JP2020139269A - Bearing wall and wall material - Google Patents

Bearing wall and wall material Download PDF

Info

Publication number
JP2020139269A
JP2020139269A JP2019033169A JP2019033169A JP2020139269A JP 2020139269 A JP2020139269 A JP 2020139269A JP 2019033169 A JP2019033169 A JP 2019033169A JP 2019033169 A JP2019033169 A JP 2019033169A JP 2020139269 A JP2020139269 A JP 2020139269A
Authority
JP
Japan
Prior art keywords
wall
opening
bearing wall
bearing
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033169A
Other languages
Japanese (ja)
Other versions
JP7196685B2 (en
Inventor
河合 良道
Yoshimichi Kawai
良道 河合
藤内 繁明
Shigeaki Tonai
繁明 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019033169A priority Critical patent/JP7196685B2/en
Publication of JP2020139269A publication Critical patent/JP2020139269A/en
Application granted granted Critical
Publication of JP7196685B2 publication Critical patent/JP7196685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a bearing wall capable of reducing the weight while ensuring the bearing capacity from the beginning to the end of an earthquake.SOLUTION: The bearing wall includes: a pair of vertical materials each extending in the vertical direction; and wall materials each joined to the pair of vertical materials respectively including a plurality of openings each having an annular rib on the edge arranged in a row with an interval in the vertical direction. The shape of the opening is a polygonal shape having an even number of corners. The wall materials includes the plurality of openings which are formed symmetrically with respect to a straight line extending in the vertical direction so that the vertices of the opposite corners of the opening are located on the straight line.SELECTED DRAWING: Figure 3

Description

本発明は、耐力壁及び壁面材に関する。 The present invention relates to bearing walls and wall materials.

特許文献1には、物の上下の水平部材に接合される一対の縦材と、一対の縦材に接合され、複数のバーリング孔が上下に1列に形成された壁面材と、を備える耐力壁が開示されている。この耐力壁では、壁面材に形成されるバーリング孔の形状が円形とされている。 Patent Document 1 includes a pair of vertical members joined to horizontal members above and below an object, and a wall material joined to a pair of vertical members and having a plurality of burring holes formed in a row vertically. The wall is disclosed. In this bearing wall, the shape of the burring hole formed in the wall surface material is circular.

特許5805893号公報Japanese Patent No. 5805893

ところで、耐力壁の壁面材には、配管や配線のために複数の貫通孔が形成されていることがある。この貫通孔は、壁面材の耐力等を考慮して円形とされることが多い。しかし、市場では、円形の貫通孔を形成した耐力壁と比べて、地震の初期から終局までの耐力が略同等であり、さらに、軽量化も図れる耐力壁の開発が望まれている。 By the way, a plurality of through holes may be formed in the wall material of the bearing wall for piping and wiring. The through hole is often circular in consideration of the proof stress of the wall surface material and the like. However, in the market, it is desired to develop a bearing wall that has substantially the same bearing capacity from the beginning to the end of an earthquake and can be made lighter than a bearing wall having a circular through hole.

本発明は上記事実を考慮し、地震の初期から終局までの耐力を確保しつつ、軽量化を図れる耐力壁及び壁面材を提供することを課題とする。 In consideration of the above facts, it is an object of the present invention to provide a bearing wall and a wall material that can reduce the weight while ensuring the bearing capacity from the beginning to the end of an earthquake.

本発明の第1態様の耐力壁は、上下方向に延びる一対の縦材と、一対の前記縦材にそれぞれ接合され、縁部に環状リブが設けられた開口部が前記上下方向に間隔をあけて1列形成された壁面材と、を備え、前記開口部の形状は、偶数個の角部を有する多角形状であり、前記壁面材には、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置するように前記開口部が形成されている。 The bearing wall of the first aspect of the present invention is joined to a pair of vertical members extending in the vertical direction and a pair of the vertical members, respectively, and openings provided with annular ribs at the edges are spaced apart in the vertical direction. The wall material is provided with a single row of wall materials, and the shape of the opening is a polygonal shape having an even number of corners, and the wall material is symmetrical with respect to a straight line extending in the vertical direction. Moreover, the opening is formed so that the vertices of the corners facing each other of the opening are located on the straight line.

第1態様の耐力壁では、壁面材に形成された開口部の形状を偶数個の角部を有する多角形状としているため、多角形状の開口部における内接円の大きさを円形の開口部の大きさ以上とすることで、円形の開口部よりも壁面材に対する開口面積を大きくすることができる。これにより、耐力壁の軽量化を図ることができる。
また、上記耐力壁では、多角形状の開口部を上下方向に延びる直線に対して左右対称で且つ当該直線上に対向する角部の頂点同士が位置するように壁面材に形成している。このため、上記耐力壁では、地震の初期から終局までの耐力を、円形の開口部が形成された壁面材を有する耐力壁と略同程度に確保することができる。
In the bearing wall of the first aspect, since the shape of the opening formed in the wall surface material is a polygonal shape having an even number of corners, the size of the inscribed circle in the polygonal opening is set to that of the circular opening. By making the size larger than the size, the opening area for the wall surface material can be made larger than that of the circular opening. As a result, the weight of the bearing wall can be reduced.
Further, in the bearing wall, the polygonal opening is formed on the wall surface material so as to be symmetrical with respect to a straight line extending in the vertical direction and the vertices of the corner portions facing each other are located on the straight line. Therefore, the bearing wall can secure the bearing capacity from the initial stage to the final stage of the earthquake to substantially the same level as the bearing wall having the wall surface material having the circular opening formed therein.

本発明の第2態様の耐力壁は、第1態様の耐力壁において、隣接する前記開口部の大きさが同じである。 The bearing wall of the second aspect of the present invention has the same size of the adjacent openings in the bearing wall of the first aspect.

第2態様の耐力壁では、隣接する開口部の大きさを同じ大きさにしていることから、例えば、隣接する開口部の大きさが異なる構成と比べて、開口部毎に作用する応力が一定となるため、地震の初期から終局までの耐力を確保しやすい。また、壁面材の製造も容易になる。 In the bearing wall of the second aspect, since the sizes of the adjacent openings are the same, for example, the stress acting on each opening is constant as compared with the configuration in which the sizes of the adjacent openings are different. Therefore, it is easy to secure the bearing capacity from the beginning to the end of the earthquake. It also facilitates the manufacture of wall materials.

本発明の第3態様の耐力壁は、第1態様又は第2態様の耐力壁において、前記開口部は、角部の頂点を前記直線上に配置した正方形状である。 The bearing wall of the third aspect of the present invention is the bearing wall of the first or second aspect, and the opening is a square shape in which the vertices of the corners are arranged on the straight line.

第3態様の耐力壁では、開口部の形状を上下方向に延びる直線上に角部の頂点を配置した正方形状としていることから、内接円の大きさが同一の正多角形状の中で最も開口面積を大きくすることができるため、軽量化をさらに図ることができる。 In the bearing wall of the third aspect, since the shape of the opening is a square shape in which the vertices of the corners are arranged on a straight line extending in the vertical direction, the size of the inscribed circle is the most among the regular polygonal shapes having the same size. Since the opening area can be increased, the weight can be further reduced.

本発明の第4態様の耐力壁は、第1態様〜第3態様のいずれか一態様において、前記上下方向に隣接する前記開口部の中心間距離が、一対の前記縦材と前記壁面材との接合点間の水平距離よりも短い。 In the bearing wall of the fourth aspect of the present invention, in any one of the first to third aspects, the distance between the centers of the openings adjacent to each other in the vertical direction is the pair of the vertical member and the wall surface member. Shorter than the horizontal distance between the junctions of.

第4態様の耐力壁では、壁面材において、上下方向に隣接する開口部の中心間距離を一対の縦材と壁面材との接合点間の水平距離よりも短くしている。このため、耐力壁に地震による水平荷重が耐力壁に伝達された際に、壁面材では、一方の縦材と壁面材との接合部と開口部との水平方向の中間部、及び、他方の縦材と壁面材との接合部と開口部との水平方向の中間部におけるせん断応力(ミーゼス応力)値が上下方向に隣接する開口部間の上下方向の中間部のせん断応力値よりも低くなる。これにより、一対の縦材に生じる水平方向へのせん断応力が低減される。その結果、壁面材において上下方向に隣接する開口部間の上下方向の中間部が変形する前に、壁面材と縦材との接合部が変形することが抑制され、地震エネルギーを安定して吸収することが可能となる。 In the bearing wall of the fourth aspect, in the wall surface material, the distance between the centers of the openings adjacent in the vertical direction is shorter than the horizontal distance between the joint points between the pair of vertical members and the wall surface material. Therefore, when the horizontal load due to the earthquake is transmitted to the bearing wall due to the earthquake, in the wall material, the joint portion between one vertical member and the wall material and the horizontal intermediate portion between the opening and the other The shear stress (Mieses stress) value in the horizontal intermediate part between the joint between the vertical member and the wall surface material and the opening is lower than the shear stress value in the vertical intermediate part between the vertically adjacent openings. .. As a result, the horizontal shear stress generated in the pair of vertical members is reduced. As a result, deformation of the joint between the wall surface material and the vertical material is suppressed before the vertical intermediate portion between the vertically adjacent openings in the wall surface material is deformed, and seismic energy is stably absorbed. It becomes possible to do.

本発明の第5態様の壁面材は、上下方向に延びる一対の縦材にそれぞれ接合される壁面材であって、前記上下方向に間隔をあけて形成され、偶数個の角部を有する多角形状の開口部と、前記開口部の縁部に設けられた環状リブと、を備え、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置している。 The wall surface material of the fifth aspect of the present invention is a wall surface material that is joined to a pair of vertical members extending in the vertical direction, and is formed at intervals in the vertical direction and has a polygonal shape having an even number of corners. The apex of the corner portion of the opening and the annular rib provided at the edge of the opening, which is symmetrical with respect to the straight line extending in the vertical direction and faces the opening on the straight line. They are located together.

第5態様の壁面材では、開口部の形状を偶数個の角部を有する多角形状としているため、多角形状の開口部における内接円の大きさを円形の開口部の大きさ以上とすることで、円形の開口部よりも壁面材に対する開口面積を大きくすることができる。これにより、壁面材の軽量化を図ることができる。
また、上記壁面材では、多角形状の開口部を上下方向に延びる直線に対して左右対称で且つ当該直線上に対向する角部の頂点同士が位置するように形成している。このため、上記壁面材では、地震の初期から終局までの耐力を、円形の開口部が形成された壁面材と略同程度に確保することができる。
In the wall surface material of the fifth aspect, since the shape of the opening is a polygonal shape having an even number of corners, the size of the inscribed circle in the polygonal opening should be equal to or larger than the size of the circular opening. Therefore, the opening area for the wall surface material can be made larger than that of the circular opening. As a result, the weight of the wall surface material can be reduced.
Further, in the wall surface material, the polygonal opening is formed so as to be symmetrical with respect to a straight line extending in the vertical direction and the vertices of the corner portions facing the straight line are located. Therefore, the wall material can secure the yield strength from the initial stage to the final stage of the earthquake to substantially the same level as the wall material having a circular opening.

本発明によれば、地震の初期から終局までの耐力を確保しつつ、軽量化を図れる耐力壁及び壁面材を提供することができる。 According to the present invention, it is possible to provide a bearing wall and a wall material that can reduce the weight while ensuring the bearing capacity from the initial stage to the final stage of an earthquake.

本発明の一実施形態の耐力壁の正面図である。It is a front view of the bearing wall of one Embodiment of this invention. 図1に示される耐力壁の枠材の正面図である。It is a front view of the frame material of the bearing wall shown in FIG. 図1の矢印3Xで指し示す部分を拡大した拡大図である。It is an enlarged view of the part pointed out by the arrow 3X of FIG. 地震の終局時において図1に示される耐力壁の各部位に作用する力を矢印で示す図3に対応する部分の拡大図である。It is an enlarged view of the part corresponding to FIG. 3 which shows the force acting on each part of the bearing wall shown in FIG. 1 at the end of an earthquake by arrow. 図1の5X−5X線に沿って切断した耐力壁の断面図である。It is sectional drawing of the bearing wall cut along the 5X-5X line of FIG. 図1の6X−6X線に沿って切断した耐力壁の断面図である。It is sectional drawing of the bearing wall cut along the line 6X-6X of FIG. 本発明のその他の実施形態の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of another embodiment of this invention. 本発明のその他の実施形態の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of another embodiment of this invention. 比較例1の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of Comparative Example 1. 比較例2の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of Comparative Example 2. 比較例3の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of Comparative Example 3. 比較例4の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of Comparative Example 4. 比較例5の耐力壁の開口部周辺の拡大図である。It is an enlarged view around the opening of the bearing wall of Comparative Example 5. 耐力壁の層間変化角に対する水平荷重の変化の特性を示すグラフである。It is a graph which shows the characteristic of the change of the horizontal load with respect to the interlayer change angle of a bearing wall.

図1〜図6を用いて本発明の一実施形態に係る耐力壁及び壁面材について説明する。なお、図中に示された矢印Uは、本実施形態の耐力壁が適用される建物の上方向を示している。また、図中に示された矢印Wは、耐力壁の幅方向を示している。なお、本実施形態では、耐力壁の幅方向と建物の水平方向が一致している。 The bearing wall and the wall surface material according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. The arrow U shown in the figure indicates the upward direction of the building to which the bearing wall of the present embodiment is applied. Further, the arrow W shown in the figure indicates the width direction of the bearing wall. In this embodiment, the width direction of the bearing wall and the horizontal direction of the building coincide with each other.

図1に示されるように、本実施形態の耐力壁20は、枠材22と、壁面材50と、を備えている。 As shown in FIG. 1, the bearing wall 20 of the present embodiment includes a frame member 22 and a wall surface member 50.

図1及び図2に示されるように、枠材22は、矩形状に形成されている。この枠材22は、水平方向に間隔をあけて配置され、上下方向に延びる縦枠材24、26、28と、縦枠材24、26、28の各々の上端を水平方向につなぐ横枠材30と、縦枠材24、26、28の各々の下端を水平方向につなぐ横枠材32と、備えている。 As shown in FIGS. 1 and 2, the frame member 22 is formed in a rectangular shape. The frame members 22 are arranged at intervals in the horizontal direction, and the vertical frame members 24, 26, 28 extending in the vertical direction and the horizontal frame members 24, 26, 28 are connected to the upper ends of the vertical frame members 24, 26, 28 in the horizontal direction. 30 and a horizontal frame member 32 that connects the lower ends of the vertical frame members 24, 26, and 28 in the horizontal direction are provided.

なお、本実施形態の縦枠材24、26、28は、本発明における縦材の一例である。 The vertical frame members 24, 26, and 28 of the present embodiment are examples of the vertical frame members in the present invention.

(縦枠材24)
図2に示されるように、縦枠材24は、枠材22の幅方向(図中矢印W方向)一方側(図2及び図5では左側)の部分を形成している。なお、本実施形態では、枠材22の幅方向と耐力壁20の幅方向は一致している。
(Vertical frame material 24)
As shown in FIG. 2, the vertical frame member 24 forms a portion of the frame member 22 on one side (left side in FIGS. 2 and 5) in the width direction (arrow W direction in the drawing). In this embodiment, the width direction of the frame member 22 and the width direction of the bearing wall 20 are the same.

この縦枠材24は、図5及び図6に示されるように、幅方向外側の外枠部分を形成する角形鋼管34と、幅方向内側の内枠部分を形成し、縦枠材26側(言い換えると、枠材22の幅方向他方側(図2及び図5では右側))が開放された断面がC字形状の形鋼36と、を備えている。 As shown in FIGS. 5 and 6, the vertical frame member 24 forms a square steel pipe 34 forming an outer frame portion on the outer side in the width direction and an inner frame portion on the inner side in the width direction, and forms the vertical frame member 26 side ( In other words, the frame member 22 is provided with a C-shaped shaped steel 36 having an open cross section on the other side in the width direction (right side in FIGS. 2 and 5).

角形鋼管34は、断面が正方形状とされており、枠材22の厚み方向(図中矢印T方向)に2つ並べて配置されている。これらの角形鋼管34は、溶接により接合されている。 The square steel pipe 34 has a square cross section, and two square steel pipes 34 are arranged side by side in the thickness direction of the frame member 22 (in the direction of arrow T in the drawing). These square steel pipes 34 are joined by welding.

形鋼36は、リップ溝形鋼であり、ウェブ部36Aの外面が角形鋼管34の枠内側(枠材22の内側)の面に接合されている。具体的には、形鋼36は、2つの角形鋼管34にドリルねじ38を用いてそれぞれ接合されている。なお、本発明は上記構成に限定されず、例えば、溶接などの他の方法を用いて形鋼36と角形鋼管34を接合してもよい。また、形鋼36の内面には、断面C字状の補強部材40が接合されている。この補強部材40は、溝形鋼であり、ウェブ部40Aの外面及び両フランジ部40Bの外面が形鋼36のウェブ部36Aの内面及び両フランジ部36Bの内面にそれぞれ接合されている。なお、形鋼36と補強部材40の接合方法は、特に限定されない。例えば、溶接で形鋼36と補強部材40を接合してもよい。 The shaped steel 36 is a lip channel steel, and the outer surface of the web portion 36A is joined to the inner surface of the frame (inside the frame member 22) of the square steel pipe 34. Specifically, the shaped steel 36 is joined to two square steel pipes 34 by using a drill screw 38. The present invention is not limited to the above configuration, and the shaped steel 36 and the square steel pipe 34 may be joined by using another method such as welding. Further, a reinforcing member 40 having a C-shaped cross section is joined to the inner surface of the shaped steel 36. The reinforcing member 40 is channel steel, and the outer surface of the web portion 40A and the outer surface of both flange portions 40B are joined to the inner surface of the web portion 36A of the shaped steel 36 and the inner surface of both flange portions 36B, respectively. The method of joining the shaped steel 36 and the reinforcing member 40 is not particularly limited. For example, the shaped steel 36 and the reinforcing member 40 may be joined by welding.

(縦枠材26)
図2に示されるように、縦枠材26は、縦枠材24と縦枠材28の間に配置されており、枠材22の幅方向中央部に位置する部分を形成している。
(Vertical frame material 26)
As shown in FIG. 2, the vertical frame member 26 is arranged between the vertical frame member 24 and the vertical frame member 28, and forms a portion located at the central portion in the width direction of the frame member 22.

この縦枠材26は、図5及び図6に示されるように、縦枠材28側(言い換えると、枠材22の幅方向他方側)が開放された断面がC字形状の形鋼42と、を備えている。 As shown in FIGS. 5 and 6, the vertical frame member 26 has a C-shaped cross section with the vertical frame member 28 side (in other words, the other side in the width direction of the frame member 22) open. , Is equipped.

(縦枠材28)
図2に示されるように、縦枠材28は、枠材22の幅方向他方側(図2及び図5では右側)の部分を形成している。
(Vertical frame material 28)
As shown in FIG. 2, the vertical frame member 28 forms a portion of the frame member 22 on the other side in the width direction (right side in FIGS. 2 and 5).

この縦枠材28は、図5及び図6に示されるように、縦枠材26を挟んで縦枠材24と対称に構成されている。具体的には、縦枠材28は、外枠部分を形成する角形鋼管34と、内枠部分を形成し、縦枠材26側(言い換えると、枠材22の幅方向一方側(図2及び図5では左側))が開放された形鋼36と、形鋼36を補強する補強部材40とを備えている。 As shown in FIGS. 5 and 6, the vertical frame member 28 is configured symmetrically with the vertical frame member 24 with the vertical frame member 26 interposed therebetween. Specifically, the vertical frame member 28 forms the square steel pipe 34 forming the outer frame portion and the inner frame portion, and forms the vertical frame member 26 side (in other words, one side in the width direction of the frame member 22 (FIG. 2 and). In FIG. 5, the left side)) is provided with the open shaped steel 36 and the reinforcing member 40 for reinforcing the shaped steel 36.

図2に示されるように、横枠材30は、断面が矩形状の角形鋼管によって形成されている。この横枠材30には、縦枠材24、26、28の各々の上端がねじやボルト等のファスナー又は溶接等によって接合されている。 As shown in FIG. 2, the horizontal frame member 30 is formed of a square steel pipe having a rectangular cross section. The upper ends of the vertical frame members 24, 26, and 28 are joined to the horizontal frame member 30 by fasteners such as screws and bolts, welding, or the like.

図2に示されるように、横枠材32は、横枠材30と同様に、断面が矩形状の角形鋼管によって形成されている。この横枠材30には、縦枠材24、26、28の各々の下端がねじやボルト等のファスナー又は溶接等によって接合されている。 As shown in FIG. 2, the horizontal frame member 32 is formed of a square steel pipe having a rectangular cross section, similarly to the horizontal frame member 30. The lower ends of the vertical frame members 24, 26, and 28 are joined to the horizontal frame member 30 by fasteners such as screws and bolts, welding, or the like.

図2に示されるように、枠材22は、横枠材30と横枠材32の水平方向の相対変位に対する剛性を補強するための補剛部材44、46を備えている。補剛部材44は、縦枠材24と縦枠材26との間で且つ上下方向の略中央部に配置されている。また、補剛部材44は、一端が縦枠材24にドリルねじ48で接合され、他端が縦枠材26にドリルねじ48で接合されている。一方、補剛部材46は、縦枠材24と縦枠材26との間で且つ上下方向の略中央部に配置されている。また、補剛部材46は、一端が縦枠材26に補剛部材44の他端と共にドリルねじ48で接合され、他端が縦枠材28にドリルねじ48で接合されている。なお、枠材22の剛性が確保される場合には、補剛部材44、46を省略してもよい。 As shown in FIG. 2, the frame member 22 includes stiffening members 44 and 46 for reinforcing the rigidity of the horizontal frame member 30 and the horizontal frame member 32 with respect to the relative displacement in the horizontal direction. The stiffening member 44 is arranged between the vertical frame member 24 and the vertical frame member 26 and at a substantially central portion in the vertical direction. Further, one end of the stiffening member 44 is joined to the vertical frame member 24 with a drill screw 48, and the other end is joined to the vertical frame member 26 with a drill screw 48. On the other hand, the stiffening member 46 is arranged between the vertical frame member 24 and the vertical frame member 26 and at a substantially central portion in the vertical direction. Further, one end of the stiffening member 46 is joined to the vertical frame member 26 together with the other end of the stiffening member 44 by a drill screw 48, and the other end is joined to the vertical frame member 28 by a drill screw 48. If the rigidity of the frame member 22 is ensured, the stiffening members 44 and 46 may be omitted.

(壁面材50)
図1に示されるように、壁面材50は、矩形状に形成された鋼板であり、枠材22に接合されている。本実施形態の耐力壁20では、壁面材50を2枚用いており、一の壁面材50が縦枠材24と縦枠材26に接合され、他の壁面材50が縦枠材26と縦枠材28に接合されている。具体的には、一の壁面材50の幅方向の両端部が一対の縦材である縦枠材24及び縦枠材26にそれぞれ複数のドリルねじ52を用いて接合されている。また、他の壁面材50の幅方向の両端部が一対の縦材である縦枠材26及び縦枠材28にそれぞれ複数のドリルねじ52を用いて接合されている。なお、2枚の壁面材50は、同一寸法であるが、本発明はこの構成に限定されず、異なる寸法であってもよい。
(Wall material 50)
As shown in FIG. 1, the wall surface material 50 is a steel plate formed in a rectangular shape and is joined to the frame material 22. In the bearing wall 20 of the present embodiment, two wall material 50s are used, one wall material 50 is joined to the vertical frame material 24 and the vertical frame material 26, and the other wall material 50 is vertically connected to the vertical frame material 26. It is joined to the frame material 28. Specifically, both ends of one wall surface member 50 in the width direction are joined to the vertical frame member 24 and the vertical frame member 26, which are a pair of vertical members, by using a plurality of drill screws 52, respectively. Further, both ends of the other wall surface material 50 in the width direction are joined to the vertical frame member 26 and the vertical frame member 28, which are a pair of vertical members, by using a plurality of drill screws 52, respectively. Although the two wall surface materials 50 have the same dimensions, the present invention is not limited to this configuration and may have different dimensions.

なお、一の壁面材50と縦枠材24及び縦枠材26との接合のためにドリルねじ52がねじ込まれた部分、及び、他の壁面材50と縦枠材26及び縦枠材28との接合のためにドリルねじ52がねじ込まれた部分を接合部60と称する。 The portion where the drill screw 52 is screwed in for joining the one wall surface material 50, the vertical frame material 24, and the vertical frame material 26, and the other wall surface material 50, the vertical frame material 26, and the vertical frame material 28. The portion where the drill screw 52 is screwed in for joining is referred to as a joint portion 60.

また、図1及び図3に示されるように、接合部60は、上下方向に間隔をあけて複数形成されている。なお、本実施形態の壁面材50では、接合部60が略一定の間隔で設けられているが、本発明はこの構成に限定されない。例えば、耐力壁に水平荷重が作用した場合にせん断力が大きく作用する領域に接合部を密に配置して、上下方向に隣接する接合部に作用するせん断力を均一に近づけてもよい。 Further, as shown in FIGS. 1 and 3, a plurality of joint portions 60 are formed at intervals in the vertical direction. In the wall surface material 50 of the present embodiment, the joint portions 60 are provided at substantially constant intervals, but the present invention is not limited to this configuration. For example, the joints may be densely arranged in a region where a large shear force acts when a horizontal load is applied to the bearing wall so that the shear forces acting on the adjacent joints in the vertical direction are uniformly approached.

また、図3に示されるように、壁面材50には、上下方向に間隔をあけて複数(本実施形態では7つ)の開口部54が形成されている。これら7つの開口部54は、上下方向に1列となるように形成されている。そして、1列に並んだ開口部54は、壁面材50の幅方向の中心に対してオフセットしている。換言すると、上下方向に隣接する開口部54の中心を通って上下方向に延びる直線SLが、幅方向の一方側又は他方側に寄っている(図3では直線SLが右側に寄っている。)。 Further, as shown in FIG. 3, the wall surface material 50 is formed with a plurality of openings 54 (seven in the present embodiment) at intervals in the vertical direction. These seven openings 54 are formed so as to form a row in the vertical direction. The openings 54 arranged in a row are offset from the center of the wall surface material 50 in the width direction. In other words, the straight line SL extending in the vertical direction through the center of the opening 54 adjacent in the vertical direction is closer to one side or the other side in the width direction (in FIG. 3, the straight line SL is closer to the right side). ..

図3に示されるように、開口部54は、偶数個の角部(隅部)54Aを有する多角形状とされている。なお、ここでいう「多角形状」には、角部が角張っている多角形及び角部が円弧状に湾曲している(丸まっている)多角形を含む。この開口部54は、上記直線SLに対して左右対称で且つ直線SL上に開口部54の対向する角部54Aの頂点54AE同士が位置するように壁面材50に形成されている。なお、本実施形態では、開口部54の形状が角部54Aの頂点54AEを直線SL上に配置した正方形状とされている。 As shown in FIG. 3, the opening 54 has a polygonal shape having an even number of corners (corners) 54A. The "polygon shape" referred to here includes a polygon whose corners are angular and a polygon whose corners are curved (rounded) in an arc shape. The opening 54 is formed in the wall surface material 50 so as to be symmetrical with respect to the straight line SL and so that the vertices 54AEs of the corner portions 54A facing each other of the opening 54 are located on the straight line SL. In the present embodiment, the shape of the opening 54 is a square shape in which the apex 54AE of the corner portion 54A is arranged on the straight line SL.

また、本実施形態では、上下方向に隣接する開口部54の大きさが同じ大きさとされている。なお、多角形状の開口部54の大きさは、内接円Cの直径が200mm以上となる大きさに設定されることが好ましい。 Further, in the present embodiment, the sizes of the openings 54 adjacent to each other in the vertical direction are the same. The size of the polygonal opening 54 is preferably set so that the diameter of the inscribed circle C is 200 mm or more.

また、図5及び図6に示されるように、開口部54の縁部には、壁面材50と一体に形成された環状リブ56が形成されている。本実施形態では、壁面材50となる鋼板にバーリング加工が実施されて開口部54及び環状リブ56が形成されている。なお、本発明は上記構成に限定されず、例えば、壁面材50となる鋼板にプレス加工で開口部を形成し、この開口部の縁部に多角形状の環状部材(筒状部材)を接合して開口部54及び環状リブ56を形成してもよい。 Further, as shown in FIGS. 5 and 6, an annular rib 56 integrally formed with the wall surface material 50 is formed at the edge of the opening 54. In the present embodiment, the steel plate to be the wall surface material 50 is subjected to burring processing to form the opening 54 and the annular rib 56. The present invention is not limited to the above configuration. For example, an opening is formed in a steel plate serving as a wall surface material 50 by press working, and a polygonal annular member (cylindrical member) is joined to the edge of the opening. The opening 54 and the annular rib 56 may be formed.

また、上下方向に隣接する開口部54の中心間距離D1は、縦枠材24における接合部60と縦枠材26における接合部60との間の水平距離D2よりも短くなっている。 Further, the center-to-center distance D1 of the openings 54 adjacent in the vertical direction is shorter than the horizontal distance D2 between the joint portion 60 of the vertical frame member 24 and the joint portion 60 of the vertical frame member 26.

図1に示されるように、一の壁面材50の上端部と他の壁面材50の上端部は、横枠材30にそれぞれ複数のドリルねじ52を用いて接合されている。そして、一の壁面材50の下端部と他の壁面材50の下端部は、横枠材32にそれぞれ複数のドリルねじ52を用いて接合されている。 As shown in FIG. 1, the upper end portion of one wall surface material 50 and the upper end portion of the other wall surface material 50 are joined to the horizontal frame member 30 by using a plurality of drill screws 52, respectively. Then, the lower end portion of one wall surface material 50 and the lower end portion of the other wall surface material 50 are joined to the horizontal frame member 32 by using a plurality of drill screws 52, respectively.

(本実施形態の作用並びに効果)
従来から耐力壁の壁面材には、配管や配線のために複数の開口部が形成されていることがある。これらの開口部は、壁面材の耐力等を考慮して円形とされることが多い。しかし、市場では、開口部が円形とされた壁面材を有する耐力壁と比べて、地震の初期から終局までの耐力が略同等であり、さらに、軽量化も図れる耐力壁の開発が望まれている。これらを考慮して本発明者らは、本発明の開発に至った。
(Action and effect of this embodiment)
Conventionally, a plurality of openings may be formed in a wall material of a bearing wall for piping or wiring. These openings are often circular in consideration of the proof stress of the wall surface material and the like. However, in the market, it is desired to develop a bearing wall that has almost the same bearing capacity from the beginning to the end of an earthquake and can be made lighter than a bearing wall having a wall material having a circular opening. There is. In consideration of these, the present inventors have reached the development of the present invention.

以下では、本実施形態の耐力壁20と比較例の耐力壁を対比しながら、本実施形態の作用並びに効果について説明する。まず、各比較例の耐力壁について説明する。比較例の耐力壁100は、図9に示されるように、壁面材102に円形の開口部104が形成された耐力壁である。また、比較例の耐力壁110は、図10に示されるように、壁面材112に正方形状の開口部114が形成されているが、直線SL上に開口部114の対向する角部114Aが位置していない耐力壁である。また、比較例の耐力壁120は、図11に示されるように、壁面材132に正六角形の開口部124が形成されているが、直線SL上に開口部124の対向する角部124Aが位置していない耐力壁である。比較例の耐力壁130は、図12に示されるように、壁面材132に楕円形の開口部134が形成されており、この開口部134の短軸が直線SLと一致している耐力壁である。比較例の耐力壁134は、図13に示されるように、壁面材142に楕円形の開口部144が形成されており、この開口部144の長軸が直線SLと一致している耐力壁である。
なお、各比較例の耐力壁は、開口部の形状や対向する角部の向きを除いて本実施形態の耐力壁20と構成が同じである。
Hereinafter, the actions and effects of the present embodiment will be described while comparing the bearing wall 20 of the present embodiment with the bearing wall of the comparative example. First, the bearing wall of each comparative example will be described. As shown in FIG. 9, the bearing wall 100 of the comparative example is a bearing wall in which a circular opening 104 is formed in the wall surface material 102. Further, in the bearing wall 110 of the comparative example, as shown in FIG. 10, a square opening 114 is formed in the wall surface material 112, but the opposite corners 114A of the opening 114 are located on the straight line SL. It is a bearing wall that is not. Further, in the bearing wall 120 of the comparative example, as shown in FIG. 11, a regular hexagonal opening 124 is formed in the wall surface material 132, but the opposite corner 124A of the opening 124 is located on the straight line SL. It is a bearing wall that is not. As shown in FIG. 12, the load-bearing wall 130 of the comparative example is a load-bearing wall in which an elliptical opening 134 is formed in the wall surface material 132, and the short axis of the opening 134 coincides with the straight line SL. is there. As shown in FIG. 13, the bearing wall 134 of the comparative example is a bearing wall in which an elliptical opening 144 is formed in the wall surface material 142, and the long axis of the opening 144 coincides with the straight line SL. is there.
The bearing wall of each comparative example has the same configuration as the bearing wall 20 of the present embodiment except for the shape of the opening and the orientation of the opposite corners.

本実施形態の耐力壁20では、壁面材50に形成された開口部54の形状を偶数個の角部54Aを有する多角形状としている。ここで、多角形状の開口部54の内接円(図3において二点鎖線で示す内接円C)の大きさを、比較例の耐力壁100の開口部104との大きさ以上の大きさとすることで、円形の開口部104よりも壁面材84に対する開口面積を大きくできる。このようにして耐力壁20は、比較例の耐力壁100と比べて、軽量化を図ることができる。また、開口部54の開口面積が大きくなるため、増加部分にさらに配管や配線を通すことが可能となる。 In the bearing wall 20 of the present embodiment, the shape of the opening 54 formed in the wall surface material 50 is a polygonal shape having an even number of corner portions 54A. Here, the size of the inscribed circle of the polygonal opening 54 (the inscribed circle C shown by the two-point chain line in FIG. 3) is set to be larger than the size of the opening 104 of the bearing wall 100 of the comparative example. By doing so, the opening area with respect to the wall surface material 84 can be made larger than that of the circular opening 104. In this way, the bearing wall 20 can be made lighter than the bearing wall 100 of the comparative example. Further, since the opening area of the opening 54 becomes large, it becomes possible to further pass piping and wiring through the increased portion.

また、耐力壁20では、開口部54の形状を直線SL上に角部54Aの頂点54AEを配置した正方形状としていることから、内接円Cの大きさが同一の正多角形状の中で最も開口面積を大きくすることができる。このため、耐力壁20では、比較例の耐力壁100と比べて、軽量化をさらに図ることができる。 Further, in the bearing wall 20, since the shape of the opening 54 is a square shape in which the apex 54AE of the corner portion 54A is arranged on the straight line SL, the size of the inscribed circle C is the largest among the regular polygonal shapes having the same size. The opening area can be increased. Therefore, the bearing wall 20 can be further reduced in weight as compared with the bearing wall 100 of the comparative example.

また、耐力壁20では、多角形状の開口部54を直線SLに対して左右対称で且つ直線SL上に対向する角部54Aの頂点54AE同士が位置するように壁面材50に形成している。これにより、耐力壁20では、地震の初期から終局までの耐力を、比較例の耐力壁100と略同程度に確保することができる。具体的には、耐力壁20では、地震の初期段階(一例として、層間変形角1/300時)において、壁面材50の上下方向に隣接する開口部54間にせん断応力が集中する。このせん断応力が集中するメカニズムについては各比較例ともに共通である。一方で、開口部の圧縮抵抗力については、本実施形態の耐力壁20と比較例の耐力壁100が他の比較例の耐力壁と比べて高くなる。比較例の耐力壁100では、開口部104が円形のため、せん断応力が集中し難く、圧縮抵抗力CRが高いものと推定される。これに対して本実施形態の耐力壁20が比較例の耐力壁110よりも圧縮抵抗力CRが高いのは、直線SL上に角部54Aの頂点54AEが位置しているためと推定される。以上より、耐力壁20は、地震の初期段階において、比較例の耐力壁100と略同程度の耐力を確保することができる。
また、耐力壁20では、地震の終局段階(一例として、層間変形角1/100時)において、図4に示されるように、壁面材50の上下方向に隣接する開口部54間を斜めに結ぶ方向に引張力TSが生じており、開口部54の圧縮抵抗力CRと、各接合部60に作用するせん断力SFとで力の釣合いが保たれている。比較例の耐力壁100も同様に力の釣合いが保たれている。一方で、比較例の耐力壁110、120、130、140では、開口部の圧縮抵抗力が本実施形態の耐力壁20よりも低いため、力の釣り合いが保たれにくい。すなわち、開口部の圧縮抵抗力の大きさが地震の初期から終局まで耐力壁の耐力に影響を与えていると推定される。このため、耐力壁20は、地震の初期から終局まで、比較例の耐力壁100と略同程度の耐力を確保することができる。なお、地震の初期から終局までの耐力が、本実施形態の耐力壁20と比較例の耐力壁100で略同程度となることについては後述する。
Further, in the bearing wall 20, the polygonal opening 54 is formed in the wall surface material 50 so that the vertices 54AEs of the corner portions 54A that are symmetrical with respect to the straight line SL and face each other on the straight line SL are located. As a result, the bearing wall 20 can secure the bearing capacity from the beginning to the end of the earthquake to substantially the same level as the bearing wall 100 of the comparative example. Specifically, in the bearing wall 20, shear stress is concentrated between the openings 54 adjacent in the vertical direction of the wall surface material 50 in the initial stage of the earthquake (for example, when the interlayer deformation angle is 1/300). The mechanism by which this shear stress is concentrated is common to all comparative examples. On the other hand, regarding the compression resistance of the opening, the bearing wall 20 of the present embodiment and the bearing wall 100 of the comparative example are higher than the bearing wall of the other comparative example. In the bearing wall 100 of the comparative example, since the opening 104 is circular, it is presumed that shear stress is difficult to concentrate and the compressive resistance CR is high. On the other hand, it is presumed that the bearing wall 20 of the present embodiment has a higher compression resistance CR than the bearing wall 110 of the comparative example because the apex 54AE of the corner portion 54A is located on the straight line SL. From the above, the bearing wall 20 can secure a bearing capacity substantially equal to that of the bearing wall 100 of the comparative example at the initial stage of the earthquake.
Further, in the bearing wall 20, at the final stage of the earthquake (for example, when the interlayer deformation angle is 1/100 o'clock), as shown in FIG. 4, the wall material 50 is diagonally connected between the openings 54 adjacent to each other in the vertical direction. A tensile force TS is generated in the direction, and the balance between the compressive resistance CR of the opening 54 and the shearing force SF acting on each joint 60 is maintained. Similarly, the bearing wall 100 of the comparative example also maintains a balance of forces. On the other hand, in the bearing walls 110, 120, 130, 140 of the comparative example, since the compression resistance of the opening is lower than that of the bearing wall 20 of the present embodiment, it is difficult to maintain the balance of the forces. That is, it is presumed that the magnitude of the compressive resistance of the opening affects the bearing capacity of the bearing wall from the beginning to the end of the earthquake. Therefore, the bearing wall 20 can secure a yield strength substantially equal to that of the bearing wall 100 of the comparative example from the beginning to the end of the earthquake. It will be described later that the bearing wall from the initial stage to the final stage of the earthquake is substantially the same as the bearing wall 20 of the present embodiment and the bearing wall 100 of the comparative example.

また、耐力壁20では、上下方向に隣接する開口部54の大きさを同じ大きさにしていることから、例えば、隣接する開口部54の大きさが異なる構成と比べて、各開口部54に作用する応力を一定にできる。このため、耐力壁20では、地震の初期から終局までの耐力を確保しやすくなる。さらに、壁面材50の製造も容易になる。 Further, in the bearing wall 20, since the sizes of the openings 54 adjacent to each other in the vertical direction are the same, for example, as compared with the configuration in which the sizes of the adjacent openings 54 are different, each opening 54 has a different size. The acting stress can be made constant. Therefore, the bearing wall 20 can easily secure the bearing capacity from the beginning to the end of the earthquake. Further, the wall material 50 can be easily manufactured.

そして、耐力壁20では、中心間距離D1を水平距離D2よりも短くしていることから、地震による水平荷重が耐力壁20に伝達された際に、壁面材50において、接合部60と開口部54との水平方向の中間部のせん断応力(ミーゼス応力)値を上下方向に隣接する開口部54間の上下方向の中間部のせん断応力値よりも低くすることができる。これにより、一対の縦材(縦枠材24と縦枠材26、または縦枠材26と縦枠材28)に生じる水平方向へのせん断応力が低減される。その結果、壁面材50において上下方向に隣接する開口部54間の上下方向の中間部が変形する前に、壁面材50と一対の縦材との接合部60が変形することが抑制され、地震エネルギーを安定して吸収することが可能となる。 Since the center-to-center distance D1 of the bearing wall 20 is shorter than the horizontal distance D2, when the horizontal load due to the earthquake is transmitted to the bearing wall 20, the joint portion 60 and the opening are formed in the wall material 50. The shear stress value (mises stress) in the horizontal intermediate portion with the 54 can be made lower than the shear stress value in the vertical intermediate portion between the openings 54 adjacent in the vertical direction. As a result, the shear stress in the horizontal direction generated in the pair of vertical members (vertical frame member 24 and vertical frame member 26, or vertical frame member 26 and vertical frame member 28) is reduced. As a result, the joint portion 60 between the wall surface material 50 and the pair of vertical members is suppressed from being deformed before the vertical intermediate portion between the openings 54 adjacent to each other in the vertical direction is deformed in the wall surface material 50, resulting in an earthquake. It is possible to absorb energy in a stable manner.

前述の実施形態の耐力壁20では、枠材22と壁面材50との接合にドリルねじ52を用いているが、本発明はこの構成に限定されない。例えば、ドリルねじ52の代わり釘を用いてもよい。また、枠材22と壁面材50をスポット溶接で接合してもよい。スポット溶接を用いた場合は、枠材22と壁面材50の溶接された部分を接合部と称する。 In the bearing wall 20 of the above-described embodiment, the drill screw 52 is used for joining the frame material 22 and the wall surface material 50, but the present invention is not limited to this configuration. For example, a nail may be used instead of the drill screw 52. Further, the frame material 22 and the wall surface material 50 may be joined by spot welding. When spot welding is used, the welded portion of the frame material 22 and the wall surface material 50 is referred to as a joint portion.

前述の実施形態の耐力壁20では、壁面材50に下孔を形成していないが、本発明はこの構成に限定されず、壁面材50に下孔又は孔開け用の目印を形成してもよい。 In the bearing wall 20 of the above-described embodiment, the wall surface material 50 is not formed with a pilot hole, but the present invention is not limited to this configuration, and the wall surface material 50 may be formed with a pilot hole or a mark for drilling. Good.

前述の実施形態の耐力壁20では、開口部54の形状を角部54Aの頂点54AEを直線SL上に配置した正方形状としているが、本発明はこの構成に限定されない。例えば、図7に示される耐力壁70のように、壁面材72に形成される開口部74の形状を対向する角部74Aの頂点74AEを直線SL上に配置した正六角形状としてもよい。すなわち、本発明の実施形態に係る耐力壁の開口部の形状は、対向する角部の頂点が直線SL上に配置されれば、正八角形状等の正多角形状であってもよい。 In the bearing wall 20 of the above-described embodiment, the shape of the opening 54 is a square shape in which the apex 54AE of the corner portion 54A is arranged on the straight line SL, but the present invention is not limited to this configuration. For example, as in the bearing wall 70 shown in FIG. 7, the shape of the opening 74 formed in the wall surface member 72 may be a regular hexagonal shape in which the apex 74AE of the corner portion 74A facing the shape is arranged on the straight line SL. That is, the shape of the opening of the bearing wall according to the embodiment of the present invention may be a regular polygonal shape such as a regular octagonal shape as long as the vertices of the opposing corners are arranged on the straight line SL.

前述の実施形態の耐力壁20は、壁面材50が枠材22に接合されて構成されているが、本発明はこの構成に限定されない。例えば、図8に示される耐力壁80のように、上下方向に延びて、それぞれの上端が建物の水平部材HM1に連結され、それぞれの下端が建物の水平部材HM2に連結される一対の縦材82にドリルねじ52を用いて壁面材84を接合してもよい。なお、壁面材84には、壁面材50と同様に、開口部54と環状リブ56が形成されている。このため、壁面材84は、耐力壁20と同様の作用並びに効果を得ることができる。 The bearing wall 20 of the above-described embodiment is configured by joining the wall surface material 50 to the frame member 22, but the present invention is not limited to this configuration. For example, like the bearing wall 80 shown in FIG. 8, a pair of vertical members extending in the vertical direction, the upper ends of which are connected to the horizontal member HM1 of the building, and the lower ends of each are connected to the horizontal member HM2 of the building. The wall surface material 84 may be joined to the 82 using a drill screw 52. The wall surface material 84 is formed with an opening 54 and an annular rib 56, similarly to the wall surface material 50. Therefore, the wall surface material 84 can obtain the same action and effect as the bearing wall 20.

次に本発明の耐力壁が地震の初期から終局までの耐力を確保できることを立証するため、有限要素解析によるシミュレーションを実施して耐力壁の層間変化角に対する水平荷重の変化の特性を得た。得られた特性については、図14において水平荷重を縦軸、層間変化角を横軸としてグラフで示した。なお、シミュレーションした実施例及び比較例は、以下の通りである。 Next, in order to prove that the bearing wall of the present invention can secure the bearing capacity from the beginning to the end of the earthquake, a simulation by finite element analysis was carried out to obtain the characteristics of the change of the horizontal load with respect to the interlayer change angle of the bearing wall. The obtained characteristics are shown graphically in FIG. 14 with the horizontal load on the vertical axis and the interlayer change angle on the horizontal axis. The simulated examples and comparative examples are as follows.

実施例1:本発明に係る実施形態の耐力壁20と同じ構成であり、開口部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図3参照)。
実施例2:本発明に係る実施形態の耐力壁70と同じ構成であり、開口部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図7参照)。
比較例1:比較例の耐力壁100と同じ構成であり、開口部104の直径を200mmとした耐力壁(図9参照)である。
比較例2:比較例の耐力壁110と同じ構成であり、開口部114の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図10参照)。
比較例3:比較例の耐力壁120と同じ構成であり、開口部124の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図11参照)。
比較例4:比較例の耐力壁130と同じ構成であり、開口部134の大きさを短軸の長さが200mmとなる大きさとした耐力壁である(図12参照)。
比較例5:比較例の耐力壁140と同じ構成であり、開口部144の大きさを短軸の長さが200mmとなる大きさとした耐力壁である(図13参照)。
Example 1: A bearing wall having the same configuration as the bearing wall 20 of the embodiment according to the present invention, and having an opening having a diameter of an inscribed circle of 200 mm (see FIG. 3).
Example 2: A bearing wall having the same configuration as the bearing wall 70 of the embodiment according to the present invention, and having an opening having a diameter of an inscribed circle of 200 mm (see FIG. 7).
Comparative Example 1: A bearing wall having the same configuration as the bearing wall 100 of the comparative example and having an opening 104 having a diameter of 200 mm (see FIG. 9).
Comparative Example 2: A bearing wall having the same configuration as the bearing wall 110 of the comparative example, and having an opening 114 having a diameter of an inscribed circle of 200 mm (see FIG. 10).
Comparative Example 3: A bearing wall having the same configuration as the bearing wall 120 of the comparative example, and having an opening 124 having a diameter of an inscribed circle of 200 mm (see FIG. 11).
Comparative Example 4: A bearing wall having the same configuration as the bearing wall 130 of the comparative example, and having an opening 134 having a length of a minor axis of 200 mm (see FIG. 12).
Comparative Example 5: A bearing wall having the same configuration as the bearing wall 140 of the comparative example, and having an opening 144 having a length of a minor axis of 200 mm (see FIG. 13).

図14に示される通り、実施例1、2の耐力壁は、比較例2−5の耐力壁よりも層間変形角に対する水平荷重が高くなっている。
また、実施例1、2の耐力壁は、比較例1の耐力壁と層間変形角に対する水平荷重の値が近くなっている。すなわち、実施例1、2の耐力壁は、比較例1の耐力壁と地震の初期から終局までの耐力が略同程度であることが分かる。
As shown in FIG. 14, the bearing walls of Examples 1 and 2 have a higher horizontal load with respect to the interlayer deformation angle than the bearing walls of Comparative Example 2-5.
Further, the bearing walls of Examples 1 and 2 have a horizontal load value close to that of the bearing wall of Comparative Example 1 with respect to the interlayer deformation angle. That is, it can be seen that the bearing walls of Examples 1 and 2 have substantially the same bearing capacity from the beginning to the end of the earthquake as the bearing walls of Comparative Example 1.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。例えば、前述の実施形態では、本発明の一実施形態に係る壁面材を耐力壁に用いているが、例えば、建物の床面や屋根面等のように面内剛性が必要となる部分に用いてもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and can be modified in various ways other than the above within a range not deviating from the gist thereof. Of course. For example, in the above-described embodiment, the wall surface material according to one embodiment of the present invention is used for the bearing wall, but it is used for a portion where in-plane rigidity is required, such as a floor surface or a roof surface of a building. You may.

20 耐力壁
24 縦枠材(縦材)
26 縦枠材(縦材)
28 縦枠材(縦材)
50 壁面材
54 開口部
54A 角部
54AE 頂点
56 環状リブ
70 耐力壁
72 壁面材
74 開口部
74A 角部
74AE 頂点
80 耐力壁
82 縦材
84 壁面材
SL 直線
D1 中心間距離
D2 水平距離
20 Bearing wall 24 Vertical frame material (vertical material)
26 Vertical frame material (vertical material)
28 Vertical frame material (vertical material)
50 Wall material 54 Opening 54A Square 54AE Apex 56 Circular rib 70 Bearing wall 72 Wall material 74 Opening 74A Corner 74AE Vertex 80 Bearing wall 82 Vertical material 84 Wall material SL Straight line D1 Center-to-center distance D2 Horizontal distance

Claims (5)

上下方向に延びる一対の縦材と、
一対の前記縦材にそれぞれ接合され、縁部に環状リブが設けられた開口部が前記上下方向に間隔をあけて1列形成された壁面材と、
を備え、
前記開口部の形状は、偶数個の角部を有する多角形状であり、
前記壁面材には、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置するように前記開口部が形成されている、耐力壁。
A pair of vertical members extending in the vertical direction,
A wall surface material which is joined to the pair of vertical members and has an opening provided with an annular rib at an edge formed in a row at intervals in the vertical direction.
With
The shape of the opening is a polygonal shape having an even number of corners.
The bearing wall material is symmetrical with respect to the straight line extending in the vertical direction, and the opening is formed so that the vertices of the corners facing each other are located on the straight line. wall.
隣接する前記開口部の大きさが同じである、請求項1に記載の耐力壁。 The bearing wall according to claim 1, wherein the adjacent openings have the same size. 前記開口部は、角部の頂点を前記直線上に配置した正方形状である、請求項1又は請求項2に記載の耐力壁。 The bearing wall according to claim 1 or 2, wherein the opening is a square shape in which the vertices of the corners are arranged on the straight line. 前記上下方向に隣接する前記開口部の中心間距離が、一対の前記縦材と前記壁面材との接合点間の水平距離よりも短い、請求項1〜3のいずれか1項に記載の耐力壁。 The bearing according to any one of claims 1 to 3, wherein the distance between the centers of the openings adjacent to each other in the vertical direction is shorter than the horizontal distance between the joint points between the pair of vertical members and the wall surface members. wall. 上下方向に延びる一対の縦材にそれぞれ接合される壁面材であって、
前記上下方向に間隔をあけて形成され、偶数個の角部を有する多角形状の開口部と、
前記開口部の縁部に設けられた環状リブと、
を備え、
前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置している、壁面材。
A wall material that is joined to a pair of vertical members that extend in the vertical direction.
A polygonal opening formed at intervals in the vertical direction and having an even number of corners,
An annular rib provided at the edge of the opening and
With
A wall surface material that is symmetrical with respect to the straight line extending in the vertical direction and in which the vertices of the corners facing each other of the opening are located on the straight line.
JP2019033169A 2019-02-26 2019-02-26 Bearing walls and wall materials Active JP7196685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033169A JP7196685B2 (en) 2019-02-26 2019-02-26 Bearing walls and wall materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033169A JP7196685B2 (en) 2019-02-26 2019-02-26 Bearing walls and wall materials

Publications (2)

Publication Number Publication Date
JP2020139269A true JP2020139269A (en) 2020-09-03
JP7196685B2 JP7196685B2 (en) 2022-12-27

Family

ID=72264579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033169A Active JP7196685B2 (en) 2019-02-26 2019-02-26 Bearing walls and wall materials

Country Status (1)

Country Link
JP (1) JP7196685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039163A1 (en) 2020-08-20 2022-02-24 株式会社Nttドコモ Terminal, wirless communication method, and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536574A (en) * 1999-02-08 2002-10-29 ロッシュウェイ ピーティワイ.リミッティド Structural members
JP2010031473A (en) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd Steel plate integrated bearing wall and method of manufacturing the same
JP2018025057A (en) * 2016-08-10 2018-02-15 新日鐵住金株式会社 Load bearing wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536574A (en) * 1999-02-08 2002-10-29 ロッシュウェイ ピーティワイ.リミッティド Structural members
JP2010031473A (en) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd Steel plate integrated bearing wall and method of manufacturing the same
JP2018025057A (en) * 2016-08-10 2018-02-15 新日鐵住金株式会社 Load bearing wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039163A1 (en) 2020-08-20 2022-02-24 株式会社Nttドコモ Terminal, wirless communication method, and base station

Also Published As

Publication number Publication date
JP7196685B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
US9758963B2 (en) Bearing wall and wall surface member for bearing wall
JP6389670B2 (en) Member end structure
JP6990979B2 (en) Framing structure of a building
JP2020139269A (en) Bearing wall and wall material
JP6536323B2 (en) Longitudinal structure of steel sheet pile and steel sheet pile wall
JP6589922B2 (en) Beam reinforcement structure and beam reinforcement method
JP5953871B2 (en) Beam-column joint structure
JP2004169298A (en) Joint structure of column and beam and method for joining column and beam
JP6850681B2 (en) Column-beam joint structure
JP6128058B2 (en) Beam end joint structure
JP6427917B2 (en) Beam-column joint structure
JP3221088U (en) Bearing wall
JP2009275470A (en) Base plate for column base
JP2020139270A (en) Bearing wall and wall material
JP2017002513A (en) Bearing wall and wall structure
JP6895080B2 (en) Floor structure and its construction method
JP2021139134A (en) Load bearing wall and wooden building
JP6986751B2 (en) Column-beam joint structure
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP4260736B2 (en) Steel house bearing wall structure
JP6604095B2 (en) Vertical frame and bearing wall
JP6742741B2 (en) Bending yield type damper
JP2018172875A (en) Floor structure
JP7098363B2 (en) Ladder type bearing wall frame
JP6836830B2 (en) Reinforcement structure of one-side widened steel beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R151 Written notification of patent or utility model registration

Ref document number: 7196685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151