JP2020139270A - Bearing wall and wall material - Google Patents
Bearing wall and wall material Download PDFInfo
- Publication number
- JP2020139270A JP2020139270A JP2019033170A JP2019033170A JP2020139270A JP 2020139270 A JP2020139270 A JP 2020139270A JP 2019033170 A JP2019033170 A JP 2019033170A JP 2019033170 A JP2019033170 A JP 2019033170A JP 2020139270 A JP2020139270 A JP 2020139270A
- Authority
- JP
- Japan
- Prior art keywords
- wall
- bearing wall
- vertical
- recess
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Load-Bearing And Curtain Walls (AREA)
- Panels For Use In Building Construction (AREA)
Abstract
Description
本発明は、耐力壁及び壁面材に関する。 The present invention relates to bearing walls and wall materials.
特許文献1には、建物の上下の水平部材に接合される一対の縦材に壁面材を接合した耐力壁が開示されている。この耐力壁の壁面材には、複数のバーリング孔が上下に1列に形成されている。 Patent Document 1 discloses a bearing wall in which a wall surface material is joined to a pair of vertical members joined to upper and lower horizontal members of a building. A plurality of burring holes are formed in a row at the top and bottom of the wall material of the bearing wall.
ところで、建物で用いられる部位によって耐力壁には必要とされる性能が異なる。特許文献1に開示の耐力壁では、建物の内壁材に用いられるため、配管や配線のために複数のバーリング孔が壁面材に形成されている。一方で、建物の外壁材に用いられる耐力壁には、地震の初期から終局までの剛性及び耐力の更なる向上が望まれている。 By the way, the performance required for the bearing wall differs depending on the part used in the building. Since the bearing wall disclosed in Patent Document 1 is used as an inner wall material of a building, a plurality of burring holes are formed in the wall surface material for piping and wiring. On the other hand, it is desired that the bearing wall used for the outer wall material of the building has further improved rigidity and bearing capacity from the beginning to the end of the earthquake.
本発明は上記事実を考慮し、地震の初期から終局までの剛性及び耐力を向上させた耐力壁及び壁面材を提供することを課題とする。 In consideration of the above facts, an object of the present invention is to provide a bearing wall and a wall material having improved rigidity and proof stress from the beginning to the end of an earthquake.
本発明の第1態様の耐力壁は、上下方向に延びる一対の縦材と、一対の前記縦材にそれぞれ接合された壁面材と、前記壁面材の一対の前記縦材間に前記上下方向に間隔をあけて1列形成され、前記壁面材の一般部に対して板厚方向に突出する環状の壁部と、前記壁部の突出方向の端部を閉じる底部とを有する凹部と、を備える。 The bearing wall of the first aspect of the present invention is formed in the vertical direction between a pair of vertical members extending in the vertical direction, a wall surface material joined to the pair of the vertical members, and a pair of the vertical members of the wall surface material. It is provided with an annular wall portion formed in a row at intervals and protruding in the plate thickness direction with respect to a general portion of the wall surface material, and a recess having a bottom portion that closes an end portion of the wall portion in the projecting direction. ..
第1態様の耐力壁では、壁面材の一対の縦材間に凹部を上下方向に間隔をあけて形成している。ここで、上記耐力壁では、壁面材に底部を有する凹部を形成するため、例えば、縁部にリブを形成した開口(バーリング孔)を形成する壁面材と比べて、地震の初期から終局までの剛性及び耐力を向上させることができる。 In the bearing wall of the first aspect, recesses are formed between a pair of vertical members of the wall surface material at intervals in the vertical direction. Here, in the load-bearing wall, since a recess having a bottom is formed in the wall surface material, for example, as compared with a wall surface material in which an opening (burring hole) having a rib formed at the edge portion is formed, from the beginning to the end of the earthquake. Rigidity and proof stress can be improved.
本発明の第2態様の耐力壁は、第1態様の耐力壁において、板厚方向から見て、前記上下方向に隣接する前記凹部の形状及び大きさが同じである。 The bearing wall of the second aspect of the present invention has the same shape and size of the recesses adjacent to the bearing wall in the vertical direction when viewed from the plate thickness direction in the bearing wall of the first aspect.
第2態様の耐力壁では、板厚方向から見て、隣接する凹部の形状及び大きさを同じ形状および大きさにしていることから、例えば、隣接する凹部の形状及び大きさの少なくとも一方が異なる構成と比べて、凹部毎に作用する応力を一定にできるため、地震の初期から終局までの剛性及び耐力を確保しやすい。また、壁面材に凹部を形成するに際して、凹部の形状及び大きさに合わせた様々な加工具(金型含む)を用いる必要がないため、壁面材の製造(加工)が容易になる。 In the bearing wall of the second aspect, since the shapes and sizes of the adjacent recesses are the same when viewed from the plate thickness direction, for example, at least one of the shapes and sizes of the adjacent recesses is different. Compared to the configuration, the stress acting on each recess can be made constant, so it is easy to secure the rigidity and proof stress from the beginning to the end of the earthquake. Further, when forming the concave portion in the wall surface material, it is not necessary to use various processing tools (including a mold) according to the shape and size of the concave portion, so that the wall surface material can be easily manufactured (processed).
本発明の第3態様の耐力壁は、第1態様又は第2態様の耐力壁において、板厚方向から見て、前記凹部の形状は、円形である。 The bearing wall of the third aspect of the present invention is the bearing wall of the first aspect or the second aspect, and the shape of the recess is circular when viewed from the plate thickness direction.
第3態様の耐力壁では、板厚方向から見て、凹部の形状を円形としていることから、例えば、凹部の形状を多角形状とした構成と比べて、凹部への局部応力集中が緩和されるため、地震の終局において耐力を安定させることができる。 In the bearing wall of the third aspect, since the shape of the recess is circular when viewed from the plate thickness direction, the local stress concentration in the recess is relaxed as compared with, for example, a configuration in which the shape of the recess is polygonal. Therefore, the bearing capacity can be stabilized at the end of the earthquake.
本発明の第4態様の耐力壁は、第1態様又は第2態様の耐力壁において、板厚方向から見て、前記凹部の形状は、偶数個の角部を有する多角形状であり、前記壁面材には、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記凹部の対向する前記角部の頂点同士が位置するように前記凹部が形成されている。 The bearing wall of the fourth aspect of the present invention is the bearing wall of the first aspect or the second aspect, and the shape of the concave portion is a polygonal shape having an even number of corners when viewed from the plate thickness direction, and the wall surface. The recess is formed in the material so as to be symmetrical with respect to the straight line extending in the vertical direction and so that the vertices of the opposite corners of the recess are located on the straight line.
第4態様の耐力壁では、壁面材において、板厚方向から見て、凹部の形状を偶数個の角部を有する多角形状とし、さらに凹部を上下方向に延びる直線に対して左右対称で且つ該直線上に凹部の対向する角部の頂点同士が位置するように壁面材に形成している。このため、上記耐力壁では、例えば、凹部が上記直線に対して左右対称で且つ該直線上に対向する角部の頂点同士が位置しない構成と比べて、地震の初期において剛性及び耐力を向上させることができる。 In the bearing wall of the fourth aspect, in the wall surface material, the shape of the recess is a polygonal shape having an even number of corners when viewed from the plate thickness direction, and the recess is symmetrical with respect to a straight line extending in the vertical direction. The wall material is formed so that the vertices of the opposite corners of the recess are located on a straight line. Therefore, in the bearing wall, for example, the rigidity and the bearing capacity are improved at the initial stage of the earthquake as compared with the configuration in which the recesses are symmetrical with respect to the straight line and the vertices of the corners facing the straight line are not located. be able to.
本発明の第5態様の耐力壁は、第1態様〜第4態様のいずれか一態様の耐力壁において、前記上下方向に隣接する前記凹部の中心間距離が、一対の前記縦材と前記壁面材との接合点間の水平距離よりも短い。 The bearing wall according to the fifth aspect of the present invention is the bearing wall according to any one of the first to fourth aspects, wherein the distance between the centers of the recesses adjacent to each other in the vertical direction is the pair of the vertical member and the wall surface. It is shorter than the horizontal distance between the joints with the material.
第5態様の耐力壁では、壁面材において、上下方向に隣接する凹部の中心間距離を一対の縦材と壁面材との接合点間の水平距離よりも短くしている。このため、地震による水平荷重が耐力壁に伝達された際に、壁面材では、一方の縦材と壁面材との接合部と凹部との水平方向の中間部、及び、他方の縦材と壁面材との接合部と凹部との水平方向の中間部におけるせん断応力(ミーゼス応力)値が上下方向に隣接する凹部間の上下方向の中間部のせん断応力値よりも低くなる。これにより、一対の縦材に生じる水平方向へのせん断応力が低減される。その結果、壁面材において上下方向に隣接する凹部間の上下方向の中間部が変形する前に、壁面材と縦材との接合部が変形することが抑制され、地震エネルギーを安定して吸収することが可能となる。 In the bearing wall of the fifth aspect, in the wall surface material, the distance between the centers of the recesses adjacent in the vertical direction is shorter than the horizontal distance between the joint points between the pair of vertical members and the wall surface material. Therefore, when the horizontal load due to the earthquake is transmitted to the bearing wall, in the wall material, the joint portion between one vertical member and the wall surface material and the horizontal intermediate portion between the recesses, and the other vertical member and the wall surface. The shear stress (Mieses stress) value in the horizontal intermediate portion between the joint portion with the material and the concave portion is lower than the shear stress value in the vertical intermediate portion between the recesses adjacent in the vertical direction. As a result, the horizontal shear stress generated in the pair of vertical members is reduced. As a result, the joint portion between the wall surface material and the vertical member is suppressed from being deformed before the vertical intermediate portion between the recesses adjacent in the vertical direction is deformed in the wall surface material, and the seismic energy is stably absorbed. It becomes possible.
本発明の第6態様の耐力壁は、第5態様の耐力壁において、前記凹部の水平方向に沿った幅は、前記接合点間の水平距離の30%〜80%の範囲内である。 In the bearing wall of the sixth aspect of the present invention, in the bearing wall of the fifth aspect, the width of the recess along the horizontal direction is within the range of 30% to 80% of the horizontal distance between the joint points.
第6態様の耐力壁では、凹部の水平方向に沿った幅を接合点間の水平距離の30%〜80%の範囲内としていることから、壁面材において上下方向に隣接する凹部間の中間部が変形する前に、壁面材と縦材との接合部が変形することを効果的に抑制できる。 In the bearing wall of the sixth aspect, since the width of the recesses along the horizontal direction is within the range of 30% to 80% of the horizontal distance between the joint points, the intermediate portion between the recesses adjacent in the vertical direction in the wall surface material. It is possible to effectively suppress the deformation of the joint portion between the wall surface material and the vertical member before the deformation.
本発明の第7態様の耐力壁は、第1態様〜第6態様のいずれか一態様の耐力壁において、一対の前記縦材は、各々の上端部と下端部とにおいて一対の横材のみで連結されている。 The bearing wall of the seventh aspect of the present invention is the bearing wall of any one of the first to sixth aspects, and the pair of vertical members is only a pair of horizontal members at the upper end and the lower end of each. It is connected.
第7態様の耐力壁では、一対の縦材を各々の上端部と下端部とにおいて一対の横材のみで連結しているため、例えば、一対の横材に加えて一対の縦材の上下方向中間部を別の横材で連結する構成と比べて、地震の終局における耐力の過剰な上昇を抑制することができる。 In the bearing wall of the seventh aspect, since the pair of vertical members are connected by only a pair of horizontal members at the upper end and the lower end of each, for example, in addition to the pair of horizontal members, the vertical direction of the pair of vertical members Compared with the configuration in which the middle part is connected by another cross member, it is possible to suppress an excessive increase in the bearing capacity at the end of the earthquake.
本発明の第8態様の壁面材は、上下方向に延びる一対の縦材にそれぞれ接合される壁面材であって、前記壁面材の一対の前記縦材間に前記上下方向に間隔をあけて1列形成され、前記壁面材の一般部に対して板厚方向に突出する環状の壁部と、前記壁部の突出方向の端部を閉じる底部とを有する凹部、を備える。 The wall surface material of the eighth aspect of the present invention is a wall surface material joined to a pair of vertical members extending in the vertical direction, respectively, with a space between the pair of the vertical members of the wall surface material in the vertical direction. It is provided with an annular wall portion formed in a row and protruding in the plate thickness direction with respect to a general portion of the wall surface material, and a recess having a bottom portion that closes an end portion of the wall portion in the projecting direction.
第8態様の壁面材では、一対の縦材間に凹部を上下方向に間隔をあけて形成している。ここで、上記壁面材では、底部を有する凹部を形成するため、例えば、縁部にリブを形成した開口(バーリング孔)を形成する構成と比べて、地震の初期から終局までの剛性及び耐力を向上させることができる。 In the wall surface material of the eighth aspect, recesses are formed between the pair of vertical members at intervals in the vertical direction. Here, in the wall material, since the recess having the bottom is formed, the rigidity and the proof stress from the beginning to the end of the earthquake are improved as compared with the structure in which the opening (burring hole) in which the rib is formed at the edge is formed. Can be improved.
本発明によれば、地震の初期から終局までの剛性及び耐力を向上させた耐力壁及び壁面材を提供することができる。 According to the present invention, it is possible to provide a bearing wall and a wall material having improved rigidity and proof stress from the beginning to the end of an earthquake.
図1〜図6を用いて本発明の一実施形態に係る耐力壁及び壁面材について説明する。なお、図中に示された矢印Uは、本実施形態の耐力壁が適用される建物の上方向を示している。また、図中に示された矢印Wは、耐力壁の幅方向を示している。なお、本実施形態では、耐力壁の幅方向と建物の水平方向が一致している。 The bearing wall and the wall surface material according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. The arrow U shown in the figure indicates the upward direction of the building to which the bearing wall of the present embodiment is applied. Further, the arrow W shown in the figure indicates the width direction of the bearing wall. In this embodiment, the width direction of the bearing wall and the horizontal direction of the building coincide with each other.
図1に示されるように、本実施形態の耐力壁20は、枠材22と、壁面材50と、を備えている。 As shown in FIG. 1, the bearing wall 20 of the present embodiment includes a frame member 22 and a wall surface member 50.
図1及び図2に示されるように、枠材22は、矩形状に形成されている。この枠材22は、水平方向に間隔をあけて配置され、上下方向に延びる縦枠材24、26、28と、縦枠材24、26、28の各々の上端を水平方向につなぐ横枠材30と、縦枠材24、26、28の各々の下端を水平方向につなぐ横枠材32と、備えている。 As shown in FIGS. 1 and 2, the frame member 22 is formed in a rectangular shape. The frame members 22 are arranged at intervals in the horizontal direction, and the vertical frame members 24, 26, 28 extending in the vertical direction and the horizontal frame members 24, 26, 28 are connected to the upper ends of the vertical frame members 24, 26, 28 in the horizontal direction. 30 and a horizontal frame member 32 that connects the lower ends of the vertical frame members 24, 26, and 28 in the horizontal direction are provided.
なお、本実施形態の縦枠材24、26、28は、本発明における縦材の一例である。 The vertical frame members 24, 26, and 28 of the present embodiment are examples of the vertical frame members in the present invention.
(縦枠材24)
図2に示されるように、縦枠材24は、枠材22の幅方向(図中矢印W方向)一方側(図2及び図5では左側)の部分を形成している。なお、本実施形態では、枠材22の幅方向と耐力壁20の幅方向は一致している。
(Vertical frame material 24)
As shown in FIG. 2, the vertical frame member 24 forms a portion of the frame member 22 on one side (left side in FIGS. 2 and 5) in the width direction (arrow W direction in the drawing). In this embodiment, the width direction of the frame member 22 and the width direction of the bearing wall 20 are the same.
この縦枠材24は、図5及び図6に示されるように、幅方向外側の外枠部分を形成する角形鋼管34と、幅方向内側の内枠部分を形成し、縦枠材26側(言い換えると、枠材22の幅方向他方側(図2及び図5では右側))が開放された断面がC字形状の形鋼36と、を備えている。 As shown in FIGS. 5 and 6, the vertical frame member 24 forms a square steel pipe 34 forming an outer frame portion on the outer side in the width direction and an inner frame portion on the inner side in the width direction, and forms the vertical frame member 26 side ( In other words, the frame member 22 is provided with a C-shaped shaped steel 36 having an open cross section on the other side in the width direction (right side in FIGS. 2 and 5).
角形鋼管34は、断面が正方形状とされており、枠材22の厚み方向(図中矢印T方向)に2つ並べて配置されている。これらの角形鋼管34は、溶接により接合されている。 The square steel pipe 34 has a square cross section, and two square steel pipes 34 are arranged side by side in the thickness direction of the frame member 22 (in the direction of arrow T in the drawing). These square steel pipes 34 are joined by welding.
形鋼36は、リップ溝形鋼であり、ウェブ部36Aの外面が角形鋼管34の枠内側(枠材22の内側)の面に接合されている。具体的には、形鋼36は、2つの角形鋼管34にドリルねじ38を用いてそれぞれ接合されている。なお、本発明は上記構成に限定されず、例えば、溶接などの他の方法を用いて形鋼36と角形鋼管34を接合してもよい。また、形鋼36の内面には、断面C字状の補強部材40が接合されている。この補強部材40は、溝形鋼であり、ウェブ部40Aの外面及び両フランジ部40Bの外面が形鋼36のウェブ部36Aの内面及び両フランジ部36Bの内面にそれぞれ接合されている。なお、形鋼36と補強部材40の接合方法は、特に限定されない。例えば、溶接で形鋼36と補強部材40を接合してもよい。 The shaped steel 36 is a lip channel steel, and the outer surface of the web portion 36A is joined to the inner surface of the frame (inside the frame member 22) of the square steel pipe 34. Specifically, the shaped steel 36 is joined to two square steel pipes 34 by using a drill screw 38. The present invention is not limited to the above configuration, and the shaped steel 36 and the square steel pipe 34 may be joined by using another method such as welding. Further, a reinforcing member 40 having a C-shaped cross section is joined to the inner surface of the shaped steel 36. The reinforcing member 40 is channel steel, and the outer surface of the web portion 40A and the outer surface of both flange portions 40B are joined to the inner surface of the web portion 36A of the shaped steel 36 and the inner surface of both flange portions 36B, respectively. The method of joining the shaped steel 36 and the reinforcing member 40 is not particularly limited. For example, the shaped steel 36 and the reinforcing member 40 may be joined by welding.
(縦枠材26)
図2に示されるように、縦枠材26は、縦枠材24と縦枠材28の間に配置されており、枠材22の幅方向中央部に位置する部分を形成している。
(Vertical frame material 26)
As shown in FIG. 2, the vertical frame member 26 is arranged between the vertical frame member 24 and the vertical frame member 28, and forms a portion located at the central portion in the width direction of the frame member 22.
この縦枠材26は、図5及び図6に示されるように、縦枠材28側(言い換えると、枠材22の幅方向他方側)が開放された断面がC字形状の形鋼42と、を備えている。 As shown in FIGS. 5 and 6, the vertical frame member 26 has a C-shaped cross section with the vertical frame member 28 side (in other words, the other side in the width direction of the frame member 22) open. , Is equipped.
(縦枠材28)
図2に示されるように、縦枠材28は、枠材22の幅方向他方側(図2及び図5では右側)の部分を形成している。
(Vertical frame material 28)
As shown in FIG. 2, the vertical frame member 28 forms a portion of the frame member 22 on the other side in the width direction (right side in FIGS. 2 and 5).
この縦枠材28は、図5及び図6に示されるように、縦枠材26を挟んで縦枠材24と対称に構成されている。具体的には、縦枠材28は、外枠部分を形成する角形鋼管34と、内枠部分を形成し、縦枠材26側(言い換えると、枠材22の幅方向一方側(図2及び図5では左側))が開放された形鋼36と、形鋼36を補強する補強部材40とを備えている。 As shown in FIGS. 5 and 6, the vertical frame member 28 is configured symmetrically with the vertical frame member 24 with the vertical frame member 26 interposed therebetween. Specifically, the vertical frame member 28 forms the square steel pipe 34 forming the outer frame portion and the inner frame portion, and forms the vertical frame member 26 side (in other words, one side in the width direction of the frame member 22 (FIG. 2 and). In FIG. 5, the left side)) is provided with the open shaped steel 36 and the reinforcing member 40 for reinforcing the shaped steel 36.
図2に示されるように、横枠材30は、断面が矩形状の角形鋼管によって形成されている。この横枠材30には、縦枠材24、26、28の各々の上端がねじやボルト等のファスナー又は溶接等によって接合されている。 As shown in FIG. 2, the horizontal frame member 30 is formed of a square steel pipe having a rectangular cross section. The upper ends of the vertical frame members 24, 26, and 28 are joined to the horizontal frame member 30 by fasteners such as screws and bolts, welding, or the like.
図2に示されるように、横枠材32は、横枠材30と同様に、断面が矩形状の角形鋼管によって形成されている。この横枠材30には、縦枠材24、26、28の各々の下端がねじやボルト等のファスナー又は溶接等によって接合されている。 As shown in FIG. 2, the horizontal frame member 32 is formed of a square steel pipe having a rectangular cross section, similarly to the horizontal frame member 30. The lower ends of the vertical frame members 24, 26, and 28 are joined to the horizontal frame member 30 by fasteners such as screws and bolts, welding, or the like.
図2に示されるように、枠材22は、横枠材30と横枠材32の水平方向の相対変位に対する剛性を補強するための補剛部材44、46を備えている。補剛部材44は、縦枠材24と縦枠材26との間で且つ上下方向の略中央部に配置されている。また、補剛部材44は、一端が縦枠材24にドリルねじ48で接合され、他端が縦枠材26にドリルねじ48で接合されている。一方、補剛部材46は、縦枠材24と縦枠材26との間で且つ上下方向の略中央部に配置されている。また、補剛部材46は、一端が縦枠材26に補剛部材44の他端と共にドリルねじ48で接合され、他端が縦枠材28にドリルねじ48で接合されている。なお、枠材22の剛性が確保される場合には、補剛部材44、46を省略してもよい。 As shown in FIG. 2, the frame member 22 includes stiffening members 44 and 46 for reinforcing the rigidity of the horizontal frame member 30 and the horizontal frame member 32 with respect to the relative displacement in the horizontal direction. The stiffening member 44 is arranged between the vertical frame member 24 and the vertical frame member 26 and at a substantially central portion in the vertical direction. Further, one end of the stiffening member 44 is joined to the vertical frame member 24 with a drill screw 48, and the other end is joined to the vertical frame member 26 with a drill screw 48. On the other hand, the stiffening member 46 is arranged between the vertical frame member 24 and the vertical frame member 26 and at a substantially central portion in the vertical direction. Further, one end of the stiffening member 46 is joined to the vertical frame member 26 together with the other end of the stiffening member 44 by a drill screw 48, and the other end is joined to the vertical frame member 28 by a drill screw 48. If the rigidity of the frame member 22 is ensured, the stiffening members 44 and 46 may be omitted.
(壁面材50)
図1に示されるように、壁面材50は、矩形状に形成された鋼板であり、枠材22に接合されている。本実施形態の耐力壁20では、壁面材50を2枚用いており、一の壁面材50が縦枠材24と縦枠材26に接合され、他の壁面材50が縦枠材26と縦枠材28に接合されている。具体的には、一の壁面材50の幅方向の両端部が一対の縦材である縦枠材24及び縦枠材26にそれぞれ複数のドリルねじ52を用いて接合されている。また、他の壁面材50の幅方向の両端部が一対の縦材である縦枠材26及び縦枠材28にそれぞれ複数のドリルねじ52を用いて接合されている。なお、2枚の壁面材50は、同一寸法であるが、本発明はこの構成に限定されず、異なる寸法であってもよい。
(Wall material 50)
As shown in FIG. 1, the wall surface material 50 is a steel plate formed in a rectangular shape and is joined to the frame material 22. In the bearing wall 20 of the present embodiment, two wall material 50s are used, one wall material 50 is joined to the vertical frame material 24 and the vertical frame material 26, and the other wall material 50 is vertically connected to the vertical frame material 26. It is joined to the frame material 28. Specifically, both ends of one wall surface member 50 in the width direction are joined to the vertical frame member 24 and the vertical frame member 26, which are a pair of vertical members, by using a plurality of drill screws 52, respectively. Further, both ends of the other wall surface material 50 in the width direction are joined to the vertical frame member 26 and the vertical frame member 28, which are a pair of vertical members, by using a plurality of drill screws 52, respectively. Although the two wall surface materials 50 have the same dimensions, the present invention is not limited to this configuration and may have different dimensions.
なお、一の壁面材50と縦枠材24及び縦枠材26との接合のためにドリルねじ52がねじ込まれた部分、及び、他の壁面材50と縦枠材26及び縦枠材28との接合のためにドリルねじ52がねじ込まれた部分を接合部60と称する。 The portion where the drill screw 52 is screwed in for joining the one wall surface material 50, the vertical frame material 24, and the vertical frame material 26, and the other wall surface material 50, the vertical frame material 26, and the vertical frame material 28. The portion where the drill screw 52 is screwed in for joining is referred to as a joint portion 60.
また、図1及び図3Aに示されるように、接合部60は、上下方向に間隔をあけて複数形成されている。なお、本実施形態の壁面材50では、接合部60が略一定の間隔で設けられているが、本発明はこの構成に限定されない。例えば、耐力壁に水平荷重が作用した場合にせん断力が大きく作用する領域に接合部を密に配置して、上下方向に隣接する接合部に作用するせん断力を均一に近づけてもよい。 Further, as shown in FIGS. 1 and 3A, a plurality of joint portions 60 are formed at intervals in the vertical direction. In the wall surface material 50 of the present embodiment, the joint portions 60 are provided at substantially constant intervals, but the present invention is not limited to this configuration. For example, the joints may be densely arranged in a region where a large shear force acts when a horizontal load is applied to the bearing wall so that the shear forces acting on the adjacent joints in the vertical direction are uniformly approached.
また、図3Aに示されるように、壁面材50には、上下方向に間隔をあけて複数(本実施形態では7つ)の凹部54が形成されている。これら7つの凹部54は、上下方向に1列となるように形成されている。そして、1列に並んだ凹部54は、壁面材50の幅方向の中心に対してオフセットしている。換言すると、上下方向に隣接する凹部54の中心を通って上下方向に延びる直線SLが、幅方向の一方側又は他方側に寄っている(図3Aでは直線SLが右側に寄っている。)。なお、ここでいう凹部54の中心とは、壁面材50を板厚方向で見て、凹部54の開口中心を指す。 Further, as shown in FIG. 3A, the wall surface material 50 is formed with a plurality of recesses 54 (seven in the present embodiment) at intervals in the vertical direction. These seven recesses 54 are formed so as to form a row in the vertical direction. The recesses 54 arranged in a row are offset from the center of the wall surface material 50 in the width direction. In other words, the straight line SL extending in the vertical direction through the center of the recess 54 adjacent in the vertical direction is closer to one side or the other side in the width direction (in FIG. 3A, the straight line SL is closer to the right side). The center of the recess 54 as used herein refers to the center of the opening of the recess 54 when the wall surface material 50 is viewed in the plate thickness direction.
図3Bに示されるように、凹部54は、壁面材50の一般部50Aに対して板厚方向(本実施形態では耐力壁20の厚み方向Tと同じ)に突出する環状の壁部54Aと、壁部54Aの突出方向(図中矢印Pで示す方向)の端部を閉じる底部54Bとを有している。この凹部54は、壁面材50となる鋼板にプレス加工が実施されて凹部54が形成されている。なお、本発明は上記構成に限定されず、例えば、壁面材50となる鋼板にプレス加工で貫通孔を形成し、この貫通孔の縁部に有底筒状部材の開口部を接合して凹部54を形成してもよい。 As shown in FIG. 3B, the recess 54 includes an annular wall portion 54A protruding in the plate thickness direction (same as the thickness direction T of the bearing wall 20 in this embodiment) with respect to the general portion 50A of the wall surface material 50. It has a bottom portion 54B that closes an end portion of the wall portion 54A in the projecting direction (direction indicated by the arrow P in the drawing). The recess 54 is formed by pressing a steel plate to be the wall surface material 50. The present invention is not limited to the above configuration. For example, a through hole is formed in a steel plate serving as a wall surface material 50 by press working, and an opening of a bottomed tubular member is joined to a recessed portion at the edge of the through hole. 54 may be formed.
また、図3Aに示されるように、凹部54の形状は、壁面材50の板厚方向から見て、円形である。そして、壁面材50の板厚方向から見て、上下方向に隣接する凹部54の形状及び大きさが、同じ形状及び大きさとされている。なお、凹部54の開口寸法は、例えば、直径200mm以上に設定することが好ましい。 Further, as shown in FIG. 3A, the shape of the recess 54 is circular when viewed from the plate thickness direction of the wall surface material 50. The shape and size of the recesses 54 adjacent to each other in the vertical direction when viewed from the plate thickness direction of the wall surface material 50 are the same shape and size. The opening size of the recess 54 is preferably set to, for example, a diameter of 200 mm or more.
図3Aに示されるように、上下方向に隣接する凹部54の中心間距離D1は、縦枠材24における接合部60と縦枠材26における接合部60との間の水平距離D2よりも短くなっている。そして、凹部54の水平方向に沿った幅W1は、接合点間の水平距離D2の30%〜80%の範囲内に設定されている。 As shown in FIG. 3A, the center-to-center distance D1 of the recesses 54 adjacent in the vertical direction is shorter than the horizontal distance D2 between the joint portion 60 of the vertical frame member 24 and the joint portion 60 of the vertical frame member 26. ing. The width W1 of the recess 54 along the horizontal direction is set within a range of 30% to 80% of the horizontal distance D2 between the joint points.
図1に示されるように、一の壁面材50の上端部と他の壁面材50の上端部は、横枠材30にそれぞれ複数のドリルねじ52を用いて接合されている。そして、一の壁面材50の下端部と他の壁面材50の下端部は、横枠材32にそれぞれ複数のドリルねじ52を用いて接合されている。 As shown in FIG. 1, the upper end portion of one wall surface material 50 and the upper end portion of the other wall surface material 50 are joined to the horizontal frame member 30 by using a plurality of drill screws 52, respectively. Then, the lower end portion of one wall surface material 50 and the lower end portion of the other wall surface material 50 are joined to the horizontal frame member 32 by using a plurality of drill screws 52, respectively.
(本実施形態の作用並びに効果)
建物の外装材として用いられる耐力壁には、地震の初期弾性段階では、剛性・設計耐力が高く、終局段階では最大耐力が設計耐力よりも大きい(例えば、1.5倍程度)ことが求められている。さらに、この耐力壁には、大変形時においても耐力が安定している(急激な低下がない)ことも求められている。これらを考慮のうえ、本発明者らは、本発明の開発に至った。
(Action and effect of this embodiment)
The bearing wall used as the exterior material of the building is required to have high rigidity and design strength in the initial elastic stage of the earthquake, and the maximum strength is larger than the design strength (for example, about 1.5 times) in the final stage. ing. Further, the bearing wall is also required to have a stable bearing capacity (without a sudden decrease) even at the time of large deformation. Taking these into consideration, the present inventors have reached the development of the present invention.
耐力壁20では、壁面材50に凹部54を上下方向に間隔をあけて形成している。ここで、耐力壁20では、壁面材50に底部54Bを有する凹部54を形成するため、例えば、縁部にリブを形成した開口(バーリング孔)を形成する壁面材と比べて、地震の初期から終局までの剛性及び耐力を向上させることができる。具体的には、耐力壁20では、地震の初期段階(一例として、層間変形角1/300時)において、壁面材50の上下方向に隣接する凹部54間にせん断応力が集中する。このせん断応力が集中するメカニズムについては壁面材に円形バーリング孔が形成された比較例の耐力壁ともに共通である。一方で、凹部の圧縮抵抗力については、本実施形態の耐力壁20が比較例の上記耐力壁と比べて若干高くなる。これは壁部54Aが底部54Bで閉じられているためと推定される。これにより、接合部60に伝達されるせん断力が低くなる。以上より、耐力壁20では、地震の初期段階において、比較例の上記耐力壁よりも剛性及び耐力が向上する。
また、耐力壁20では、地震の終局段階(一例として、層間変形角1/100時)において、図4に示されるように、壁面材50の上下方向に隣接する凹部54間を斜めに結ぶ方向に引張力TSが生じており、凹部54の圧縮抵抗力CRと、各接合部60に作用するせん断力SFとで力の釣合いが保たれている。一方、比較例の上記耐力壁も耐力壁20と同様のメカニズムで力の釣合いが保たれるが、バーリング孔の圧縮抵抗力が凹部54の圧縮抵抗力よりも低いため、釣合いが保てるせん断力の範囲が狭い。このように、凹部54の圧縮抵抗力CRの大きさが地震の初期から終局まで耐力壁の耐力に影響を与えていると推定される。このため、耐力壁20は、図13に示されるように、比較例の上記耐力壁と比べて、地震の初期から終局段階まで剛性及び耐力を向上させることができる。
In the bearing wall 20, recesses 54 are formed in the wall surface material 50 at intervals in the vertical direction. Here, in the load-bearing wall 20, since the recess 54 having the bottom portion 54B is formed in the wall surface material 50, as compared with, for example, a wall surface material having an opening (burring hole) having ribs formed at the edge portion, from the initial stage of the earthquake. Rigidity and proof stress until the end can be improved. Specifically, in the bearing wall 20, shear stress is concentrated between recesses 54 adjacent in the vertical direction of the wall surface material 50 in the initial stage of an earthquake (for example, when the interlayer deformation angle is 1/300). The mechanism by which this shear stress is concentrated is the same for the bearing walls of the comparative example in which circular burring holes are formed in the wall surface material. On the other hand, regarding the compression resistance of the recess, the bearing wall 20 of the present embodiment is slightly higher than the bearing wall of the comparative example. It is presumed that this is because the wall portion 54A is closed at the bottom portion 54B. As a result, the shearing force transmitted to the joint portion 60 is reduced. From the above, the bearing wall 20 has higher rigidity and proof stress than the above-mentioned bearing wall of the comparative example at the initial stage of the earthquake.
Further, in the bearing wall 20, at the final stage of the earthquake (for example, when the interlayer deformation angle is 1/100), as shown in FIG. 4, the direction in which the recesses 54 adjacent to each other in the vertical direction of the wall surface material 50 are diagonally connected. A tensile force TS is generated in the recess 54, and a balance between the compressive resistance CR of the recess 54 and the shearing force SF acting on each joint 60 is maintained. On the other hand, the bearing wall of the comparative example also maintains the balance of forces by the same mechanism as the bearing wall 20, but the compression resistance of the burring hole is lower than the compression resistance of the recess 54, so that the shear force that can be balanced can be maintained. The range is narrow. In this way, it is estimated that the magnitude of the compressive resistance CR of the recess 54 affects the bearing capacity of the bearing wall from the beginning to the end of the earthquake. Therefore, as shown in FIG. 13, the bearing wall 20 can improve the rigidity and the bearing capacity from the initial stage to the final stage of the earthquake as compared with the bearing wall of the comparative example.
また、耐力壁20では、板厚方向から見て、凹部54の形状を円形としていることから、例えば、凹部の形状を多角形状とした構成と比べて、凹部54への局部応力集中を緩和できるため、地震の終局において耐力を安定させることができる。 Further, since the bearing wall 20 has a circular shape of the recess 54 when viewed from the plate thickness direction, local stress concentration in the recess 54 can be relaxed as compared with, for example, a configuration in which the shape of the recess is polygonal. Therefore, the bearing capacity can be stabilized at the end of the earthquake.
さらに耐力壁20では、板厚方向から見て、隣接する凹部54の形状及び大きさを同じ形状および大きさにしていることから、例えば、隣接する凹部の形状及び大きさの少なくとも一方が異なる構成と比べて、凹部54毎に作用する応力を一定にできるため、地震の初期から終局までの剛性及び耐力を確保しやすい。また、壁面材50に凹部54を形成するに際して、凹部の形状及び大きさに合わせた様々な加工具(金型含む)を用いる必要がないため、壁面材50の製造(加工)が容易になる。 Further, in the bearing wall 20, since the shapes and sizes of the adjacent recesses 54 are the same when viewed from the plate thickness direction, for example, at least one of the shapes and sizes of the adjacent recesses is different. As compared with the above, since the stress acting on each recess 54 can be made constant, it is easy to secure the rigidity and proof stress from the beginning to the end of the earthquake. Further, when forming the recess 54 in the wall material 50, it is not necessary to use various processing tools (including dies) according to the shape and size of the recess, so that the wall material 50 can be easily manufactured (processed). ..
そして、耐力壁20では、中心間距離D1を水平距離D2よりも短くしていることから、地震による水平荷重が耐力壁20に伝達された際に、壁面材50において、接合部60と凹部54との水平方向の中間部のせん断応力(ミーゼス応力)値を上下方向に隣接する凹部54間の上下方向の中間部のせん断応力値よりも低くすることができる。これにより、一対の縦材(縦枠材24と縦枠材26、または縦枠材26と縦枠材28)に生じる水平方向へのせん断応力が低減される。その結果、壁面材50において上下方向に隣接する凹部54間の上下方向の中間部が変形する前に、壁面材50と一対の縦材との接合部60が変形することが抑制され、地震エネルギーを安定して吸収することが可能となる。 Since the center-to-center distance D1 of the bearing wall 20 is shorter than the horizontal distance D2, when the horizontal load due to the earthquake is transmitted to the bearing wall 20, the joint portion 60 and the recess 54 are formed in the wall material 50. The shear stress value (Mieses stress) in the horizontal intermediate portion between the two can be made lower than the shear stress value in the vertical intermediate portion between the recesses 54 adjacent in the vertical direction. As a result, the shear stress in the horizontal direction generated in the pair of vertical members (vertical frame member 24 and vertical frame member 26, or vertical frame member 26 and vertical frame member 28) is reduced. As a result, it is suppressed that the joint portion 60 between the wall surface material 50 and the pair of vertical members is deformed before the intermediate portion in the vertical direction between the recesses 54 adjacent in the vertical direction is deformed in the wall surface material 50, and the seismic energy. Can be absorbed stably.
さらに耐力壁20では、凹部54の幅W1を水平距離D2の30%〜80%の範囲内としていることから、壁面材50において上下方向に隣接する凹部54間の中間部が変形する前に、接合部60が変形することを効果的に抑制できる。 Further, in the bearing wall 20, since the width W1 of the recess 54 is within the range of 30% to 80% of the horizontal distance D2, before the intermediate portion between the recesses 54 adjacent in the vertical direction in the wall material 50 is deformed, Deformation of the joint portion 60 can be effectively suppressed.
前述の実施形態の耐力壁20では、枠材22と壁面材50との接合にドリルねじ52を用いているが、本発明はこの構成に限定されない。例えば、ドリルねじ52の代わり釘を用いてもよい。また、枠材22と壁面材50をスポット溶接で接合してもよい。スポット溶接を用いた場合は、枠材22と壁面材50の溶接された部分を接合部と称する。 In the bearing wall 20 of the above-described embodiment, the drill screw 52 is used for joining the frame material 22 and the wall surface material 50, but the present invention is not limited to this configuration. For example, a nail may be used instead of the drill screw 52. Further, the frame material 22 and the wall surface material 50 may be joined by spot welding. When spot welding is used, the welded portion of the frame material 22 and the wall surface material 50 is referred to as a joint portion.
前述の実施形態の耐力壁20では、壁面材50に下孔を形成していないが、本発明はこの構成に限定されず、壁面材50に下孔又は孔開け用の目印を形成してもよい。 In the bearing wall 20 of the above-described embodiment, the wall surface material 50 is not formed with a pilot hole, but the present invention is not limited to this configuration, and the wall surface material 50 may be formed with a pilot hole or a mark for drilling. Good.
前述の実施形態の耐力壁20では、板厚方向から見て、凹部54の形状を円形にしているが、本発明はこの構成に限定されず、例えば、凹部54の形状を上下方向と長軸が一致する縦向きの楕円形としてもよいし、上下方向と短軸が一致する横向きの楕円形としてもよい。 In the bearing wall 20 of the above-described embodiment, the shape of the recess 54 is circular when viewed from the plate thickness direction, but the present invention is not limited to this configuration. For example, the shape of the recess 54 is vertically and long-axis. It may be a vertically oriented ellipse in which the vertical directions match, or a horizontal ellipse in which the vertical direction and the minor axis coincide with each other.
また、前述の実施形態の耐力壁20では、板厚方向から見て、凹部54の形状を円形にしているが、本発明はこの構成に限定されない。例えば、図7、8、9、10にそれぞれ示される各耐力壁70、80、90、100のように、板厚方向から見て、各壁面材72、82、92、102に形成される各凹部74、84、94、104の形状をそれぞれ偶数個の角部74C、84C、94C、104Cを有する多角形状としてもよい。なお、ここでいう「多角形状」には、角部が角張っている多角形及び角部が円弧状に湾曲している(丸まっている)多角形を含む。
具体的には、耐力壁70は、図7に示されるように板厚方向から見て、上記直線SLに対して左右対称で且つ直線SL上に凹部74の対向する角部74Cの頂点同士が位置するように壁面材72に形成されている。この凹部74の形状は、角部74Cの頂点を直線SL上に配置した正方形状とされている。なお、図7の符号74Aは凹部74の壁部を示し、符号74Bは凹部74の底部を示している。
耐力壁80は、図8に示されるように板厚方向から見て、上記直線SLに対して左右対称で且つ直線SL上に凹部84の対向する角部84Cの頂点同士が位置するように壁面材82に形成されている。この凹部84の形状は、角部84Cの頂点を直線SL上に配置した正六形状とされている。なお、図8の符号84Aは凹部84の壁部を示し、符号84Bは凹部84の底部を示している。
耐力壁90は、図9に示されるように板厚方向から見て、上記直線SLに対して左右対称で且つ直線SL上に凹部94の対向する角部94Cの頂点同士が位置しないように壁面材92に形成されている。この凹部94の形状は、角部94Cの頂点を直線SL上に配置した正方形状とされている。なお、図9の符号94Aは凹部94の壁部を示し、符号94Bは凹部94の底部を示している。
耐力壁100は、図10に示されるように板厚方向から見て、上記直線SLに対して左右対称で且つ直線SL上に凹部104の対向する角部104Cの頂点同士が位置しないように壁面材102に形成されている。この凹部104の形状は、角部104Cの頂点を直線SL上に配置した正六角形状とされている。なお、図10の符号104Aは凹部104の壁部を示し、符号104Bは凹部104の底部を示している。
なお、各耐力壁70、80、90、100は、各凹部の形状を除いて耐力壁20と同じ構成である。このため、凹部の形状が円形であることで得られる効果を除いて耐力壁20と同様の効果を得ることができる。
さらに、耐力壁70では、板厚方向から見て、凹部74を上下方向に延びる直線SLに対して左右対称で且つ該直線SL上に凹部74の対向する角部74Cの頂点同士が位置するように壁面材72に形成している。このため、上記耐力壁70では、例えば、凹部が直線SLに対して左右対称で且つ該直線上に対向する角部の頂点同士が位置しない構成と比べて、図13に示されるように、地震の初期における剛性及び耐力を向上させることができる。耐力壁90においても、耐力壁70と同様の効果を得ることができる。
Further, in the bearing wall 20 of the above-described embodiment, the shape of the recess 54 is circular when viewed from the plate thickness direction, but the present invention is not limited to this configuration. For example, as shown in FIGS. 7, 8, 9, and 10, the bearing walls 70, 80, 90, and 100 are formed on the wall members 72, 82, 92, and 102 when viewed from the plate thickness direction. The shape of the recesses 74, 84, 94, 104 may be a polygonal shape having an even number of corner portions 74C, 84C, 94C, 104C, respectively. The "polygon shape" referred to here includes a polygon whose corners are angular and a polygon whose corners are curved (rounded) in an arc shape.
Specifically, as shown in FIG. 7, the bearing wall 70 is symmetrical with respect to the straight line SL and the vertices of the concave portions 74C facing each other on the straight line SL are located on the straight line SL. It is formed on the wall surface material 72 so as to be located. The shape of the recess 74 is a square shape in which the vertices of the corners 74C are arranged on a straight line SL. Reference numeral 74A in FIG. 7 indicates a wall portion of the recess 74, and reference numeral 74B indicates a bottom portion of the recess 74.
As shown in FIG. 8, the load-bearing wall 80 is symmetrical with respect to the straight line SL so that the vertices of the opposite corner portions 84C of the recesses 84 are located on the straight line SL. It is formed on the material 82. The shape of the recess 84 is a regular hexagonal shape in which the vertices of the corners 84C are arranged on a straight line SL. Reference numeral 84A in FIG. 8 indicates a wall portion of the recess 84, and reference numeral 84B indicates a bottom portion of the recess 84.
As shown in FIG. 9, the load-bearing wall 90 is symmetrical with respect to the straight line SL and is a wall surface so that the vertices of the opposite corner portions 94C of the recess 94 are not located on the straight line SL. It is formed on the material 92. The shape of the recess 94 is a square shape in which the vertices of the corners 94C are arranged on a straight line SL. Reference numeral 94A in FIG. 9 indicates a wall portion of the recess 94, and reference numeral 94B indicates a bottom portion of the recess 94.
As shown in FIG. 10, the load-bearing wall 100 is symmetrical with respect to the straight line SL and is a wall surface so that the vertices of the opposite corners 104C of the recesses 104 are not located on the straight line SL. It is formed on the material 102. The shape of the recess 104 is a regular hexagon shape in which the vertices of the corners 104C are arranged on a straight line SL. Reference numeral 104A in FIG. 10 indicates a wall portion of the recess 104, and reference numeral 104B indicates a bottom portion of the recess 104.
Each of the bearing walls 70, 80, 90, 100 has the same configuration as the bearing wall 20 except for the shape of each recess. Therefore, the same effect as that of the bearing wall 20 can be obtained except for the effect obtained by the circular shape of the concave portion.
Further, in the bearing wall 70, when viewed from the plate thickness direction, the recesses 74 are symmetrical with respect to the straight line SL extending in the vertical direction, and the vertices of the opposite corners 74C of the recesses 74 are located on the straight line SL. It is formed on the wall surface material 72. Therefore, in the load-bearing wall 70, for example, as compared with a configuration in which the recesses are symmetrical with respect to the straight line SL and the vertices of the corners facing the straight line are not located, as shown in FIG. 13, an earthquake occurs. It is possible to improve the rigidity and proof stress at the initial stage of. The same effect as that of the bearing wall 70 can be obtained in the bearing wall 90.
前述の各実施形態の耐力壁70、80では、板厚方向から見て、各壁面材72、82に形成される各凹部74、84の形状をそれぞれ偶数個の角部74C、84Cを有する正方形状又は正六角形状としているが、本発明はこの構成に限定されない。耐力壁の板厚方向から見て、正八角形状やそれ以上の正多角形状であってもよい。 In the bearing walls 70 and 80 of the above-described embodiments, when viewed from the plate thickness direction, the shapes of the recesses 74 and 84 formed in the wall surface members 72 and 82 are square having an even number of corner portions 74C and 84C, respectively. Although it has a shape or a regular hexagonal shape, the present invention is not limited to this configuration. When viewed from the plate thickness direction of the bearing wall, it may have a regular octagonal shape or a regular polygonal shape larger than that.
前述の実施形態の耐力壁20では、縦枠材24、24、26が一対の横枠材30、32に加えて補剛部材44、46でも連結されているが、本発明はこの構成に限定されない。例えば、図11に示される耐力壁110のように、縦枠材24、26、28は、各々の上端部と下端部とが一対の横枠材30、32のみで連結されている構成でもよい。具体的には、耐力壁110の枠材112は、縦枠材24、26、28と一対の横枠材30、32とで構成されており、耐力壁20の補剛部材44、46は備えていない。このような耐力壁110では、縦枠材24、26、28を一対の横枠材30、32のみで連結しているため、例えば、一対の横枠材30、32に加えて補剛部材44、46を用いる耐力壁20と比べて、図14に示されるように、地震の終局における耐力の過剰な上昇を抑制することができる。 In the bearing wall 20 of the above-described embodiment, the vertical frame members 24, 24, 26 are connected by the stiffening members 44, 46 in addition to the pair of horizontal frame members 30, 32, but the present invention is limited to this configuration. Not done. For example, as in the bearing wall 110 shown in FIG. 11, the vertical frame members 24, 26, and 28 may have a configuration in which the upper end and the lower end are connected only by a pair of horizontal frame members 30, 32. .. Specifically, the frame member 112 of the bearing wall 110 is composed of vertical frame members 24, 26, 28 and a pair of horizontal frame members 30, 32, and includes stiffening members 44, 46 of the bearing wall 20. Not. In such a bearing wall 110, since the vertical frame members 24, 26, and 28 are connected only by the pair of horizontal frame members 30, 32, for example, in addition to the pair of horizontal frame members 30, 32, the stiffening member 44 As shown in FIG. 14, it is possible to suppress an excessive increase in the bearing capacity at the end of the earthquake as compared with the bearing wall 20 using the 46.
前述の実施形態の耐力壁20は、壁面材50が枠材22に接合されて構成されているが、本発明はこの構成に限定されない。例えば、図12に示される耐力壁120のように、上下方向に延びて、それぞれの上端が建物の水平部材HM1に連結され、それぞれの下端が建物の水平部材HM2に連結される一対の縦材122にドリルねじ52を用いて壁面材124を接合してもよい。なお、壁面材124には、壁面材50と同様に、凹部54が形成されている。このため、耐力壁120は、耐力壁20と同様の作用並びに効果を得ることができる。 The bearing wall 20 of the above-described embodiment is configured by joining the wall surface material 50 to the frame member 22, but the present invention is not limited to this configuration. For example, as in the bearing wall 120 shown in FIG. 12, a pair of vertical members extending in the vertical direction, the upper ends of which are connected to the horizontal member HM1 of the building, and the lower ends of each are connected to the horizontal member HM2 of the building. The wall surface material 124 may be joined to 122 by using a drill screw 52. The wall surface material 124 is formed with a recess 54, similarly to the wall surface material 50. Therefore, the bearing wall 120 can obtain the same action and effect as the bearing wall 20.
次に本発明の耐力壁が地震の初期から終局までの剛性及び耐力を向上させられることを立証するため、有限要素解析によるシミュレーションを実施して耐力壁の層間変化角に対する水平荷重の変化の特性を得た。得られた特性については、図13において水平荷重を縦軸、層間変化角を横軸としてグラフで示した。なお、シミュレーションした実施例及び比較例は、以下の通りである。 Next, in order to prove that the bearing wall of the present invention can improve the rigidity and yield strength from the beginning to the end of the earthquake, a simulation by finite element analysis is performed and the characteristics of the change of the horizontal load with respect to the interlayer change angle of the bearing wall. Got The obtained characteristics are shown graphically in FIG. 13 with the horizontal load on the vertical axis and the interlayer change angle on the horizontal axis. The simulated examples and comparative examples are as follows.
実施例1:本発明に係る実施形態の耐力壁20と同じ構成であり、円形の凹部の大きさ(直径)を200mmとした耐力壁である(図3A参照)。
実施例2:本発明に係る実施形態の耐力壁70と同じ構成であり、正方形状の凹部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図7参照)。
実施例3:本発明に係る実施形態の耐力壁80と同じ構成であり、正六角形状の凹部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図8参照)。
実施例4:本発明に係る実施形態の耐力壁90と同じ構成であり、正方形状の凹部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図9参照)。
実施例5:本発明に係る実施形態の耐力壁100と同じ構成であり、正六角形状の凹部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図10参照)。
比較例1:円形の凹部の代わりに円形のバーリング孔(直径200mm)を形成した構成を除いて実施例1の耐力壁と同じ構成の耐力壁である。
Example 1: A bearing wall having the same configuration as the bearing wall 20 of the embodiment according to the present invention, with a circular recess having a size (diameter) of 200 mm (see FIG. 3A).
Example 2: A bearing wall having the same configuration as the bearing wall 70 of the embodiment according to the present invention, in which the size of the square recess is set to a size such that the diameter of the inscribed circle is 200 mm (see FIG. 7).
Example 3: A load-bearing wall having the same configuration as the load-bearing wall 80 of the embodiment according to the present invention, and having a regular hexagonal recess having a diameter of an inscribed circle of 200 mm (see FIG. 8). ..
Example 4: A bearing wall having the same configuration as the bearing wall 90 of the embodiment according to the present invention, in which the size of the square recess is set to a size such that the diameter of the inscribed circle is 200 mm (see FIG. 9).
Example 5: A bearing wall having the same configuration as the bearing wall 100 of the embodiment according to the present invention, and having a regular hexagonal concave portion having a diameter of an inscribed circle of 200 mm (see FIG. 10). ..
Comparative Example 1: A bearing wall having the same configuration as the bearing wall of Example 1 except that a circular burring hole (diameter 200 mm) is formed instead of the circular recess.
図13に示される通り、実施例1の耐力壁と、実施例1と開口形状が同じ比較例1の耐力壁では、地震の初期から終局までの剛性及び耐力が比較例1よりも実施例1で全体として高いことが分かる。 As shown in FIG. 13, the bearing wall of Example 1 and the bearing wall of Comparative Example 1 having the same opening shape as Example 1 have higher rigidity and bearing capacity than Comparative Example 1 from the beginning to the end of the earthquake. It turns out that it is expensive as a whole.
また、補剛材なしとした場合のシミュレーションも実施して耐力壁の層間変化角に対する水平荷重の変化の特性を得た。得られた特性については、図14において水平荷重を縦軸、層間変化角を横軸としてグラフで示した。なお、シミュレーションした実施例及び比較例は、以下の通りである。 We also conducted a simulation without a stiffener to obtain the characteristics of the change in horizontal load with respect to the interlayer change angle of the bearing wall. The obtained characteristics are shown graphically in FIG. 14 with the horizontal load on the vertical axis and the interlayer change angle on the horizontal axis. The simulated examples and comparative examples are as follows.
実施例6:枠材に補剛材を設けていない点を除いて、実施例1の耐力壁と同じ構成の耐力壁である(図11参照)。
実施例7:枠材に補剛材を設けていない点を除いて、実施例2の耐力壁と同じ構成の耐力壁である。
実施例8:枠材に補剛材を設けていない点を除いて、実施例3の耐力壁と同じ構成の耐力壁である。
実施例9:枠材に補剛材を設けていない点を除いて、実施例4の耐力壁と同じ構成の耐力壁である。
実施例10:枠材に補剛材を設けていない点を除いて、実施例5の耐力壁と同じ構成の耐力壁である。
比較例1:円形の凹部の代わりに円形のバーリング孔(直径200mm)を形成している点を除いて、実施例1の耐力壁と同じ構成の耐力壁である。補剛材も設けられている。
Example 6: A bearing wall having the same configuration as the bearing wall of Example 1 except that the frame material is not provided with a stiffener (see FIG. 11).
Example 7: A bearing wall having the same configuration as the bearing wall of Example 2 except that the frame material is not provided with a stiffener.
Example 8: A bearing wall having the same configuration as the bearing wall of Example 3 except that the frame material is not provided with a stiffener.
Example 9: A bearing wall having the same configuration as the bearing wall of Example 4 except that the frame material is not provided with a stiffener.
Example 10: A bearing wall having the same configuration as the bearing wall of Example 5 except that the frame material is not provided with a stiffener.
Comparative Example 1: A bearing wall having the same configuration as the bearing wall of Example 1 except that a circular burring hole (diameter 200 mm) is formed instead of the circular recess. A stiffener is also provided.
図14に示される通り、補剛材を有さない実施例6の耐力壁と、実施例6と開口形状が同じで且つ補剛材を有する比較例1の耐力壁では、地震の初期段階における剛性及び耐力が略同程度であることが分かる。一方、地震の終局段階においては、実施例6の耐力壁は、比較例1の耐力壁よりも耐力が高い状態で安定していることが分かる。このことから、壁面材に凹部を設けた場合、バーリング孔を設けた場合と比較して、壁面材の剛性が向上するため、耐力壁に補剛材を用いなくても、地震の終局段階における耐力を向上させることができると推定される。 As shown in FIG. 14, the bearing wall of Example 6 having no stiffener and the bearing wall of Comparative Example 1 having the same opening shape as that of Example 6 and having a stiffener are in the initial stage of the earthquake. It can be seen that the rigidity and the bearing capacity are about the same. On the other hand, at the final stage of the earthquake, it can be seen that the bearing wall of Example 6 is stable in a state where the bearing wall is higher than that of Comparative Example 1. For this reason, when the wall surface material is provided with a recess, the rigidity of the wall surface material is improved as compared with the case where the wall surface material is provided with a burring hole. Therefore, even if a stiffener is not used for the bearing wall, at the final stage of the earthquake. It is presumed that the bearing capacity can be improved.
以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。例えば、前述の実施形態では、本発明の一実施形態に係る壁面材を耐力壁に用いているが、建物の床面や屋根面等のように面内剛性が必要となる部分に用いてもよい。また、断熱材を両側から金属板で挟む断熱サンドイッチパネル等に用いてもよい。この断熱サンドイッチパネルに用いる場合は、例えば、片方又は両方の金属板を壁面材としてもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and can be modified in various ways other than the above within a range not deviating from the gist thereof. Of course. For example, in the above-described embodiment, the wall surface material according to one embodiment of the present invention is used for the bearing wall, but it may also be used for a portion requiring in-plane rigidity such as a floor surface or a roof surface of a building. Good. Further, it may be used for a heat insulating sandwich panel or the like in which a heat insulating material is sandwiched between metal plates from both sides. When used for this heat insulating sandwich panel, for example, one or both metal plates may be used as the wall surface material.
20 耐力壁
24 縦枠材(縦材)
26 縦枠材(縦材)
28 縦枠材(縦材)
50 壁面材
50A 一般部
54 凹部
54A 壁部
54B 底部
54C 角部
70 耐力壁
72 壁面材
74 凹部
74A 壁部
74B 底部
74C 角部
80 耐力壁
82 壁面材
84 凹部
84A 壁部
84B 底部
84C 角部
90 耐力壁
92 壁面材
94 凹部
94A 壁部
94B 底部
94C 角部
100 耐力壁
102 壁面材
104 凹部
104A 壁部
104B 底部
104C 角部
110 耐力壁
120 耐力壁
122 縦材
124 壁面材
SL 直線
D1 中心間距離
D2 水平距離
W1 凹部の幅
20 Bearing wall 24 Vertical frame material (vertical material)
26 Vertical frame material (vertical material)
28 Vertical frame material (vertical material)
50 Wall material 50A General part 54 Recess 54A Wall 54B Bottom 54C Square 70 Bearing wall 72 Wall material 74 Recess 74A Wall 74B Bottom 74C Corner 80 Load-bearing wall 82 Wall material 84 Recess 84A Wall 84B Bottom 84C Wall 92 Wall material 94 Recess 94A Wall 94B Bottom 94C Corner 100 Load-bearing wall 102 Wall material 104 Recess 104A Wall 104B Bottom 104C Corner 110 Load-bearing wall 120 Load-bearing wall 122 Vertical material 124 Wall material SL Straight line D1 Center distance D2 Distance W1 Width of recess
Claims (8)
一対の前記縦材にそれぞれ接合された壁面材と、
前記壁面材の一対の前記縦材間に前記上下方向に間隔をあけて1列形成され、前記壁面材の一般部に対して板厚方向に突出する環状の壁部と、前記壁部の突出方向の端部を閉じる底部とを有する凹部と、
を備える耐力壁。 A pair of vertical members extending in the vertical direction,
A wall material joined to each of the pair of vertical members,
An annular wall portion formed in a row between the pair of vertical members of the wall surface material at intervals in the vertical direction and projecting in the plate thickness direction with respect to the general portion of the wall surface material, and a protrusion of the wall portion. A recess with a bottom that closes the end in the direction,
A bearing wall with.
前記壁面材には、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記凹部の対向する前記角部の頂点同士が位置するように前記凹部が形成されている、請求項1又は請求項2に記載の耐力壁。 When viewed from the plate thickness direction, the shape of the recess is a polygonal shape having an even number of corners.
The wall material is formed with the recesses symmetrical with respect to the straight line extending in the vertical direction and so that the vertices of the corners facing each other are located on the straight line. Or the bearing wall according to claim 2.
前記壁面材の一対の前記縦材間に前記上下方向に間隔をあけて1列形成され、前記壁面材の一般部に対して板厚方向に突出する環状の壁部と、前記壁部の突出方向の端部を閉じる底部とを有する凹部、を備える壁面材。
A wall material that is joined to a pair of vertical members that extend in the vertical direction.
An annular wall portion formed in a row between the pair of vertical members of the wall surface material at intervals in the vertical direction and projecting in the plate thickness direction with respect to the general portion of the wall surface material, and a protrusion of the wall portion. A wall material comprising a recess, with a bottom that closes the end in the direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019033170A JP2020139270A (en) | 2019-02-26 | 2019-02-26 | Bearing wall and wall material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019033170A JP2020139270A (en) | 2019-02-26 | 2019-02-26 | Bearing wall and wall material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020139270A true JP2020139270A (en) | 2020-09-03 |
Family
ID=72264536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019033170A Pending JP2020139270A (en) | 2019-02-26 | 2019-02-26 | Bearing wall and wall material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020139270A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659952A (en) * | 1980-10-06 | 1981-05-23 | Kajima Corp | Building structure |
JP2010031473A (en) * | 2008-07-25 | 2010-02-12 | Nisshin Steel Co Ltd | Steel plate integrated bearing wall and method of manufacturing the same |
JP2012067595A (en) * | 2010-01-13 | 2012-04-05 | Nippon Steel Corp | Panel |
JP2013059805A (en) * | 2011-09-15 | 2013-04-04 | Nippon Steel & Sumitomo Metal Corp | Panel material |
JP2018025057A (en) * | 2016-08-10 | 2018-02-15 | 新日鐵住金株式会社 | Load bearing wall |
-
2019
- 2019-02-26 JP JP2019033170A patent/JP2020139270A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5659952A (en) * | 1980-10-06 | 1981-05-23 | Kajima Corp | Building structure |
JP2010031473A (en) * | 2008-07-25 | 2010-02-12 | Nisshin Steel Co Ltd | Steel plate integrated bearing wall and method of manufacturing the same |
JP2012067595A (en) * | 2010-01-13 | 2012-04-05 | Nippon Steel Corp | Panel |
JP2013059805A (en) * | 2011-09-15 | 2013-04-04 | Nippon Steel & Sumitomo Metal Corp | Panel material |
JP2018025057A (en) * | 2016-08-10 | 2018-02-15 | 新日鐵住金株式会社 | Load bearing wall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9758963B2 (en) | Bearing wall and wall surface member for bearing wall | |
US8590220B2 (en) | Metal joint, damping structure, and architectural construction | |
JP4025708B2 (en) | Square steel box column | |
JP2018009410A (en) | Pillar beam joint structure | |
JP4710067B2 (en) | Beam-column joint structure | |
JP6096134B2 (en) | Damper | |
JP2018178466A (en) | Damper and method for manufacturing damper | |
JP6589922B2 (en) | Beam reinforcement structure and beam reinforcement method | |
JP5486430B2 (en) | Strength frame structure | |
JP6956466B2 (en) | Steel beam and column beam joint structure | |
JP6680005B2 (en) | Steel beam and beam-column joint structure | |
JP6427917B2 (en) | Beam-column joint structure | |
JP7196685B2 (en) | Bearing walls and wall materials | |
JP2020139270A (en) | Bearing wall and wall material | |
JP2013204306A (en) | Column-beam joining structure | |
JP6486209B2 (en) | Bearing wall and wall structure | |
JP2005325637A (en) | Bearing wall frame | |
JP6986751B2 (en) | Column-beam joint structure | |
JP6682903B2 (en) | Buckling stiffening structure and steel structure of H-shaped cross-section member | |
JP3221088U (en) | Bearing wall | |
JP2021139134A (en) | Load bearing wall and wooden building | |
JP6604095B2 (en) | Vertical frame and bearing wall | |
JP6783045B2 (en) | How to design column-beam joint structure and column-beam joint structure | |
JP2019157598A (en) | Steel plate earthquake resistant wall, and steel plate earthquake resistant wall structure comprising the same | |
JP7108766B1 (en) | load bearing member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211008 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230228 |