WO2023162438A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2023162438A1
WO2023162438A1 PCT/JP2022/046907 JP2022046907W WO2023162438A1 WO 2023162438 A1 WO2023162438 A1 WO 2023162438A1 JP 2022046907 W JP2022046907 W JP 2022046907W WO 2023162438 A1 WO2023162438 A1 WO 2023162438A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
pack according
heat
batteries
Prior art date
Application number
PCT/JP2022/046907
Other languages
French (fr)
Japanese (ja)
Inventor
喜幸 坂内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023162438A1 publication Critical patent/WO2023162438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to battery packs.
  • a heat-absorbing member is in contact with the side surface of the battery unit, and the heat-absorbing member contains a heat-absorbing agent (liquid or gel-like fluid) inside the exterior film (see, for example, Patent Document 1).
  • a heat-absorbing substance is contained inside the exterior material, and the heat-absorbing substance is composed of a heat-storage gel in which heat-storage particles (microcapsules containing a latent heat storage agent) are dispersed (see, for example, Patent Document 2).
  • a battery pack includes a plurality of batteries and an embedding member embedded in gaps between the plurality of batteries.
  • the implant member contains a plurality of capsules.
  • Each capsule has a first endothermic agent and a wall material enclosing the first endothermic agent.
  • the wall material is made of resin.
  • a battery pack according to a second aspect of the present technology includes a plurality of batteries and an embedding member embedded in gaps between the plurality of batteries.
  • the embedded member contains a heat-absorbing agent, and is configured such that the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery when the battery generates abnormal heat.
  • the plurality of capsules containing the heat-absorbing agent are used as the embedding member embedded in the gaps between the plurality of batteries, and the wall material of each capsule is made of resin. Therefore, when the battery generates abnormal heat, a large amount of the heat-absorbing agent does not leak at once, and the abnormally heated battery can be efficiently cooled.
  • the heat-absorbing agent is embedded in the embedded member embedded in the gap between the plurality of batteries, and when the batteries generate abnormal heat, the heat-absorbing agent Since a large amount of the heat-absorbing agent does not leak out at once, it is possible to efficiently cool the abnormally heated battery.
  • FIG. 1 is a diagram illustrating a perspective configuration example of a battery pack according to an embodiment of the present technology.
  • FIG. 2 is a diagram showing a perspective configuration example of a battery module housed in a battery pack.
  • FIG. 3 is a view showing an example of the exploded perspective configuration of the battery module.
  • FIG. 4A is a diagram showing a perspective configuration example of an embedding member.
  • FIG. 4B is a diagram showing a cross-sectional configuration example of the embedding member.
  • FIG. 5 is a diagram showing a perspective configuration example of a microcapsule.
  • FIG. 6 is a diagram showing an example of particle size distribution of a plurality of microcapsules contained in the embedding member.
  • FIG. 7 is a diagram showing a modified example of the batteries and the embedded member accommodated in the battery pack.
  • FIG. 8 is a diagram showing a state in which the battery and the embedding member in FIG. 7 are overlaid.
  • the battery pack described here is a power supply with multiple batteries, and is applied to various applications such as electronic devices. The details of the application of the battery pack will be described later. Since the type of battery is not particularly limited, it may be a primary battery or a secondary battery. The type of secondary battery is not particularly limited, but specifically, it is a lithium ion secondary battery in which battery capacity is obtained by utilizing absorption and release of lithium ions. The number of batteries is not particularly limited and can be set arbitrarily. A case where the battery is a secondary battery (lithium ion secondary battery) will be described below. That is, the battery pack described below is a power supply that includes a plurality of secondary batteries.
  • FIG. 1 shows a perspective configuration example of a battery pack 1 .
  • FIG. 2 shows a perspective configuration example of the battery module 30 housed in the battery pack 1 .
  • FIG. 3 shows an example of an exploded perspective configuration of the battery module 30. As shown in FIG.
  • the battery pack 1 includes an exterior case 10, battery modules 30 housed in the exterior case 10, and a control board (not shown).
  • the control board is connected, for example, to the positive and negative terminals of the battery module 30, and detects the remaining capacity of the battery module 30, measures the current output from the battery module 30, and detects the presence or absence of overcurrent. It has a circuit that
  • the exterior case 10 is provided with an external terminal 20 connected to the control board.
  • a battery module 30 is connected to the external terminal 20 via a control board.
  • the battery pack 1 has a discharge mode in which the power output from the battery module 30 is supplied to the load via the external terminal 20 .
  • Battery pack 1 may further have a charge mode in which power supplied from a power supply connected to external terminal 20 via external terminal 20 is stored in battery module 30 .
  • the control board switches between a discharge mode and a charge mode according to the type of the connected object connected to the external terminal 20 .
  • the control board executes only the discharge mode.
  • the battery module 30 has a plurality of batteries 31 as shown in FIGS. 2 and 3, for example.
  • the plurality of batteries 31 are electrically connected via lead plates 34a, 34b, and 34c, as shown in FIGS. 2 and 3, for example.
  • lead plates 34a, 34b, and 34c as shown in FIGS. 2 and 3, for example.
  • the plurality of series units are connected in parallel with each other.
  • the connection mode of the plurality of batteries 31 is not limited to the above.
  • Each battery 31 is a primary battery or a secondary battery.
  • the type of the secondary battery is not particularly limited, but specifically, it is a lithium ion secondary battery in which battery capacity is obtained by utilizing absorption and release of lithium ions. .
  • a case where each battery 31 is a secondary battery (lithium ion secondary battery) will be described below. That is, the battery pack 1 described below is a power source that includes a plurality of secondary batteries.
  • Each battery 31 is a cylindrical battery.
  • the battery module 30 further includes, for example, as shown in FIGS. 2 and 3, a battery holder 32 that supports the plurality of batteries 31, and an embedding member 33 that is embedded in the gaps between the plurality of batteries 31.
  • the battery holder 32 has a structure that supports a plurality of batteries 31 in layers with predetermined gaps therebetween.
  • FIG. 4(A) shows a perspective configuration example of the embedding member 33 .
  • FIG. 4B shows a cross-sectional configuration example of the embedding member 33 .
  • the embedded member 33 is in contact with the surface (peripheral surface) of the plurality of batteries 31 supported by the battery holder 32 .
  • the embedded member 33 has a shape corresponding to the shape of the gaps between the batteries 31 supported by the battery holder 32 .
  • the embedded member 33 has an elongated columnar shape.
  • the embedded member 33 is in contact with the surfaces (peripheral surfaces) of the four cylindrical batteries 31 adjacent to each other, and has a shape corresponding to the shape of the gap between the four cylindrical batteries 31 adjacent to each other, for example.
  • the cross section in the direction perpendicular to the extending direction of the embedding member 33 has a substantially rhombic shape.
  • the extending direction of the embedding member 33 will be referred to as the vertical direction for convenience, and the direction perpendicular to the extending direction of the embedding member 33 will be referred to as the lateral direction for convenience.
  • the embedding member 33 contains a heat-absorbing agent, and is configured such that the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery 31 when the battery 31 generates abnormal heat.
  • the embedding member 33 has, for example, a plurality of microcapsules 33b and a film 33a (exterior material) covering the plurality of microcapsules 33b, as shown in FIGS. 4A and 4B. .
  • the microcapsule 33b has a heat absorbing agent 33b1 and a wall material 33b2 containing the heat absorbing agent 33b1.
  • the wall member 33b2 is made of resin.
  • Each microcapsule 33b has a structure in which an endothermic agent 33b1 is sealed by a wall member 33b2.
  • the particle size of each microcapsule 33b is 0.1 ⁇ m or more and 100 ⁇ m or less. When the gap between the plurality of batteries 31 is about 0.5 mm, the particle size of each microcapsule 33b is 100 ⁇ m or less, so that the embedded member 33 is arranged in the gap between the plurality of batteries 31 without gaps. Is possible.
  • the particle size of the microcapsules 33b is less than 0.1 ⁇ m, the ratio of the wall material to the heat-absorbing agent increases, and the amount of heat absorption decreases, so there is a possibility that a sufficient effect cannot be obtained. Also, if the particle size of the microcapsules 33b is larger than 100 ⁇ m, it becomes difficult to dispose a sufficient amount of capsules in the gaps of the battery.
  • the plurality of microcapsules 33b contained in the embedding member 33 may contain, for example, multiple types of microcapsules 33b having at least two peaks in particle size distribution, as shown in FIG.
  • the plurality of microcapsules 33b included in group A having a relatively small particle size are mainly arranged at the corners of the embedding member 33 and the vicinity thereof.
  • the plurality of microcapsules 33b included in group B having a relatively large particle size are mainly arranged in the center of the embedding member 33 and its vicinity. In this case, it is possible to arrange the embedded member 33 even more tightly in the gaps between the plurality of batteries 31 .
  • the film 33a and the wall material 33b2 are made of a material with a heat-resistant temperature lower than the abnormal heat generation temperature of the battery 31 (for example, about 600°C).
  • the wall material 33b2 is made of, for example, at least one of polyamide, polystyrene, polyethylene and polypropylene.
  • the heat-resistant temperature of the film 33a is lower than the heat-resistant temperature of the wall material 33b2.
  • the film 33a is made of, for example, at least one of polyethylene, polystyrene, polypropylene, and polycarbonate, and is made of a material whose heat resistance temperature is lower than that of the wall material 33b2.
  • the plurality of microcapsules 33b included in the embedding member 33 may include, for example, a plurality of types of capsules having mutually different heat resistance temperatures of the wall materials 33b2.
  • the endothermic agent 33b1 is configured to contain, for example, a liquid containing water or hydrogel.
  • the endothermic agent 33b1 includes, for example, sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
  • the gaps between the plurality of microcapsules 33b and the film 33a are, for example, voids.
  • the embedding member 33 may have an endothermic agent that fills the gaps between the plurality of microcapsules 33b and the film 33a.
  • the endothermic agent contains, for example, sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel. This endothermic agent may be made of the same material as the endothermic agent 33b1.
  • a heat-absorbing member is in contact with the side surface of the battery unit, and the heat-absorbing member contains a heat-absorbing agent (liquid or gel-like fluid) inside the exterior film (see, for example, Patent Document 1).
  • a heat-absorbing substance is contained inside the exterior material, and the heat-absorbing substance is composed of a heat-storage gel in which heat-storage particles (microcapsules containing a latent heat storage agent) are dispersed (see, for example, Patent Document 2).
  • a plurality of microcapsules 33b containing a heat-absorbing agent 33b1 are used as the embedded member 33 embedded in the gaps between the plurality of batteries 31, and the wall material 33b2 of each microcapsule 33b is made of resin. formed.
  • each microcapsule 33b has a structure in which the endothermic agent 33b1 is sealed by the wall material 33b2.
  • the particle size of each microcapsule 33b is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the embedded member 33 can be arranged in the gaps between the plurality of batteries 31 without gaps, so that the abnormally heated batteries 31 can be efficiently cooled.
  • the plurality of microcapsules 33b contained in the embedding member 33 contain a plurality of types of capsules having at least two peaks in particle size distribution.
  • the plurality of microcapsules 33b included in the relatively small particle size group are arranged mainly at and near the corners of the embedding member 33, and the plurality of relatively large particle size groups included in the microcapsules 33b are arranged.
  • the microcapsules 33b mainly at and near the center of the embedding member 33 it is possible to arrange the embedding member 33 in the gaps between the plurality of batteries 31 with even less gaps. As a result, it is possible to efficiently cool the abnormally heated battery 31 .
  • the plurality of microcapsules 33b included in the embedding member 33 include a plurality of types of capsules having mutually different heat resistance temperatures of the wall material 33b2
  • the plurality of microcapsules included in the embedding member 33 can be melted stepwise over time. Thereby, it is possible to cool the abnormally heated battery 31 for a long time.
  • the heat-resistant temperature of the film 33a is lower than the heat-resistant temperature of the wall material 33b2.
  • the cooling capacity of the filling member 33 is improved, so that the abnormally heated battery 31 can be reliably cooled. can be cooled to
  • the battery 31 has a cylindrical shape
  • the embedded member 33 has an elongated columnar shape like the battery 31, and the cross section in the direction perpendicular to the extending direction of the embedded member 33 has a substantially diamond shape. It was.
  • a flat-shaped embedding member 36 may be used.
  • FIG. 7 shows a modified example of the battery 35 and the embedded member 36 accommodated in the battery pack 1.
  • FIG. 8 shows how the battery 35 and the embedding member 36 of FIG. 7 are overlaid.
  • the plurality of batteries 35 are electrically connected, for example, via predetermined lead plates.
  • a plurality of batteries 35 that are part of the plurality of batteries 35 are connected in series with each other, and the plurality of batteries 35 connected in series with each other are referred to as a series unit, the plurality of series units are connected in parallel with each other.
  • the connection mode of the plurality of batteries 35 is not limited to the above.
  • Each battery 35 is a primary battery or a secondary battery.
  • the type of the secondary battery is not particularly limited, but specifically, it is a lithium ion secondary battery in which battery capacity is obtained by utilizing absorption and release of lithium ions. .
  • the embedding member 36 is arranged between the two batteries 35 and is in contact with the surfaces of the two batteries 35 .
  • the embedding member 36 contains a heat-absorbing agent, and is configured such that the heat-absorbing agent leaks to the outside when the battery 35 generates abnormal heat.
  • the embedded member 36 contains a heat-absorbing agent. is configured to
  • the embedding member 36 has, for example, a plurality of microcapsules 33b and a film 33a (exterior material) covering the plurality of microcapsules 33b.
  • the embedding members 33 and 36 are provided with a plurality of microcapsules 33b.
  • a heat-absorbing agent is included, and when the batteries 31 and 35 generate abnormal heat, the heat-absorbing agent 33b1 causes the battery 31 to generate abnormal heat. It may be configured to gradually leak to the outside along with. Even in this case, it is possible to efficiently cool the heat-generating portion similarly to the above-described embodiment and its modification.
  • the battery pack 1 is used in machines, devices, instruments, devices, and systems (aggregates of multiple devices, etc.) that can use the battery pack 1 as a power source for driving and a power storage source for power storage. If there is, it is not particularly limited.
  • the battery pack 1 used as a power source may be a main power source or an auxiliary power source.
  • a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • the auxiliary power supply may be, for example, a power supply that is used in place of the main power supply, or may be a power supply that is switched from the main power supply as needed.
  • the main power supply is not limited to the battery pack.
  • the battery pack 1 An example of the usage of the battery pack 1 is as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook personal computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable household appliance such as an electric shaver. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in preparation for emergencies. Of course, the battery pack may be used for purposes other than those described above.
  • the battery structure of the secondary battery is cylindrical has been described, but the battery structure of the secondary battery applied to the battery pack of the present technology is not particularly limited.
  • the battery structure of the secondary battery may be a laminate film type, a square type, a coin type, or the like.
  • the structure of the secondary battery is not particularly limited. Specifically, the secondary battery may have other structures such as a laminated structure.
  • the type of the electrode reactant is not particularly limited.
  • the electrode reactant may be another group 1 element in the long period periodic table such as sodium and potassium, a group 2 element in the long period periodic table such as magnesium and calcium, or aluminum Other light metals such as
  • this technique can also take the following structures.
  • ⁇ 1> a plurality of batteries; and an embedding member embedded in the gaps between the plurality of batteries, The embedding member encloses a plurality of capsules, each of the capsules has a first endothermic agent and a wall material enclosing the first endothermic agent;
  • the wall material is made of resin.
  • each capsule has a structure in which the first endothermic agent is sealed by the wall material.
  • the wall material is made of at least one material selected from polyamide, polystyrene, polyethylene, and polypropylene.
  • each capsule has a particle size of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the plurality of capsules include a plurality of types of capsules having at least two peaks in particle size distribution.
  • the plurality of capsules include a plurality of types of capsules in which the wall materials have different heat resistance temperatures.
  • the first endothermic agent includes liquid containing water or hydrogel.
  • the embedding member further includes an exterior material enclosing the plurality of capsules.
  • the heat-resistant temperature of the exterior material is lower than the heat-resistant temperature of the wall material.
  • the exterior material is made of at least one material selected from polyethylene, polystyrene, polypropylene, and polycarbonate, and is made of a material having a heat resistance temperature lower than that of the wall material.
  • the embedding member includes a second endothermic agent that fills a gap between the plurality of capsules and the exterior material.
  • the second endothermic agent includes sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
  • the embedding member further has an exterior material enclosing the plurality of capsules,
  • the first endothermic agent contains an acidic liquid
  • ⁇ 15> further comprising a battery holder that supports the plurality of batteries in a layered manner with predetermined gaps therebetween;
  • the battery pack has four or more cylindrical batteries as the plurality of batteries, The battery pack according to ⁇ 15>, wherein the embedded member is in contact with the peripheral surfaces of the four cylindrical batteries that are adjacent to each other. ⁇ 17> The battery pack according to ⁇ 16>, wherein the embedded member has a shape corresponding to a shape of a gap between the four cylindrical batteries adjacent to each other. ⁇ 18> a plurality of batteries; and an embedding member to be embedded in the gaps between the plurality of batteries, The embedded member contains a heat-absorbing agent, and is configured such that when the battery generates abnormal heat, the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery. .

Abstract

A battery pack according to one aspect of the present invention is provided with: a plurality of batteries; and a buried member that is buried in a gap among the plurality of batteries. The buried member internally contains a plurality of capsules. The capsules each have a first heat absorbing agent and a wall material that internally contains the first heat absorbing agent. The wall material is formed of a resin.

Description

電池パックbattery pack
 本技術は、電池パックに関する。 This technology relates to battery packs.
 電子機器が広く普及しているため、その電子機器に適用される電源として電池の開発が進められている。この場合には、複数の電池を容易かつ安全に取り扱うために、その複数の電池を備えた電池パックが提案されている。 Due to the widespread use of electronic devices, batteries are being developed as power sources for such electronic devices. In this case, a battery pack including a plurality of batteries has been proposed in order to handle the plurality of batteries easily and safely.
 電池パックの構成に関連する技術に関しては、様々な検討がなされている。具体的には、電池ユニットの側面に吸熱部材が接触しており、その吸熱部材では外装フィルムの内部に吸熱剤(液体またはゲル状の流体)が内包されている(例えば、特許文献1参照)。外装材の内部に吸熱物質が収容されており、吸熱物質は、蓄熱性粒子(潜熱蓄熱剤を内包したマイクロカプセル)を分散させた蓄熱性ゲルによって構成されている(例えば、特許文献2参照)。 Various studies have been conducted on technologies related to the configuration of battery packs. Specifically, a heat-absorbing member is in contact with the side surface of the battery unit, and the heat-absorbing member contains a heat-absorbing agent (liquid or gel-like fluid) inside the exterior film (see, for example, Patent Document 1). . A heat-absorbing substance is contained inside the exterior material, and the heat-absorbing substance is composed of a heat-storage gel in which heat-storage particles (microcapsules containing a latent heat storage agent) are dispersed (see, for example, Patent Document 2). .
国際公開第2010/098067号パンフレットWO 2010/098067 pamphlet 特開2001-299801号公報Japanese Patent Application Laid-Open No. 2001-299801
 しかし、特許文献1に記載の発明では、電池の異常発熱によって外装フィルムが溶解したときに、吸熱剤が一度に大量に漏出する。そのため、吸熱剤が、異常発熱した電池の表面に留まることができず、吸熱剤の顕熱および蒸発潜熱による吸熱効果が低減するおそれがある。特許文献2に記載の発明では、使用時に蓄熱性ゲルが外装材から漏出することが想定されていない。そのため、異常発熱した電池を効率よく冷却することが難しい。従って、異常発熱した電池を効率よく冷却することの可能な電池パックを提供することが望ましい。 However, in the invention described in Patent Document 1, when the exterior film melts due to abnormal heat generation of the battery, a large amount of the heat-absorbing agent leaks out at once. Therefore, the heat-absorbing agent cannot remain on the surface of the abnormally heated battery, and the heat-absorbing effect due to the sensible heat and latent heat of vaporization of the heat-absorbing agent may be reduced. In the invention described in Patent Document 2, it is not assumed that the heat storage gel leaks from the exterior material during use. Therefore, it is difficult to efficiently cool the abnormally heated battery. Therefore, it is desirable to provide a battery pack that can efficiently cool the abnormally heated battery.
 本技術の第1の側面に係る電池パックは、複数の電池と、複数の電池の間隙に埋め込まれる埋め込み部材とを備えている。埋め込み部材は、複数のカプセルを内包している。各カプセルは、第1の吸熱剤と、第1の吸熱剤を内包する壁材とを有している。壁材は、樹脂で形成されている。 A battery pack according to a first aspect of the present technology includes a plurality of batteries and an embedding member embedded in gaps between the plurality of batteries. The implant member contains a plurality of capsules. Each capsule has a first endothermic agent and a wall material enclosing the first endothermic agent. The wall material is made of resin.
 本技術の第2の側面に係る電池パックは、複数の電池と、複数の電池の間隙に埋め込まれる埋め込み部材とを備えている。埋め込み部材は、吸熱剤を内包しており、電池が異常発熱を起こしたときに吸熱剤が電池の異常発熱に伴って段階的に外部に漏出するように構成されている。 A battery pack according to a second aspect of the present technology includes a plurality of batteries and an embedding member embedded in gaps between the plurality of batteries. The embedded member contains a heat-absorbing agent, and is configured such that the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery when the battery generates abnormal heat.
 本技術の第1の側面に係る電池パックによれば、複数の電池の間隙に埋め込まれる埋め込み部材として、吸熱剤を内包する複数のカプセルを用い、各カプセルの壁材を樹脂で形成するようにしたので、電池が異常発熱を起こしたときに吸熱剤が一度に大量に漏出することがなく、異常発熱した電池を効率よく冷却することが可能である。 According to the battery pack according to the first aspect of the present technology, the plurality of capsules containing the heat-absorbing agent are used as the embedding member embedded in the gaps between the plurality of batteries, and the wall material of each capsule is made of resin. Therefore, when the battery generates abnormal heat, a large amount of the heat-absorbing agent does not leak at once, and the abnormally heated battery can be efficiently cooled.
 本技術の第2の側面に係る電池パックによれば、複数の電池の間隙に埋め込まれる埋め込み部材に吸熱剤を内包させ、電池が異常発熱を起こしたときに吸熱剤が電池の異常発熱に伴って段階的に外部に漏出するようにしたので、吸熱剤が一度に大量に漏出することがなく、異常発熱した電池を効率よく冷却することが可能である。 According to the battery pack according to the second aspect of the present technology, the heat-absorbing agent is embedded in the embedded member embedded in the gap between the plurality of batteries, and when the batteries generate abnormal heat, the heat-absorbing agent Since a large amount of the heat-absorbing agent does not leak out at once, it is possible to efficiently cool the abnormally heated battery.
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 It should be noted that the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described below.
図1は本技術の一実施形態に係る電池パックの斜視構成例を表す図である。FIG. 1 is a diagram illustrating a perspective configuration example of a battery pack according to an embodiment of the present technology. 図2は電池パックに収容される電池モジュールの斜視構成例を表す図である。FIG. 2 is a diagram showing a perspective configuration example of a battery module housed in a battery pack. 図3は電池モジュールの展開斜視構成例を表す図である。FIG. 3 is a view showing an example of the exploded perspective configuration of the battery module. 図4(A)は埋め込み部材の斜視構成例を表す図である。図4(B)は埋め込み部材の断面構成例を表す図である。FIG. 4A is a diagram showing a perspective configuration example of an embedding member. FIG. 4B is a diagram showing a cross-sectional configuration example of the embedding member. 図5はマイクロカプセルの斜視構成例を表す図である。FIG. 5 is a diagram showing a perspective configuration example of a microcapsule. 図6は埋め込み部材に含まれる複数のマイクロカプセルの粒径分布の一例を表す図である。FIG. 6 is a diagram showing an example of particle size distribution of a plurality of microcapsules contained in the embedding member. 図7は電池パックに収容される電池および埋め込み部材の一変形例を表す図である。FIG. 7 is a diagram showing a modified example of the batteries and the embedded member accommodated in the battery pack. 図8は図7の電池および埋め込み部材を重ね合わせた様子を表す図である。FIG. 8 is a diagram showing a state in which the battery and the embedding member in FIG. 7 are overlaid.
 以下、本技術を実施するための形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
 1.電池パック
 1-1.構成
 1-2.効果
 2.変形例
 3.電池パックの用途
EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this technique is demonstrated in detail with reference to drawings. The order of explanation is as follows.
1. Battery pack 1-1. Configuration 1-2. Effect 2. Modification 3. Applications of battery packs
<1.電池パック>
 まず、本技術の一実施形態の電池パックに関して説明する。
<1. Battery pack>
First, a battery pack according to an embodiment of the present technology will be described.
 ここで説明する電池パックは、複数の電池を備えた電源であり、電子機器などの多様な用途に適用される。電池パックの用途の詳細に関しては、後述する。電池の種類は、特に限定されないため、一次電池でもよいし、二次電池でもよい。二次電池の種類は、特に限定されないが、具体的には、リチウムイオンの吸蔵放出を利用して電池容量が得られるリチウムイオン二次電池などである。電池の数は、特に限定されないため、任意に設定可能である。以下では、電池が二次電池(リチウムイオン二次電池)である場合に関して説明する。すなわち、以下で説明する電池パックは、複数の二次電池を備えた電源である。 The battery pack described here is a power supply with multiple batteries, and is applied to various applications such as electronic devices. The details of the application of the battery pack will be described later. Since the type of battery is not particularly limited, it may be a primary battery or a secondary battery. The type of secondary battery is not particularly limited, but specifically, it is a lithium ion secondary battery in which battery capacity is obtained by utilizing absorption and release of lithium ions. The number of batteries is not particularly limited and can be set arbitrarily. A case where the battery is a secondary battery (lithium ion secondary battery) will be described below. That is, the battery pack described below is a power supply that includes a plurality of secondary batteries.
<1-1.全体構成>
 図1は、電池パック1の斜視構成例を表したものである。図2は、電池パック1に収容される電池モジュール30の斜視構成例を表したものである。図3は、電池モジュール30の展開斜視構成例を表したものである。
<1-1. Overall configuration>
FIG. 1 shows a perspective configuration example of a battery pack 1 . FIG. 2 shows a perspective configuration example of the battery module 30 housed in the battery pack 1 . FIG. 3 shows an example of an exploded perspective configuration of the battery module 30. As shown in FIG.
 電池パック1は、例えば、図1に示したように、外装ケース10と、外装ケース10に収容される電池モジュール30および制御基板(図示せず)とを備えている。制御基板は、例えば、電池モジュール30の正負極端子に接続されており、電池モジュール30の残容量を検出したり、電池モジュール30から出力される電流を計測して過電流の有無を検知したりする回路を有している。 For example, as shown in FIG. 1, the battery pack 1 includes an exterior case 10, battery modules 30 housed in the exterior case 10, and a control board (not shown). The control board is connected, for example, to the positive and negative terminals of the battery module 30, and detects the remaining capacity of the battery module 30, measures the current output from the battery module 30, and detects the presence or absence of overcurrent. It has a circuit that
 外装ケース10には、制御基板に接続された外部端子20が設けられている。外部端子20には、制御基板を介して電池モジュール30が接続されている。電池パック1は、電池モジュール30から出力された電力を、外部端子20を介して負荷に供給する放電モードを有している。電池パック1は、さらに、外部端子20に接続された電源から、外部端子20を介して供給された電力を電池モジュール30に蓄積する充電モードを有していてもよい。後述の電池31が二次電池である場合、制御基板は、外部端子20に接続された被接続物の種類に応じて、放電モードと充電モードとを切り替えるようになっている。後述の電池31が一次電池である場合、制御基板は放電モードだけを実行するようになっている。 The exterior case 10 is provided with an external terminal 20 connected to the control board. A battery module 30 is connected to the external terminal 20 via a control board. The battery pack 1 has a discharge mode in which the power output from the battery module 30 is supplied to the load via the external terminal 20 . Battery pack 1 may further have a charge mode in which power supplied from a power supply connected to external terminal 20 via external terminal 20 is stored in battery module 30 . When the battery 31 described below is a secondary battery, the control board switches between a discharge mode and a charge mode according to the type of the connected object connected to the external terminal 20 . When the battery 31, which will be described later, is a primary battery, the control board executes only the discharge mode.
 電池モジュール30は、例えば、図2、図3に示したように、複数の電池31を有している。複数の電池31は、例えば、図2、図3に示したように、リード板34a,34b,34cを介して電気的に接続されている。例えば、複数の電池31のうちの一部である複数の電池31が互いに直列に接続されており、さらに、互いに直列に接続された複数の電池31を直列ユニットと称したとき、複数の直列ユニットが互いに並列に接続されている。なお、複数の電池31の接続態様は、上記に限定されるものではない。 The battery module 30 has a plurality of batteries 31 as shown in FIGS. 2 and 3, for example. The plurality of batteries 31 are electrically connected via lead plates 34a, 34b, and 34c, as shown in FIGS. 2 and 3, for example. For example, when a plurality of batteries 31 that are a part of the plurality of batteries 31 are connected in series with each other, and the plurality of batteries 31 connected in series with each other are referred to as series units, the plurality of series units are connected in parallel with each other. In addition, the connection mode of the plurality of batteries 31 is not limited to the above.
 各電池31は、一次電池または二次電池である。各電池31が二次電池である場合、二次電池の種類は、特に限定されないが、具体的には、リチウムイオンの吸蔵放出を利用して電池容量が得られるリチウムイオン二次電池などである。以下では、各電池31が二次電池(リチウムイオン二次電池)である場合に関して説明する。すなわち、以下で説明する電池パック1は、複数の二次電池を備えた電源である。各電池31は、円筒型電池である。 Each battery 31 is a primary battery or a secondary battery. When each battery 31 is a secondary battery, the type of the secondary battery is not particularly limited, but specifically, it is a lithium ion secondary battery in which battery capacity is obtained by utilizing absorption and release of lithium ions. . A case where each battery 31 is a secondary battery (lithium ion secondary battery) will be described below. That is, the battery pack 1 described below is a power source that includes a plurality of secondary batteries. Each battery 31 is a cylindrical battery.
 電池モジュール30は、さらに、例えば、図2、図3に示したように、複数の電池31を支持する電池ホルダ32と、複数の電池31の間隙に埋め込まれる埋め込み部材33とを有している。電池ホルダ32は、複数の電池31を所定の間隙を介して階層状に支持する構造を有している。 The battery module 30 further includes, for example, as shown in FIGS. 2 and 3, a battery holder 32 that supports the plurality of batteries 31, and an embedding member 33 that is embedded in the gaps between the plurality of batteries 31. . The battery holder 32 has a structure that supports a plurality of batteries 31 in layers with predetermined gaps therebetween.
 図4(A)は、埋め込み部材33の斜視構成例を表したものである。図4(B)は、埋め込み部材33の断面構成例を表したものである。埋め込み部材33は、電池ホルダ32に支持された複数の電池31の表面(周面)に接している。埋め込み部材33は、電池ホルダ32に支持された複数の電池31の間隙の形状に対応した形状となっている。埋め込み部材33は、電池31と同様、細長い柱形状となっている。ここで、4つ以上の円筒型の電池31が所定の間隙を介して階層状に電池ホルダ32に支持されているとする。このとき、埋め込み部材33は、互いに隣接する4つの円筒型の電池31の表面(周面)に接しており、例えば、互いに隣接する4つの円筒型の電池31の間隙の形状に対応した形状となっている。例えば、埋め込み部材33において、埋め込み部材33の延在方向と垂直な方向の断面が、略ひし形の形状となっている。以下では、埋め込み部材33の延在方向を便宜的に上下方向と称し、埋め込み部材33の延在方向と垂直な方向を便宜的に横方向と称する。 FIG. 4(A) shows a perspective configuration example of the embedding member 33 . FIG. 4B shows a cross-sectional configuration example of the embedding member 33 . The embedded member 33 is in contact with the surface (peripheral surface) of the plurality of batteries 31 supported by the battery holder 32 . The embedded member 33 has a shape corresponding to the shape of the gaps between the batteries 31 supported by the battery holder 32 . Like the battery 31, the embedded member 33 has an elongated columnar shape. Here, it is assumed that four or more cylindrical batteries 31 are hierarchically supported by the battery holder 32 with predetermined gaps interposed therebetween. At this time, the embedded member 33 is in contact with the surfaces (peripheral surfaces) of the four cylindrical batteries 31 adjacent to each other, and has a shape corresponding to the shape of the gap between the four cylindrical batteries 31 adjacent to each other, for example. It's becoming For example, in the embedding member 33, the cross section in the direction perpendicular to the extending direction of the embedding member 33 has a substantially rhombic shape. Hereinafter, the extending direction of the embedding member 33 will be referred to as the vertical direction for convenience, and the direction perpendicular to the extending direction of the embedding member 33 will be referred to as the lateral direction for convenience.
 埋め込み部材33は、吸熱剤を内包しており、電池31が異常発熱を起こしたときに吸熱剤が電池31の異常発熱に伴って段階的に外部に漏出するように構成されている。埋め込み部材33は、例えば、図4(A)、図4(B)に示したように、複数のマイクロカプセル33bと、複数のマイクロカプセル33bを覆うフィルム33a(外装材)とを有している。 The embedding member 33 contains a heat-absorbing agent, and is configured such that the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery 31 when the battery 31 generates abnormal heat. The embedding member 33 has, for example, a plurality of microcapsules 33b and a film 33a (exterior material) covering the plurality of microcapsules 33b, as shown in FIGS. 4A and 4B. .
 マイクロカプセル33bは、例えば、図5に示したように、吸熱剤33b1と、吸熱剤33b1を内包する壁材33b2とを有している。壁材33b2は、樹脂で形成されている。各マイクロカプセル33bは、吸熱剤33b1が壁材33b2によって密閉された構造となっている。各マイクロカプセル33bの粒径は、0.1μm以上、100μm以下となっている。複数の電池31の間隙が0.5mm程度となっている場合、各マイクロカプセル33bの粒径は、100μm以下となっていることにより、埋め込み部材33を複数の電池31の間隙に隙間なく配置することが可能である。ここで、マイクロカプセル33bの粒径が0.1μm未満の場合、吸熱剤に対する壁材の割合が高くなり、吸熱量が減少してしまい十分な効果が得られないおそれがある。また、マイクロカプセル33bの粒径が100μmより大きくなると、電池の間隙に十分な量のカプセルを配置することが難しくなる。 For example, as shown in FIG. 5, the microcapsule 33b has a heat absorbing agent 33b1 and a wall material 33b2 containing the heat absorbing agent 33b1. The wall member 33b2 is made of resin. Each microcapsule 33b has a structure in which an endothermic agent 33b1 is sealed by a wall member 33b2. The particle size of each microcapsule 33b is 0.1 μm or more and 100 μm or less. When the gap between the plurality of batteries 31 is about 0.5 mm, the particle size of each microcapsule 33b is 100 μm or less, so that the embedded member 33 is arranged in the gap between the plurality of batteries 31 without gaps. Is possible. Here, if the particle size of the microcapsules 33b is less than 0.1 μm, the ratio of the wall material to the heat-absorbing agent increases, and the amount of heat absorption decreases, so there is a possibility that a sufficient effect cannot be obtained. Also, if the particle size of the microcapsules 33b is larger than 100 μm, it becomes difficult to dispose a sufficient amount of capsules in the gaps of the battery.
 埋め込み部材33に含まれる複数のマイクロカプセル33bは、例えば、図6に示したように、粒径分布に少なくとも2つのピークを持つ複数種類のマイクロカプセル33bを含んでいてもよい。このとき、埋め込み部材33に含まれる複数のマイクロカプセル33bにおいて、相対的に粒径の小さなグループAに含まれる複数のマイクロカプセル33bは、主に埋め込み部材33の角およびその近傍に配置されており、相対的に粒径の大きなグループBに含まれる複数のマイクロカプセル33bは、主に埋め込み部材33の中央およびその近傍に配置されている。このようにした場合には、埋め込み部材33を複数の電池31の間隙により一層、隙間なく配置することが可能である。なお、相対的に小さな粒径のグループAに含まれるマイクロカプセル33bのみでも隙間なく吸熱剤を配置することは可能である。しかし、グループAに含まれるマイクロカプセル33bのみでは吸熱剤に対する壁材の割合が高くなり、吸熱量が減少してしまい十分な効果が得られないおそれがある。よって、粒径分布に少なくとも2つのピークを持つ複数種類のマイクロカプセル33bを含んでいた方がより好ましい。 The plurality of microcapsules 33b contained in the embedding member 33 may contain, for example, multiple types of microcapsules 33b having at least two peaks in particle size distribution, as shown in FIG. At this time, among the plurality of microcapsules 33b contained in the embedding member 33, the plurality of microcapsules 33b included in group A having a relatively small particle size are mainly arranged at the corners of the embedding member 33 and the vicinity thereof. , the plurality of microcapsules 33b included in group B having a relatively large particle size are mainly arranged in the center of the embedding member 33 and its vicinity. In this case, it is possible to arrange the embedded member 33 even more tightly in the gaps between the plurality of batteries 31 . It should be noted that it is possible to dispose the endothermic agent without gaps even with only the microcapsules 33b included in group A having a relatively small particle size. However, if only the microcapsules 33b included in Group A are used, the ratio of the wall material to the heat-absorbing agent increases, and the amount of heat absorption decreases, so there is a possibility that a sufficient effect cannot be obtained. Therefore, it is more preferable to include a plurality of types of microcapsules 33b having at least two peaks in the particle size distribution.
 フィルム33aおよび壁材33b2は、電池31の異常発熱温度(例えば、600℃程度)よりも低い耐熱温度の材料で構成されている。壁材33b2は、例えば、ポリアミド、ポリスチレン、ポリエチレンおよびポリプロピレンの少なくとも1つの材料で形成されている。フィルム33aの耐熱温度は、壁材33b2の耐熱温度よりも低くなっている。フィルム33aは、例えば、ポリエチレン、ポリスチレン、ポリプロピレンおよびポリカーボネートの少なくとも1つの材料で形成され、かつ、耐熱温度が壁材33b2の耐熱温度よりも低い材料で形成されている。これにより、電池31が異常発熱を起こしたときに、まず、フィルム33aが溶融し、その後、電池31に近い壁材33b2が溶融し、時間の経過とともに、電池31から離れた壁材33b2も溶融するようになる。埋め込み部材33に含まれる複数のマイクロカプセル33bは、例えば、壁材33b2の耐熱温度が互いに異なる複数種類のカプセルを含んでいてもよい。 The film 33a and the wall material 33b2 are made of a material with a heat-resistant temperature lower than the abnormal heat generation temperature of the battery 31 (for example, about 600°C). The wall material 33b2 is made of, for example, at least one of polyamide, polystyrene, polyethylene and polypropylene. The heat-resistant temperature of the film 33a is lower than the heat-resistant temperature of the wall material 33b2. The film 33a is made of, for example, at least one of polyethylene, polystyrene, polypropylene, and polycarbonate, and is made of a material whose heat resistance temperature is lower than that of the wall material 33b2. As a result, when the battery 31 generates abnormal heat, the film 33a melts first, and then the wall material 33b2 near the battery 31 melts. will come to The plurality of microcapsules 33b included in the embedding member 33 may include, for example, a plurality of types of capsules having mutually different heat resistance temperatures of the wall materials 33b2.
 吸熱剤33b1は、例えば、水を含む液体、または、ハイドロゲルを含んで構成されている。吸熱剤33b1は、例えば、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリヒドロキシエチルメタクリレートまたはシリコーンハイドロゲルを含んで構成されている。 The endothermic agent 33b1 is configured to contain, for example, a liquid containing water or hydrogel. The endothermic agent 33b1 includes, for example, sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
 複数のマイクロカプセル33bとフィルム33aとの間隙は、例えば、空隙となっている。なお、埋め込み部材33は、複数のマイクロカプセル33bとフィルム33aとの間隙を埋め込む吸熱剤を有していてもよい。このとき、この吸熱剤は、例えば、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリヒドロキシエチルメタクリレートまたはシリコーンハイドロゲルを含んでいる。この吸熱剤は、吸熱剤33b1と同一の材料で形成されていてもよい。 The gaps between the plurality of microcapsules 33b and the film 33a are, for example, voids. The embedding member 33 may have an endothermic agent that fills the gaps between the plurality of microcapsules 33b and the film 33a. At this time, the endothermic agent contains, for example, sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel. This endothermic agent may be made of the same material as the endothermic agent 33b1.
<1-2.効果>
 次に、電池パック1の効果について説明する。
<1-2. Effect>
Next, effects of the battery pack 1 will be described.
 電子機器が広く普及しているため、その電子機器に適用される電源として電池の開発が進められている。この場合には、複数の電池を容易かつ安全に取り扱うために、その複数の電池を備えた電池パックが提案されている。 Due to the widespread use of electronic devices, batteries are being developed as power sources for such electronic devices. In this case, a battery pack including a plurality of batteries has been proposed in order to handle the plurality of batteries easily and safely.
 電池パックの構成に関連する技術に関しては、様々な検討がなされている。具体的には、電池ユニットの側面に吸熱部材が接触しており、その吸熱部材では外装フィルムの内部に吸熱剤(液体またはゲル状の流体)が内包されている(例えば、特許文献1参照)。外装材の内部に吸熱物質が収容されており、吸熱物質は、蓄熱性粒子(潜熱蓄熱剤を内包したマイクロカプセル)を分散させた蓄熱性ゲルによって構成されている(例えば、特許文献2参照)。 Various studies have been conducted on technologies related to the configuration of battery packs. Specifically, a heat-absorbing member is in contact with the side surface of the battery unit, and the heat-absorbing member contains a heat-absorbing agent (liquid or gel-like fluid) inside the exterior film (see, for example, Patent Document 1). . A heat-absorbing substance is contained inside the exterior material, and the heat-absorbing substance is composed of a heat-storage gel in which heat-storage particles (microcapsules containing a latent heat storage agent) are dispersed (see, for example, Patent Document 2). .
 しかし、特許文献1に記載の発明では、電池の異常発熱によって外装フィルムが溶解したときに、吸熱剤が一度に大量に漏出する。そのため、吸熱剤が、異常発熱した電池の表面に留まることができず、吸熱剤の顕熱および蒸発潜熱による吸熱効果が低減するおそれがある。特許文献2に記載の発明では、使用時に蓄熱性ゲルが外装材から漏出することが想定されていない。そのため、異常発熱した電池を効率よく冷却することが難しい。 However, in the invention described in Patent Document 1, when the exterior film melts due to abnormal heat generation of the battery, a large amount of the heat-absorbing agent leaks out at once. Therefore, the heat-absorbing agent cannot remain on the surface of the abnormally heated battery, and the heat-absorbing effect due to the sensible heat and latent heat of vaporization of the heat-absorbing agent may be reduced. In the invention described in Patent Document 2, it is not assumed that the heat storage gel leaks from the exterior material during use. Therefore, it is difficult to efficiently cool the abnormally heated battery.
 一方、本実施の形態では、複数の電池31の間隙に埋め込まれる埋め込み部材33として、吸熱剤33b1を内包する複数のマイクロカプセル33bが用いられており、各マイクロカプセル33bの壁材33b2が樹脂で形成されている。これにより、電池31が異常発熱を起こしたときに吸熱剤33b1が一度に大量に漏出することがなく、異常発熱した電池31を効率よく冷却することが可能である。 On the other hand, in the present embodiment, a plurality of microcapsules 33b containing a heat-absorbing agent 33b1 are used as the embedded member 33 embedded in the gaps between the plurality of batteries 31, and the wall material 33b2 of each microcapsule 33b is made of resin. formed. As a result, when the battery 31 generates abnormal heat, a large amount of the heat-absorbing agent 33b1 does not leak at once, and the abnormally heated battery 31 can be efficiently cooled.
 また、本実施の形態では、各マイクロカプセル33bが、吸熱剤33b1が壁材33b2によって密閉された構造となっている。これにより、電池31が異常発熱を起こしたときに吸熱剤33b1が一度に大量に漏出することがなく、異常発熱した電池31を効率よく冷却することが可能である。 Further, in the present embodiment, each microcapsule 33b has a structure in which the endothermic agent 33b1 is sealed by the wall material 33b2. As a result, when the battery 31 generates abnormal heat, a large amount of the heat-absorbing agent 33b1 does not leak at once, and the abnormally heated battery 31 can be efficiently cooled.
 また、本実施の形態では、各マイクロカプセル33bの粒径が0.1μm以上、100μm以下となっている。これにより、埋め込み部材33を、複数の電池31の間隙に隙間なく配置することができるので、異常発熱した電池31を効率よく冷却することが可能である。 Also, in the present embodiment, the particle size of each microcapsule 33b is 0.1 μm or more and 100 μm or less. As a result, the embedded member 33 can be arranged in the gaps between the plurality of batteries 31 without gaps, so that the abnormally heated batteries 31 can be efficiently cooled.
 また、本実施の形態では、埋め込み部材33に含まれる複数のマイクロカプセル33bは、粒径分布に少なくとも2つのピークを持つ複数種類のカプセルを含んでいる。これにより、例えば、相対的に粒径の小さなグループに含まれる複数のマイクロカプセル33bを、主に埋め込み部材33の角およびその近傍に配置し、相対的に粒径の大きなグループに含まれる複数のマイクロカプセル33bを、主に埋め込み部材33の中央およびその近傍に配置することにより、埋め込み部材33を複数の電池31の間隙により一層、隙間なく配置することが可能である。その結果、異常発熱した電池31を効率よく冷却することが可能である。なお、相対的に小さな粒径のグループAに含まれるマイクロカプセル33bのみでも隙間なく吸熱剤を配置することは可能である。しかし、グループAに含まれるマイクロカプセル33bのみでは吸熱剤に対する壁材の割合が高くなり、吸熱量が減少してしまい十分な効果が得られないおそれがある。よって、粒径分布に少なくとも2つのピークを持つ複数種類のマイクロカプセル33bを含んでいた方がより好ましい。 Also, in the present embodiment, the plurality of microcapsules 33b contained in the embedding member 33 contain a plurality of types of capsules having at least two peaks in particle size distribution. As a result, for example, the plurality of microcapsules 33b included in the relatively small particle size group are arranged mainly at and near the corners of the embedding member 33, and the plurality of relatively large particle size groups included in the microcapsules 33b are arranged. By arranging the microcapsules 33b mainly at and near the center of the embedding member 33, it is possible to arrange the embedding member 33 in the gaps between the plurality of batteries 31 with even less gaps. As a result, it is possible to efficiently cool the abnormally heated battery 31 . It should be noted that it is possible to dispose the endothermic agent without gaps even with only the microcapsules 33b included in group A having a relatively small particle size. However, if only the microcapsules 33b included in Group A are used, the ratio of the wall material to the heat-absorbing agent increases, and the amount of heat absorption decreases, so there is a possibility that a sufficient effect cannot be obtained. Therefore, it is more preferable to include a plurality of types of microcapsules 33b having at least two peaks in the particle size distribution.
 また、本実施の形態において、埋め込み部材33に含まれる複数のマイクロカプセル33bは、壁材33b2の耐熱温度が互いに異なる複数種類のカプセルを含んでいる場合には、埋め込み部材33に含まれる複数のマイクロカプセル33bを時間的に段階的に溶融させることができる。これにより、異常発熱した電池31を長時間冷却することが可能である。 In the present embodiment, when the plurality of microcapsules 33b included in the embedding member 33 include a plurality of types of capsules having mutually different heat resistance temperatures of the wall material 33b2, the plurality of microcapsules included in the embedding member 33 The microcapsules 33b can be melted stepwise over time. Thereby, it is possible to cool the abnormally heated battery 31 for a long time.
 また、本実施の形態では、フィルム33aの耐熱温度が壁材33b2の耐熱温度よりも低くなっている。これにより、電池31が異常発熱を起こしたときに、まず、フィルム33aが溶融し、その後、電池31に近い壁材33b2が溶融し、時間の経過とともに、電池31から離れた壁材33b2も溶融するようになる。その結果、異常発熱した電池31を長時間冷却することが可能である。 Also, in the present embodiment, the heat-resistant temperature of the film 33a is lower than the heat-resistant temperature of the wall material 33b2. As a result, when the battery 31 generates abnormal heat, the film 33a melts first, and then the wall material 33b2 near the battery 31 melts. will come to As a result, it is possible to cool the abnormally heated battery 31 for a long time.
 また、本実施の形態において、複数のマイクロカプセル33bとフィルム33aとの間隙を埋め込む吸熱剤が設けられている場合には、埋め込み部材33の冷却能力が向上するので、異常発熱した電池31を確実に冷却することが可能である。 Further, in the present embodiment, when a heat absorbing agent is provided to fill the gaps between the plurality of microcapsules 33b and the film 33a, the cooling capacity of the filling member 33 is improved, so that the abnormally heated battery 31 can be reliably cooled. can be cooled to
<3.変形例>
 次に、上記実施の形態に係る電池パック1の変形例について説明する。
<3. Variation>
Next, a modification of the battery pack 1 according to the above embodiment will be described.
(変形例A)
 上記実施の形態では、電池31が円柱形状となっており、埋め込み部材33が電池31と同様、細長い柱形状となっており、埋め込み部材33の延在方向と垂直な方向の断面が略ひし形状となっていた。しかし、上記実施の形態において、例えば、図7、図8に示したように、円柱形状の電池31の代わりに、扁平形状の電池35が用いられ、かつ、柱形状の埋め込み部材33の代わりに、扁平形状の埋め込み部材36が用いられてもよい。図7は、電池パック1に収容される電池35および埋め込み部材36の一変形例を表したものである。図8は、図7の電池35および埋め込み部材36を重ね合わせた様子を表したものである。
(Modification A)
In the above embodiment, the battery 31 has a cylindrical shape, the embedded member 33 has an elongated columnar shape like the battery 31, and the cross section in the direction perpendicular to the extending direction of the embedded member 33 has a substantially diamond shape. It was. However, in the above embodiment, for example, as shown in FIGS. , a flat-shaped embedding member 36 may be used. FIG. 7 shows a modified example of the battery 35 and the embedded member 36 accommodated in the battery pack 1. As shown in FIG. FIG. 8 shows how the battery 35 and the embedding member 36 of FIG. 7 are overlaid.
 複数の電池35は、例えば、所定のリード板を介して電気的に接続されている。例えば、複数の電池35のうちの一部である複数の電池35が互いに直列に接続されており、さらに、互いに直列に接続された複数の電池35を直列ユニットと称したとき、複数の直列ユニットが互いに並列に接続されている。なお、複数の電池35の接続態様は、上記に限定されるものではない。 The plurality of batteries 35 are electrically connected, for example, via predetermined lead plates. For example, when a plurality of batteries 35 that are part of the plurality of batteries 35 are connected in series with each other, and the plurality of batteries 35 connected in series with each other are referred to as a series unit, the plurality of series units are connected in parallel with each other. In addition, the connection mode of the plurality of batteries 35 is not limited to the above.
 各電池35は、一次電池または二次電池である。各電池35が二次電池である場合、二次電池の種類は、特に限定されないが、具体的には、リチウムイオンの吸蔵放出を利用して電池容量が得られるリチウムイオン二次電池などである。 Each battery 35 is a primary battery or a secondary battery. When each battery 35 is a secondary battery, the type of the secondary battery is not particularly limited, but specifically, it is a lithium ion secondary battery in which battery capacity is obtained by utilizing absorption and release of lithium ions. .
 埋め込み部材36は、2枚の電池35の間に配置されており、2枚の電池35の表面に接している。埋め込み部材36は、吸熱剤を内包しており、電池35が異常発熱を起こしたときに吸熱剤が外部に漏出するように構成されている。埋め込み部材36は、例えば、埋め込み部材33と同様、吸熱剤を内包しており、電池31が異常発熱を起こしたときに吸熱剤が電池31の異常発熱に伴って段階的に外部に漏出するように構成されている。埋め込み部材36は、例えば、複数のマイクロカプセル33bと、複数のマイクロカプセル33bを覆うフィルム33a(外装材)とを有している。 The embedding member 36 is arranged between the two batteries 35 and is in contact with the surfaces of the two batteries 35 . The embedding member 36 contains a heat-absorbing agent, and is configured such that the heat-absorbing agent leaks to the outside when the battery 35 generates abnormal heat. Like the embedded member 33, the embedded member 36 contains a heat-absorbing agent. is configured to The embedding member 36 has, for example, a plurality of microcapsules 33b and a film 33a (exterior material) covering the plurality of microcapsules 33b.
 このように、円柱形状の電池31の代わりに扁平形状の電池35を用い、かつ、柱形状の埋め込み部材33の代わりに扁平形状の埋め込み部材36を用いた場合であっても、上記の実施の形態と同様、発熱箇所を効率良く冷却することができる。 Thus, even when the flat-shaped battery 35 is used instead of the cylindrical battery 31 and the flat-shaped embedding member 36 is used instead of the pillar-shaped embedding member 33, the above-described implementation is possible. As with the shape, heat-generating locations can be efficiently cooled.
(変形例B)
 上記実施の形態およびその変形例では、埋め込み部材33,36には、複数のマイクロカプセル33bが設けられていた。しかし、上記実施の形態およびその変形例において、複数のマイクロカプセル33bの代わりに、吸熱剤を内包しており、電池31,35が異常発熱を起こしたときに吸熱剤33b1が電池31の異常発熱に伴って段階的に外部に漏出するように構成されていてもよい。このようにした場合であっても、上記実施の形態およびその変形例と同様、発熱箇所を効率良く冷却することができる。
(Modification B)
In the above embodiment and its modification, the embedding members 33 and 36 are provided with a plurality of microcapsules 33b. However, in the above embodiment and its modification, instead of the plurality of microcapsules 33b, a heat-absorbing agent is included, and when the batteries 31 and 35 generate abnormal heat, the heat-absorbing agent 33b1 causes the battery 31 to generate abnormal heat. It may be configured to gradually leak to the outside along with. Even in this case, it is possible to efficiently cool the heat-generating portion similarly to the above-described embodiment and its modification.
<3.電池パックの用途>
 電池パック1の用途は、その電池パック1を駆動用の電源および電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。
<3. Application of battery pack>
The battery pack 1 is used in machines, devices, instruments, devices, and systems (aggregates of multiple devices, etc.) that can use the battery pack 1 as a power source for driving and a power storage source for power storage. If there is, it is not particularly limited.
 電源として用いられる電池パック1は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。電池パックを補助電源として用いる場合には、主電源は電池パックに限られない。 The battery pack 1 used as a power source may be a main power source or an auxiliary power source. A main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. The auxiliary power supply may be, for example, a power supply that is used in place of the main power supply, or may be a power supply that is switched from the main power supply as needed. When using a battery pack as an auxiliary power supply, the main power supply is not limited to the battery pack.
 電池パック1の用途に関する一例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型のパーソナルコンピュータ、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、電池パックの用途は、上記以外の用途でもよい。 An example of the usage of the battery pack 1 is as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook personal computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable household appliance such as an electric shaver. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in preparation for emergencies. Of course, the battery pack may be used for purposes other than those described above.
 以上、一実施形態を挙げながら本技術を説明したが、本技術は上記した一実施形態において説明した態様に限定されず、その本技術に関しては種々の変形が可能である。 Although the present technology has been described above while citing one embodiment, the present technology is not limited to the aspect described in the above-described one embodiment, and various modifications of the present technology are possible.
 具体的には、二次電池の電池構造が円筒型である場合に関して説明したが、本技術の電池パックに適用される二次電池の電池構造は、特に限定されない。具体的には、二次電池の電池構造は、ラミネートフィルム型、角型およびコイン型などでもよい。 Specifically, the case where the battery structure of the secondary battery is cylindrical has been described, but the battery structure of the secondary battery applied to the battery pack of the present technology is not particularly limited. Specifically, the battery structure of the secondary battery may be a laminate film type, a square type, a coin type, or the like.
 また、二次電池が巻回構造を有する場合に関して説明したが、その二次電池の構造は、特に限定されない。具体的には、二次電池は、積層構造などの他の構造を有していてもよい。 Also, although the case where the secondary battery has a wound structure has been described, the structure of the secondary battery is not particularly limited. Specifically, the secondary battery may have other structures such as a laminated structure.
 また、二次電池の電極反応物質としてリチウムを用いたが、その電極反応物質の種類は、特に限定されない。具体的には、電極反応物質は、ナトリウムおよびカリウムどの長周期型周期表における他の1族の元素でもよいし、マグネシウムおよびカルシウムなどの長周期型周期表における2族の元素でもよいし、アルミニウムなどの他の軽金属でもよい。 Also, although lithium was used as the electrode reactant of the secondary battery, the type of the electrode reactant is not particularly limited. Specifically, the electrode reactant may be another group 1 element in the long period periodic table such as sodium and potassium, a group 2 element in the long period periodic table such as magnesium and calcium, or aluminum Other light metals such as
 本明細書中に記載された効果はあくまで例示であるため、本技術の効果は本明細書中に記載された効果に限定されない。よって、本技術に関して他の効果が得られてもよい。 Since the effects described in this specification are merely examples, the effects of the present technology are not limited to the effects described in this specification. Accordingly, other advantages may be obtained with respect to the present technology.
 なお、本技術は、以下のような構成を取ることもできる。
<1>
 複数の電池と、
 前記複数の電池の間隙に埋め込まれる埋め込み部材と
 を備え、
 前記埋め込み部材は、複数のカプセルを内包し、
 各前記カプセルは、第1の吸熱剤と、前記第1の吸熱剤を内包する壁材とを有し、
 前記壁材は、樹脂で形成されている
 電池パック。
<2>
 各前記カプセルは、前記第1の吸熱剤が前記壁材によって密閉された構造となっている
 請求項1に記載の電池パック。
<3>
 前記壁材は、ポリアミド、ポリスチレン、ポリエチレンおよびポリプロピレンの少なくとも1つの材料で形成されている
 <1>または<2>に記載の電池パック。
<4>
 各前記カプセルの粒径は、0.1μm以上、100μm以下となっている
 <1>から<3>のいずれか1つに記載の電池パック。
<5>
 前記複数のカプセルは、粒径分布に少なくとも2つのピークを持つ複数種類のカプセルを含む
 <4>に記載の電池パック。
<6>
 前記複数のカプセルは、前記壁材の耐熱温度が互いに異なる複数種類のカプセルを含む
 <1>から<5>のいずれか1つに記載の電池パック。
<7>
 前記第1の吸熱剤は、水を含む液体、または、ハイドロゲルを含む
 <1>から<6>のいずれか1つに記載の電池パック。
<8>
 前記第1の吸熱剤は、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリヒドロキシエチルメタクリレートまたはシリコーンハイドロゲルを含む
 <1>から<6>のいずれか1つに記載の電池パック。
<9>
 前記埋め込み部材は、前記複数のカプセルを内包する外装材を更に有する
 <1>から<8>のいずれか1つに記載の電池パック。
<10>
 前記外装材の耐熱温度は、前記壁材の耐熱温度よりも低くなっている
 <9>に記載の電池パック。
<11>
 前記外装材は、ポリエチレン、ポリスチレン、ポリプロピレンおよびポリカーボネートの少なくとも1つの材料で形成され、かつ、耐熱温度が前記壁材の耐熱温度よりも低い材料で形成されている
 <10>に記載の電池パック。
<12>
 前記埋め込み部材は、前記複数のカプセルと前記外装材との間隙を埋め込む第2の吸熱剤を有する
 <9>から<11>のいずれか1つに記載の電池パック。
<13>
 前記第2の吸熱剤は、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリヒドロキシエチルメタクリレートまたはシリコーンハイドロゲルを含む
 <12>に記載の電池パック。
<14>
 前記埋め込み部材は、前記複数のカプセルを内包する外装材を更に有し、
 前記第1の吸熱剤は、酸性の液体を含み、
 前記第2の吸熱剤は、粉末状の重曹を含む
 <1>から<6>のいずれか1つに記載の電池パック。
<15>
 前記複数の電池を所定の間隙を介して階層状に支持する電池ホルダを更に備え、
 前記埋め込み部材は、前記電池の周面に接している
 <1>から<14>のいずれか1つに記載の電池パック。
<16>
 当該電池パックは、前記複数の電池として、4つ以上の円筒型電池を有し、
 前記埋め込み部材は、互いに隣接する4つの前記円筒型電池の周面に接している
 <15>に記載の電池パック。
<17>
 前記埋め込み部材は、互いに隣接する4つの前記円筒型電池の間隙の形状に対応した形状となっている
 <16>に記載の電池パック。
<18>
 複数の電池と、
 前記複数の電池の間隙に埋め込まれる埋め込み部材と
 を備え、
 前記埋め込み部材は、吸熱剤を内包しており、前記電池が異常発熱を起こしたときに前記吸熱剤が前記電池の異常発熱に伴って段階的に外部に漏出するように構成されている
 電池パック。
In addition, this technique can also take the following structures.
<1>
a plurality of batteries;
and an embedding member embedded in the gaps between the plurality of batteries,
The embedding member encloses a plurality of capsules,
each of the capsules has a first endothermic agent and a wall material enclosing the first endothermic agent;
In the battery pack, the wall material is made of resin.
<2>
The battery pack according to claim 1, wherein each capsule has a structure in which the first endothermic agent is sealed by the wall material.
<3>
The battery pack according to <1> or <2>, wherein the wall material is made of at least one material selected from polyamide, polystyrene, polyethylene, and polypropylene.
<4>
The battery pack according to any one of <1> to <3>, wherein each capsule has a particle size of 0.1 μm or more and 100 μm or less.
<5>
The battery pack according to <4>, wherein the plurality of capsules include a plurality of types of capsules having at least two peaks in particle size distribution.
<6>
The battery pack according to any one of <1> to <5>, wherein the plurality of capsules include a plurality of types of capsules in which the wall materials have different heat resistance temperatures.
<7>
The battery pack according to any one of <1> to <6>, wherein the first endothermic agent includes liquid containing water or hydrogel.
<8>
The battery pack according to any one of <1> to <6>, wherein the first endothermic agent includes sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
<9>
The battery pack according to any one of <1> to <8>, wherein the embedding member further includes an exterior material enclosing the plurality of capsules.
<10>
The battery pack according to <9>, wherein the heat-resistant temperature of the exterior material is lower than the heat-resistant temperature of the wall material.
<11>
The battery pack according to <10>, wherein the exterior material is made of at least one material selected from polyethylene, polystyrene, polypropylene, and polycarbonate, and is made of a material having a heat resistance temperature lower than that of the wall material.
<12>
The battery pack according to any one of <9> to <11>, wherein the embedding member includes a second endothermic agent that fills a gap between the plurality of capsules and the exterior material.
<13>
The battery pack according to <12>, wherein the second endothermic agent includes sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
<14>
The embedding member further has an exterior material enclosing the plurality of capsules,
The first endothermic agent contains an acidic liquid,
The battery pack according to any one of <1> to <6>, wherein the second endothermic agent contains powdered sodium bicarbonate.
<15>
further comprising a battery holder that supports the plurality of batteries in a layered manner with predetermined gaps therebetween;
The battery pack according to any one of <1> to <14>, wherein the embedded member is in contact with the peripheral surface of the battery.
<16>
The battery pack has four or more cylindrical batteries as the plurality of batteries,
The battery pack according to <15>, wherein the embedded member is in contact with the peripheral surfaces of the four cylindrical batteries that are adjacent to each other.
<17>
The battery pack according to <16>, wherein the embedded member has a shape corresponding to a shape of a gap between the four cylindrical batteries adjacent to each other.
<18>
a plurality of batteries;
and an embedding member to be embedded in the gaps between the plurality of batteries,
The embedded member contains a heat-absorbing agent, and is configured such that when the battery generates abnormal heat, the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery. .

Claims (18)

  1.  複数の電池と、
     前記複数の電池の間隙に埋め込まれる埋め込み部材と
     を備え、
     前記埋め込み部材は、複数のカプセルを内包し、
     各前記カプセルは、第1の吸熱剤と、前記第1の吸熱剤を内包する壁材とを有し、
     前記壁材は、樹脂で形成されている
     電池パック。
    a plurality of batteries;
    and an embedding member embedded in the gaps between the plurality of batteries,
    The embedding member encloses a plurality of capsules,
    each of the capsules has a first endothermic agent and a wall material enclosing the first endothermic agent;
    In the battery pack, the wall material is made of resin.
  2.  各前記カプセルは、前記第1の吸熱剤が前記壁材によって密閉された構造となっている
     請求項1に記載の電池パック。
    The battery pack according to claim 1, wherein each capsule has a structure in which the first endothermic agent is sealed by the wall material.
  3.  前記壁材は、ポリアミド、ポリスチレン、ポリエチレンおよびポリプロピレンの少なくとも1つの材料で形成されている
     請求項1または請求項2に記載の電池パック。
    3. The battery pack according to claim 1, wherein the wall material is made of at least one material selected from polyamide, polystyrene, polyethylene, and polypropylene.
  4.  各前記カプセルの粒径は、0.1μm以上、100μm以下となっている
     請求項1から請求項3のいずれか一項に記載の電池パック。
    The battery pack according to any one of claims 1 to 3, wherein each capsule has a particle size of 0.1 µm or more and 100 µm or less.
  5.  前記複数のカプセルは、粒径分布に少なくとも2つのピークを持つ複数種類のカプセルを含む
     請求項4に記載の電池パック。
    The battery pack according to claim 4, wherein the plurality of capsules include a plurality of types of capsules having at least two peaks in particle size distribution.
  6.  前記複数のカプセルは、前記壁材の耐熱温度が互いに異なる複数種類のカプセルを含む
     請求項1から請求項5のいずれか一項に記載の電池パック。
    The battery pack according to any one of claims 1 to 5, wherein the plurality of capsules include a plurality of types of capsules in which the wall materials have different heat resistance temperatures.
  7.  前記第1の吸熱剤は、水を含む液体、または、ハイドロゲルを含む
     請求項1から請求項6のいずれか一項に記載の電池パック。
    The battery pack according to any one of claims 1 to 6, wherein the first endothermic agent includes liquid containing water or hydrogel.
  8.  前記第1の吸熱剤は、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリヒドロキシエチルメタクリレートまたはシリコーンハイドロゲルを含む
     請求項1から請求項6のいずれか一項に記載の電池パック。
    The battery pack according to any one of claims 1 to 6, wherein the first endothermic agent includes sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
  9.  前記埋め込み部材は、前記複数のカプセルを内包する外装材を更に有する
     請求項1から請求項8のいずれか一項に記載の電池パック。
    The battery pack according to any one of claims 1 to 8, wherein the embedded member further includes an exterior material that encloses the plurality of capsules.
  10.  前記外装材の耐熱温度は、前記壁材の耐熱温度よりも低くなっている
     請求項9に記載の電池パック。
    The battery pack according to claim 9, wherein the heat-resistant temperature of the exterior material is lower than the heat-resistant temperature of the wall material.
  11.  前記外装材は、ポリエチレン、ポリスチレン、ポリプロピレンおよびポリカーボネートの少なくとも1つの材料で形成され、かつ、耐熱温度が前記壁材の耐熱温度よりも低い材料で形成されている
     請求項10に記載の電池パック。
    11. The battery pack according to claim 10, wherein the exterior material is made of at least one material selected from polyethylene, polystyrene, polypropylene, and polycarbonate, and is made of a material whose heat resistance temperature is lower than that of the wall material.
  12.  前記埋め込み部材は、前記複数のカプセルと前記外装材との間隙を埋め込む第2の吸熱剤を有する
     請求項9から請求項11のいずれか一項に記載の電池パック。
    The battery pack according to any one of claims 9 to 11, wherein the embedding member has a second heat-absorbing agent that fills gaps between the plurality of capsules and the exterior material.
  13.  前記第2の吸熱剤は、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリヒドロキシエチルメタクリレートまたはシリコーンハイドロゲルを含む
     請求項12に記載の電池パック。
    The battery pack according to claim 12, wherein the second endothermic agent includes sodium polyacrylate, polyvinyl alcohol, polyhydroxyethyl methacrylate, or silicone hydrogel.
  14.  前記埋め込み部材は、前記複数のカプセルを内包する外装材を更に有し、
     前記第1の吸熱剤は、酸性の液体を含み、
     前記第2の吸熱剤は、粉末状の重曹を含む
     請求項1から請求項6のいずれか一項に記載の電池パック。
    The embedding member further has an exterior material enclosing the plurality of capsules,
    The first endothermic agent contains an acidic liquid,
    The battery pack according to any one of claims 1 to 6, wherein the second endothermic agent contains powdered sodium bicarbonate.
  15.  前記複数の電池を所定の間隙を介して階層状に支持する電池ホルダを更に備え、
     前記埋め込み部材は、前記電池の周面に接している
     請求項1から請求項14のいずれか一項に記載の電池パック。
    further comprising a battery holder that supports the plurality of batteries in a layered manner with predetermined gaps therebetween;
    The battery pack according to any one of claims 1 to 14, wherein the embedded member is in contact with the peripheral surface of the battery.
  16.  当該電池パックは、前記複数の電池として、4つ以上の円筒型電池を有し、
     前記埋め込み部材は、互いに隣接する4つの前記円筒型電池の周面に接している
     請求項15に記載の電池パック。
    The battery pack has four or more cylindrical batteries as the plurality of batteries,
    The battery pack according to claim 15, wherein the embedded member is in contact with the peripheral surfaces of the four cylindrical batteries that are adjacent to each other.
  17.  前記埋め込み部材は、互いに隣接する4つの前記円筒型電池の間隙の形状に対応した形状となっている
     請求項16に記載の電池パック。
    17. The battery pack according to claim 16, wherein the embedded member has a shape corresponding to the shape of the gap between the four cylindrical batteries adjacent to each other.
  18.  複数の電池と、
     前記複数の電池の間隙に埋め込まれる埋め込み部材と
     を備え、
     前記埋め込み部材は、吸熱剤を内包しており、前記電池が異常発熱を起こしたときに前記吸熱剤が前記電池の異常発熱に伴って段階的に外部に漏出するように構成されている
     電池パック。
    a plurality of batteries;
    and an embedding member embedded in the gaps between the plurality of batteries,
    The embedded member contains a heat-absorbing agent, and is configured such that when the battery generates abnormal heat, the heat-absorbing agent gradually leaks to the outside along with the abnormal heat generation of the battery. .
PCT/JP2022/046907 2022-02-22 2022-12-20 Battery pack WO2023162438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025882 2022-02-22
JP2022025882 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162438A1 true WO2023162438A1 (en) 2023-08-31

Family

ID=87765361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046907 WO2023162438A1 (en) 2022-02-22 2022-12-20 Battery pack

Country Status (1)

Country Link
WO (1) WO2023162438A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073406A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery pack
WO2011064956A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Battery module
JP2017534143A (en) * 2014-11-17 2017-11-16 エルジー・ケム・リミテッド Secondary battery cooling plate and secondary battery module including the same
JP2020043318A (en) * 2018-08-03 2020-03-19 イビデン株式会社 Thermal storage composition for electric component, semiconductor device, and wiring substrate
WO2020179196A1 (en) * 2019-03-01 2020-09-10 株式会社日立製作所 Battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073406A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery pack
WO2011064956A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Battery module
JP2017534143A (en) * 2014-11-17 2017-11-16 エルジー・ケム・リミテッド Secondary battery cooling plate and secondary battery module including the same
JP2020043318A (en) * 2018-08-03 2020-03-19 イビデン株式会社 Thermal storage composition for electric component, semiconductor device, and wiring substrate
WO2020179196A1 (en) * 2019-03-01 2020-09-10 株式会社日立製作所 Battery pack

Similar Documents

Publication Publication Date Title
JP6560437B2 (en) Battery module and battery pack including the same
JP7062196B2 (en) Battery module with heat shrinkable tube
US8592067B2 (en) Battery pack having a heat insulating layer
CN100440582C (en) Battery pack
JP7047208B2 (en) Battery module with heat shrinkable tube
JP6663023B2 (en) Heat radiating material, manufacturing method thereof, and battery module including the same
JP4730705B2 (en) Battery pack
US20190067760A1 (en) Battery module, battery pack and vehicle having same
WO2013157560A1 (en) Secondary battery, secondary battery module having built-in secondary battery, and assembled battery system having built-in secondary battery module
JP6965931B2 (en) Battery packs, power tools and electronics
JP2022510320A (en) Battery module and battery pack containing it
JP2004228047A (en) Battery pack
KR101783916B1 (en) Battery Module and a Method of making the same
JP2022524162A (en) Battery module
WO2023162438A1 (en) Battery pack
JP2023537015A (en) Battery modules and battery packs containing the same
JP2023535774A (en) Battery module and battery pack containing same
JP2021510917A (en) A battery module, a battery pack containing the battery module, and an automobile containing the battery pack.
WO2023149108A1 (en) Battery pack
CN112534627A (en) Battery support, battery pack, electronic device and electric vehicle
CN215451594U (en) Battery module and two-wheel vehicle
WO2023176124A1 (en) Battery pack
KR20170095021A (en) Battery module and battery pack including the same
KR20220015252A (en) Pouch-type Battery Cell Comprising Elastic Member and Battery Pack Comprising the Same
JP6863455B2 (en) Power storage devices, battery packs, electric vehicles, power storage systems, power tools and electronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928955

Country of ref document: EP

Kind code of ref document: A1