JP2020136512A - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2020136512A
JP2020136512A JP2019028669A JP2019028669A JP2020136512A JP 2020136512 A JP2020136512 A JP 2020136512A JP 2019028669 A JP2019028669 A JP 2019028669A JP 2019028669 A JP2019028669 A JP 2019028669A JP 2020136512 A JP2020136512 A JP 2020136512A
Authority
JP
Japan
Prior art keywords
base material
wiring
reinforcing member
surface side
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019028669A
Other languages
Japanese (ja)
Other versions
JP7279399B2 (en
Inventor
小川 健一
Kenichi Ogawa
健一 小川
充孝 永江
Mitsutaka Nagae
充孝 永江
直子 沖本
Naoko Okimoto
直子 沖本
徹 三好
Toru Miyoshi
徹 三好
麻紀子 坂田
Makiko Sakata
麻紀子 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2019028669A priority Critical patent/JP7279399B2/en
Publication of JP2020136512A publication Critical patent/JP2020136512A/en
Application granted granted Critical
Publication of JP7279399B2 publication Critical patent/JP7279399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

To provide a wiring board and a manufacturing method thereof that do not require a large-sized base material when a large number of wirings or functional parts are desired to be installed.SOLUTION: A wiring board 10 includes: a stretchable base material 20 including a first surface 21 and a second surface 22 located on the opposite side of the first surface 21; wirings 52 located on the first surface side and the second surface side of the base material 20 and electrically connected to an electronic component 51; and one or a plurality of reinforcing members 30 that are provided on the base material 20 and reinforce the base material 20. When the base material 20 is viewed along the direction normal to the first surface 21 of the base material 20, the reinforcing member 30 overlaps the electronic components 51 provided on the first surface side and the second surface side of the base material 20.SELECTED DRAWING: Figure 1

Description

本開示の実施形態は、伸縮性を有する基材と、配線とを備える配線基板及びその製造方法に関する。 An embodiment of the present disclosure relates to a wiring board including a stretchable base material and wiring, and a method for manufacturing the same.

近年、伸縮性などの変形性を有する電子デバイスの研究がおこなわれている。例えば、伸縮性を有する基材に伸縮性を有する銀配線を形成したものや、伸縮性を有する基材に馬蹄形の配線を形成したものが知られている(例えば特許文献1参照)。また、特許文献2は、この種の電子デバイスの製造方法を開示している。特許文献2の製造方法は、予め伸長させた状態の基材に回路を設け、回路を形成した後に基材を弛緩させる、という工程を採用している。 In recent years, research has been conducted on electronic devices having deformability such as elasticity. For example, there are known ones in which elastic silver wiring is formed on an elastic base material and one in which horseshoe-shaped wiring is formed on an elastic base material (see, for example, Patent Document 1). Further, Patent Document 2 discloses a method for manufacturing this kind of electronic device. The manufacturing method of Patent Document 2 employs a step of providing a circuit on a base material in a pre-stretched state, forming the circuit, and then relaxing the base material.

特開2013−187308号公報Japanese Unexamined Patent Publication No. 2013-187308 特開2007−281406号公報JP-A-2007-281406

上述したようなデバイスでは、従来、伸縮性を有する基材の表面又は裏面のいずれかのみに、配線や電子部品を設けることが通常であった。 In the above-mentioned devices, conventionally, wiring and electronic components have usually been provided only on either the front surface or the back surface of the stretchable base material.

しかしながら、上記構成では、設置が望まれる配線や機能部品の数が多い場合に、基材を大型化することが必要となって、全体のサイズが大型化してしまうことがあった。 However, in the above configuration, when the number of wirings and functional parts desired to be installed is large, it is necessary to increase the size of the base material, which may increase the overall size.

本開示の実施形態は、このような課題を効果的に解決し得る配線基板及び配線基板の製造方法を提供することを目的とする。 An object of the present disclosure is to provide a wiring board and a method for manufacturing a wiring board that can effectively solve such a problem.

本開示の一実施形態は、配線基板であって、第1面及び第1面の反対側に位置する第2面を含み、伸縮性を有する基材と、前記基材の第1面側及び第2面側に位置し、機能部品に電気的に接続する配線と、前記基材に設けられ、前記基材を補強する一つ又は複数の補強部材と、を備え、前記基材の第1面の法線方向に沿って前記基材を見た際、前記補強部材が、前記基材の第1面側及び第2面側に設けられる前記機能部品と重なる、配線基板である。 One embodiment of the present disclosure is a wiring board, including a first surface and a second surface located on the opposite side of the first surface, a stretchable base material, a first surface side of the base material, and the like. The first of the base materials, which is located on the second surface side and includes wiring that is electrically connected to the functional component, and one or more reinforcing members that are provided on the base material and reinforce the base material. When the base material is viewed along the normal direction of the surface, the reinforcing member is a wiring board that overlaps with the functional components provided on the first surface side and the second surface side of the base material.

前記配線と前記基材との間に設けられて前記基材に平行に延びる支持基板を、前記基材の第1面側及び第2面側のうちの少なくともいずれかにさらに備えてもよい。 A support substrate provided between the wiring and the base material and extending in parallel with the base material may be further provided on at least one of the first surface side and the second surface side of the base material.

前記支持基板に前記機能部品が設けられてもよい。 The functional component may be provided on the support substrate.

前記基材に、導電体用補強部材と、前記基材の第1面から第2面へ貫通するとともに前記導電体用補強部材を貫通する貫通孔と、前記貫通孔内に位置する導電体とがさらに設けられ、前記導電体が、前記基材の第1面側の前記配線と前記基材の第2面側の前記配線とを接続してもよい。 In the base material, a reinforcing member for a conductor, a through hole penetrating from the first surface to the second surface of the base material and penetrating the reinforcing member for the conductor, and a conductor located in the through hole. May be further provided, and the conductor may connect the wiring on the first surface side of the base material and the wiring on the second surface side of the base material.

前記配線は、前記配線が延びる方向に交互に並ぶ複数の山部および複数の谷部を含む蛇腹形状部を有してもよい。
この場合、前記第1面側の前記配線の蛇腹形状部と、前記第2面側の前記配線の蛇腹形状部は、隣り合う前記山部の間の距離である周期、前記山部と前記谷部との間の前記第1面の法線方向における距離である振幅、前記周期のずれである位相のうちの少なくともいずれかに関して、互いに異なっていてもよい。
The wiring may have a bellows-shaped portion including a plurality of peaks and a plurality of valleys alternately arranged in the direction in which the wiring extends.
In this case, the bellows-shaped portion of the wiring on the first surface side and the bellows-shaped portion of the wiring on the second surface side have a period of a distance between the adjacent peaks, and the peak and the valley. At least one of the amplitude, which is the distance between the parts and the first surface in the normal direction, and the phase, which is the deviation of the period, may be different from each other.

前記基材は、前記配線が延びる方向に並ぶ複数の山部を含んでもよい。 The base material may include a plurality of peaks arranged in the direction in which the wiring extends.

また、本開示の一実施形態は、第1面及び第1面の反対側に位置する第2面を含み、伸縮性を有する第1基材と、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに位置し、機能部品に電気的に接続する第1側配線と、前記第1基材に設けられ、前記第1基材を補強する一つ又は複数の第1側補強部材と、を有する第1配線層と、第1面及び第1面の反対側に位置する第2面を含み、伸縮性を有する第2基材と、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに位置し、機能部品に電気的に接続する第2側配線と、前記第2基材に設けられ、前記第2基材を補強する一つ又は複数の第2側補強部材と、を有する第2配線層と、を備え、前記第1配線層と前記第2配線層とは、前記第1基材の第2面と前記第2基材の第1面とを向き合わせた状態で張り合わされており、張り合わされた前記第1配線層と前記第2配線層を前記第1基材の第1面の法線方向に沿って見た際、前記第1側補強部材は、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なり、前記第2側補強部材は、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なる、配線基板である。 Further, one embodiment of the present disclosure includes a first surface and a second surface located on the opposite side of the first surface, a first base material having elasticity, a first surface side of the first base material, and the like. One or more wirings located on at least one of the second surface sides and electrically connected to the functional component and one or more provided on the first base material to reinforce the first base material. A first wiring layer having a first side reinforcing member, a second base material including a first surface and a second surface located on the opposite side of the first surface, and having elasticity, and the second base material. It is located on at least one of the first surface side and the second surface side, and is provided on the second base material and the second side wiring that electrically connects to the functional component to reinforce the second base material. A second wiring layer having one or a plurality of second side reinforcing members is provided, and the first wiring layer and the second wiring layer are a second surface of the first base material and the second surface. The first surface of the base material is laminated so as to face each other, and the bonded first wiring layer and the second wiring layer are viewed along the normal direction of the first surface of the first base material. At that time, the first side reinforcing member overlaps with the functional component provided on at least one of the first surface side and the second surface side of the first base material, and the second side reinforcing member is said. It is a wiring board that overlaps with the functional component provided on at least one of the first surface side and the second surface side of the second base material.

上記配線基板は、前記第1側配線と前記第1基材との間に設けられて前記第1基材に平行に延びる支持基板を、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかにさらに備えてもよい。 The wiring board is a support substrate provided between the first side wiring and the first base material and extending in parallel with the first base material, and the first surface side and the second surface of the first base material. Further provision may be provided on at least one of the sides.

上記配線基板は、前記第2側配線と前記第2基材との間に設けられて前記第2基材に平行に延びる支持基板を、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかにさらに備えてもよい。 The wiring board is a support substrate provided between the second side wiring and the second base material and extending in parallel with the second base material, and the first surface side and the second surface of the second base material. Further provision may be provided on at least one of the sides.

前記第1基材の第1面側に前記第1側配線が設けられ、前記第2基材の第2面側に前記第2側配線が設けられ、前記第1基材及び前記第2基材のうちの少なくともいずれかに、導電体用補強部材が設けられ、前記第1基材の第1面から前記第2基材の第2面へ貫通するとともに前記導電体用補強部材を貫通する貫通孔が設けられ、前記貫通孔内に導電体が設けられており、前記導電体が、前記第1基材の第1面側の前記第1側配線と前記第2基材の第2面側の前記第2側配線とを電気的に接続してもよい。 The first side wiring is provided on the first surface side of the first base material, the second side wiring is provided on the second surface side of the second base material, and the first base material and the second base material are provided. A conductor reinforcing member is provided on at least one of the materials, and penetrates from the first surface of the first base material to the second surface of the second base material and also penetrates the conductor reinforcing member. A through hole is provided, and a conductor is provided in the through hole, and the conductor is the first side wiring on the first surface side of the first base material and the second surface of the second base material. The second side wiring on the side may be electrically connected.

前記第1基材の第2面側に前記第1側配線及び前記機能部品が設けられず、前記第2基材の第1面側に前記第2側配線及び前記機能部品が設けられず、前記第1基材の第2面と前記第2基材の第1面とが、磁石又はスナップフィットにより張り合わされてもよい。 The first side wiring and the functional component are not provided on the second surface side of the first base material, and the second side wiring and the functional component are not provided on the first surface side of the second base material. The second surface of the first base material and the first surface of the second base material may be bonded to each other by a magnet or a snap fit.

前記第1基材の第1面側に前記第1側配線が設けられ、前記第2基材の第1面側に前記第2側配線及び前記機能部品が設けられ、前記第1配線層と前記第2配線層とは、接着層を介して貼り合わされており、前記第2基材の第1面側に設けられた前記第2側配線及び前記機能部品が、前記接着層で覆われてもよい。 The first side wiring is provided on the first surface side of the first base material, the second side wiring and the functional component are provided on the first surface side of the second base material, and the first wiring layer The second wiring layer is bonded to the second wiring layer via an adhesive layer, and the second side wiring and the functional component provided on the first surface side of the second base material are covered with the adhesive layer. May be good.

前記第1基材に、導電体用補強部材が設けられ、前記第1基材の第1面から前記接着層まで貫通するとともに前記導電体用補強部材を貫通する貫通孔が設けられ、
前記貫通孔内に導電体が設けられており、前記導電体が、前記第1基材の第1面側の前記第1側配線と前記第2基材の第1面側の前記第2側配線とを電気的に接続してもよい。
The first base material is provided with a reinforcing member for a conductor, and a through hole is provided so as to penetrate from the first surface of the first base material to the adhesive layer and to penetrate the reinforcing member for a conductor.
A conductor is provided in the through hole, and the conductor is the first side wiring on the first surface side of the first base material and the second side on the first surface side of the second base material. It may be electrically connected to the wiring.

前記第1側配線は、前記第1側配線が延びる方向に並ぶ複数の山部および複数の谷部を含む蛇腹形状部を有し、前記第2側配線は、前記第2側配線が延びる方向に並ぶ複数の山部および複数の谷部を含む蛇腹形状部を有してもよい。
この場合、前記第1側配線の蛇腹形状部と、前記第2側配線の蛇腹形状部は、隣り合う前記山部の間の距離である周期、前記山部と前記谷部との間の前記第1基材の前記第1面の法線方向における距離である振幅、前記周期のずれである位相のうちの少なくともいずれかに関して、互いに異なっていてもよい。
The first side wiring has a bellows-shaped portion including a plurality of peaks and a plurality of valleys arranged in a direction in which the first side wiring extends, and the second side wiring has a direction in which the second side wiring extends. It may have a bellows-shaped portion including a plurality of peaks and a plurality of valleys arranged in a row.
In this case, the bellows-shaped portion of the first-side wiring and the bellows-shaped portion of the second-side wiring have a period of a distance between the adjacent peaks, and the peak and the valley between the peaks and the valleys. At least one of the amplitude, which is the distance in the normal direction of the first surface of the first base material, and the phase, which is the deviation of the period, may be different from each other.

前記第1基材は、前記第1側配線が延びる方向に並ぶ複数の山部を含み、前記第2基材は、前記第2側配線が延びる方向に並ぶ複数の山部を含んでもよい。 The first base material may include a plurality of peaks arranged in the direction in which the first side wiring extends, and the second base material may include a plurality of peaks arranged in the direction in which the second side wiring extends.

本開示の一実施形態は、配線基板の製造方法であって、伸縮性を有し、補強のための一つ又は複数の補強部材が設けられた基材に張力を加えて、前記基材を伸長させる伸長工程と、前記伸長工程によって伸長した状態の前記基材の第1面側及び第2面側に、機能部品に電気的に接続する配線を設ける設置工程と、前記基材から前記張力を取り除く収縮工程と、を備え、前記収縮工程後に前記基材の第1面の法線方向に沿って前記基材を見た際、前記補強部材が、前記基材の第1面側及び第2面側に設けられる前記機能部品と重なる、配線基板の製造方法である。 One embodiment of the present disclosure is a method of manufacturing a wiring substrate, in which tension is applied to a base material which has elasticity and is provided with one or more reinforcing members for reinforcement to obtain the base material. An extension step of stretching, an installation step of providing wiring electrically connected to a functional component on the first surface side and the second surface side of the base material stretched by the stretching step, and the tension from the base material. When the base material is viewed along the normal direction of the first surface of the base material after the shrinkage step, the reinforcing member is on the first surface side and the first surface of the base material. This is a method for manufacturing a wiring board that overlaps with the functional components provided on the two side surfaces.

本開示の一実施形態は、配線基板の製造方法であって、伸縮性を有し、補強のための一つ又は複数の第1側補強部材が設けられた第1基材に張力を加えて、前記第1基材を伸長させる第1伸長工程と、前記第1伸長工程によって伸長した状態の前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第1側配線を設け、前記第1基材と前記第1側補強部材と前記第1側配線とを有する第1配線層を形成する第1形成工程と、伸縮性を有し、補強のための一つ又は複数の第2側補強部材が設けられた第2基材に張力を加えて、前記第2基材を伸長させる第2伸長工程と、前記第2伸長工程によって伸長した状態の前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第2側配線を設け、前記第2基材と前記第2側補強部材と前記第2側配線とを有する第2配線層を形成する第2形成工程と、前記第1基材及び前記第2基材から前記張力を取り除いた後、前記第1基材の第2面と前記第2基材の第1面とを向き合わせた状態で前記第1配線層と前記第2配線層とを張り合わせる工程と、を備え、張り合わされた前記第1配線層と前記第2配線層を前記第1基材の第1面の法線方向に沿って見た際、前記第1側補強部材は、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なり、前記第2側補強部材は、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なる、配線基板の製造方法である。 One embodiment of the present disclosure is a method of manufacturing a wiring substrate, in which tension is applied to a first base material which has elasticity and is provided with one or more first side reinforcing members for reinforcement. , A functional component on at least one of a first stretching step of stretching the first base material and a first surface side and a second surface side of the first base material stretched by the first stretching step. The first forming step of forming the first wiring layer having the first base material, the first side reinforcing member, and the first side wiring by providing the first side wiring electrically connected to the first base material, and the elasticity. A second extension step of extending the second base material by applying tension to the second base material which has one or more second side reinforcing members for reinforcement and the second extension step. A second side wiring that electrically connects to the functional component is provided on at least one of the first surface side and the second surface side of the second base material in the stretched state, and the second base material and the said A second forming step of forming a second wiring layer having a second side reinforcing member and the second side wiring, and after removing the tension from the first base material and the second base material, the first unit The first wiring which is bonded together includes a step of laminating the first wiring layer and the second wiring layer in a state where the second surface of the material and the first surface of the second base material face each other. When the layer and the second wiring layer are viewed along the normal direction of the first surface of the first base material, the first side reinforcing member is the first surface side and the second surface of the first base material. The second side reinforcing member overlaps with the functional component provided on at least one of the sides, and the second side reinforcing member is provided on at least one of the first surface side and the second surface side of the second base material. This is a method of manufacturing a wiring board that overlaps with parts.

本開示の一実施形態は、配線基板の製造方法であって、伸縮性を有し、補強のための一つ又は複数の第1側補強部材が設けられた第1基材に張力を加えて、前記第1基材を伸長させる第1伸長工程と、前記第1伸長工程によって伸長した状態の前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第1側配線を設け、前記第1基材と前記第1側補強部材と前記第1側配線とを有する第1配線層を形成する第1形成工程と、伸縮性を有し、補強のための一つ又は複数の第2側補強部材が設けられた第2基材に張力を加えて、前記第2基材を伸長させる第2伸長工程と、前記第2伸長工程によって伸長した状態の前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第2側配線を設け、前記第2基材と前記第2側補強部材と前記第2側配線とを有する第2配線層を形成する第2形成工程と、前記第1基材及び前記第2基材を伸長させたまま、前記第1基材の第2面と前記第2基材の第1面とを向き合わせた状態で前記第1配線層と前記第2配線層とを張り合わせる工程と、前記第1基材及び前記第2基材から前記張力を取り除く収縮工程と、を備え、張り合わされた前記第1配線層と前記第2配線層を前記収縮工程後に前記第1基材の第1面の法線方向に沿って見た際、前記第1側補強部材は、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なり、前記第2側補強部材は、前記第2基材の第1面側及び第2面のうちの少なくともいずれかに設けられる前記機能部品と重なる、配線基板の製造方法である。 One embodiment of the present disclosure is a method of manufacturing a wiring substrate, in which tension is applied to a first base material which has elasticity and is provided with one or more first side reinforcing members for reinforcement. , A functional component on at least one of a first stretching step of stretching the first base material and a first surface side and a second surface side of the first base material stretched by the first stretching step. The first forming step of forming the first wiring layer having the first base material, the first side reinforcing member, and the first side wiring by providing the first side wiring electrically connected to the first base material, and the elasticity. A second extension step of extending the second base material by applying tension to the second base material which has one or a plurality of second side reinforcing members for reinforcement and the second extension step. A second side wiring that electrically connects to the functional component is provided on at least one of the first surface side and the second surface side of the second base material in the stretched state, and the second base material and the said The second forming step of forming the second wiring layer having the second side reinforcing member and the second side wiring, and the first base material with the first base material and the second base material stretched. From the step of laminating the first wiring layer and the second wiring layer in a state where the second surface and the first surface of the second base material face each other, and from the first base material and the second base material. When the first wiring layer and the second wiring layer laminated together with the shrinking step for removing the tension are viewed along the normal direction of the first surface of the first base material after the shrinking step, The first side reinforcing member overlaps with the functional component provided on at least one of the first surface side and the second surface side of the first base material, and the second side reinforcing member is the second unit. This is a method for manufacturing a wiring substrate that overlaps with the functional component provided on at least one of the first surface side and the second surface side of the material.

本開示の実施形態によれば、配線に接続される複数の機能部品を高密度に設けて小型化を図ることが可能であり、且つ機能部品と配線との間の電気的接続の信頼性が向上する配線基板を提供できる。 According to the embodiment of the present disclosure, it is possible to provide a plurality of functional components connected to the wiring at a high density to reduce the size, and the reliability of the electrical connection between the functional component and the wiring is high. An improved wiring board can be provided.

実施形態に係る配線基板を示す平面図である。It is a top view which shows the wiring board which concerns on embodiment. 図1に示す配線基板を線II−IIに沿って切断した場合を示す断面図である。It is sectional drawing which shows the case where the wiring board shown in FIG. 1 is cut along the line II-II. 図2の拡大図である。It is an enlarged view of FIG. 図3Aの拡大図である。It is an enlarged view of FIG. 3A. 図2に示す配線基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the wiring board shown in FIG. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 図6に示す配線基板の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the wiring board shown in FIG. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board. 配線基板の一変形例を示す断面図である。It is sectional drawing which shows one modification of the wiring board.

以下、本開示の実施形態に係る配線基板の構成及びその製造方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。また、本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基材」は、基板、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 Hereinafter, the configuration of the wiring board and the manufacturing method thereof according to the embodiment of the present disclosure will be described in detail with reference to the drawings. The embodiments shown below are examples of the embodiments of the present disclosure, and the present disclosure is not construed as being limited to these embodiments. Further, in the present specification, terms such as "board", "base material", "sheet" and "film" are not distinguished from each other based only on the difference in names. For example, "base material" is a concept that includes members that can be called substrates, sheets, or films. Furthermore, as used herein, terms such as "parallel" and "orthogonal" and values of length and angle that specify the shape and geometric conditions and their degrees are bound by strict meaning. Instead, the interpretation will include the range in which similar functions can be expected. Further, in the drawings referred to in the present embodiment, the same parts or parts having similar functions are designated by the same reference numerals or similar reference numerals, and the repeated description thereof may be omitted. In addition, the dimensional ratio of the drawing may differ from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.

以下、本開示の一実施形態について説明する。 Hereinafter, one embodiment of the present disclosure will be described.

(配線基板)
まず、本実施形態に係る配線基板10について説明する。図1及び図2はそれぞれ、配線基板10を示す平面図及び断面図である。図2に示す断面図は、図1の配線基板10を線II−IIに沿って切断した場合の図である。
(Wiring board)
First, the wiring board 10 according to this embodiment will be described. 1 and 2 are a plan view and a cross-sectional view showing the wiring board 10, respectively. The cross-sectional view shown in FIG. 2 is a view when the wiring board 10 of FIG. 1 is cut along the lines II-II.

配線基板10は、基材20、電子部品51、配線52、補強部材30を備える。以下、配線基板10の各構成要素について説明する。 The wiring board 10 includes a base material 20, an electronic component 51, a wiring 52, and a reinforcing member 30. Hereinafter, each component of the wiring board 10 will be described.

〔基材〕
基材20は、伸縮性を有するよう構成された部材である。基材20は、第1面21と、第1面21の反対側に位置する第2面22と、を含む。基材20の厚みは、例えば10μm以上10mm以下であり、より好ましくは20μm以上3mm以下である。基材20の厚みを10μm以上にすることにより、基材20の耐久性を確保することができる。また、基材20の厚みを10mm以下にすることにより、配線基板10の装着快適性を確保することができる。なお、基材20の厚みを小さくしすぎると、基材20の伸縮性が損なわれる場合がある。
〔Base material〕
The base material 20 is a member configured to have elasticity. The base material 20 includes a first surface 21 and a second surface 22 located on the opposite side of the first surface 21. The thickness of the base material 20 is, for example, 10 μm or more and 10 mm or less, and more preferably 20 μm or more and 3 mm or less. By setting the thickness of the base material 20 to 10 μm or more, the durability of the base material 20 can be ensured. Further, by reducing the thickness of the base material 20 to 10 mm or less, the mounting comfort of the wiring board 10 can be ensured. If the thickness of the base material 20 is made too small, the elasticity of the base material 20 may be impaired.

なお、基材20の伸縮性とは、基材20が伸び縮みすることができる性質、すなわち、常態である非伸長状態から伸長することができ、この伸長状態から解放したときに復元することができる性質をいう。非伸長状態とは、引張応力が加えられていない時の基材20の状態である。本実施形態において、伸縮可能な基材は、好ましくは、破壊されることなく非伸長状態から1%以上伸長することができ、より好ましくは20%以上伸長することができ、更に好ましくは75%以上伸長することができる。このような能力を有する基材20を用いることにより、配線基板10が全体に伸縮性を有することができる。さらに、人の腕などの身体の一部に取り付けるという、高い伸縮が必要な製品や用途において、配線基板10を使用することができる。一般に、人の脇の下に取り付ける製品には、垂直方向において72%、水平方向において27%の伸縮性が必要であると言われている。また、人の膝、肘、臀部、足首、脇部に取り付ける製品には、垂直方向において26%以上42%以下の伸縮性が必要であると言われている。また、人のその他の部位に取り付ける製品には、20%未満の伸縮性が必要であると言われている。 The elasticity of the base material 20 means that the base material 20 can expand and contract, that is, it can be expanded from a normal non-extended state and can be restored when released from this extended state. The property that can be done. The non-extended state is the state of the base material 20 when no tensile stress is applied. In the present embodiment, the stretchable substrate can preferably be stretched by 1% or more from the non-stretched state without being destroyed, more preferably 20% or more, and further preferably 75%. It can be extended as described above. By using the base material 20 having such an ability, the wiring board 10 can have elasticity as a whole. Further, the wiring board 10 can be used in products and applications that require high expansion and contraction, such as being attached to a part of the body such as a human arm. It is generally said that a product mounted under the armpit of a person needs to have an elasticity of 72% in the vertical direction and 27% in the horizontal direction. In addition, it is said that products attached to human knees, elbows, buttocks, ankles, and armpits need to have elasticity of 26% or more and 42% or less in the vertical direction. It is also said that products that are attached to other parts of the human body need to have less than 20% elasticity.

また、非伸長状態にある基材20の形状と、非伸長状態から伸長された後に再び非伸長状態に戻ったときの基材20の形状との差が小さいことが好ましい。この差のことを、以下の説明において形状変化とも称する。基材20の形状変化は、例えば面積比で20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。形状変化の小さい基材20を用いることにより、後述する蛇腹形状部の形成が容易になる。 Further, it is preferable that the difference between the shape of the base material 20 in the non-stretched state and the shape of the base material 20 when the base material 20 is stretched from the non-stretched state and then returned to the non-stretched state is small. This difference is also referred to as a shape change in the following description. The shape change of the base material 20 is, for example, 20% or less, more preferably 10% or less, still more preferably 5% or less in terms of area ratio. By using the base material 20 having a small shape change, the bellows-shaped portion described later can be easily formed.

基材20の伸縮性を表すパラメータの例として、基材20の弾性係数を挙げることができる。基材20の弾性係数は、例えば10MPa以下であり、より好ましくは1MPa以下である。このような弾性係数を有する基材20を用いることにより、配線基板10全体に伸縮性を持たせることができる。以下の説明において、基材20の弾性係数のことを、第1の弾性係数とも称する。基材20の第1の弾性係数は、1kPa以上であってもよい。 An example of a parameter representing the elasticity of the base material 20 is the elastic modulus of the base material 20. The elastic modulus of the base material 20 is, for example, 10 MPa or less, more preferably 1 MPa or less. By using the base material 20 having such an elastic modulus, the entire wiring board 10 can be made elastic. In the following description, the elastic modulus of the base material 20 is also referred to as a first elastic modulus. The first elastic modulus of the base material 20 may be 1 kPa or more.

基材20の第1の弾性係数を算出する方法としては、基材20のサンプルを用いて、JIS K6251に準拠して引張試験を実施するという方法を採用することができる。また、基材20のサンプルの弾性係数を、ISO14577に準拠してナノインデンテーション法によって測定するという方法を採用することもできる。ナノインデンテーション法において用いる測定器としては、ナノインデンターを用いることができる。基材20のサンプルを準備する方法としては、配線基板10から基材20の一部をサンプルとして取り出す方法や、配線基板10を構成する前の基材20の一部をサンプルとして取り出す方法が考えられる。その他にも、基材20の第1の弾性係数を算出する方法として、基材20を構成する材料を分析し、材料の既存のデータベースに基づいて基材20の第1の弾性係数を算出するという方法を採用することもできる。なお、本願における弾性係数は、25℃の環境下における弾性係数である。 As a method for calculating the first elastic modulus of the base material 20, a method of carrying out a tensile test in accordance with JIS K6251 using a sample of the base material 20 can be adopted. It is also possible to adopt a method in which the elastic modulus of the sample of the base material 20 is measured by the nanoindentation method in accordance with ISO14577. A nanoindenter can be used as the measuring instrument used in the nanoindentation method. As a method of preparing a sample of the base material 20, a method of taking out a part of the base material 20 from the wiring board 10 as a sample and a method of taking out a part of the base material 20 before forming the wiring board 10 as a sample can be considered. Be done. In addition, as a method of calculating the first elastic modulus of the base material 20, the materials constituting the base material 20 are analyzed, and the first elastic modulus of the base material 20 is calculated based on the existing database of the materials. It is also possible to adopt the method. The elastic modulus in the present application is an elastic modulus in an environment of 25 ° C.

基材20の伸縮性を表すパラメータのその他の例として、基材20の曲げ剛性を挙げることができる。曲げ剛性は、対象となる部材の断面二次モーメントと、対象となる部材を構成する材料の弾性係数との積であり、単位はN・m又はPa・mである。基材20の断面二次モーメントは、配線基板10の伸縮方向に直交する平面によって、基材20のうち配線52と重なっている部分を切断した場合の断面に基づいて算出される。 Another example of a parameter representing the elasticity of the base material 20 is the flexural rigidity of the base material 20. The flexural rigidity is the product of the moment of inertia of area of the target member and the elastic modulus of the material constituting the target member, and the unit is N · m 2 or Pa · m 4 . The moment of inertia of area of the base material 20 is calculated based on the cross section when the portion of the base material 20 that overlaps with the wiring 52 is cut by a plane orthogonal to the expansion / contraction direction of the wiring board 10.

基材20を構成する材料の例としては、例えば、エラストマーを挙げることができる。また、基材20の材料として、例えば、織物、編物、不織布などの布を用いることもできる。エラストマーとしては、一般的な熱可塑性エラストマーおよび熱硬化性エラストマーを用いることができ、具体的には、ポリウレタン系エラストマー、スチレン系エラストマー、ニトリル系エラストマー、オレフィン系エラストマー、塩ビ系エラストマー、エステル系エラストマー、アミド系エラストマー、1,2−BR系エラストマー、フッ素系エラストマー、シリコーンゴム、ウレタンゴム、フッ素ゴム、ポリブタジエン、ポリイソブチレン、ポリスチレンブタジエン、ポリクロロプレン等を用いることができる。機械的強度や耐磨耗性を考慮すると、ウレタン系エラストマーを用いることが好ましい。また、基材20がシリコーンを含んでいてもよい。シリコーンは、耐熱性・耐薬品性・難燃性に優れており、基材20の材料として好ましい。 Examples of the material constituting the base material 20 include an elastomer. Further, as the material of the base material 20, for example, a cloth such as a woven fabric, a knitted fabric, or a non-woven fabric can be used. As the elastomer, general thermoplastic elastomers and thermosetting elastomers can be used, and specifically, polyurethane-based elastomers, styrene-based elastomers, nitrile-based elastomers, olefin-based elastomers, vinyl chloride-based elastomers, ester-based elastomers, etc. Amid-based elastomers, 1,2-BR-based elastomers, fluoroelastomers, silicone rubbers, urethane rubbers, fluororubbers, polybutadienes, polyisobutylenes, polystyrene butadienes, polychloroprenes and the like can be used. Considering mechanical strength and abrasion resistance, it is preferable to use a urethane-based elastomer. Further, the base material 20 may contain silicone. Silicone is excellent in heat resistance, chemical resistance, and flame retardancy, and is preferable as a material for the base material 20.

〔電子部品〕
電子部品51は機能部品に対応するものであって、基材20の第1面21側と第2面22側とに設けられている。また、基材20の第1面21側には、第1面21側の電子部品51に電気的に接続する配線52が設けられ、基材20の第2面22側には、第2面22側の電子部品51に電気的に接続する配線52が設けられている。各電子部品51は、電子部品51と配線52との間に位置する接続部51aにより配線52に接続されている。図2に示す例において、接続部51aは、電子部品51における基材20側を向く面と、基材20、特に基材20上の配線52の表面と、の間に位置する。なお、配線52の表面とは、配線52の面のうち基材20から遠い側に位置する面である。
[Electronic components]
The electronic component 51 corresponds to a functional component, and is provided on the first surface 21 side and the second surface 22 side of the base material 20. Further, a wiring 52 electrically connected to the electronic component 51 on the first surface 21 side is provided on the first surface 21 side of the base material 20, and a second surface is provided on the second surface 22 side of the base material 20. A wiring 52 that is electrically connected to the electronic component 51 on the 22 side is provided. Each electronic component 51 is connected to the wiring 52 by a connecting portion 51a located between the electronic component 51 and the wiring 52. In the example shown in FIG. 2, the connecting portion 51a is located between the surface of the electronic component 51 facing the base material 20 side and the surface of the base material 20, particularly the wiring 52 on the base material 20. The surface of the wiring 52 is a surface of the wiring 52 located on the side farther from the base material 20.

この例においては、接続部51aは、電子部品51における基材20側を向く面に接続されるとともに、配線52の表面に接続される。しかしながら、図2に示す例に代えて、接続部51aは、電子部品51の側面に位置してもよい。また、接続部51aは、配線52の側面に接続されてもよい。このような電子部品51は、能動部品であってもよく、受動部品であってもよく、機構部品であってもよい。 In this example, the connecting portion 51a is connected to the surface of the electronic component 51 facing the base material 20 side and is connected to the surface of the wiring 52. However, instead of the example shown in FIG. 2, the connecting portion 51a may be located on the side surface of the electronic component 51. Further, the connecting portion 51a may be connected to the side surface of the wiring 52. Such an electronic component 51 may be an active component, a passive component, or a mechanical component.

電子部品51の例としては、トランジスタ、LSI(Large-Scale Integration)、MEMS(Micro Electro Mechanical Systems)、リレー、LED、OLED、LCDなどの発光素子、センサ、ブザー等の発音部品、振動を発する振動部品、冷却発熱をコントロールするペルチェ素子や電熱線などの冷発熱部品、抵抗器、キャパシタ、インダクタ、圧電素子、スイッチ、コネクタなどを挙げることができる。電子部品51の上述の例のうち、センサが好ましく用いられる。センサとしては、例えば、温度センサ、圧力センサ、光センサ、光電センサ、近接センサ、せん断力センサ、生体センサ、レーザーセンサ、マイクロ波センサ、湿度センサ、歪みセンサ、ジャイロセンサ、加速度センサ、変位センサ、磁気センサ、ガスセンサ、GPSセンサ、超音波センサ、臭いセンサ、脳波センサ、電流センサ、振動センサ、脈波センサ、心電センサ、光度センサ等を挙げることができる。これらのセンサのうち、生体センサが特に好ましい。生体センサは、心拍や脈拍、心電、血圧、体温、血中酸素濃度等の生体情報を測定することができる。 Examples of electronic components 51 include transistors, LSI (Large-Scale Integration), MEMS (Micro Electro Mechanical Systems), relays, light emitting elements such as LEDs, OLEDs, and LCDs, sound components such as sensors and buzzers, and vibrations that generate vibrations. Examples thereof include parts, cold and heat-generating parts such as Perche elements and heating wires that control cooling heat generation, resistors, capacitors, inductors, piezoelectric elements, switches, and connectors. Of the above examples of the electronic component 51, the sensor is preferably used. Examples of sensors include temperature sensors, pressure sensors, optical sensors, photoelectric sensors, proximity sensors, shear force sensors, biosensors, laser sensors, microwave sensors, humidity sensors, strain sensors, gyro sensors, acceleration sensors, displacement sensors, etc. Examples thereof include magnetic sensors, gas sensors, GPS sensors, ultrasonic sensors, odor sensors, brain wave sensors, current sensors, vibration sensors, pulse wave sensors, electrocardiographic sensors, and photometric sensors. Of these sensors, biosensors are particularly preferred. The biosensor can measure biometric information such as heartbeat, pulse, electrocardiogram, blood pressure, body temperature, and blood oxygen concentration.

〔配線〕
配線52は、電子部品51の接続部51aに接続された、導電性を有する部材である。上述したように、配線52は、基材20の第1面21側と第2面22側とに設けられ、それぞれ同じ側に設けられた電子部品51に接続している。例えば図2に示すように、配線52の端側の部分が、電子部品51に接続部51aを介して接続されている。図1に示す例では、電子部品51に対して両側のそれぞれに、複数の配線52が設けられるが、配線52の数は特に限定されるものではない。
〔wiring〕
The wiring 52 is a conductive member connected to the connecting portion 51a of the electronic component 51. As described above, the wiring 52 is provided on the first surface 21 side and the second surface 22 side of the base material 20, and is connected to the electronic component 51 provided on the same side, respectively. For example, as shown in FIG. 2, the end side portion of the wiring 52 is connected to the electronic component 51 via the connecting portion 51a. In the example shown in FIG. 1, a plurality of wirings 52 are provided on both sides of the electronic component 51, but the number of wirings 52 is not particularly limited.

後述するように、一実施形態では、配線52が、引張によって伸長した状態の基材20に設けられる。この場合、基材20から引張応力が取り除かれて基材20が収縮するとき、配線52は、図3Aに示すように、蛇腹状に変形して蛇腹形状部57を有するようになる。図3Aにおいては、第1面21側の配線52及び第2面22側の配線52のそれぞれが蛇腹形状部57を有している。 As will be described later, in one embodiment, the wiring 52 is provided on the base material 20 in a state of being stretched by tension. In this case, when the tensile stress is removed from the base material 20 and the base material 20 contracts, the wiring 52 is deformed into a bellows shape and has a bellows-shaped portion 57 as shown in FIG. 3A. In FIG. 3A, each of the wiring 52 on the first surface 21 side and the wiring 52 on the second surface 22 side has a bellows-shaped portion 57.

蛇腹形状部57は、基材20の第1面21の法線方向における山部及び谷部を含む。図3Aにおいて、符号53は、配線52の表面に現れる山部を表し、符号54は、配線52の裏面に現れる山部を表す。また、符号55は、配線52の表面に現れる谷部を表し、符号56は、配線52の裏面に現れる谷部を表す。表面とは、配線52の面のうち基材20から遠い側に位置する面であり、裏面とは、配線52の面のうち基材20に近い側に位置する面である。また、図3Aにおいて、符号26A及び27Aは、基材20の第1面21に現れる山部及び谷部を表す。符号26B及び27Bは、基材20の第2面22に現れる山部及び谷部を表す。第1面21に山部26A及び谷部27Aが現れ、且つ、第2面22に山部26B及び谷部27Bが現れるように基材20が変形することにより、配線52が蛇腹状に変形して蛇腹形状部57を有するようになる。基材20の山部26A,26Bが、配線52の蛇腹形状部57の山部53,54に対応し、基材20の谷部27A,27Bが、配線52の蛇腹形状部57の谷部55,56に対応している。 The bellows-shaped portion 57 includes peaks and valleys in the normal direction of the first surface 21 of the base material 20. In FIG. 3A, reference numeral 53 represents a mountain portion appearing on the front surface of the wiring 52, and reference numeral 54 represents a mountain portion appearing on the back surface of the wiring 52. Further, reference numeral 55 represents a valley portion appearing on the front surface of the wiring 52, and reference numeral 56 represents a valley portion appearing on the back surface of the wiring 52. The front surface is a surface of the wiring 52 located on the side farther from the base material 20, and the back surface is a surface of the wiring 52 located on the side closer to the base material 20. Further, in FIG. 3A, reference numerals 26A and 27A represent peaks and valleys appearing on the first surface 21 of the base material 20. Reference numerals 26B and 27B represent peaks and valleys appearing on the second surface 22 of the base material 20. The wiring 52 is deformed in a bellows shape by deforming the base material 20 so that the mountain portion 26A and the valley portion 27A appear on the first surface 21 and the mountain portion 26B and the valley portion 27B appear on the second surface 22. It comes to have a bellows-shaped portion 57. The peaks 26A and 26B of the base material 20 correspond to the peaks 53 and 54 of the bellows-shaped portion 57 of the wiring 52, and the valleys 27A and 27B of the base material 20 correspond to the valleys 55 of the bellows-shaped portion 57 of the wiring 52. , 56 is supported.

以下の説明において、蛇腹形状部57の山部及び谷部が繰り返し現れる方向のことを、第1方向D1とも称する。図3Aに示す例において、配線52は、第1方向D1に平行に延びている。ここで、配線52は、電子部品51に対し、第1方向D1でずれた位置に、蛇腹形状部57を有する。また、基材20は、第1方向D1に平行な長辺を含む長方形の形状を有している。図示はしないが、配線基板10は、第1方向D1とは異なる方向に延びる配線52を含んでいてもよい。また、図示はしないが、基材20が長方形の形状を有する場合に、長辺が延びる方向が第1方向D1とは異なっていてもよい。なお、図3Aにおいては、蛇腹形状部57の複数の山部及び谷部が一定の周期で並ぶ例が示されているが、これに限られることはない。図示はしないが、蛇腹形状部57の複数の山部及び谷部は、第1方向D1に沿って不規則に並んでいてもよい。例えば、第1方向D1において隣り合う2つの山部の間の間隔が一定でなくてもよい。 In the following description, the direction in which the peaks and valleys of the bellows-shaped portion 57 repeatedly appear is also referred to as the first direction D1. In the example shown in FIG. 3A, the wiring 52 extends parallel to the first direction D1. Here, the wiring 52 has a bellows-shaped portion 57 at a position deviated from the electronic component 51 in the first direction D1. Further, the base material 20 has a rectangular shape including a long side parallel to the first direction D1. Although not shown, the wiring board 10 may include wiring 52 extending in a direction different from that of the first direction D1. Further, although not shown, when the base material 20 has a rectangular shape, the direction in which the long side extends may be different from the first direction D1. Note that FIG. 3A shows an example in which a plurality of peaks and valleys of the bellows-shaped portion 57 are lined up at regular intervals, but the present invention is not limited to this. Although not shown, the plurality of peaks and valleys of the bellows-shaped portion 57 may be arranged irregularly along the first direction D1. For example, the distance between two adjacent peaks in the first direction D1 does not have to be constant.

図3Aにおいて、符号S1は、配線52の表面における蛇腹形状部57の、基材20の法線方向における振幅を表す。振幅S1は、例えば1μm以上であり、より好ましくは10μm以上である。振幅S1を10μm以上とすることにより、基材20の伸張に追従して配線52が変形し易くなる。また、振幅S1は、例えば500μm以下であってもよい。 In FIG. 3A, reference numeral S1 represents the amplitude of the bellows-shaped portion 57 on the surface of the wiring 52 in the normal direction of the base material 20. The amplitude S1 is, for example, 1 μm or more, more preferably 10 μm or more. By setting the amplitude S1 to 10 μm or more, the wiring 52 is easily deformed following the elongation of the base material 20. Further, the amplitude S1 may be, for example, 500 μm or less.

振幅S1は、例えば、配線52の長さ方向における一定の範囲にわたって、隣り合う山部53と谷部55との間の、第1面21の法線方向における距離を測定し、それらの平均を求めることにより算出される。「配線52の長さ方向における一定の範囲」は、例えば10mmである。隣り合う山部53と谷部55との間の距離を測定する測定器としては、レーザー顕微鏡などを用いた非接触式の測定器を用いてもよく、接触式の測定器を用いてもよい。また、断面写真などの画像に基づいて、隣り合う山部53と谷部55との間の距離を測定してもよい。後述する振幅S2、S3、S4の算出方法も同様である。 The amplitude S1 measures, for example, the distance in the normal direction of the first surface 21 between the adjacent peaks 53 and the valleys 55 over a certain range in the length direction of the wiring 52, and averages them. It is calculated by finding it. The "constant range in the length direction of the wiring 52" is, for example, 10 mm. As the measuring instrument for measuring the distance between the adjacent peaks 53 and the valleys 55, a non-contact measuring instrument using a laser microscope or the like may be used, or a contact measuring instrument may be used. .. Further, the distance between the adjacent mountain portion 53 and the valley portion 55 may be measured based on an image such as a cross-sectional photograph. The calculation method of the amplitudes S2, S3, and S4 described later is also the same.

図3Aにおいて、符号S2は、配線52の裏面における蛇腹形状部57の振幅を表す。振幅S2は、振幅S1と同様に、例えば1μm以上であり、より好ましくは10μm以上である。また、振幅S2は、例えば500μm以下であってもよい。また、図3Aにおいて、符号S3は、蛇腹形状部57に重なる部分において基材20の第1面21に現れる山部26A及び谷部27Aの振幅を表す。図3Aに示すように配線52の裏面が基材20の第1面21上に位置している場合、基材20の第1面21の山部26A及び谷部27Aの振幅S3は、配線52の裏面における蛇腹形状部57の振幅S2に等しい。 In FIG. 3A, reference numeral S2 represents the amplitude of the bellows-shaped portion 57 on the back surface of the wiring 52. The amplitude S2 is, for example, 1 μm or more, more preferably 10 μm or more, like the amplitude S1. Further, the amplitude S2 may be, for example, 500 μm or less. Further, in FIG. 3A, the reference numeral S3 represents the amplitude of the peak portion 26A and the valley portion 27A appearing on the first surface 21 of the base material 20 at the portion overlapping the bellows-shaped portion 57. When the back surface of the wiring 52 is located on the first surface 21 of the base material 20 as shown in FIG. 3A, the amplitude S3 of the peaks 26A and the valleys 27A of the first surface 21 of the base material 20 is the wiring 52. It is equal to the amplitude S2 of the bellows-shaped portion 57 on the back surface of.

なお、図3Aにおいては、第1面21側の蛇腹形状部57の振幅S1及び振幅S2と、基材20の第1面21の山部26A及び谷部27Aの振幅S3とが示されたが、基材20の第2面22側の蛇腹形状部57の振幅S1に相当する振幅及び振幅S2に相当する振幅の好ましい寸法設定は、振幅S1及び振幅S2と同様である。また、第2面22の山部26B及び谷部27Bにおける振幅の好ましい寸法設定は、振幅S3と同様である。ただし、第1面21側の蛇腹形状部57の形状と、第2面22側の蛇腹形状部57の形状は同じであってもよいし、異なっていてもよい。同様に、第1面21の山部26A及び谷部27Aの形状と、第2面22の山部26B及び谷部27Bの形状は同じであってもよいし、異なっていてもよい。 In addition, in FIG. 3A, the amplitude S1 and the amplitude S2 of the bellows-shaped portion 57 on the first surface 21 side and the amplitude S3 of the peak portion 26A and the valley portion 27A of the first surface 21 of the base material 20 are shown. The preferred dimensional setting of the amplitude corresponding to the amplitude S1 and the amplitude corresponding to the amplitude S2 of the bellows-shaped portion 57 on the second surface 22 side of the base material 20 is the same as that of the amplitude S1 and the amplitude S2. Further, the preferred dimensional setting of the amplitude in the peak portion 26B and the valley portion 27B of the second surface 22 is the same as that of the amplitude S3. However, the shape of the bellows-shaped portion 57 on the first surface 21 side and the shape of the bellows-shaped portion 57 on the second surface 22 side may be the same or different. Similarly, the shapes of the peaks 26A and 27A of the first surface 21 and the shapes of the peaks 26B and 27B of the second surface 22 may be the same or different.

配線52の材料としては、蛇腹形状部57の解消及び生成を利用して基材20の伸張及び収縮に追従することができる材料であればよい。配線52の材料は、それ自体が伸縮性を有していてもよく、伸縮性を有していなくてもよい。
配線52に用いられ得る、それ自体は伸縮性を有さない材料としては、例えば、金、銀、銅、アルミニウム、白金、クロム等の金属や、これらの金属を含む合金が挙げられる。配線52の材料自体が伸縮性を有さない場合、配線52としては、金属膜を用いることができる。
配線52に用いられる材料自体が伸縮性を有する場合、材料の伸縮性は、例えば、基材20の伸縮性と同様である。配線52に用いられ得る、それ自体が伸縮性を有する材料としては、例えば、導電性粒子およびエラストマーを含有する導電性組成物が挙げられる。導電性粒子としては、配線に使用できるものであればよく、例えば、金、銀、銅、ニッケル、パラジウム、白金、カーボン等の粒子が挙げられる。中でも、銀粒子が好ましく用いられる。
The material of the wiring 52 may be any material that can follow the expansion and contraction of the base material 20 by utilizing the elimination and formation of the bellows-shaped portion 57. The material of the wiring 52 may or may not have elasticity by itself.
Examples of the material that can be used for the wiring 52 and does not have elasticity by itself include metals such as gold, silver, copper, aluminum, platinum, and chromium, and alloys containing these metals. When the material of the wiring 52 itself does not have elasticity, a metal film can be used as the wiring 52.
When the material itself used for the wiring 52 has elasticity, the elasticity of the material is similar to, for example, the elasticity of the base material 20. Examples of the material that can be used for the wiring 52 and has elasticity by itself include a conductive composition containing conductive particles and an elastomer. The conductive particles may be any particles that can be used for wiring, and examples thereof include particles of gold, silver, copper, nickel, palladium, platinum, carbon and the like. Of these, silver particles are preferably used.

好ましくは、配線52は、変形に対する耐性を有する構造を備える。例えば、配線52は、ベース材と、ベース材の中に分散された複数の導電性粒子とを有する。この場合、ベース材として、樹脂などの変形可能な材料を用いることにより、基材20の伸縮に応じて配線52も変形することができる。また、変形が生じた場合であっても複数の導電性粒子の間の接触が維持されるように導電性粒子の分布や形状を設定することにより、配線52の導電性を維持することができる。 Preferably, the wiring 52 has a structure that is resistant to deformation. For example, the wiring 52 has a base material and a plurality of conductive particles dispersed in the base material. In this case, by using a deformable material such as resin as the base material, the wiring 52 can also be deformed according to the expansion and contraction of the base material 20. Further, the conductivity of the wiring 52 can be maintained by setting the distribution and shape of the conductive particles so that the contact between the plurality of conductive particles is maintained even when the deformation occurs. ..

配線52のベース材を構成する材料としては、一般的な熱可塑性エラストマーおよび熱硬化性エラストマーを用いることができ、例えば、スチレン系エラストマー、アクリル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、シリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、ポリブタジエン、ポリクロロプレン等を用いることができる。中でも、ウレタン系、シリコーン系構造を含む樹脂やゴムが、その伸縮性や耐久性などの面から好ましく用いられる。また、配線52の導電性粒子を構成する材料としては、例えば銀、銅、金、ニッケル、パラジウム、白金、カーボン等の粒子を用いることができる。中でも、銀粒子が好ましく用いられる。 As a material constituting the base material of the wiring 52, general thermoplastic elastomers and thermocurable elastomers can be used. For example, styrene-based elastomers, acrylic-based elastomers, olefin-based elastomers, urethane-based elastomers, silicone rubbers, etc. Elastomer rubber, fluororubber, nitrile rubber, polybutadiene, polychloroprene and the like can be used. Among them, resins and rubbers containing urethane-based and silicone-based structures are preferably used in terms of their elasticity and durability. Further, as a material constituting the conductive particles of the wiring 52, for example, particles such as silver, copper, gold, nickel, palladium, platinum, and carbon can be used. Of these, silver particles are preferably used.

配線52の厚みは、基材20の伸縮に耐え得る厚みであればよく、配線52の材料等に応じて適宜選択される。
例えば、配線52の材料が伸縮性を有さない場合、配線52の厚みは、25nm以上50μm以下の範囲内とすることができ、50nm以上10μm以下の範囲内であることが好ましく、100nm以上5μm以下の範囲内であることがより好ましい。
また、配線52の材料が伸縮性を有する場合、配線52の厚みは、5μm以上60μm以下の範囲内とすることができ、10μm以上50μm以下の範囲内であることが好ましく、20μm以上40μm以下の範囲内であることがより好ましい。
配線52の幅は、例えば50μm以上且つ10mm以下である。
The thickness of the wiring 52 may be a thickness that can withstand the expansion and contraction of the base material 20, and is appropriately selected depending on the material of the wiring 52 and the like.
For example, when the material of the wiring 52 does not have elasticity, the thickness of the wiring 52 can be in the range of 25 nm or more and 50 μm or less, preferably in the range of 50 nm or more and 10 μm or less, and preferably 100 nm or more and 5 μm. It is more preferably within the following range.
When the material of the wiring 52 has elasticity, the thickness of the wiring 52 can be in the range of 5 μm or more and 60 μm or less, preferably in the range of 10 μm or more and 50 μm or less, and 20 μm or more and 40 μm or less. It is more preferable that it is within the range.
The width of the wiring 52 is, for example, 50 μm or more and 10 mm or less.

また、基材20上または後述する支持基板40上及びこれら基材20または支持基板40に設けられた配線52には、基材20または支持基板40と配線52とを一体的に覆う絶縁膜が設けられてもよい。ただし、絶縁膜は、配線52における電子部品51との接続部分上には設けられない。このような絶縁膜は、熱硬化性の絶縁樹脂等を加熱硬化することで構成され得る。あるいは、絶縁膜は、紫外線によるUV硬化樹脂、または樹脂を含んだ溶液の塗布後に、熱乾燥により溶液中の溶剤を揮発させて得られる溶剤乾燥樹脂にて構成されてもよい。絶縁膜の厚さは、例えば10μm以上500μm以下でもよい。また、絶縁膜の形成は、スクリーン印刷等で行われてもよい。また、接続部51aは、例えば導電性接着剤から構成されてもよいし、半田材料で形成されてもよいし、電子部品51と一体の端子であってもよい。 Further, an insulating film that integrally covers the base material 20 or the support substrate 40 and the wiring 52 is provided on the base material 20 or the support substrate 40 described later and the wiring 52 provided on the base material 20 or the support substrate 40. It may be provided. However, the insulating film is not provided on the connection portion of the wiring 52 with the electronic component 51. Such an insulating film can be formed by heat-curing a thermosetting insulating resin or the like. Alternatively, the insulating film may be composed of a UV curable resin by ultraviolet rays or a solvent-dried resin obtained by volatilizing a solvent in the solution by heat drying after application of a solution containing the resin. The thickness of the insulating film may be, for example, 10 μm or more and 500 μm or less. Further, the insulating film may be formed by screen printing or the like. Further, the connecting portion 51a may be made of, for example, a conductive adhesive, may be formed of a solder material, or may be a terminal integrated with the electronic component 51.

配線52の形成方法は、材料等に応じて適宜選択される。例えば、基材20上または後述する支持基板40上に蒸着法やスパッタリング法、メッキ法、特にCuメッキ法等により金属膜を形成した後、フォトリソグラフィー法により金属膜をパターニングする方法が挙げられる。あるいは、基材20上または後述する支持基板40上に金属箔を接着積層した後、フォトリソグラフィー法により金属膜をパターニングする方法が挙げられる。また、配線52の材料自体が伸縮性を有する場合、例えば、基材20上または支持基板40上に一般的な印刷法により上記の導電性粒子およびエラストマーを含有する導電性組成物をパターン状に印刷する方法が挙げられる。これらの方法のうち、材料効率がよく安価に製作できる印刷法が好ましく用いられ得る。 The method for forming the wiring 52 is appropriately selected depending on the material and the like. For example, a method of forming a metal film on a base material 20 or a support substrate 40 described later by a vapor deposition method, a sputtering method, a plating method, particularly a Cu plating method, or the like, and then patterning the metal film by a photolithography method can be mentioned. Alternatively, a method of patterning a metal film by a photolithography method after adhering and laminating a metal foil on a base material 20 or a support substrate 40 described later can be mentioned. When the material of the wiring 52 itself has elasticity, for example, the conductive composition containing the above-mentioned conductive particles and elastomer is patterned on the base material 20 or the support substrate 40 by a general printing method. There is a method of printing. Of these methods, a printing method that has high material efficiency and can be manufactured at low cost can be preferably used.

蛇腹形状部57が配線52に形成されていることの利点について説明する。上述のように、基材20は、10MPa以下の弾性係数を有する。このため、配線基板10に引張応力を加えた場合、基材20は、弾性変形によって伸長することができる。ここで、仮に配線52も同様に弾性変形によって伸長すると、配線52の全長が増加し、配線52の断面積が減少するので、配線52の抵抗値が増加してしまう。また、配線52の弾性変形に起因して配線52にクラックなどの破損が生じてしまうことも考えられる。 The advantage that the bellows-shaped portion 57 is formed in the wiring 52 will be described. As described above, the base material 20 has an elastic modulus of 10 MPa or less. Therefore, when tensile stress is applied to the wiring board 10, the base material 20 can be stretched by elastic deformation. Here, if the wiring 52 is similarly stretched by elastic deformation, the total length of the wiring 52 increases and the cross-sectional area of the wiring 52 decreases, so that the resistance value of the wiring 52 increases. Further, it is also conceivable that the wiring 52 may be damaged such as cracks due to the elastic deformation of the wiring 52.

これに対して、本実施形態においては、配線52が蛇腹形状部57を有している。このため、基材20が伸張する際、配線52は、蛇腹形状部57の起伏を低減するように変形することによって、すなわち蛇腹形状を解消することによって、基材20の伸張に追従することができる。また、本実施形態においては、配線52が、引張によって伸長した状態の基材20に設けられ、基材20から引張応力が取り除かれて基材20が収縮するとき、配線52に蛇腹形状部が生じているため、基材20を配線52が形成された初期の引張状態に戻した場合に、蛇腹形状部は完全に解消される。また、本実施形態においては、基材20に引張応力が加えられていない状態で配線52に曲げ応力が加わり、基材20が配線52が形成された初期の引張状態にあるときに、配線52は曲げ応力等の変形応力が加わっていない。このため、基材20の伸張に伴って配線52の全長が増加することや、配線52の断面積が減少することを抑制することができる。このことにより、配線基板10の伸張に起因して配線52の抵抗値が増加することを抑制することができる。また、配線52にクラックなどの破損が生じてしまうことを抑制することができる。 On the other hand, in the present embodiment, the wiring 52 has a bellows-shaped portion 57. Therefore, when the base material 20 is stretched, the wiring 52 can follow the stretch of the base material 20 by deforming the bellows-shaped portion 57 so as to reduce the undulations, that is, by eliminating the bellows shape. it can. Further, in the present embodiment, the wiring 52 is provided on the base material 20 in a state of being stretched by tension, and when the tensile stress is removed from the base material 20 and the base material 20 contracts, the wiring 52 has a bellows-shaped portion. Therefore, when the base material 20 is returned to the initial tensile state in which the wiring 52 is formed, the bellows-shaped portion is completely eliminated. Further, in the present embodiment, when a bending stress is applied to the wiring 52 in a state where the tensile stress is not applied to the base material 20, and the base material 20 is in the initial tensile state in which the wiring 52 is formed, the wiring 52 No deformation stress such as bending stress is applied. Therefore, it is possible to prevent the total length of the wiring 52 from increasing and the cross-sectional area of the wiring 52 from decreasing as the base material 20 stretches. As a result, it is possible to suppress an increase in the resistance value of the wiring 52 due to the extension of the wiring board 10. Further, it is possible to prevent the wiring 52 from being damaged such as a crack.

〔補強部材〕
補強部材30は、基材20を補強することで、基材20の変形を緩和するために配線基板10に設けられた機構である。例えば、配線52における電子部品51の周囲に位置する部分は、伸縮時に大きい応力が生じ易く、また、電子部品51の下方に巻き込まれ易くなり、破損のリスクが高くなり得る。ここで本実施形態によれば、基材20に補強部材30を設けることにより、基材20における電子部品51の周囲の部分の変形を制御、特に緩和することが可能となる。これにより、配線52に局所的に大きい応力が生じることや、配線52が電子部品51の下方に巻き込まれることを抑制することができ、配線52と電子部品51との断線を抑制することができる。
[Reinforcing member]
The reinforcing member 30 is a mechanism provided on the wiring board 10 in order to alleviate the deformation of the base material 20 by reinforcing the base material 20. For example, a portion of the wiring 52 located around the electronic component 51 is likely to generate a large stress during expansion and contraction, and is likely to be caught under the electronic component 51, which may increase the risk of breakage. Here, according to the present embodiment, by providing the reinforcing member 30 on the base material 20, it is possible to control, particularly alleviate, the deformation of the peripheral portion of the electronic component 51 on the base material 20. As a result, it is possible to prevent the wiring 52 from being locally generated with a large stress and to prevent the wiring 52 from being caught under the electronic component 51, and it is possible to suppress disconnection between the wiring 52 and the electronic component 51. ..

図1及び図2に示す例においては、2つの補強部材30が基材20に設けられ、2つの補強部材30のうちの一方の補強部材30が、第1面21側の電子部品51に対応して設けられ、他方の補強部材30が、第2面22側の電子部品51に対応して設けられている。補強部材30は扁平状である。第1面21の法線方向に沿って基材20を見た際、上記一方の補強部材30は、第1面21側の配線52に対応して設けられた第1面21側の電子部品51と重なり、上記他方の補強部材30は、第2面22側の配線52に対応して設けられた第2面22側の電子部品51と重なっている。なお、「重なる」とは、基材20の第1面21の法線方向に沿って見た場合に2つの構成要素が重なることを意味している。 In the examples shown in FIGS. 1 and 2, two reinforcing members 30 are provided on the base material 20, and one of the two reinforcing members 30 corresponds to the electronic component 51 on the first surface 21 side. The other reinforcing member 30 is provided corresponding to the electronic component 51 on the second surface 22 side. The reinforcing member 30 is flat. When the base material 20 is viewed along the normal direction of the first surface 21, the one reinforcing member 30 is an electronic component on the first surface 21 side provided corresponding to the wiring 52 on the first surface 21 side. The other reinforcing member 30 overlaps with 51, and overlaps with the electronic component 51 on the second surface 22 side provided corresponding to the wiring 52 on the second surface 22 side. In addition, "overlapping" means that the two components overlap when viewed along the normal direction of the first surface 21 of the base material 20.

図1及び図2に示す補強部材30は、基材20の内部に設けられ、外部に露出していない。第1面21の法線方向に沿って基材20を見た際に第1面21側の電子部品51と重なる補強部材30は、第1面21と第2面22との間の中点に対して第1面21側にあり、第1面21の法線方向に沿って基材20を見た際に第2面22側の電子部品51と重なる補強部材30は、第1面21と第2面22との間の中点に対して第2面22側にある。ただし、補強部材30の位置は特に限られるものではない。また、補強部材30は、平面視で矩形状であり、第1面21の法線方向に沿って基材20を見た際、補強部材30と平面視で矩形状の電子部品51との向きは揃っており、且つ、補強部材30が電子部品51の全周に対して食み出して、電子部品51の全体を包含する。しかしながら、補強部材30の形状は特に限られるものではなく、また、第1面21の法線方向に沿って基材20を見た際、電子部品51の一部が補強部材30から食み出していてもよい。 The reinforcing member 30 shown in FIGS. 1 and 2 is provided inside the base material 20 and is not exposed to the outside. When the base material 20 is viewed along the normal direction of the first surface 21, the reinforcing member 30 that overlaps with the electronic component 51 on the first surface 21 side is a midpoint between the first surface 21 and the second surface 22. The reinforcing member 30 which is on the first surface 21 side and overlaps with the electronic component 51 on the second surface 22 side when the base material 20 is viewed along the normal direction of the first surface 21 is the first surface 21. It is on the second surface 22 side with respect to the midpoint between the second surface 22 and the second surface 22. However, the position of the reinforcing member 30 is not particularly limited. Further, the reinforcing member 30 has a rectangular shape in a plan view, and when the base material 20 is viewed along the normal direction of the first surface 21, the orientation of the reinforcing member 30 and the rectangular electronic component 51 in a plan view. And the reinforcing member 30 protrudes from the entire circumference of the electronic component 51 to include the entire electronic component 51. However, the shape of the reinforcing member 30 is not particularly limited, and when the base material 20 is viewed along the normal direction of the first surface 21, a part of the electronic component 51 protrudes from the reinforcing member 30. You may be.

図3Aに示すように、本例では、電子部品51及び補強部材30が、基材20において、配線52の蛇腹形状部57に対し、第1方向D1でずれた位置に設けられる。後述するように、基材20に張力を加えて伸長させた状態で、電子部品51及び補強部材30を設ける場合には、張力を取り除いた後の基材20の第1面21、第2面22又は配線52における電子部品51及び補強部材30が位置する部分に、蛇腹形状部57の山部及び谷部よりも周期が大きく且つ振幅が小さい、図3Bに示すような山部71,81及び谷部72,82が形成される場合がある。すなわち、基材20における配線52が位置する部分及び電子部品51及び補強部材30が位置する部分を含む領域の両方に、山部及び谷部が形成される場合がある。このような山部71,81及び谷部72,82は、電子部品51に近づくに従い、次第に周期が大きくなり且つ振幅が小さくなる傾向がある。なお、基材20に張力を加えて伸長させた状態で電子部品51及び補強部材30を設けた場合においては、基材20の第1面21及び配線52における電子部品51及び補強部材30が位置する部分に、山部及び谷部が形成されない場合もあり得る。 As shown in FIG. 3A, in this example, the electronic component 51 and the reinforcing member 30 are provided on the base material 20 at positions deviated from the bellows-shaped portion 57 of the wiring 52 in the first direction D1. As will be described later, when the electronic component 51 and the reinforcing member 30 are provided in a state where the base material 20 is stretched by applying tension, the first surface 21 and the second surface of the base material 20 after the tension is removed. At the portion of the wiring 52 where the electronic component 51 and the reinforcing member 30 are located, the peaks 71, 81 and the peaks 71, 81 as shown in FIG. 3B, which have a larger period and a smaller amplitude than the peaks and valleys of the bellows-shaped portion 57, Valleys 72 and 82 may be formed. That is, peaks and valleys may be formed in both the portion of the base material 20 where the wiring 52 is located and the region where the electronic component 51 and the reinforcing member 30 are located. Such peaks 71, 81 and valleys 72, 82 tend to have a gradually larger period and a smaller amplitude as they approach the electronic component 51. When the electronic component 51 and the reinforcing member 30 are provided in a state where the base material 20 is stretched by applying tension, the electronic component 51 and the reinforcing member 30 on the first surface 21 of the base material 20 and the wiring 52 are positioned. In some cases, peaks and valleys may not be formed in the portion to be formed.

補強部材30は、基材20の第1の弾性係数よりも大きい弾性係数を有してもよい。補強部材30の弾性係数は、例えば0.1GPa以上500GPa以下であり、より好ましくは0.1GPa以上100GPa以下である。このような補強部材30を基材20に設けることにより、基材20のうち補強部材30と重なる部分が伸縮することを抑制することができる。これにより、基材20を、伸縮が生じやすい部分と、伸縮が生じにくい部分とに区画することができる。補強部材30の弾性係数が低すぎると、伸縮の制御がしにくい場合がある。また、補強部材30の弾性係数が高すぎると、基材20が伸縮した際に、割れやひびなど構造の破壊が補強部材30に起こる場合がある。補強部材30の弾性係数は、基材20の第1の弾性係数の1.1倍以上1000000倍以下であってもよく、より好ましくは100000倍以下である。以下の説明において、補強部材30の弾性係数のことを、第2の弾性係数とも称する。なお、「重なる」とは、基材20の第1面21の法線方向に沿って見た場合に2つの構成要素が重なることを意味している。 The reinforcing member 30 may have an elastic modulus larger than the first elastic modulus of the base material 20. The elastic modulus of the reinforcing member 30 is, for example, 0.1 GPa or more and 500 GPa or less, and more preferably 0.1 GPa or more and 100 GPa or less. By providing such a reinforcing member 30 on the base material 20, it is possible to prevent the portion of the base material 20 that overlaps with the reinforcing member 30 from expanding and contracting. As a result, the base material 20 can be divided into a portion where expansion and contraction is likely to occur and a portion where expansion and contraction is unlikely to occur. If the elastic modulus of the reinforcing member 30 is too low, it may be difficult to control expansion and contraction. Further, if the elastic modulus of the reinforcing member 30 is too high, the reinforcing member 30 may be damaged in structure such as cracks and cracks when the base material 20 expands and contracts. The elastic modulus of the reinforcing member 30 may be 1.1 times or more and 1,000,000 times or less of the first elastic modulus of the base material 20, and more preferably 100,000 times or less. In the following description, the elastic modulus of the reinforcing member 30 is also referred to as a second elastic modulus. In addition, "overlapping" means that the two components overlap when viewed along the normal direction of the first surface 21 of the base material 20.

補強部材30の第2の弾性係数を算出する方法は、補強部材30の形態に応じて適宜定められる。例えば、補強部材30の第2の弾性係数を算出する方法は、上述の基材20の弾性係数を算出する方法と同様であってもよく、異なっていてもよい。後述する支持基板40の弾性係数も同様である。例えば、補強部材30又は支持基板40の弾性係数を算出する方法として、補強部材30又は支持基板40のサンプルを用いて、ASTM D882に準拠して引張試験を実施するという方法を採用することができる。 The method for calculating the second elastic modulus of the reinforcing member 30 is appropriately determined according to the form of the reinforcing member 30. For example, the method of calculating the second elastic modulus of the reinforcing member 30 may be the same as or different from the method of calculating the elastic modulus of the base material 20 described above. The elastic modulus of the support substrate 40 described later is also the same. For example, as a method for calculating the elastic modulus of the reinforcing member 30 or the supporting substrate 40, a method of performing a tensile test in accordance with ASTM D882 using a sample of the reinforcing member 30 or the supporting substrate 40 can be adopted. ..

補強部材30の第2の弾性係数が基材20の第1の弾性係数よりも大きい場合、補強部材30を構成する材料として、金属材料を用いることができる。金属材料の例としては、銅、アルミニウム、ステンレス鋼等を挙げることができる。また、金属材料として、半田材料が用いられてもよい。また、補強部材30を構成する材料として、一般的な熱可塑性エラストマーや、アクリル系、ウレタン系、エポキシ系、ポリエステル系、エポキシ系、ビニルエーテル系、ポリエン・チオール系又はシリコーン系等のオリゴマー、ポリマーなどを用いてもよい。補強部材30を構成する材料がこれらの樹脂である場合、補強部材30は、透明性を有していてもよい。また、補強部材30は、遮光性、例えば紫外線を遮蔽する特性を有していてもよい。例えば、補強部材30は黒色であってもよい。また、補強部材30の色と基材20の色とが同一であってもよい。補強部材30の厚みは、本実施の形態において、例えば1μm以上100μm以下であるが、特に限られるものではない。 When the second elastic modulus of the reinforcing member 30 is larger than the first elastic modulus of the base material 20, a metal material can be used as the material constituting the reinforcing member 30. Examples of metal materials include copper, aluminum, stainless steel and the like. Further, a solder material may be used as the metal material. Further, as a material constituting the reinforcing member 30, a general thermoplastic elastomer, an acrylic-based, urethane-based, epoxy-based, polyester-based, epoxy-based, vinyl ether-based, polyene-thiol-based or silicone-based oligomer, polymer, etc. May be used. When the material constituting the reinforcing member 30 is these resins, the reinforcing member 30 may have transparency. Further, the reinforcing member 30 may have a light-shielding property, for example, a property of shielding ultraviolet rays. For example, the reinforcing member 30 may be black. Further, the color of the reinforcing member 30 and the color of the base material 20 may be the same. In the present embodiment, the thickness of the reinforcing member 30 is, for example, 1 μm or more and 100 μm or less, but is not particularly limited.

若しくは、補強部材30の第2の弾性係数は、基材20の第1の弾性係数以下であってもよい。補強部材30の第2の弾性係数は、例えば10MPa以下であり、1MPa以下であってもよい。補強部材30の第2の弾性係数は、基材20の第1の弾性係数の1倍以下であってもよく、0.8倍以下であってもよい。 Alternatively, the second elastic modulus of the reinforcing member 30 may be equal to or less than the first elastic modulus of the base material 20. The second elastic modulus of the reinforcing member 30 is, for example, 10 MPa or less, and may be 1 MPa or less. The second elastic modulus of the reinforcing member 30 may be 1 times or less, or 0.8 times or less, the first elastic modulus of the base material 20.

補強部材30の第2の弾性係数が基材20の第1の弾性係数以下の場合、補強部材30を構成する材料として、一般的な熱可塑性エラストマーおよび熱硬化性エラストマーを用いることができ、例えば、スチレン系エラストマー、アクリル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、シリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、ポリブタジエン、ポリクロロプレンが挙げられる。この場合、補強部材30の厚みは、本実施の形態において、例えば1μm以上100μm以下であるが、特に限られるものではない。 When the second elastic coefficient of the reinforcing member 30 is equal to or less than the first elastic coefficient of the base material 20, general thermoplastic elastomers and thermosetting elastomers can be used as the material constituting the reinforcing member 30, for example. , Styrene-based elastomer, acrylic-based elastomer, olefin-based elastomer, urethane-based elastomer, silicone rubber, urethane rubber, fluororubber, nitrile rubber, polybutadiene, and polychloroprene. In this case, the thickness of the reinforcing member 30 is, for example, 1 μm or more and 100 μm or less in the present embodiment, but is not particularly limited.

なお、複数、本例では2つの補強部材30の各弾性係数は、異なっていてもよいし、同一であってもよい。 The elastic modulus of each of the plurality of reinforcing members 30 in this example may be different or the same.

補強部材30の特性を、弾性係数に替えて曲げ剛性によって表してもよい。補強部材30の断面二次モーメントは、配線基板10の伸縮方向に直交する平面によって補強部材30を切断した場合の断面に基づいて算出される。補強部材30の曲げ剛性は、基材20の曲げ剛性の1.1倍以上であってもよく、より好ましくは2倍以上であり、更に好ましくは10倍以上である。 The characteristic of the reinforcing member 30 may be expressed by flexural rigidity instead of the elastic modulus. The moment of inertia of area of the reinforcing member 30 is calculated based on the cross section when the reinforcing member 30 is cut by a plane orthogonal to the expansion / contraction direction of the wiring board 10. The bending rigidity of the reinforcing member 30 may be 1.1 times or more, more preferably 2 times or more, and further preferably 10 times or more the bending rigidity of the base material 20.

若しくは、補強部材30の曲げ剛性は、基材20の曲げ剛性以下であってもよい。例えば、補強部材30の曲げ剛性は、基材20の曲げ剛性の1倍以下であってもよく、0.8倍以下であってもよい。 Alternatively, the bending rigidity of the reinforcing member 30 may be less than or equal to the bending rigidity of the base material 20. For example, the bending rigidity of the reinforcing member 30 may be 1 time or less or 0.8 times or less the bending rigidity of the base material 20.

補強部材30の形成方法は、特に限られるものではない。本実施形態のように、補強部材30が基材20の内部に設けられる場合には、例えば基材20を構成する層を多層で形成する工程の途中で、補強部材30を設けてもよい。 The method of forming the reinforcing member 30 is not particularly limited. When the reinforcing member 30 is provided inside the base material 20 as in the present embodiment, for example, the reinforcing member 30 may be provided in the middle of the process of forming the layers constituting the base material 20 in multiple layers.

(配線基板の製造方法)
以下、図4(a)〜(e)を参照して、配線基板10の製造方法について説明する。
(Manufacturing method of wiring board)
Hereinafter, a method of manufacturing the wiring board 10 will be described with reference to FIGS. 4A to 4E.

まず、図4(a)に示すように、伸縮性を有する基材20を準備する基材準備工程を実施する。基材20には、2つの補強部材30が互いに重ならない位置に設けられている。 First, as shown in FIG. 4A, a base material preparation step for preparing the base material 20 having elasticity is carried out. The base material 20 is provided at a position where the two reinforcing members 30 do not overlap each other.

続いて、図4(b)に示すように、基材20に引張応力Tを加えて基材20を伸長させる伸長工程を実施する。 Subsequently, as shown in FIG. 4B, an extension step of applying tensile stress T to the base material 20 to extend the base material 20 is carried out.

続いて、図4(c)に示すように、引張応力Tによって伸長した状態の基材20の第1面21に、電子部品51及び配線52を設ける工程を実施する。さらに、図4(d)に示すように、引張応力Tによって伸長した状態の基材20の第2面22に、電子部品51及び配線52を設ける工程を実施する。 Subsequently, as shown in FIG. 4C, a step of providing the electronic component 51 and the wiring 52 on the first surface 21 of the base material 20 stretched by the tensile stress T is carried out. Further, as shown in FIG. 4D, a step of providing the electronic component 51 and the wiring 52 on the second surface 22 of the base material 20 stretched by the tensile stress T is carried out.

その後、図4(e)に示すように、基材20から引張応力Tを取り除く収縮工程を実施する。これにより、図4(e)において矢印Cで示すように、基材20が収縮し、基材20に設けられている配線52にも変形が生じる。 Then, as shown in FIG. 4E, a shrinkage step of removing the tensile stress T from the base material 20 is carried out. As a result, as shown by the arrow C in FIG. 4E, the base material 20 contracts, and the wiring 52 provided on the base material 20 is also deformed.

以上に説明した配線基板10では、基材20の第1面21の法線方向に沿って基材20を見た際、補強部材30が、基材20の第1面21側及び第2面22側に設けられる電子部品51と重なる。これにより、複数の電子部品51を基材20のサイズを抑制しつつ設けることが可能となる。また、基材20の第1面21の法線方向に沿って基材20を見た際に電子部品51と重なる補強部材30を設けることで、基材20の伸縮時において、配線52における電子部品51と近接した部分に応力が生じにくくなり、配線52と電子部品51との断線が効果的に抑制される。したがって、配線52に接続される複数の機能部品としての電子部品51を高密度に設けて小型化を図ることが可能となり、且つ電子部品51と配線52との間の電気的接続の信頼性を向上できる。 In the wiring board 10 described above, when the base material 20 is viewed along the normal direction of the first surface 21 of the base material 20, the reinforcing member 30 is on the first surface 21 side and the second surface of the base material 20. It overlaps with the electronic component 51 provided on the 22 side. This makes it possible to provide a plurality of electronic components 51 while suppressing the size of the base material 20. Further, by providing the reinforcing member 30 that overlaps with the electronic component 51 when the base material 20 is viewed along the normal direction of the first surface 21 of the base material 20, when the base material 20 expands and contracts, the electrons in the wiring 52 Stress is less likely to occur in the portion close to the component 51, and disconnection between the wiring 52 and the electronic component 51 is effectively suppressed. Therefore, it is possible to provide the electronic component 51 as a plurality of functional components connected to the wiring 52 at a high density to reduce the size, and to improve the reliability of the electrical connection between the electronic component 51 and the wiring 52. Can be improved.

このような配線基板10の用途としては、ヘルスケア分野、医療分野、介護分野、エレクトロニクス分野、スポーツ・フィットネス分野、美容分野、モビリティ分野、畜産・ペット分野、アミューズメント分野、ファッション・アパレル分野、セキュリティ分野、ミリタリー分野、流通分野、教育分野、建材・家具・装飾分野、環境エネルギー分野、農林水産分野、ロボット分野などを挙げることができる。例えば、人の腕などの身体の一部に取り付ける製品を、本実施形態による配線基板10を用いて構成する。配線基板10は伸張することができるので、例えば配線基板10を伸長させた状態で身体に取り付けることにより、配線基板10を身体の一部により密着させることができる。このため、良好な着用感を実現することができる。また、配線基板10が伸張した場合に配線52の抵抗値が低下することを抑制することができるので、配線基板10の良好な電気特性を実現することができる。他にも配線基板10は伸長することができるので、人などの生体に限らず曲面や立体形状に沿わせて設置や組込むことが可能である。それらの製品の一例としては、バイタルセンサ、マスク、補聴器、歯ブラシ、絆創膏、湿布、コンタクトレンズ、義手、義足、義眼、カテーテル、ガーゼ、薬液パック、包帯、ディスポーザブル生体電極、おむつ、リハビリ用機器家電製品、ディスプレイ、サイネージ、パーソナルコンピューター、携帯電話、マウス、スピーカースポーツウェア、リストバンド、はちまき、手袋、水着、サポーター、ボール、グローブ、ラケット、クラブ、バット、釣竿、リレーのバトンや器械体操用具、またそのグリップ、身体トレーニング用機器、浮き輪、テント、水着、ゼッケン、ゴールネット、ゴールテープ、薬液浸透美容マスク、電気刺激ダイエット用品、懐炉、付け爪、タトゥー、自動車、飛行機、列車、船舶、自転車、ベビーカー、ドローン、車椅子、などのシート、インパネ、タイヤ、内装、外装サドル、ハンドル、道路、レール、橋、トンネル、ガスや水道の管、電線、テトラポッド、ロープ、首輪、リード、ハーネス、動物用のタグ、ブレスレット、ベルトなど、ゲーム機器、コントローラなどのハプティクスデバイス、ランチョンマット、チケット、人形、ぬいぐるみ、応援グッズ、帽子、服、メガネ、靴、インソール、靴下、ストッキング、スリッパ、インナーウェア、マフラー、耳あて、鞄、アクセサリー、指輪、時計、ネクタイ、個人ID認識デバイス、ヘルメット、パッケージ、ICタグ、ペットボトル、文具、書籍、ペン、カーペット、ソファ、寝具、照明、ドアノブ、手すり、花瓶、ベッド、マットレス、座布団、カーテン、ドア、窓、天井、壁、床、ワイヤレス給電アンテナ、電池、ビニールハウス、ネット(網)、ロボットハンド、ロボット外装を挙げることができる。 Applications of such a wiring board 10 include healthcare field, medical field, nursing care field, electronics field, sports / fitness field, beauty field, mobility field, livestock / pet field, amusement field, fashion / apparel field, and security field. , Military field, distribution field, education field, building materials / furniture / decoration field, environmental energy field, agriculture, forestry and fisheries field, robot field, etc. For example, a product to be attached to a part of the body such as a human arm is configured by using the wiring board 10 according to the present embodiment. Since the wiring board 10 can be stretched, for example, by attaching the wiring board 10 to the body in an stretched state, the wiring board 10 can be brought into close contact with a part of the body. Therefore, a good wearing feeling can be realized. Further, since it is possible to suppress a decrease in the resistance value of the wiring 52 when the wiring board 10 is stretched, it is possible to realize good electrical characteristics of the wiring board 10. In addition, since the wiring board 10 can be extended, it can be installed or incorporated along a curved surface or a three-dimensional shape, not limited to a living body such as a human being. Examples of these products include vital sensors, masks, hearing aids, toothbrushes, plasters, wet cloths, contact lenses, artificial hands, artificial legs, artificial eyes, catheters, gauze, chemical packs, bandages, disposable bioelectrodes, diapers, rehabilitation equipment, home appliances. , Display, signage, personal computer, mobile phone, mouse, speaker sportswear, wristband, earmuffs, gloves, swimwear, supporters, balls, gloves, rackets, clubs, bats, fishing rods, relay batons and jewelry, and their Grips, physical training equipment, floats, tents, swimwear, bibs, goal nets, goal tapes, chemical penetration beauty masks, electrical stimulation diet supplies, pocket furnaces, claws, tattoos, automobiles, airplanes, trains, ships, bicycles, strollers , Drones, wheelchairs, etc. seats, instrument panels, tires, interior, exterior saddles, handles, roads, rails, bridges, tunnels, gas and water pipes, wires, tetrapods, ropes, collars, leads, harnesses, for animals Tags, bracelets, belts, game equipment, haptics devices such as controllers, luncheon mats, tickets, dolls, stuffed animals, cheering goods, hats, clothes, glasses, shoes, insoles, socks, stockings, slippers, innerwear, mufflers, Earmuffs, bags, accessories, rings, watches, ties, personal ID recognition devices, helmets, packages, IC tags, PET bottles, stationery, books, pens, carpets, sofas, bedding, lighting, door knobs, handrails, vases, beds, Examples include mattresses, cushions, curtains, doors, windows, ceilings, walls, floors, wireless power antennas, batteries, vinyl houses, nets, robot hands, and robot exteriors.

なお、上述した実施形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施形態と同様に構成され得る部分について、上述の実施形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述した実施形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 It is possible to make various changes to the above-described embodiment. Hereinafter, a modified example will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same codes as those used for the corresponding parts in the above-described embodiment are used for the parts that can be configured in the same manner as in the above-described embodiment, and are duplicated. The explanation is omitted. Further, when it is clear that the action and effect obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.

(配線基板の変形例)
以下、配線基板10のいくつかの変形例について図5A乃至図15を参照して説明する。
(Modification example of wiring board)
Hereinafter, some modifications of the wiring board 10 will be described with reference to FIGS. 5A to 15.

〔第1変形例〕
図5Aに示す変形例では、基材20の内部に設けられた一つの補強部材30が、第1面21の法線方向に沿って基材20を見た際に第1面21側の電子部品51と重なるとともに、第2面22側の電子部品51と重なっている。図5Aに示す例では、第1面21側の電子部品51と第2面22側の電子部品51とが第1方向D1で同じ位置に配置される。しかしながら、第1面21側の電子部品51と第2面22側の電子部品51とが第1方向D1でずれて配置されてもよい。
[First modification]
In the modified example shown in FIG. 5A, when one reinforcing member 30 provided inside the base material 20 looks at the base material 20 along the normal direction of the first surface 21, the electrons on the first surface 21 side are seen. It overlaps with the component 51 and also overlaps with the electronic component 51 on the second surface 22 side. In the example shown in FIG. 5A, the electronic component 51 on the first surface 21 side and the electronic component 51 on the second surface 22 side are arranged at the same position in the first direction D1. However, the electronic component 51 on the first surface 21 side and the electronic component 51 on the second surface 22 side may be arranged so as to be displaced in the first direction D1.

〔第2変形例〕
図5Bに示す変形例では、配線基板10が、配線52と基材20との間に設けられて基材20に平行に延びる支持基板40を、基材20の第1面21側及び第2面22側の両方に備えている。また、支持基板40には配線52と電子部品51とが設けられている。すなわち、支持基板40に、配線52と電子部品51とが支持されている。図5Bに示す配線基板10は、伸長された状態の基材20に、配線52と電子部品51とが実装された支持基板40を接合させることで形成される。また、図5Bに示す配線基板10は、基材20の第1面21側及び第2面22側の両方に支持基板40を備えるが、いずれか一方のみに支持基板40が設けられる構成でもよい。
[Second modification]
In the modified example shown in FIG. 5B, the wiring board 10 is provided between the wiring 52 and the base material 20, and the support board 40 extending in parallel with the base material 20 is provided on the first surface 21 side and the second base material 20. It is provided on both sides of the surface 22. Further, the support board 40 is provided with the wiring 52 and the electronic component 51. That is, the wiring 52 and the electronic component 51 are supported on the support substrate 40. The wiring board 10 shown in FIG. 5B is formed by joining a support board 40 on which a wiring 52 and an electronic component 51 are mounted to a base material 20 in an elongated state. Further, the wiring board 10 shown in FIG. 5B includes the support substrate 40 on both the first surface 21 side and the second surface 22 side of the substrate 20, but the support substrate 40 may be provided on only one of them. ..

支持基板40は、基材20よりも低い伸縮性を有するよう構成された板状の部材である。支持基板40は、基材20側に位置する第2面42と、第2面42の反対側に位置する第1面41と、を含む。図5Bに示す例において、支持基板40はそれぞれ、その第1面41側において電子部品51及び配線52を支持している。また、支持基板40は、その第2面42側において基材20の第1面に接合されている。例えば、基材20と支持基板40との間に、接着剤を含む接着層が設けられていてもよい。この場合、接着層を構成する材料としては、例えばアクリル系接着剤、シリコーン系接着剤等を用いることができる。接着層の厚みは、例えば5μm以上且つ200μm以下である。また、図示はしないが、非接着表面を分子修飾させて、分子接着結合させる方法によって支持基板40の第2面42が基材20の第1面21に接合されていてもよい。この場合、基材20と支持基板40との間に接着層が設けられていなくてもよい。 The support substrate 40 is a plate-shaped member configured to have lower elasticity than the substrate 20. The support substrate 40 includes a second surface 42 located on the base material 20 side and a first surface 41 located on the opposite side of the second surface 42. In the example shown in FIG. 5B, the support substrate 40 supports the electronic component 51 and the wiring 52 on the first surface 41 side thereof, respectively. Further, the support substrate 40 is joined to the first surface of the base material 20 on the second surface 42 side thereof. For example, an adhesive layer containing an adhesive may be provided between the base material 20 and the support substrate 40. In this case, as the material constituting the adhesive layer, for example, an acrylic adhesive, a silicone adhesive, or the like can be used. The thickness of the adhesive layer is, for example, 5 μm or more and 200 μm or less. Further, although not shown, the second surface 42 of the support substrate 40 may be bonded to the first surface 21 of the base material 20 by a method in which the non-adhesive surface is molecularly modified and molecularly bonded. In this case, the adhesive layer may not be provided between the base material 20 and the support substrate 40.

また、本変形例においては、基材20に張力を加えて伸長させて、このように伸長させた基材20に、電子部品51及び配線52を支持した支持基板40が接合される。支持基板40と接合された基材20から引張応力が取り除かれて基材20が収縮するとき、支持基板40及び配線52に蛇腹形状部57が形成される。支持基板40の特性や寸法は、このような蛇腹形状部57が形成され易くなるよう設定されている。例えば、支持基板40は、基材20の第1の弾性係数よりも大きい弾性係数を有する。以下の説明において、支持基板40の弾性係数のことを、第3の弾性係数とも称する。 Further, in the present modification, tension is applied to the base material 20 to extend the base material 20, and the support substrate 40 supporting the electronic component 51 and the wiring 52 is joined to the base material 20 thus extended. When the tensile stress is removed from the base material 20 bonded to the support substrate 40 and the base material 20 contracts, the bellows-shaped portion 57 is formed on the support substrate 40 and the wiring 52. The characteristics and dimensions of the support substrate 40 are set so that such a bellows-shaped portion 57 can be easily formed. For example, the support substrate 40 has an elastic modulus larger than the first elastic modulus of the substrate 20. In the following description, the elastic modulus of the support substrate 40 is also referred to as a third elastic modulus.

支持基板40の第3の弾性係数は、例えば100MPa以上であり、より好ましくは1GPa以上である。また、支持基板40の第3の弾性係数は、基材20の第1の弾性係数の100倍以上100000倍以下であってもよく、好ましくは1000倍以上50000倍以下である。このように支持基板40の第3の弾性係数を設定することにより、蛇腹形状部57の周期が小さくなり過ぎることを抑制することができる。また、蛇腹形状部57において局所的な折れ曲がりが生じることを抑制することができる。
なお、支持基板40の弾性係数が低すぎると、補強部材30の形成工程中に支持基板40が変形し易く、この結果、電子部品51及び配線52に対する補強部材30の位置合わせが難しくなる。また、支持基板40の弾性係数が高すぎると、弛緩時の基材20の復元が難しくなり、また基材20の割れや折れが発生し易くなる。
The third elastic modulus of the support substrate 40 is, for example, 100 MPa or more, more preferably 1 GPa or more. Further, the third elastic modulus of the support substrate 40 may be 100 times or more and 100,000 times or less, preferably 1000 times or more and 50,000 times or less of the first elastic modulus of the base material 20. By setting the third elastic modulus of the support substrate 40 in this way, it is possible to prevent the period of the bellows-shaped portion 57 from becoming too small. In addition, it is possible to suppress the occurrence of local bending in the bellows-shaped portion 57.
If the elastic modulus of the support substrate 40 is too low, the support substrate 40 is likely to be deformed during the process of forming the reinforcing member 30, and as a result, it becomes difficult to align the reinforcing member 30 with respect to the electronic component 51 and the wiring 52. Further, if the elastic modulus of the support substrate 40 is too high, it becomes difficult to restore the base material 20 at the time of relaxation, and the base material 20 is likely to be cracked or broken.

また、支持基板40の厚みは、例えば500nm以上10μm以下であり、より好ましくは1μm以上5μm以下である。支持基板40の厚みが小さすぎると、支持基板40の製造工程や、支持基板40上に部材を形成する工程における、支持基板40のハンドリングが難しくなる。支持基板40の厚みが大きすぎると、弛緩時の基材20の復元が難しくなり、目標の基材20の伸縮が得られなくなる。 The thickness of the support substrate 40 is, for example, 500 nm or more and 10 μm or less, more preferably 1 μm or more and 5 μm or less. If the thickness of the support substrate 40 is too small, it becomes difficult to handle the support substrate 40 in the process of manufacturing the support substrate 40 and the process of forming a member on the support substrate 40. If the thickness of the support substrate 40 is too large, it becomes difficult to restore the base material 20 at the time of relaxation, and the target base material 20 cannot be expanded or contracted.

支持基板40を構成する材料としては、例えば、ポリエチレンナフタレート、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂等を用いることができる。その中でも、耐久性や耐熱性がよいポリエチレンナフタレートかポリイミドが好ましく用いられ得る。 As the material constituting the support substrate 40, for example, polyethylene naphthalate, polyimide, polyethylene terephthalate, polycarbonate, acrylic resin and the like can be used. Among them, polyethylene naphthalate or polyimide having good durability and heat resistance can be preferably used.

支持基板40の第3の弾性係数は、基材20の第1の弾性係数の100倍以下であってもよい。支持基板40の第3の弾性係数を算出する方法は、基材20の場合と同様である。 The third elastic modulus of the support substrate 40 may be 100 times or less of the first elastic modulus of the base material 20. The method of calculating the third elastic modulus of the support substrate 40 is the same as that of the base material 20.

〔第3変形例〕
図5Cに示す変形例では、基材20に、補強部材30とは別の部材である導電体用補強部材32が設けられている。本例では、基材20の内部に導電体用補強部材32が設けられるが、基材20の第1面21上又は第2面22上に設けられてもよい。導電体用補強部材32を構成する材料は、補強部材30を構成する材料と同一の材料でもよいし、異なっていてもよい。
[Third modification example]
In the modified example shown in FIG. 5C, the base material 20 is provided with the conductor reinforcing member 32, which is a member different from the reinforcing member 30. In this example, the conductor reinforcing member 32 is provided inside the base material 20, but it may be provided on the first surface 21 or the second surface 22 of the base material 20. The material constituting the conductor reinforcing member 32 may be the same as the material constituting the reinforcing member 30, or may be different.

また、基材20の第1面21から第2面22へ貫通するとともに導電体用補強部材32を貫通する貫通孔33が設けられ、貫通孔33内に位置する導電体34が設けられている。そして、導電体34が、基材20の第1面21側の配線52と第2面22側の配線52とを接続している。導電体34の材料は、それ自体が伸縮性を有していてもよく、伸縮性を有していなくてもよい。導電体34は配線52を形成し得る材料と同じ材料から形成されてもよく、異なる材料を用いてもよい。
なお、本例では、1つの貫通孔33に対して2つの導電体用補強部材32が設けられるが、導電体用補強部材32は貫通孔33に対して少なくとも1つ以上設けられればよい。図5Dは、1つの貫通孔33に対して1つの導電体用補強部材32が設けられる例が示されている。
Further, a through hole 33 is provided which penetrates from the first surface 21 to the second surface 22 of the base material 20 and also penetrates the conductor reinforcing member 32, and the conductor 34 located in the through hole 33 is provided. .. Then, the conductor 34 connects the wiring 52 on the first surface 21 side and the wiring 52 on the second surface 22 side of the base material 20. The material of the conductor 34 may or may not be stretchable by itself. The conductor 34 may be formed of the same material as the material capable of forming the wiring 52, or a different material may be used.
In this example, two conductor reinforcing members 32 are provided for one through hole 33, but at least one or more conductor reinforcing members 32 may be provided for the through hole 33. FIG. 5D shows an example in which one conductor reinforcing member 32 is provided for one through hole 33.

図5Cに示す変形例では、基材20の伸縮によって貫通孔33及びその内部の導電体34に生じ得る応力が抑制されるため、導電体34の良好な電気的接続を確保できる。 In the modified example shown in FIG. 5C, the stress that may occur in the through hole 33 and the conductor 34 inside the through hole 33 due to the expansion and contraction of the base material 20 is suppressed, so that a good electrical connection of the conductor 34 can be ensured.

〔第4変形例〕
図6に示す変形例では、配線基板10が、第1配線層201、第2配線層202、及び第1配線層201と第2配線層202とを接着させる接着層203を備える。第1配線層201は、第1面211及び第1面211の反対側に位置する第2面212を含み、伸縮性を有する第1基材210と、第1面211側に位置し、電子部品51に電気的に接続する第1側配線521と、第1基材210に設けられ、第1基材210を補強する一つ又は複数の第1側補強部材301と、を有する。第2配線層202は、第1面221及び第1面221の反対側に位置する第2面222を含み、伸縮性を有する第2基材220と、第2基材220の第2面222側に位置し、電子部品51に電気的に接続する第2側配線522と、第2基材220に設けられ、第2基材220を補強する一つ又は複数の第2側補強部材302と、を有する。
[Fourth modification]
In the modified example shown in FIG. 6, the wiring board 10 includes a first wiring layer 201, a second wiring layer 202, and an adhesive layer 203 for adhering the first wiring layer 201 and the second wiring layer 202. The first wiring layer 201 includes a second surface 212 located on the opposite side of the first surface 211 and the first surface 211, and is located on the first surface 211 side with the elastic first base material 210 and the electrons. It has a first-side wiring 521 that is electrically connected to the component 51, and one or a plurality of first-side reinforcing members 301 that are provided on the first base material 210 and reinforce the first base material 210. The second wiring layer 202 includes a second surface 222 located on the opposite side of the first surface 221 and the first surface 221 and has an elastic second base material 220 and a second surface 222 of the second base material 220. A second side wiring 522 that is located on the side and electrically connected to the electronic component 51, and one or more second side reinforcing members 302 that are provided on the second base material 220 and reinforce the second base material 220. Have.

第1配線層201と第2配線層202とは、第1基材210の第2面212と第2基材220の第1面221とを向き合わせた状態で接着層203により張り合わされている。そして、張り合わされた第1配線層201と第2配線層202を第1基材210の第1面211の法線方向に沿って見た際、第1側補強部材301は、第1基材210の第1面211側に設けられる電子部品51と重なり、第2側補強部材302は、第2基材220の第2面212側に設けられる電子部品51と重なっている。 The first wiring layer 201 and the second wiring layer 202 are bonded to each other by the adhesive layer 203 in a state where the second surface 212 of the first base material 210 and the first surface 221 of the second base material 220 face each other. .. Then, when the bonded first wiring layer 201 and the second wiring layer 202 are viewed along the normal direction of the first surface 211 of the first base material 210, the first side reinforcing member 301 is the first base material. It overlaps with the electronic component 51 provided on the first surface 211 side of 210, and the second side reinforcing member 302 overlaps with the electronic component 51 provided on the second surface 212 side of the second base material 220.

接着層203を構成する材料としては、例えばアクリル系接着剤、シリコーン系接着剤等を用いることができる。接着層203の厚みは、例えば5μm以上且つ200μm以下である。また、第1基材210の第2面212と第2基材220の第1面221とを紫外線照射やEB(電子ビーム)照射等により活性化させた後に貼合することで、分子接着結合させる方法も用いることができる。この場合、第1基材210の第2面212と第2基材220の第1面221との間に接着層が設けられていなくてもよい。 As the material constituting the adhesive layer 203, for example, an acrylic adhesive, a silicone adhesive, or the like can be used. The thickness of the adhesive layer 203 is, for example, 5 μm or more and 200 μm or less. Further, the second surface 212 of the first base material 210 and the first surface 221 of the second base material 220 are activated by ultraviolet irradiation, EB (electron beam) irradiation, or the like, and then bonded to each other to form a molecular adhesive bond. A method of causing it to be used can also be used. In this case, the adhesive layer may not be provided between the second surface 212 of the first base material 210 and the first surface 221 of the second base material 220.

この例では、図示省略するが、第1側配線521が図3Aで示した蛇腹形状部57と同様の蛇腹形状部を有しており、第1側配線521が延びる方向に並ぶ複数の山部等を含んでいる。第2側配線522も図3Aで示した蛇腹形状部57と同様の蛇腹形状部を有しており、第2側配線522が延びる方向に並ぶ複数の山部等を含んでいる。また、このような第1側配線521及び第2側配線522の形状に対応して、第1基材210は、第1側配線521が延びる方向に並ぶ複数の山部を含み、第2基材220は、第2側配線522が延びる方向に並ぶ複数の山部を含む。 In this example, although not shown, the first side wiring 521 has a bellows-shaped portion similar to the bellows-shaped portion 57 shown in FIG. 3A, and a plurality of mountain portions arranged in the extending direction of the first side wiring 521. Etc. are included. The second side wiring 522 also has a bellows-shaped portion similar to the bellows-shaped portion 57 shown in FIG. 3A, and includes a plurality of mountain portions and the like arranged in the direction in which the second side wiring 522 extends. Further, corresponding to the shapes of the first side wiring 521 and the second side wiring 522, the first base material 210 includes a plurality of mountain portions arranged in the direction in which the first side wiring 521 extends, and is a second unit. The material 220 includes a plurality of peaks arranged in the direction in which the second side wiring 522 extends.

以下、図7(a)〜(e)を参照して、図6に示した配線基板10の製造方法について説明する。 Hereinafter, the method for manufacturing the wiring board 10 shown in FIG. 6 will be described with reference to FIGS. 7 (a) to 7 (e).

まず、図7(a)に示すように、伸縮性を有する第1基材210及び第2基材220を準備する基材準備工程を実施する。第1基材210には、第1側補強部材301が設けられ、第2基材220には、第2側補強部材302が設けられている。 First, as shown in FIG. 7A, a base material preparation step for preparing the first base material 210 and the second base material 220 having elasticity is carried out. The first base material 210 is provided with the first side reinforcing member 301, and the second base material 220 is provided with the second side reinforcing member 302.

続いて、図7(b)に示すように、第1基材210に引張応力Tを加えて第1基材210を伸長させる伸長工程を実施する。 Subsequently, as shown in FIG. 7B, an elongation step of applying a tensile stress T to the first base material 210 to extend the first base material 210 is carried out.

続いて、図7(c)に示すように、引張応力Tによって伸長した状態の第1基材210の第1面211に、電子部品51及び第1側配線521を設ける工程が実施され、第1配線層201が形成される。また、図示省略するが、引張応力Tによって伸長した状態の第2基材220の第2面222に、電子部品51及び第2側配線522を設ける工程も実施され、第2配線層202が形成される。 Subsequently, as shown in FIG. 7C, a step of providing the electronic component 51 and the first side wiring 521 on the first surface 211 of the first base material 210 in a state of being stretched by the tensile stress T is carried out, and the first step is carried out. 1 Wiring layer 201 is formed. Further, although not shown, a step of providing the electronic component 51 and the second side wiring 522 on the second surface 222 of the second base material 220 in a state of being stretched by the tensile stress T is also carried out, and the second wiring layer 202 is formed. Will be done.

続いて、図7(d)に示すように、第1基材210及び第2基材220から引張応力Tを取り除く収縮工程を実施する。これにより、図7(e)において矢印Cで示すように、第1基材210及び第2基材220が収縮し、第1基材210に設けられている第1側配線521及び第2基材220に設けられている第2側配線522にも変形が生じる。その後、第1基材210の第2面212と第2基材220の第1面221とを向き合わせた状態で第1配線層201と第2配線層202とを張り合わせる。 Subsequently, as shown in FIG. 7D, a shrinkage step of removing the tensile stress T from the first base material 210 and the second base material 220 is carried out. As a result, as shown by an arrow C in FIG. 7 (e), the first base material 210 and the second base material 220 contract, and the first side wiring 521 and the second base material provided on the first base material 210 contract. The second side wiring 522 provided on the material 220 is also deformed. After that, the first wiring layer 201 and the second wiring layer 202 are bonded together with the second surface 212 of the first base material 210 and the first surface 221 of the second base material 220 facing each other.

本例においては、第1配線層201と第2配線層202との間に接着層203を構成する接着剤を設けることにより、図7(e)に示すように、第1配線層201と第2配線層202とが接着層203を介して張り合わされる。ここで、張り合わされた第1配線層201と第2配線層202を第1基材210の第1面211の法線方向に沿って見た際、第1側補強部材301は、第1基材210の第1面211側に設けられる電子部品51と重なり、第2側補強部材302は、第2基材220の第1面221側に設けられる電子部品51と重なる。 In this example, by providing the adhesive constituting the adhesive layer 203 between the first wiring layer 201 and the second wiring layer 202, as shown in FIG. 7 (e), the first wiring layer 201 and the first wiring layer 201 and the second wiring layer 202 are provided. The two wiring layers 202 are bonded to each other via the adhesive layer 203. Here, when the bonded first wiring layer 201 and the second wiring layer 202 are viewed along the normal direction of the first surface 211 of the first base material 210, the first side reinforcing member 301 is the first unit. The second side reinforcing member 302 overlaps with the electronic component 51 provided on the first surface 211 side of the material 210, and the second side reinforcing member 302 overlaps with the electronic component 51 provided on the first surface 221 side of the second base material 220.

なお、図7に示した製造方法では、第1基材210及び第2基材220から引張応力Tを取り除いた後に、第1配線層201と第2配線層202とを張り合わせるが、第1基材210及び第2基材220から引張応力Tを取り除かずに、第1基材210及び第2基材220を伸長させたまま、第1配線層201と第2配線層202とを張り合わせてもよい。 In the manufacturing method shown in FIG. 7, the first wiring layer 201 and the second wiring layer 202 are bonded together after the tensile stress T is removed from the first base material 210 and the second base material 220. The first wiring layer 201 and the second wiring layer 202 are laminated together with the first base material 210 and the second base material 220 stretched without removing the tensile stress T from the base material 210 and the second base material 220. May be good.

〔第5変形例〕
図8に示す変形例では、配線基板10が、図6に示す例と同様に、第1配線層201、第2配線層202、及び第1配線層201と第2配線層202とを接着させる接着層203を備える。一方で、第1配線層201の第1側配線521と第1基材210との間に、第1基材210に平行に延びる支持基板40が設けられ、第2配線層202の第2側配線522と第1基材210との間に、第2基材220に平行に延びる支持基板40が設けられている。また、第1側配線521と第1基材210との間の支持基板40には、第1側配線521と電子部品51とが設けられ、第2側配線522と第1基材210との間の支持基板40には、第2側配線522と電子部品51とが設けられている。
[Fifth variant]
In the modified example shown in FIG. 8, the wiring board 10 adheres the first wiring layer 201, the second wiring layer 202, and the first wiring layer 201 and the second wiring layer 202, as in the example shown in FIG. The adhesive layer 203 is provided. On the other hand, a support substrate 40 extending in parallel with the first base material 210 is provided between the first side wiring 521 of the first wiring layer 201 and the first base material 210, and the second side of the second wiring layer 202 is provided. A support substrate 40 extending parallel to the second substrate 220 is provided between the wiring 522 and the first substrate 210. Further, the support substrate 40 between the first side wiring 521 and the first base material 210 is provided with the first side wiring 521 and the electronic component 51, and the second side wiring 522 and the first base material 210 The support board 40 between them is provided with a second side wiring 522 and an electronic component 51.

支持基板40は配線と電子部品とを支持した状態で、伸長された状態の基材20に貼り付けられもよい。支持基板40の接着態様や材質は、図5Bに示した支持基板40と同様である。 The support substrate 40 may be attached to the stretched base material 20 in a state of supporting the wiring and the electronic component. The bonding mode and material of the support substrate 40 are the same as those of the support substrate 40 shown in FIG. 5B.

〔第6変形例〕
図9に示す変形例では、配線基板10が、図6に示す例と同様に、第1配線層201、第2配線層202、及び第1配線層201と第2配線層202とを接着させる接着層203を備える。そして、第1配線層201においては、第1基材210の第1面211側に第1側配線521及び電子部品51が設けられ、第2配線層202においては、第2基材220の第1面221側に第2側配線522及び電子部品51が設けられている。ここで、第2基材220の第1面221側に設けられた第2側配線522及び電子部品51が、接着層203で覆われている。
[6th modification]
In the modified example shown in FIG. 9, the wiring board 10 adheres the first wiring layer 201, the second wiring layer 202, and the first wiring layer 201 and the second wiring layer 202, as in the example shown in FIG. The adhesive layer 203 is provided. Then, in the first wiring layer 201, the first side wiring 521 and the electronic component 51 are provided on the first surface 211 side of the first base material 210, and in the second wiring layer 202, the second base material 220 is provided. The second side wiring 522 and the electronic component 51 are provided on the one side 221 side. Here, the second side wiring 522 and the electronic component 51 provided on the first surface 221 side of the second base material 220 are covered with the adhesive layer 203.

接着層203の厚みは、電子部品51を覆うことが可能であればよく、例えば1mm以上且つ5mm以下であってもよい。 The thickness of the adhesive layer 203 may be as long as it can cover the electronic component 51, and may be, for example, 1 mm or more and 5 mm or less.

〔第7変形例〕
図10に示す変形例では、配線基板10が、図9に示す例が備える構成に加えて、導電体用補強部材32、貫通孔33及び導電体34を備える。
[7th modification]
In the modified example shown in FIG. 10, the wiring board 10 includes a conductor reinforcing member 32, a through hole 33, and a conductor 34 in addition to the configuration provided in the example shown in FIG.

導電体用補強部材32は第1基材210の内部に設けられるとともに、第2基材220の内部に設けられている。2つの導電体用補強部材32は、第1基材210の第1面211の法線方向で重なるように設けられている。導電体用補強部材32を構成する材料は、補強部材30を構成する材料と同一の材料でもよいし、異なっていてもよい。 The conductor reinforcing member 32 is provided inside the first base material 210 and inside the second base material 220. The two conductor reinforcing members 32 are provided so as to overlap each other in the normal direction of the first surface 211 of the first base material 210. The material constituting the conductor reinforcing member 32 may be the same as the material constituting the reinforcing member 30, or may be different.

貫通孔33は、第1基材210の第1面211から接着層203まで貫通するとともに第1基材210の内部の導電体用補強部材32を貫通し、第2基材220の内部の導電体用補強部材32の表面まで至っている。本例では、貫通孔33が第2基材220の内部の導電体用補強部材32を貫通していないが、貫通していてもよい。そして、導電体34は、貫通孔33内に設けられており、第1基材210の第1面211側の第1側配線521と第2基材220の第1面221側の第2側配線522とを電気的に接続している。 The through hole 33 penetrates from the first surface 211 of the first base material 210 to the adhesive layer 203 and also penetrates the conductor reinforcing member 32 inside the first base material 210, and conducts the inside of the second base material 220. It reaches the surface of the body reinforcing member 32. In this example, the through hole 33 does not penetrate the conductor reinforcing member 32 inside the second base material 220, but it may penetrate. The conductor 34 is provided in the through hole 33, and the first side wiring 521 on the first surface 211 side of the first base material 210 and the second side on the first surface 221 side of the second base material 220. It is electrically connected to the wiring 522.

〔第8変形例〕
図11Aに示す変形例では、配線基板10が、図6に示す例と同様に、第1配線層201及び第2配線層202を備えるが、接着層203を備えておらず、リベット240によって第1配線層201と第2配線層202とが貼り合わされている。また、図11Bに示すように、第1配線層201と第2配線層202との間に接着層203がさらに設けられ、リベット240及び接着層により、各配線層が貼り合わされてもよい。
[8th modification]
In the modified example shown in FIG. 11A, the wiring board 10 includes the first wiring layer 201 and the second wiring layer 202, as in the example shown in FIG. 6, but does not include the adhesive layer 203, and the rivet 240 is used for the first wiring substrate 10. The first wiring layer 201 and the second wiring layer 202 are bonded together. Further, as shown in FIG. 11B, an adhesive layer 203 may be further provided between the first wiring layer 201 and the second wiring layer 202, and the wiring layers may be bonded to each other by the rivet 240 and the adhesive layer.

また、図10の例と同様の導電体用補強部材32が第1基材210の内部に設けられるとともに、第2基材220の内部に設けられている。2つの導電体用補強部材32は、第1基材210の第1面211の法線方向で重なるように設けられている。 Further, the same conductor reinforcing member 32 as in the example of FIG. 10 is provided inside the first base material 210 and inside the second base material 220. The two conductor reinforcing members 32 are provided so as to overlap each other in the normal direction of the first surface 211 of the first base material 210.

そして、リベット240は、第1基材210の第1面211側に位置する第1鍔部241と、第2基材220の第2面222側に位置する第2鍔部242と、第1配線層201の第1基材210の第1面211から第2配線層202の第2基材220の第2面222まで貫通するとともに、2つの導電体用補強部材32を貫通する貫通孔330内に設けられた軸部243と、を有する。リベット240は導電体であり、導電性を有する金属材料で構成され、第1基材210の第1面211側の第1側配線521と、第2基材220の第2面222側の第2側配線522とを電気的に接続している。
なお、リベット240を設ける場合、リベット240の剛性によって、第1基材210及び第2基材220における貫通孔330周囲の部分の変形しがたくなる。そのため、リベット240によって充分な応力緩和効果が得られる場合には、導電体用補強部材32は設けなくもよい。
The rivet 240 has a first flange portion 241 located on the first surface 211 side of the first base material 210, a second flange portion 242 located on the second surface 222 side of the second base material 220, and a first one. Through holes 330 that penetrate from the first surface 211 of the first base material 210 of the wiring layer 201 to the second surface 222 of the second base material 220 of the second wiring layer 202 and penetrate the two conductor reinforcing members 32. It has a shaft portion 243 provided inside. The rivet 240 is a conductor, is made of a conductive metal material, and has a first side wiring 521 on the first surface 211 side of the first base material 210 and a second side wiring 521 on the second surface 222 side of the second base material 220. It is electrically connected to the two-side wiring 522.
When the rivet 240 is provided, the rigidity of the rivet 240 makes it difficult for the portions around the through hole 330 in the first base material 210 and the second base material 220 to be deformed. Therefore, if a sufficient stress relaxation effect can be obtained by the rivet 240, the conductor reinforcing member 32 may not be provided.

本例では、リベット240における、上述の軸部243が中実の柱状になっているが、このような貫通部分が中空状となる所謂、電気ハトメをリベット240の代わりに用いてもよい。 In this example, the shaft portion 243 of the rivet 240 has a solid columnar shape, but a so-called electric eyelet having such a penetrating portion hollow may be used instead of the rivet 240.

〔第9変形例〕
図12に示す変形例では、配線基板10が、図9に示す例と同様に、第1配線層201、第2配線層202、及び第1配線層201と第2配線層202とを接着させる接着層203を備えており、第1配線層201においては、第1基材210の第1面211側に第1側配線521及び電子部品51が設けられ、第2配線層202においては、第2基材220の第1面221側に第2側配線522及び電子部品51が設けられている。
[9th modification]
In the modified example shown in FIG. 12, the wiring board 10 adheres the first wiring layer 201, the second wiring layer 202, and the first wiring layer 201 and the second wiring layer 202, as in the example shown in FIG. The adhesive layer 203 is provided. In the first wiring layer 201, the first side wiring 521 and the electronic component 51 are provided on the first surface 211 side of the first base material 210, and in the second wiring layer 202, the first side wiring 521 and the electronic component 51 are provided. The second side wiring 522 and the electronic component 51 are provided on the first surface 221 side of the two base materials 220.

一方で、第2基材220の第1面221側の第2側配線522の一部は接着層203で覆われ、他の一部は、接着層203で覆われていない。また、第2基材220の第1面221側の電子部品51も接着層203で覆われていない。 On the other hand, a part of the second side wiring 522 on the first surface 221 side of the second base material 220 is covered with the adhesive layer 203, and the other part is not covered with the adhesive layer 203. Further, the electronic component 51 on the first surface 221 side of the second base material 220 is also not covered with the adhesive layer 203.

〔第10変形例〕
図13に示す変形例では、配線基板10が、図6に示す例と同様に、第1配線層201及び第2配線層202を備えるが、接着層203を備えておらず、一対の磁石250によって第1配線層201と第2配線層202とが貼り合わされている。詳しくは、第1基材210の第2面212側に第1側配線521及び電子部品51が設けられず、第2基材220の第1面221側に第2側配線522及び電子部品51が設けられず、第1基材210の第2面212と第2基材220の第1面221とが磁石250によって結合されることで、第1配線層201と第2配線層202とが貼り合わされている。
[10th modification]
In the modified example shown in FIG. 13, the wiring board 10 includes the first wiring layer 201 and the second wiring layer 202 as in the example shown in FIG. 6, but does not include the adhesive layer 203, and the pair of magnets 250. The first wiring layer 201 and the second wiring layer 202 are bonded to each other. Specifically, the first side wiring 521 and the electronic component 51 are not provided on the second surface 212 side of the first base material 210, and the second side wiring 522 and the electronic component 51 are provided on the first surface 221 side of the second base material 220. Is not provided, and the second surface 212 of the first base material 210 and the first surface 221 of the second base material 220 are connected by the magnet 250, so that the first wiring layer 201 and the second wiring layer 202 are formed. It is pasted together.

一対の磁石250のうちの一方の磁石250は、その第2基材220側を向く面が第1基材210の第2面212と面一となるように第1基材210に埋め込まれている。一対の磁石250のうちの他方の磁石250は、その第1基材210側を向く面が第2基材220の第1面221と面一となるように第2基材220に埋め込まれている。 One of the magnets 250 of the pair of magnets 250 is embedded in the first base material 210 so that the surface facing the second base material 220 side is flush with the second surface 212 of the first base material 210. There is. The other magnet 250 of the pair of magnets 250 is embedded in the second base material 220 so that the surface facing the first base material 210 side is flush with the first surface 221 of the second base material 220. There is.

また、図10の例と同様の導電体用補強部材32が第1基材210の内部に設けられるとともに、第2基材220の内部に設けられている。第1基材210の内部の導電体用補強部材32は、第1基材210に設けられた磁石250よりも第1基材210の第1面211側に位置し、第1面211の法線方向で磁石250と重なっている。第2基材220の内部の導電体用補強部材32は、第2基材220に設けられた磁石250よりも第2基材220の第2面222側に位置し、第2面222の法線方向で磁石250と重なっている。 Further, the same conductor reinforcing member 32 as in the example of FIG. 10 is provided inside the first base material 210 and inside the second base material 220. The conductor reinforcing member 32 inside the first base material 210 is located on the first surface 211 side of the first base material 210 with respect to the magnet 250 provided on the first base material 210, and is the method of the first surface 211. It overlaps the magnet 250 in the linear direction. The conductor reinforcing member 32 inside the second base material 220 is located on the second surface 222 side of the second base material 220 with respect to the magnet 250 provided on the second base material 220, and is the method of the second surface 222. It overlaps the magnet 250 in the linear direction.

また、第1基材210には、その第1面211から、その第2面212における磁石250が位置する部分へ貫通するとともに、第1基材210の内部の導電体用補強部材32を貫通する第1側貫通孔331が設けられる。第1側貫通孔331内には、第1側配線521と電気的に接続するとともに磁石250に接する第1側導電体341が設けられている。また、第2基材220には、その第2面222から、その第1面221における磁石250が位置する部分へ貫通するとともに、第2基材220の内部の導電体用補強部材32を貫通する第2側貫通孔332が設けられる。そして、第2側貫通孔332内には、第2側配線522と電気的に接続するとともに磁石250に接する第2側導電体342が設けられている。 Further, the first base material 210 penetrates from the first surface 211 to the portion of the second surface 212 where the magnet 250 is located, and also penetrates the conductor reinforcing member 32 inside the first base material 210. The first side through hole 331 is provided. In the first side through hole 331, a first side conductor 341 that is electrically connected to the first side wiring 521 and is in contact with the magnet 250 is provided. Further, the second base material 220 penetrates from the second surface 222 to the portion of the first surface 221 where the magnet 250 is located, and also penetrates the conductor reinforcing member 32 inside the second base material 220. A second side through hole 332 is provided. A second side conductor 342 that is electrically connected to the second side wiring 522 and is in contact with the magnet 250 is provided in the second side through hole 332.

ここで、各磁石250の表面には、導電性材料がコーティングされている。これにより、本例では、第1側配線521と第2側配線522とが、第1側導電体341、一対の磁石250及び第2側導電体342を介して電気的に接続している。 Here, the surface of each magnet 250 is coated with a conductive material. As a result, in this example, the first side wiring 521 and the second side wiring 522 are electrically connected via the first side conductor 341, the pair of magnets 250, and the second side conductor 342.

なお、磁石250に代えて、スナップフィットにより結合するボタン等を用いることにより、第1配線層201と第2配線層202とが貼り合わされてもよい。このようなボタン等の部材も導電性を有することで、第1側配線521と第2側配線522とを電気的に接続できる。
また、磁石250やボタンを設ける場合、磁石250やボタンの剛性によって、第1基材210及び第2基材220における貫通孔330周囲の部分の変形しがたくなる。そのため、磁石250やボタンによって充分な応力緩和効果が得られる場合には、導電体用補強部材32は設けなくもよい。
The first wiring layer 201 and the second wiring layer 202 may be bonded to each other by using a button or the like that is coupled by snap-fitting instead of the magnet 250. Since such a member such as a button also has conductivity, the first side wiring 521 and the second side wiring 522 can be electrically connected.
Further, when the magnet 250 or the button is provided, the rigidity of the magnet 250 or the button makes it difficult for the portion around the through hole 330 in the first base material 210 and the second base material 220 to be deformed. Therefore, if a sufficient stress relaxation effect can be obtained by the magnet 250 or the button, the conductor reinforcing member 32 may not be provided.

〔第11及び第12変形例〕
例えば図2に示した配線基板10では、補強部材30が基材20の内部に設けられている。この態様とは異なり、図14及び図15に示す変形例に係る配線基板10では、補強部材30が基材20の外部に露出している。補強部材30,301,302の位置は基材内部であってもよいし、基材外部に一部が露出していてもよい。
[11th and 12th modified examples]
For example, in the wiring board 10 shown in FIG. 2, the reinforcing member 30 is provided inside the base material 20. Unlike this aspect, in the wiring board 10 according to the modified example shown in FIGS. 14 and 15, the reinforcing member 30 is exposed to the outside of the base material 20. The positions of the reinforcing members 30, 301, 302 may be inside the base material, or may be partially exposed to the outside of the base material.

(配線基板の他の変形例)
上述の実施の形態及び各変形例においては、配線基板10が、基材20の第1面21側に搭載された電子部品51を備える例を示した。しかしながら、これに限られることはなく、配線基板10は、電子部品51を備えていなくてもよい。例えば、電子部品51が搭載されていない状態の基材20に蛇腹形状部57が生じていてもよい。また、電子部品51が搭載されていない状態の支持基板40が基材20に貼り合されてもよい。また、配線基板10は、電子部品51が搭載されていない状態で出荷されてもよい。
(Other modified examples of wiring boards)
In the above-described embodiment and each modification, an example is shown in which the wiring board 10 includes an electronic component 51 mounted on the first surface 21 side of the base material 20. However, the present invention is not limited to this, and the wiring board 10 may not include the electronic component 51. For example, the bellows-shaped portion 57 may be formed on the base material 20 in which the electronic component 51 is not mounted. Further, the support substrate 40 in which the electronic component 51 is not mounted may be bonded to the base material 20. Further, the wiring board 10 may be shipped in a state where the electronic component 51 is not mounted.

なお、上述した実施形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。また、上述の実施形態及び変形例では、基材20及び配線52が蛇腹形状部57を有することで、伸縮可能になっている構成を説明した。しかしながら、上述したような電子部品51の配置構成及び補強部材30は、蛇腹形状を有さない伸縮性を有する基材に伸縮性の銀配線が設けられる伸縮性基板や、伸縮性を有する基材に馬蹄形の配線を形成した伸縮性基板においても適用されてもよい。
なお、蛇腹形状を有さない伸縮性を有する基材に伸縮性の銀配線が設けられる伸縮性基板や、伸縮性を有する基材に馬蹄形の配線を形成した伸縮性基板は、例えば、何ら伸長させない基材に、伸縮性の銀配線又は馬蹄形の配線を形成した後、電子部品51及び補強部材30を設けることで作製されてもよいが、その製造方法は特に限られるものではない。
Although some modifications to the above-described embodiments have been described, it is naturally possible to apply a plurality of modifications in combination as appropriate. Further, in the above-described embodiment and modification, the configuration in which the base material 20 and the wiring 52 have the bellows-shaped portion 57 so as to be expandable and contractible has been described. However, the arrangement configuration of the electronic component 51 and the reinforcing member 30 as described above include an elastic substrate in which elastic silver wiring is provided on an elastic base material having no bellows shape, and a base material having elasticity. It may also be applied to an elastic substrate having horseshoe-shaped wiring formed therein.
An elastic substrate in which elastic silver wiring is provided on an elastic base material having no bellows shape and an elastic substrate in which horseshoe-shaped wiring is formed on an elastic base material are, for example, stretchable at all. It may be produced by forming an elastic silver wiring or a horseshoe-shaped wiring on a base material that is not allowed to be allowed to be allowed to be provided, and then providing an electronic component 51 and a reinforcing member 30, but the manufacturing method thereof is not particularly limited.

また、上述した実施形態では、配線52が第1方向D1に平行に延びる例を示したが、配線52に、第1方向D1に平行に延びるものと、第1方向D1に交差する方向に延びるものとが含まれてもよい。この際に、第1方向D1に交差する方向に延びる配線52上に蛇腹形状部が形成されてもよい。このような配線基板は、一例として、基材20を第1方向D1とこれに交差する方向の2軸方向に伸長させ、この状態で、配線52等を形成することで形成されてもよい。 Further, in the above-described embodiment, the example in which the wiring 52 extends parallel to the first direction D1 is shown, but the wiring 52 extends parallel to the first direction D1 and extends in a direction intersecting the first direction D1. Things may be included. At this time, a bellows-shaped portion may be formed on the wiring 52 extending in the direction intersecting the first direction D1. As an example, such a wiring board may be formed by extending the base material 20 in the biaxial direction in the direction intersecting the first direction D1 and forming the wiring 52 or the like in this state.

また、図3A及び図3Bに示した例では、基材20の第1面21側の配線52と、第2面22側の配線52とがそれぞれ、蛇腹形状部57を有するが、第1面21側の配線52の蛇腹形状部57と、第2面22側の配線52の蛇腹形状部57は、周期、振幅及び位相のうちの少なくともいずれかに関して、互いに異なっていてもよい。この場合、基材20や支持基板40上の蛇腹形状部においても、第1面21側と第2面22側とで、周期、振幅及び位相の少なくともいずれか互いに異なることになる。図16は、基材20の第1面21側の配線52の蛇腹形状部57と、第2面22側の配線52の蛇腹形状部57とが、周期、振幅及び位相のいずれにおいても異なる例が示されている。また、図6、図8、図9、図10、図11A、図11B、図12、図13に示した第1配線層201と第2配線層202とを備える配線基板10においても、第1側配線521の蛇腹形状部と、第2側配線522の蛇腹形状部とが、周期、振幅及び位相の少なくともいずれかに関して、互いに異なっていてもよい。 Further, in the examples shown in FIGS. 3A and 3B, the wiring 52 on the first surface 21 side and the wiring 52 on the second surface 22 side of the base material 20 each have a bellows-shaped portion 57, but the first surface. The bellows-shaped portion 57 of the wiring 52 on the 21 side and the bellows-shaped portion 57 of the wiring 52 on the second surface 22 side may be different from each other in terms of at least one of period, amplitude, and phase. In this case, even in the bellows-shaped portion on the base material 20 and the support substrate 40, at least one of the period, the amplitude, and the phase is different between the first surface 21 side and the second surface 22 side. FIG. 16 shows an example in which the bellows-shaped portion 57 of the wiring 52 on the first surface 21 side of the base material 20 and the bellows-shaped portion 57 of the wiring 52 on the second surface 22 side are different in any of the period, amplitude, and phase. It is shown. Further, also in the wiring board 10 including the first wiring layer 201 and the second wiring layer 202 shown in FIGS. 6, 8, 9, 10, 11, 11A, 11B, 12, and 13, the first wiring board 10 is also provided. The bellows-shaped portion of the side wiring 521 and the bellows-shaped portion of the second side wiring 522 may be different from each other with respect to at least one of the period, the amplitude, and the phase.

以下に、本開示の実施例について説明する。 Examples of the present disclosure will be described below.

<実施例1>
実施例1では、配線基板10として、図5Bに示すような、配線52が支持基板40を介して基材20の両面に配置され、さらに補強部材30が基材20中に埋没され、さらに補強部材30とは別の部材である図5Cに示すような導電体用補強部材32が設けられたものを作製した。以下、実施例1にかかる配線基板10の製造方法及び配線基板10を構成する各部について説明する。
<Example 1>
In the first embodiment, as the wiring board 10, the wiring 52 is arranged on both sides of the base material 20 via the support board 40 as shown in FIG. 5B, and the reinforcing member 30 is further embedded in the base material 20 to be further reinforced. A member provided with a conductor reinforcing member 32 as shown in FIG. 5C, which is a member different from the member 30, was produced. Hereinafter, the manufacturing method of the wiring board 10 according to the first embodiment and each part constituting the wiring board 10 will be described.

(配線準備工程)
まず、基材20の第1面21側に設置する配線52の支持基板40として厚さ1μmのPEN(ポリエチレンナフタレート)フィルムを準備した。続いて、支持基板40上に、1μmの厚みを有する銅層を蒸着法により形成した。続いて、フォトリソグラフィー法およびエッチング法を用いて銅層をパターン加工し、配線52を形成した。配線52は、200μmの線幅にパターニングし、さらに配線52の一部が500μmの間隔が空けられた電極対となるよう、パターニングした。また、支持基板40の弾性係数を、ASTM D882に準拠した引張試験により測定した。結果、支持基板40の弾性係数は2.2Gpaであった。次いで、電極対に1.0×0.5mmサイズのLEDチップを導電性接着剤を用いて搭載した。
(Wiring preparation process)
First, a PEN (polyethylene naphthalate) film having a thickness of 1 μm was prepared as a support substrate 40 for the wiring 52 to be installed on the first surface 21 side of the base material 20. Subsequently, a copper layer having a thickness of 1 μm was formed on the support substrate 40 by a thin-film deposition method. Subsequently, the copper layer was patterned using a photolithography method and an etching method to form the wiring 52. The wiring 52 was patterned to have a line width of 200 μm, and further, a part of the wiring 52 was patterned so as to be an electrode pair spaced at a distance of 500 μm. In addition, the elastic modulus of the support substrate 40 was measured by a tensile test based on ASTM D882. As a result, the elastic modulus of the support substrate 40 was 2.2 Gpa. Next, an LED chip having a size of 1.0 × 0.5 mm was mounted on the electrode pair using a conductive adhesive.

次いで、基材20の第2面22側に設置する配線52の支持基板40として厚さ1μmのPENフィルムを準備した。続いて、支持基板40上に、1μmの厚みを有する銅層を蒸着法により形成した。続いて、フォトリソグラフィー法およびエッチング法を用いて銅層をパターン加工し、配線52を形成した。配線52は、200μmの線幅にパターニングし、さらに配線52の一部が500μmの間隔が空けられた電極対となるよう、パターニングした。次いで、電極対に1.0×0.5mmサイズのチップ抵抗(500Ω)を導電性接着剤を用いて搭載した。 Next, a PEN film having a thickness of 1 μm was prepared as a support substrate 40 for the wiring 52 to be installed on the second surface 22 side of the base material 20. Subsequently, a copper layer having a thickness of 1 μm was formed on the support substrate 40 by a thin-film deposition method. Subsequently, the copper layer was patterned using a photolithography method and an etching method to form the wiring 52. The wiring 52 was patterned to have a line width of 200 μm, and further, a part of the wiring 52 was patterned so as to be an electrode pair spaced at a distance of 500 μm. Next, a chip resistor (500Ω) having a size of 1.0 × 0.5 mm was mounted on the electrode pair using a conductive adhesive.

(基材20の準備工程)
支持基板40と基材20の接着層として粘着シート8146-2(3M社製)を準備した。次いで、粘着シート上に、2液付加縮合のポリジメチルシロキサン(以下、PDMSと称する)を、厚さが約250μmとなるように塗布し、硬化させた。
次いで、上記で塗布硬化させたPDMS上に補強部材30および導電体用補強部材32としてポリイミドフィルム(宇興産社製:ユーピレックス 厚み125μm)を設置した。なお、図5Cでは、基材20の厚み方向で、補強部材30と導電体用補強部材32とが異なる位置に配置されるが、本実施例では、補強部材30と導電体用補強部材32とが同じ位置に配置されることになる。そして、設置した補強部材30および導電体用補強部材32のパターン形状としては、5mm角となるようにカッティングプロッタにてカットされたものを用いた。ここで、ポリイミドフィルムの弾性係数を、ASTM D882に準拠した引張試験により測定した。結果、弾性係数は7Gpaであった。
(Preparation process of base material 20)
An adhesive sheet 8146-2 (manufactured by 3M) was prepared as an adhesive layer between the support substrate 40 and the substrate 20. Next, a two-component addition condensation polydimethylsiloxane (hereinafter referred to as PDMS) was applied onto the pressure-sensitive adhesive sheet so as to have a thickness of about 250 μm, and the mixture was cured.
Next, a polyimide film (manufactured by Ukosan Co., Ltd .: UPIREX thickness 125 μm) was installed as the reinforcing member 30 and the reinforcing member 32 for the conductor on the PDMS coated and cured as described above. In FIG. 5C, the reinforcing member 30 and the conductor reinforcing member 32 are arranged at different positions in the thickness direction of the base material 20, but in this embodiment, the reinforcing member 30 and the conductor reinforcing member 32 are arranged. Will be placed in the same position. Then, as the pattern shape of the installed reinforcing member 30 and the reinforcing member 32 for the conductor, those cut with a cutting plotter so as to be 5 mm square were used. Here, the elastic modulus of the polyimide film was measured by a tensile test based on ASTM D882. As a result, the elastic modulus was 7 Gpa.

次いで、上記で設置した補強部材30および導電体用補強部材32を覆うように、PDMSを厚さが約250μmとなるようにさらに塗布し、硬化させた。
次いで、補強部材30および導電体用補強部材32を覆うように設置したPDMS上に、さらに補強部材30および導電体用補強部材32として上記と同様のポリイミドフィルムを設置した。ここで、下層(第2面22側)に配置した補強部材30と上層(第1面21側)に配置した補強部材30は基材20の厚み方向において重ならない位置に配置され、さらに下層および上層の導電体用補強部材32は互いに重なるように配置した。
次いで、上記で配置した補強部材30および導電体用補強部材32を覆うようにPDMSを厚さが約250μmとなるようにさらに塗布し、塗布面に粘着シート8146-2をラミネートした後でPDMSを硬化させた。
Next, PDMS was further applied and cured to a thickness of about 250 μm so as to cover the reinforcing member 30 and the conductor reinforcing member 32 installed above.
Next, the same polyimide film as described above was further installed as the reinforcing member 30 and the reinforcing member 32 for the conductor on the PDMS installed so as to cover the reinforcing member 30 and the reinforcing member 32 for the conductor. Here, the reinforcing member 30 arranged in the lower layer (second surface 22 side) and the reinforcing member 30 arranged in the upper layer (first surface 21 side) are arranged at positions that do not overlap in the thickness direction of the base material 20, and further, the lower layer and the reinforcing member 30. The upper conductor reinforcing members 32 were arranged so as to overlap each other.
Next, PDMS was further applied so as to cover the reinforcing member 30 and the conductor reinforcing member 32 arranged above so as to have a thickness of about 250 μm, and after laminating the adhesive sheet 8146-2 on the coated surface, PDMS was applied. It was cured.

(貼り合わせ工程)
上記の基材20の準備工程にて準備した補強部材30および導電体用補強部材32が埋没された基材20を1軸方向に1.5倍に伸長させた。次いで、基材20の第1面21側および第2面22側に、上記の配線準備工程で得たチップ部品(LEDチップ、チップ抵抗)および配線52付の支持基板40を貼り合わせた。詳しくは、支持基板40の部品が搭載されていない面と、基材20の第1面21および第2面22とを粘着面を介して貼り合わせた。その後、基材20の伸長を解放した。このようにして形成された配線52は、補強部材30および導電体用補強部材32で囲われた領域以外では、配線52の表面に蛇腹形状部が生じ、補強部材30および導電体用補強部材32で囲われた領域内では領域外と比較して振幅の小さな蛇腹形状部が生じた。ここで、LEDチップおよびチップ抵抗は補強部材30と重なるように配置され、さらに配線52が導電体用補強部材32と重なるように配置された。
(Lasting process)
The base material 20 in which the reinforcing member 30 and the conductor reinforcing member 32 prepared in the preparation step of the base material 20 were embedded was stretched 1.5 times in the uniaxial direction. Next, the chip components (LED chip, chip resistor) obtained in the above wiring preparation step and the support substrate 40 with the wiring 52 were attached to the first surface 21 side and the second surface 22 side of the base material 20. Specifically, the surface on which the components of the support substrate 40 are not mounted and the first surface 21 and the second surface 22 of the base material 20 are bonded to each other via an adhesive surface. After that, the elongation of the base material 20 was released. In the wiring 52 formed in this manner, a bellows-shaped portion is formed on the surface of the wiring 52 except for the region surrounded by the reinforcing member 30 and the reinforcing member 32 for the conductor, and the reinforcing member 30 and the reinforcing member 32 for the conductor 32 are formed. In the region surrounded by, a bellows-shaped portion having a smaller amplitude than that outside the region was generated. Here, the LED chip and the chip resistor are arranged so as to overlap the reinforcing member 30, and the wiring 52 is further arranged so as to overlap the conductor reinforcing member 32.

(貫通孔形成および導通工程)
上記貼り合わせ工程で得られた配線52に対し、配線52および導電体用補強部材32を基材20の厚み方向において、紫外線レーザーを照射してφ2mmの貫通孔33を設けた。次いで、バインダー樹脂および銀の導電性粒子を含む導電性ペーストをスクリーン印刷により貫通孔33上にパターニングし、導電体34を形成した。そして、表裏の配線52を導電体34を通して導通接続させ、配線基板10を得た。
(Through hole formation and conduction process)
The wiring 52 and the conductor reinforcing member 32 were irradiated with an ultraviolet laser in the thickness direction of the base material 20 to provide a through hole 33 having a diameter of 2 mm with respect to the wiring 52 obtained in the above bonding step. Next, a conductive paste containing a binder resin and silver conductive particles was patterned on the through holes 33 by screen printing to form a conductor 34. Then, the front and back wirings 52 were conductively connected through the conductor 34 to obtain a wiring board 10.

<実施例2>
実施例2では、配線基板10として、図8に示すような、第1配線層201、第2配線層202、及び第1配線層201と第2配線層202とを接着させる接着層203を備えたものを作製した。また、第1配線層201における第1側配線521と第1基材210との間には支持基板40が設けられ、第2配線層202における第2側配線522と第2基材220との間には支持基板40が設けられている。以下、実施例2にかかる配線基板10の製造方法及び配線基板10を構成する各部について説明する。
<Example 2>
In the second embodiment, the wiring substrate 10 includes the first wiring layer 201, the second wiring layer 202, and the adhesive layer 203 for adhering the first wiring layer 201 and the second wiring layer 202 as shown in FIG. Was made. Further, a support substrate 40 is provided between the first side wiring 521 and the first base material 210 in the first wiring layer 201, and the second side wiring 522 and the second base material 220 in the second wiring layer 202 A support substrate 40 is provided between them. Hereinafter, the manufacturing method of the wiring board 10 according to the second embodiment and each part constituting the wiring board 10 will be described.

(配線準備工程)
まず、第1基材210の第1面211側に設置する第1側配線521の支持基板40として厚さ1μmのPENフィルムを準備した。続いて、支持基板40上に、1μmの厚みを有する銅層を蒸着法により形成した。続いて、フォトリソグラフィー法およびエッチング法を用いて銅層をパターン加工し、第1側配線521を形成した。第1側配線521は、200μmの線幅にパターニングし、さらに第1側配線521の一部が500μmの間隔が空けられた電極対となるよう、パターニングした。次いで、電極対に1.0×0.5mmサイズのLEDチップを導電性接着剤を用いて搭載した。
(Wiring preparation process)
First, a PEN film having a thickness of 1 μm was prepared as a support substrate 40 for the first side wiring 521 installed on the first surface 211 side of the first base material 210. Subsequently, a copper layer having a thickness of 1 μm was formed on the support substrate 40 by a thin-film deposition method. Subsequently, the copper layer was patterned using a photolithography method and an etching method to form the first side wiring 521. The first side wiring 521 was patterned to have a line width of 200 μm, and further, a part of the first side wiring 521 was patterned so as to be an electrode pair at intervals of 500 μm. Next, an LED chip having a size of 1.0 × 0.5 mm was mounted on the electrode pair using a conductive adhesive.

次いで、第2基材220の第2面222側に設置する第2側配線522の支持基板40として厚さ1μmのPENフィルムを準備した。続いて、支持基板40上に、1μmの厚みを有する銅層を蒸着法により形成した。続いて、フォトリソグラフィー法およびエッチング法を用いて銅層をパターン加工し、第2側配線522を形成した。第2側配線522は、200μmの線幅にパターニングし、さらに第2側配線522の一部が500μmの間隔が空けられた電極対となるよう、パターニングした。次いで、電極対に1.0×0.5mmサイズのチップ抵抗(500Ω)を導電性接着剤を用いて搭載した。 Next, a PEN film having a thickness of 1 μm was prepared as a support substrate 40 for the second side wiring 522 to be installed on the second surface 222 side of the second base material 220. Subsequently, a copper layer having a thickness of 1 μm was formed on the support substrate 40 by a thin-film deposition method. Subsequently, the copper layer was patterned using a photolithography method and an etching method to form a second side wiring 522. The second side wiring 522 was patterned to a line width of 200 μm, and further, a part of the second side wiring 522 was patterned so as to be an electrode pair spaced at a distance of 500 μm. Next, a chip resistor (500Ω) having a size of 1.0 × 0.5 mm was mounted on the electrode pair using a conductive adhesive.

(基材210および基材220の準備工程)
第1基材210とこれに対応する支持基板40の接着層として粘着シート8146-2(3M社製)を準備した。次いで、粘着シート上に、2液付加縮合のPDMSを、厚さが約250μmとなるように塗布し、硬化させた。
次いで、上記で塗布硬化させたPDMS上に補強部材301としてポリイミドフィルム(宇興産社製:ユーピレックス 厚み125μm)を設置した。設置した第1側補強部材301のパターン形状としては、5mm角となるようにカッティングプロッタにてカットされたものを用いた。
次いで、上記で設置した第1側補強部材301を覆うように、PDMSを厚さが約250μmとなるようにさらに塗布し、硬化させ第1基材210を得た。
第2基材220の作製方法は、上記の第1基材210と同様であるため、説明を省略する。
(Preparation step of base material 210 and base material 220)
An adhesive sheet 8146-2 (manufactured by 3M) was prepared as an adhesive layer between the first base material 210 and the corresponding support substrate 40. Next, PDMS of two-component addition condensation was applied onto the pressure-sensitive adhesive sheet so as to have a thickness of about 250 μm, and cured.
Next, a polyimide film (manufactured by Ukosan Co., Ltd .: Upirex thickness 125 μm) was installed as a reinforcing member 301 on the PDMS coated and cured as described above. As the pattern shape of the installed first side reinforcing member 301, one cut with a cutting plotter so as to be 5 mm square was used.
Next, PDMS was further applied so as to cover the first side reinforcing member 301 installed above so as to have a thickness of about 250 μm, and cured to obtain a first base material 210.
Since the method for producing the second base material 220 is the same as that of the first base material 210 described above, the description thereof will be omitted.

(貼り合わせ工程)
上記の第1基材210の準備工程にて準備した第1側補強部材301が埋没された第1基材210を1軸方向に1.5倍に伸長させた。次いで、第1基材210の第1面211側に上記の配線準備工程で得たチップ部品(LEDチップ)付の支持基板40を貼り合わせた。詳しくは、支持基板40の部品が搭載されていない面と第1基材210の第1面221とを粘着面介して貼り合わせた。その後、第1基材210の伸長を解放し、第1配線層201を得た。このようにして形成された第1側配線521は、第1側補強部材301で囲われた領域以外では、第1側配線521の表面に蛇腹形状部が生じ、第1側補強部材301で囲われた領域内では領域外と比較して振幅の小さな蛇腹形状部が生じた。ここで、LEDチップは第1側補強部材301と重なるように配置された。
(Lasting process)
The first base material 210 in which the first side reinforcing member 301 prepared in the preparation step of the first base material 210 was embedded was extended 1.5 times in the uniaxial direction. Next, the support substrate 40 with the chip component (LED chip) obtained in the above wiring preparation step was attached to the first surface 211 side of the first base material 210. Specifically, the surface on which the components of the support substrate 40 are not mounted and the first surface 221 of the first base material 210 are bonded to each other via an adhesive surface. Then, the elongation of the first base material 210 was released to obtain the first wiring layer 201. In the first side wiring 521 formed in this way, a bellows-shaped portion is formed on the surface of the first side wiring 521 except for the region surrounded by the first side reinforcing member 301, and the first side wiring 521 is surrounded by the first side reinforcing member 301. A bellows-shaped portion having a smaller amplitude than that outside the region was formed in the damaged region. Here, the LED chip was arranged so as to overlap the first side reinforcing member 301.

次いで、上記の第2基材220の準備工程にて準備した第2側補強部材302が埋没された第2基材220を1軸方向に1.5倍に伸長させた。次いで、第2基材220の第2面222側に上記の配線準備工程で得たチップ部品(チップ抵抗)付の支持基板40を貼り合わせた。詳しくは、支持基板40の部品が搭載されていない面と第2基材220の第2面222とを粘着面を介して貼り合わせた。その後、第2基材220の伸長を解放し、第2配線層202を得た。このようにして形成された第2側配線522は、第2側補強部材302で囲われた領域以外では、第2側配線522の表面に蛇腹形状部が生じ、第2側補強部材302で囲われた領域内では領域外と比較して振幅の小さな蛇腹形状部が生じた。ここで、チップ抵抗は第2側補強部材302と重なるように配置された。 Next, the second base material 220 in which the second side reinforcing member 302 prepared in the preparation step of the second base material 220 was buried was stretched 1.5 times in the uniaxial direction. Next, the support substrate 40 with the chip component (chip resistor) obtained in the above wiring preparation step was attached to the second surface 222 side of the second base material 220. Specifically, the surface on which the components of the support substrate 40 are not mounted and the second surface 222 of the second base material 220 are bonded to each other via an adhesive surface. Then, the extension of the second base material 220 was released to obtain the second wiring layer 202. In the second side wiring 522 formed in this manner, a bellows-shaped portion is formed on the surface of the second side wiring 522 except for the region surrounded by the second side reinforcing member 302, and the second side wiring 522 is surrounded by the second side reinforcing member 302. A bellows-shaped portion having a smaller amplitude than that outside the region was formed in the damaged region. Here, the chip resistor is arranged so as to overlap the second side reinforcing member 302.

(配線層の積層工程)
上記で準備した第1配線層201の部品が搭載されていない側に接着層203として、第1基材210と同成分の液状のPDMSを塗布膜厚30μmになるようバーコート塗布した。次いで、第2配線層202の部品が搭載されていない側を貼合し、接着層203を硬化させ、配線基板10を得た。
(Laying process of wiring layer)
A liquid PDMS having the same composition as that of the first base material 210 was bar-coated as an adhesive layer 203 on the side of the first wiring layer 201 prepared above on which the components were not mounted so that the coating film thickness was 30 μm. Next, the side of the second wiring layer 202 on which the components were not mounted was bonded, and the adhesive layer 203 was cured to obtain a wiring board 10.

<実施例3>
配線基板10として、図10に示すような、第1配線層201、第2配線層202、及び第1配線層201と第2配線層202とを接着させる接着層203を備え、さらに、第2基材220の第1面221側に設けられた第2側配線522及び電子部品51が、接着層203で覆われ、さらに第1側補強部材301および302とは別の部材である導電体用補強部材32が設けられたものを作製した。本実施例では、図8に示すような支持基板40が、第1配線層201における第1側配線521と第1基材210との間にが設けられ、第2配線層202における第2側配線522と第2基材220との間に設けられている。以下、実施例3にかかる配線基板10の製造方法及び配線基板10を構成する各部について説明する。
<Example 3>
The wiring board 10 includes a first wiring layer 201, a second wiring layer 202, and an adhesive layer 203 for adhering the first wiring layer 201 and the second wiring layer 202 as shown in FIG. The second side wiring 522 and the electronic component 51 provided on the first surface 221 side of the base material 220 are covered with the adhesive layer 203, and for a conductor which is a member different from the first side reinforcing members 301 and 302. A product provided with the reinforcing member 32 was produced. In this embodiment, the support substrate 40 as shown in FIG. 8 is provided between the first side wiring 521 in the first wiring layer 201 and the first base material 210, and is provided on the second side in the second wiring layer 202. It is provided between the wiring 522 and the second base material 220. Hereinafter, the manufacturing method of the wiring board 10 and each part constituting the wiring board 10 according to the third embodiment will be described.

(配線準備工程)
まず、上記実施例2と同様に、第1基材210の第1面211側に設置する第1側配線521の支持基板40として厚さ1μmのPENフィルムを準備した。続いて、支持基板40上に、1μmの厚みを有する銅層を蒸着法により形成した。続いて、フォトリソグラフィー法およびエッチング法を用いて銅層をパターン加工し、第1側配線521を形成した。第1側配線521は、200μmの線幅にパターニングし、さらに配線の521一部が500μmの間隔が空けられた電極対となるよう、パターニングした。次いで、電極対に1.0×0.5mmサイズのLEDチップを導電性接着剤を用いて搭載した。
(Wiring preparation process)
First, in the same manner as in Example 2, a PEN film having a thickness of 1 μm was prepared as a support substrate 40 for the first side wiring 521 installed on the first surface 211 side of the first base material 210. Subsequently, a copper layer having a thickness of 1 μm was formed on the support substrate 40 by a thin-film deposition method. Subsequently, the copper layer was patterned using a photolithography method and an etching method to form the first side wiring 521. The first side wiring 521 was patterned to have a line width of 200 μm, and further, a part of the wiring 521 was patterned so as to be an electrode pair spaced at a distance of 500 μm. Next, an LED chip having a size of 1.0 × 0.5 mm was mounted on the electrode pair using a conductive adhesive.

次いで、第2基材220の第2面222側に設置する第2側配線522の支持基板40として厚さ1μmのPENフィルムを準備した。続いて、支持基板40上に、1μmの厚みを有する銅層を蒸着法により形成した。続いて、フォトリソグラフィー法およびエッチング法を用いて銅層をパターン加工し、第2側配線522を形成した。第2側配線522は、200μmの線幅にパターニングし、さらに第2側配線522の一部が500μmの間隔が空けられた電極対となるよう、パターニングした。次いで、電極対に1.0×0.5mmサイズのチップ抵抗(500Ω)を導電性接着剤を用いて搭載した。 Next, a PEN film having a thickness of 1 μm was prepared as a support substrate 40 for the second side wiring 522 to be installed on the second surface 222 side of the second base material 220. Subsequently, a copper layer having a thickness of 1 μm was formed on the support substrate 40 by a thin-film deposition method. Subsequently, the copper layer was patterned using a photolithography method and an etching method to form a second side wiring 522. The second side wiring 522 was patterned to a line width of 200 μm, and further, a part of the second side wiring 522 was patterned so as to be an electrode pair spaced at a distance of 500 μm. Next, a chip resistor (500Ω) having a size of 1.0 × 0.5 mm was mounted on the electrode pair using a conductive adhesive.

(基材210および基材220の準備工程)
第1基材210とこれに対応する支持基板40の接着層として粘着シート8146-2(3M社製)を準備した。次いで、粘着シート上に、2液付加縮合のPDMSを、厚さが約250μmとなるように塗布し、硬化させた。
次いで、上記で塗布硬化させたPDMS上に補強部材301および導電体用補強部材32としてポリイミドフィルム(宇興産社製:ユーピレックス 厚み125μm)を設置した。設置した第1側補強部材301および導電体用補強部材32のパターン形状としては、5mm角となるようにカッティングプロッタにてカットされたものを用いた。
次いで、上記で設置した第1側補強部材301および導電体用補強部材32を覆うように、PDMSを厚さが約250μmとなるようにさらに塗布し、硬化させ第1基材210を得た。
第2基材220の作製方法は、上記の第1基材210と同様であるため、説明を省略する。
(Preparation step of base material 210 and base material 220)
An adhesive sheet 8146-2 (manufactured by 3M) was prepared as an adhesive layer between the first base material 210 and the corresponding support substrate 40. Next, PDMS of two-component addition condensation was applied onto the pressure-sensitive adhesive sheet so as to have a thickness of about 250 μm, and cured.
Next, a polyimide film (manufactured by Ukosan Co., Ltd .: UPIREX thickness 125 μm) was installed as the reinforcing member 301 and the reinforcing member 32 for the conductor on the PDMS coated and cured as described above. As the pattern shape of the installed first side reinforcing member 301 and the conductor reinforcing member 32, those cut with a cutting plotter so as to be 5 mm square were used.
Next, PDMS was further applied so as to cover the first side reinforcing member 301 and the conductor reinforcing member 32 installed above so as to have a thickness of about 250 μm, and cured to obtain a first base material 210.
Since the method for producing the second base material 220 is the same as that of the first base material 210 described above, the description thereof will be omitted.

(貼り合わせ工程)
上記の第1基材210の準備工程にて準備した第1側補強部材301および導電体用補強部材32が埋没された第1基材210を1軸方向に1.5倍に伸長させた。次いで、第1基材210の第1面211側に上記の配線準備工程で得たチップ部品付の支持基板40を貼り合わせ。詳しくは、支持基板40の部品が搭載されていない面と第1基材210の第1面211を粘着面を介して貼り合わせた。その後、第1基材210の伸長を解放し、第1配線層201を得た。このようにして形成された第1側配線521は、第1側補強部材301および導電体用補強部材32で囲われた領域以外では、第1側配線521の表面に蛇腹形状部が生じ、第1側補強部材301および導電体用補強部材32で囲われた領域内では領域外と比較して振幅の小さな蛇腹形状部が生じた。ここで、LEDチップは第1側補強部材301と重なるように配置された。さらに、第1側配線521が導電体用補強部材32と重なるように配置された。
(Lasting process)
The first base material 210 in which the first side reinforcing member 301 and the conductor reinforcing member 32 prepared in the preparation step of the first base material 210 were buried was stretched 1.5 times in the uniaxial direction. Next, the support substrate 40 with the chip parts obtained in the above wiring preparation step is attached to the first surface 211 side of the first substrate 210. Specifically, the surface on which the components of the support substrate 40 are not mounted and the first surface 211 of the first base material 210 are bonded to each other via an adhesive surface. Then, the elongation of the first base material 210 was released to obtain the first wiring layer 201. In the first side wiring 521 formed in this way, a bellows-shaped portion is formed on the surface of the first side wiring 521 except for the region surrounded by the first side reinforcing member 301 and the conductor reinforcing member 32. In the region surrounded by the one-side reinforcing member 301 and the conductor reinforcing member 32, a bellows-shaped portion having a smaller amplitude than that outside the region was generated. Here, the LED chip was arranged so as to overlap the first side reinforcing member 301. Further, the first side wiring 521 is arranged so as to overlap with the conductor reinforcing member 32.

次いで、上記の第2基材220の準備工程にて準備した第2側補強部材302および導電体用補強部材32が埋没された第2基材220を1軸方向に1.5倍に伸長させた。次いで、第2基材220の第1面221側に上記の配線準備工程で得たチップ部品付の支持基板40を貼り合わせた。詳しくは、支持基板40の部品が搭載されていない面と第2基材220の第1面221とを粘着面を介して貼合させた。その後、第2基材220の伸長を解放し、第2配線層202を得た。このようにして形成された第2側配線522は、第2側補強部材302および導電体用補強部材32で囲われた領域以外では、第2側配線522の表面に蛇腹形状部が生じ、第2側補強部材302および導電体用補強部材32で囲われた領域内では領域外と比較して振幅の小さな蛇腹形状部が生じた。ここで、チップ抵抗は第2側補強部材302と重なるように配置された。さらに、第2側配線522が導電体用補強部材32と重なるように配置された。 Next, the second base material 220 in which the second side reinforcing member 302 and the conductor reinforcing member 32 prepared in the preparation step of the second base material 220 are embedded is stretched 1.5 times in the uniaxial direction. It was. Next, the support substrate 40 with the chip parts obtained in the above wiring preparation step was attached to the first surface 221 side of the second substrate 220. Specifically, the surface on which the components of the support substrate 40 are not mounted and the first surface 221 of the second base material 220 are bonded to each other via an adhesive surface. Then, the extension of the second base material 220 was released to obtain the second wiring layer 202. In the second side wiring 522 formed in this manner, a bellows-shaped portion is formed on the surface of the second side wiring 522 except for the region surrounded by the second side reinforcing member 302 and the conductor reinforcing member 32. In the region surrounded by the two-side reinforcing member 302 and the conductor reinforcing member 32, a bellows-shaped portion having a smaller amplitude than that outside the region was generated. Here, the chip resistor is arranged so as to overlap the second side reinforcing member 302. Further, the second side wiring 522 is arranged so as to overlap with the conductor reinforcing member 32.

(配線層の積層工程)
上記で準備した第2配線層202の部品が搭載されている側に部品を埋没させるよう接着層203として、第1基材210と同成分の液状のPDMSを塗布膜厚500μmになるようにバーコート塗布した。次いで、第1配線層201の部品が搭載されていない側を貼合し、接着層203を硬化させた。ここで、第1配線層201の導電体用補強部材32と第2配線層202の導電体用補強部材32は重なるように配置された。
(Laying process of wiring layer)
As the adhesive layer 203 so as to bury the parts on the side where the parts of the second wiring layer 202 prepared above are mounted, a liquid PDMS having the same composition as the first base material 210 is applied to the bar so as to have a coating film thickness of 500 μm. The coat was applied. Next, the side of the first wiring layer 201 on which the parts were not mounted was bonded, and the adhesive layer 203 was cured. Here, the conductor reinforcing member 32 of the first wiring layer 201 and the conductor reinforcing member 32 of the second wiring layer 202 are arranged so as to overlap each other.

(貫通孔形成および導通工程)
上記配線層の積層工程で得られた積層体に対し、第1側配線521、第2側配線522および導電体用補強部材32を基材20の厚み方向において、紫外線レーザーを照射してφ2mmの貫通孔33を設けた。次いで、バインダー樹脂および銀の導電性粒子を含む導電性ペーストをスクリーン印刷により貫通孔33上にパターニングし、導電体34を形成した。そして、第1側配線521と第2側配線522を導電体34を通して導通接続させ、配線基板10を得た。
(Through hole formation and conduction process)
The first side wiring 521, the second side wiring 522, and the conductor reinforcing member 32 are irradiated with an ultraviolet laser in the thickness direction of the base material 20 with respect to the laminated body obtained in the laminating step of the wiring layer, and have a diameter of 2 mm. A through hole 33 is provided. Next, a conductive paste containing a binder resin and silver conductive particles was patterned on the through holes 33 by screen printing to form a conductor 34. Then, the first side wiring 521 and the second side wiring 522 were conductively connected through the conductor 34 to obtain a wiring board 10.

10…配線基板
20…基材
201…第1配線層
202…第2配線層
203…接着層
21…第1面
22…第2面
210…第1基材
211…第1面
212…第2面
220…第2基材
221…第1面
222…第2面
240…リベット
241…第1鍔部
242…第2鍔部
243…軸部
250…磁石
26A,26B…山部
27A,27B…谷部
30…補強部材
301…第1側補強部材
302…第2側補強部材
32…導電体用補強部材
33,330…貫通孔
331…第1側貫通孔
332…第2側貫通孔
34…導電体
341…第1側導電体
342…第2側導電体
40…支持基板
41…第1面
42…第2面
51…電子部品
52…配線
521…第1側配線
522…第2側配線
53…山部
54…山部
55…谷部
56…谷部
57…蛇腹形状部
10 ... Wiring substrate 20 ... Base material 201 ... First wiring layer 202 ... Second wiring layer 203 ... Adhesive layer 21 ... First surface 22 ... Second surface 210 ... First base material 211 ... First surface 212 ... Second surface 220 ... 2nd base material 221 ... 1st surface 222 ... 2nd surface 240 ... Rivets 241 ... 1st flange part 242 ... 2nd flange part 243 ... Shaft part 250 ... Magnets 26A, 26B ... Mountain part 27A, 27B ... Tani part 30 ... Reinforcing member 301 ... First side reinforcing member 302 ... Second side reinforcing member 32 ... Conductor reinforcing member 33, 330 ... Through hole 331 ... First side through hole 332 ... Second side through hole 34 ... Conductor 341 ... 1st side conductor 342 ... 2nd side conductor 40 ... Support substrate 41 ... 1st surface 42 ... 2nd surface 51 ... Electronic parts 52 ... Wiring 521 ... 1st side wiring 522 ... 2nd side wiring 53 ... Yamabe 54 ... Yamabe 55 ... Tanibe 56 ... Tanibe 57 ... Bellows-shaped part

Claims (20)

第1面及び第1面の反対側に位置する第2面を含み、伸縮性を有する基材と、
前記基材の第1面側及び第2面側に位置し、機能部品に電気的に接続する配線と、
前記基材に設けられ、前記基材を補強する一つ又は複数の補強部材と、を備え、
前記基材の第1面の法線方向に沿って前記基材を見た際、前記補強部材が、前記基材の第1面側及び第2面側に設けられる前記機能部品と重なる、配線基板。
An elastic substrate including a first surface and a second surface located on the opposite side of the first surface,
Wiring located on the first surface side and the second surface side of the base material and electrically connecting to the functional component,
A reinforcing member provided on the base material and reinforcing the base material is provided.
When the base material is viewed along the normal direction of the first surface of the base material, the reinforcing member overlaps with the functional components provided on the first surface side and the second surface side of the base material. substrate.
前記配線と前記基材との間に設けられて前記基材に平行に延びる支持基板を、前記基材の第1面側及び第2面側のうちの少なくともいずれかにさらに備える、請求項1に記載の配線基板。 1. A support substrate provided between the wiring and the base material and extending in parallel with the base material is further provided on at least one of the first surface side and the second surface side of the base material. The wiring board described in. 前記支持基板に前記機能部品が設けられている、請求項2に記載の配線基板。 The wiring board according to claim 2, wherein the functional component is provided on the support board. 前記基材に、導電体用補強部材と、前記基材の第1面から第2面へ貫通するとともに前記導電体用補強部材を貫通する貫通孔と、前記貫通孔内に位置する導電体とがさらに設けられ、
前記導電体が、前記基材の第1面側の前記配線と前記基材の第2面側の前記配線とを接続する、請求項1乃至3のいずれか一項に記載の配線基板。
In the base material, a reinforcing member for a conductor, a through hole penetrating from the first surface to the second surface of the base material and penetrating the reinforcing member for the conductor, and a conductor located in the through hole. Is further provided,
The wiring board according to any one of claims 1 to 3, wherein the conductor connects the wiring on the first surface side of the base material and the wiring on the second surface side of the base material.
前記配線は、前記配線が延びる方向に交互に並ぶ複数の山部および複数の谷部を含む蛇腹形状部を有する、請求項1乃至4のいずれか一項に記載の配線基板。 The wiring board according to any one of claims 1 to 4, wherein the wiring has a bellows-shaped portion including a plurality of peaks and a plurality of valleys alternately arranged in a direction in which the wiring extends. 前記第1面側の前記配線の蛇腹形状部と、前記第2面側の前記配線の蛇腹形状部は、隣り合う前記山部の間の距離である周期、前記山部と前記谷部との間の前記第1面の法線方向における距離である振幅、前記周期のずれである位相のうちの少なくともいずれかに関して、互いに異なっている、請求項5に記載の配線基板。 The bellows-shaped portion of the wiring on the first surface side and the bellows-shaped portion of the wiring on the second surface side have a period of a distance between the adjacent peaks, and the peak and the valley. The wiring substrate according to claim 5, wherein at least one of the amplitude, which is the distance in the normal direction of the first surface, and the phase, which is the deviation of the period, is different from each other. 前記基材は、前記配線が延びる方向に並ぶ複数の山部を含む、請求項1乃至6のいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 6, wherein the base material includes a plurality of mountain portions arranged in a direction in which the wiring extends. 第1面及び第1面の反対側に位置する第2面を含み、伸縮性を有する第1基材と、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに位置し、機能部品に電気的に接続する第1側配線と、前記第1基材に設けられ、前記第1基材を補強する一つ又は複数の第1側補強部材と、を有する第1配線層と、
第1面及び第1面の反対側に位置する第2面を含み、伸縮性を有する第2基材と、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに位置し、機能部品に電気的に接続する第2側配線と、前記第2基材に設けられ、前記第2基材を補強する一つ又は複数の第2側補強部材と、を有する第2配線層と、を備え、
前記第1配線層と前記第2配線層とは、前記第1基材の第2面と前記第2基材の第1面とを向き合わせた状態で張り合わされており、
張り合わされた前記第1配線層と前記第2配線層を前記第1基材の第1面の法線方向に沿って見た際、前記第1側補強部材は、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なり、前記第2側補強部材は、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なる、配線基板。
At least one of a first base material having elasticity and having a first surface and a second surface located on the opposite side of the first surface and the first surface side and the second surface side of the first base material. A first-side wiring that is located in the above and electrically connected to a functional component, and one or a plurality of first-side reinforcing members that are provided on the first base material and reinforce the first base material. 1 wiring layer and
At least one of a second base material having elasticity and having a first surface and a second surface located on the opposite side of the first surface and the first surface side and the second surface side of the second base material. A second side wiring that is located in the above and electrically connected to a functional component, and one or a plurality of second side reinforcing members provided on the second base material and reinforcing the second base material. With 2 wiring layers,
The first wiring layer and the second wiring layer are bonded to each other with the second surface of the first base material and the first surface of the second base material facing each other.
When the laminated first wiring layer and the second wiring layer are viewed along the normal direction of the first surface of the first base material, the first side reinforcing member is the first base material. The second side reinforcing member overlaps with the functional component provided on at least one of the first surface side and the second surface side, and the second side reinforcing member is at least one of the first surface side and the second surface side of the second base material. A wiring board that overlaps with the functional component provided in any of them.
前記第1側配線と前記第1基材との間に設けられて前記第1基材に平行に延びる支持基板を、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかにさらに備える、請求項8に記載の配線基板。 A support substrate provided between the first side wiring and the first base material and extending in parallel with the first base material is provided at least on the first surface side and the second surface side of the first base material. The wiring board according to claim 8, further comprising any one. 前記第2側配線と前記第2基材との間に設けられて前記第2基材に平行に延びる支持基板を、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかにさらに備える、請求項8又は9に記載の配線基板。 A support substrate provided between the second side wiring and the second base material and extending in parallel with the second base material is provided at least on the first surface side and the second surface side of the second base material. The wiring board according to claim 8 or 9, further comprising any of the above. 前記第1基材の第1面側に前記第1側配線が設けられ、前記第2基材の第2面側に前記第2側配線が設けられ、
前記第1基材及び前記第2基材のうちの少なくともいずれかに、導電体用補強部材が設けられ、
前記第1基材の第1面から前記第2基材の第2面へ貫通するとともに前記導電体用補強部材を貫通する貫通孔が設けられ、
前記貫通孔内に導電体が設けられており、
前記導電体が、前記第1基材の第1面側の前記第1側配線と前記第2基材の第2面側の前記第2側配線とを電気的に接続する、請求項8乃至10のいずれか一項に記載の配線基板。
The first side wiring is provided on the first surface side of the first base material, and the second side wiring is provided on the second surface side of the second base material.
A reinforcing member for a conductor is provided on at least one of the first base material and the second base material.
A through hole is provided which penetrates from the first surface of the first base material to the second surface of the second base material and also penetrates the reinforcing member for the conductor.
A conductor is provided in the through hole,
8 to 8 to claim, wherein the conductor electrically connects the first side wiring on the first surface side of the first base material and the second side wiring on the second surface side of the second base material. The wiring board according to any one of 10.
前記第1基材の第2面側に前記第1側配線及び前記機能部品が設けられず、前記第2基材の第1面側に前記第2側配線及び前記機能部品が設けられず、
前記第1基材の第2面と前記第2基材の第1面とが、磁石又はスナップフィットにより張り合わされている、請求項8乃至11のいずれか一項に記載の配線基板。
The first side wiring and the functional component are not provided on the second surface side of the first base material, and the second side wiring and the functional component are not provided on the first surface side of the second base material.
The wiring board according to any one of claims 8 to 11, wherein the second surface of the first base material and the first surface of the second base material are bonded to each other by a magnet or a snap fit.
前記第2基材の少なくとも第1面側に前記第2側配線及び前記機能部品が設けられ、
前記第1配線層と前記第2配線層とは、接着層を介して貼り合わされており、
前記第2基材の第1面側に設けられた前記第2側配線及び前記機能部品が、前記接着層で覆われる、請求項8乃至10のいずれか一項に記載の配線基板。
The second side wiring and the functional component are provided on at least the first surface side of the second base material.
The first wiring layer and the second wiring layer are bonded to each other via an adhesive layer.
The wiring board according to any one of claims 8 to 10, wherein the second side wiring and the functional component provided on the first surface side of the second base material are covered with the adhesive layer.
前記第1基材に、導電体用補強部材が設けられ、
前記第1基材の第1面から前記接着層まで貫通するとともに前記導電体用補強部材を貫通する貫通孔が設けられ、
前記貫通孔内に導電体が設けられており、
前記導電体が、前記第1基材の第1面側の前記第1側配線と前記第2基材の第1面側の前記第2側配線とを電気的に接続する、請求項13に記載の配線基板。
A reinforcing member for a conductor is provided on the first base material, and a reinforcing member for a conductor is provided.
Through holes are provided that penetrate from the first surface of the first base material to the adhesive layer and also penetrate the reinforcing member for the conductor.
A conductor is provided in the through hole,
13. According to claim 13, the conductor electrically connects the first side wiring on the first surface side of the first base material and the second side wiring on the first surface side of the second base material. The described wiring board.
前記第1側配線は、前記第1側配線が延びる方向に並ぶ複数の山部および複数の谷部を含む蛇腹形状部を有し、前記第2側配線は、前記第2側配線が延びる方向に並ぶ複数の山部および複数の谷部を含む蛇腹形状部を有する、請求項8乃至14のいずれか一項に記載の配線基板。 The first side wiring has a bellows-shaped portion including a plurality of peaks and a plurality of valleys arranged in a direction in which the first side wiring extends, and the second side wiring has a direction in which the second side wiring extends. The wiring board according to any one of claims 8 to 14, which has a bellows-shaped portion including a plurality of peak portions and a plurality of valley portions arranged in the same manner. 前記第1側配線の蛇腹形状部と、前記第2側配線の蛇腹形状部は、隣り合う前記山部の間の距離である周期、前記山部と前記谷部との間の前記第1基材の前記第1面の法線方向における距離である振幅、前記周期のずれである位相のうちの少なくともいずれかに関して、互いに異なっている、請求項15に記載の配線基板。 The bellows-shaped portion of the first-side wiring and the bellows-shaped portion of the second-side wiring have a period of a distance between the adjacent peaks, and the first unit between the peak and the valley. The wiring substrate according to claim 15, wherein at least one of the amplitude, which is the distance in the normal direction of the first surface of the material, and the phase, which is the deviation of the period, is different from each other. 前記第1基材は、前記第1側配線が延びる方向に並ぶ複数の山部を含み、前記第2基材は、前記第2側配線が延びる方向に並ぶ複数の山部を含む、請求項8乃至16のいずれか一項に記載の配線基板。 The first base material includes a plurality of ridges arranged in a direction in which the first side wiring extends, and the second base material includes a plurality of ridges arranged in a direction in which the second side wiring extends. The wiring board according to any one of 8 to 16. 配線基板の製造方法であって、
伸縮性を有し、補強のための一つ又は複数の補強部材が設けられた基材に張力を加えて、前記基材を伸長させる伸長工程と、
前記伸長工程によって伸長した状態の前記基材の第1面側及び第2面側に、機能部品に電気的に接続する配線を設ける設置工程と、
前記基材から前記張力を取り除く収縮工程と、を備え、
前記収縮工程後に前記基材の第1面の法線方向に沿って前記基材を見た際、前記補強部材が、前記基材の第1面側及び第2面側に設けられる前記機能部品と重なる、配線基板の製造方法。
It is a method of manufacturing a wiring board.
An extension step in which tension is applied to a base material having elasticity and provided with one or more reinforcing members for reinforcement to extend the base material.
An installation step of providing wiring electrically connected to a functional component on the first surface side and the second surface side of the base material in a state of being stretched by the stretching step.
It comprises a shrinking step of removing the tension from the substrate.
When the base material is viewed along the normal direction of the first surface of the base material after the shrinkage step, the reinforcing member is provided on the first surface side and the second surface side of the base material. A method of manufacturing a wiring board that overlaps with.
配線基板の製造方法であって、
伸縮性を有し、補強のための一つ又は複数の第1側補強部材が設けられた第1基材に張力を加えて、前記第1基材を伸長させる第1伸長工程と、
前記第1伸長工程によって伸長した状態の前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第1側配線を設け、前記第1基材と前記第1側補強部材と前記第1側配線とを有する第1配線層を形成する第1形成工程と、
伸縮性を有し、補強のための一つ又は複数の第2側補強部材が設けられた第2基材に張力を加えて、前記第2基材を伸長させる第2伸長工程と、
前記第2伸長工程によって伸長した状態の前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第2側配線を設け、前記第2基材と前記第2側補強部材と前記第2側配線とを有する第2配線層を形成する第2形成工程と、
前記第1基材及び前記第2基材から前記張力を取り除いた後、前記第1基材の第2面と前記第2基材の第1面とを向き合わせた状態で前記第1配線層と前記第2配線層とを張り合わせる工程と、を備え、
張り合わされた前記第1配線層と前記第2配線層を前記第1基材の第1面の法線方向に沿って見た際、前記第1側補強部材は、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なり、前記第2側補強部材は、前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なる、配線基板の製造方法。
It is a method of manufacturing a wiring board.
A first stretching step of stretching the first base material by applying tension to the first base material which has elasticity and is provided with one or more first side reinforcing members for reinforcement.
A first-side wiring that electrically connects to a functional component is provided on at least one of the first surface side and the second surface side of the first base material that has been stretched by the first stretching step. A first forming step of forming a first wiring layer having one base material, the first side reinforcing member, and the first side wiring.
A second stretching step of stretching the second base material by applying tension to the second base material which has elasticity and is provided with one or more second side reinforcing members for reinforcement.
A second-side wiring that electrically connects to a functional component is provided on at least one of the first surface side and the second surface side of the second base material in a state of being stretched by the second stretching step. A second forming step of forming a second wiring layer having two base materials, the second side reinforcing member, and the second side wiring, and
After removing the tension from the first base material and the second base material, the first wiring layer is in a state where the second surface of the first base material and the first surface of the second base material face each other. The process of laminating the second wiring layer and the second wiring layer is provided.
When the laminated first wiring layer and the second wiring layer are viewed along the normal direction of the first surface of the first base material, the first side reinforcing member is the first base material. The second side reinforcing member overlaps with the functional component provided on at least one of the first surface side and the second surface side, and the second side reinforcing member is at least one of the first surface side and the second surface side of the second base material. A method for manufacturing a wiring board that overlaps with the functional component provided in any one of them.
配線基板の製造方法であって、
伸縮性を有し、補強のための一つ又は複数の第1側補強部材が設けられた第1基材に張力を加えて、前記第1基材を伸長させる第1伸長工程と、
前記第1伸長工程によって伸長した状態の前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第1側配線を設け、前記第1基材と前記第1側補強部材と前記第1側配線とを有する第1配線層を形成する第1形成工程と、
伸縮性を有し、補強のための一つ又は複数の第2側補強部材が設けられた第2基材に張力を加えて、前記第2基材を伸長させる第2伸長工程と、
前記第2伸長工程によって伸長した状態の前記第2基材の第1面側及び第2面側のうちの少なくともいずれかに、機能部品に電気的に接続する第2側配線を設け、前記第2基材と前記第2側補強部材と前記第2側配線とを有する第2配線層を形成する第2形成工程と、
前記第1基材及び前記第2基材を伸長させたまま、前記第1基材の第2面と前記第2基材の第1面とを向き合わせた状態で前記第1配線層と前記第2配線層とを張り合わせる工程と、
前記第1基材及び前記第2基材から前記張力を取り除く収縮工程と、を備え、
張り合わされた前記第1配線層と前記第2配線層を前記収縮工程後に前記第1基材の第1面の法線方向に沿って見た際、前記第1側補強部材は、前記第1基材の第1面側及び第2面側のうちの少なくともいずれかに設けられる前記機能部品と重なり、前記第2側補強部材は、前記第2基材の第1面側及び第2面のうちの少なくともいずれかに設けられる前記機能部品と重なる、配線基板の製造方法。
It is a method of manufacturing a wiring board.
A first stretching step of stretching the first base material by applying tension to the first base material which has elasticity and is provided with one or more first side reinforcing members for reinforcement.
A first-side wiring that electrically connects to a functional component is provided on at least one of the first surface side and the second surface side of the first base material that has been stretched by the first stretching step. A first forming step of forming a first wiring layer having one base material, the first side reinforcing member, and the first side wiring.
A second stretching step of stretching the second base material by applying tension to the second base material which has elasticity and is provided with one or more second side reinforcing members for reinforcement.
A second-side wiring that electrically connects to a functional component is provided on at least one of the first surface side and the second surface side of the second base material in a state of being stretched by the second stretching step. A second forming step of forming a second wiring layer having two base materials, the second side reinforcing member, and the second side wiring, and
The first wiring layer and the first wiring layer are in a state where the second surface of the first base material and the first surface of the second base material face each other while the first base material and the second base material are stretched. The process of laminating the second wiring layer and
A shrinkage step of removing the tension from the first base material and the second base material is provided.
When the bonded first wiring layer and the second wiring layer are viewed along the normal direction of the first surface of the first base material after the shrinkage step, the first side reinforcing member is the first. It overlaps with the functional component provided on at least one of the first surface side and the second surface side of the base material, and the second side reinforcing member is formed on the first surface side and the second surface side of the second base material. A method for manufacturing a wiring board that overlaps with the functional component provided in at least one of them.
JP2019028669A 2019-02-20 2019-02-20 Wiring board and method for manufacturing wiring board Active JP7279399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028669A JP7279399B2 (en) 2019-02-20 2019-02-20 Wiring board and method for manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028669A JP7279399B2 (en) 2019-02-20 2019-02-20 Wiring board and method for manufacturing wiring board

Publications (2)

Publication Number Publication Date
JP2020136512A true JP2020136512A (en) 2020-08-31
JP7279399B2 JP7279399B2 (en) 2023-05-23

Family

ID=72263544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028669A Active JP7279399B2 (en) 2019-02-20 2019-02-20 Wiring board and method for manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP7279399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015952B1 (en) 2021-04-12 2022-02-03 大日本印刷株式会社 Wiring board and manufacturing method of wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150179A (en) * 2005-11-30 2007-06-14 Matsushita Electric Ind Co Ltd Flexible circuit board and its production process
US9723713B1 (en) * 2014-05-16 2017-08-01 Multek Technologies, Ltd. Flexible printed circuit board hinge
JP2018010504A (en) * 2016-07-14 2018-01-18 トクセン工業株式会社 Elastic wiring sheet, method for manufacturing the same, and elastic touch sensor sheet
JP2018124179A (en) * 2017-02-01 2018-08-09 バンドー化学株式会社 Sensor and sensor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150179A (en) * 2005-11-30 2007-06-14 Matsushita Electric Ind Co Ltd Flexible circuit board and its production process
US9723713B1 (en) * 2014-05-16 2017-08-01 Multek Technologies, Ltd. Flexible printed circuit board hinge
JP2018010504A (en) * 2016-07-14 2018-01-18 トクセン工業株式会社 Elastic wiring sheet, method for manufacturing the same, and elastic touch sensor sheet
JP2018124179A (en) * 2017-02-01 2018-08-09 バンドー化学株式会社 Sensor and sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015952B1 (en) 2021-04-12 2022-02-03 大日本印刷株式会社 Wiring board and manufacturing method of wiring board
JP2022162359A (en) * 2021-04-12 2022-10-24 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Also Published As

Publication number Publication date
JP7279399B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
JP7154508B2 (en) Wiring board and method for manufacturing wiring board
JP6774657B1 (en) Wiring board and manufacturing method of wiring board
JP7331423B2 (en) Wiring board and method for manufacturing wiring board
WO2020100625A1 (en) Wiring substrate, and method for manufacturing wiring substrate
JP7279399B2 (en) Wiring board and method for manufacturing wiring board
JP7272065B2 (en) Wiring board and method for manufacturing wiring board
JP7385823B2 (en) wiring board
JP7272074B2 (en) Wiring board and method for manufacturing wiring board
JP7389958B2 (en) Wiring board and wiring board manufacturing method
JP2021057507A (en) Wiring board
JP2020167224A (en) Wiring board and manufacturing method of wiring board
JP7320186B2 (en) Wiring board and method for manufacturing wiring board
JP2020161740A (en) Wiring board, and manufacturing method for wiring board
JP6826786B1 (en) Wiring board and manufacturing method of wiring board
JP6729840B1 (en) Wiring board and method for manufacturing wiring board
JP7383972B2 (en) Wiring board and wiring board manufacturing method
JP6696634B1 (en) Wiring board and method for manufacturing wiring board
JP7480489B2 (en) Wiring board and method for manufacturing the same
JP7015952B1 (en) Wiring board and manufacturing method of wiring board
JP7236052B2 (en) Wiring board and method for manufacturing wiring board
JP7316538B2 (en) Wiring board and method for manufacturing wiring board
JP7216912B2 (en) Wiring board and method for manufacturing wiring board
JP2021190474A (en) Wiring board and manufacturing method of wiring board
JP2020174132A (en) Wiring board and manufacturing method thereof
JP2020167315A (en) Wiring board and manufacturing method of wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7279399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150