム箔を含む部材で包装されている、請求項2記載の電池パック。 The battery pack according to claim 2, wherein the first phase change material and the second phase change material are each packaged with a member including an aluminum foil.
  4.  前記第二の相変化材料は、前記第一の相変化材料よりも前記吸熱温度が高い、請求項2記載の電池パック。 The battery pack according to claim 2, wherein the second phase change material has a higher endothermic temperature than the first phase change material.
  5.  前記第一の相変化材料及び前記第二の相変化材料は、シート状であり、
     前記第一の相変化材料は、前記単電池に接するように配置され、
     前記第二の相変化材料は、二枚の前記第一の相変化材料の間に挟み込まれている、請求項4記載の電池パック。
    The first phase change material and the second phase change material are sheet-like,
    The first phase change material is arranged in contact with the unit cell,
    The battery pack according to claim 4, wherein the second phase change material is sandwiched between two sheets of the first phase change material.
  6.  前記第一の相変化材料及び前記第二の相変化材料の前記吸熱温度は、40℃以上60℃未満である、請求項4記載の電池パック。 The battery pack according to claim 4, wherein the endothermic temperatures of the first phase change material and the second phase change material are 40 ° C or higher and lower than 60 ° C.
  7.  前記第一の相変化材料及び前記第二の相変化材料は、1つの外装体で包装されている、請求項2記載の電池パック。 The battery pack according to claim 2, wherein the first phase change material and the second phase change material are packaged in one outer package.
  8.  前記外装体は、アルミニウム箔を含む、請求項7記載の電池パック。 The battery pack according to claim 7, wherein the outer package includes an aluminum foil.
  9.  前記第一の相変化材料及び前記第二の相変化材料の合計体積は、前記複数個の単電池の合計体積の10%以下である、請求項4記載の電池パック。 The battery pack according to claim 4, wherein the total volume of the first phase change material and the second phase change material is 10% or less of the total volume of the plurality of cells.
PCT/JP2019/033571 2018-10-17 2019-08-27 Battery pack WO2020079965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018195757A JP2020064755A (en) 2018-10-17 2018-10-17 Battery pack
JP2018-195757 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020079965A1 true WO2020079965A1 (en) 2020-04-23

Family

ID=70284522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033571 WO2020079965A1 (en) 2018-10-17 2019-08-27 Battery pack

Country Status (2)

Country Link
JP (1) JP2020064755A (en)
WO (1) WO2020079965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122678A1 (en) 2021-09-02 2023-03-02 Audi Aktiengesellschaft Battery cell assembly and motor vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172449B1 (en) * 2020-06-05 2020-10-30 김광섭 Fire diffusion prevention apparatus for battery system using latent heat of phase change material, and battery system including the same
CN111969279B (en) * 2020-08-26 2022-04-19 广东工业大学 Power battery device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259613A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Battery pack and electronic apparatus using nonaqueous electrolyte secondary battery as power supply
JP2010073406A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery pack
US20140079978A1 (en) * 2011-06-07 2014-03-20 All Cell Technologies, Llc Energy storage thermal management system using multi-temperature phase change materials
JP2014241267A (en) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2017177533A (en) * 2016-03-30 2017-10-05 安積濾紙株式会社 Composite using phase change material, production method of same, and method for arranging the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102023921B1 (en) * 2012-09-11 2019-09-23 에스케이이노베이션 주식회사 Battery Module
CN109792013A (en) * 2016-10-07 2019-05-21 美国肯联铝业汽车制造有限公司 Battery case for automobile batteries temperature management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259613A (en) * 2003-02-26 2004-09-16 Sanyo Electric Co Ltd Battery pack and electronic apparatus using nonaqueous electrolyte secondary battery as power supply
JP2010073406A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery pack
US20140079978A1 (en) * 2011-06-07 2014-03-20 All Cell Technologies, Llc Energy storage thermal management system using multi-temperature phase change materials
JP2014241267A (en) * 2013-06-12 2014-12-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2017177533A (en) * 2016-03-30 2017-10-05 安積濾紙株式会社 Composite using phase change material, production method of same, and method for arranging the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122678A1 (en) 2021-09-02 2023-03-02 Audi Aktiengesellschaft Battery cell assembly and motor vehicle

Also Published As

Publication number Publication date
JP2020064755A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2020079965A1 (en) Battery pack
US10476116B2 (en) Battery module
JP5143909B2 (en) Battery module and heat exchange member with excellent heat dissipation characteristics
EP3432411B1 (en) Secondary battery module
KR101106103B1 (en) Battery Module of Improved Safety
JP5242697B2 (en) Battery cell with excellent heat dissipation characteristics and medium or large battery module using it
WO2020179196A1 (en) Battery pack
US11469479B2 (en) Busbar for a battery pack, intended to electrically connect at least one accumulator battery of the pack and to allow a heat transfer fluid to flow therein in order to optimally cool the accumulator battery and the pack, in particular in the case of thermal runaway
EP3358668B1 (en) Battery module, battery pack and vehicle having same
JP5535520B2 (en) Battery system for vehicle
JP2017531286A (en) Battery pack case with efficient cooling structure
JP6650472B2 (en) Battery pack containing edge-cooled members
CN212810476U (en) Safe type power battery module
JP6636638B2 (en) Battery module, battery pack including the same, and automobile
CN110114903B (en) Partition member, battery pack, and heat transfer control method for battery pack
US11923523B2 (en) Battery module
KR101806733B1 (en) Cooling structure for battery cell
KR20160041402A (en) Pouch type secondary battery and a method of making the same
KR101522164B1 (en) Battery Pack Containing Peltier Element for Controlling Temperature
WO2022067808A1 (en) Battery, device, and battery fabrication method and fabrication apparatus
US20190386359A1 (en) Cell carrier comprising phase change material
WO2022067810A1 (en) Battery, device, and production method and apparatus for battery
JP6954213B2 (en) Control method of filling member, assembled battery and heat transfer
KR20120048937A (en) Battery module and lithium secondary battery pack comprising the same
EP3264519B1 (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873909

Country of ref document: EP

Kind code of ref document: A1