JP2020136450A - Sealant, semiconductor device sealed by the same, and method for manufacturing semiconductor package with the sealant - Google Patents

Sealant, semiconductor device sealed by the same, and method for manufacturing semiconductor package with the sealant Download PDF

Info

Publication number
JP2020136450A
JP2020136450A JP2019027232A JP2019027232A JP2020136450A JP 2020136450 A JP2020136450 A JP 2020136450A JP 2019027232 A JP2019027232 A JP 2019027232A JP 2019027232 A JP2019027232 A JP 2019027232A JP 2020136450 A JP2020136450 A JP 2020136450A
Authority
JP
Japan
Prior art keywords
resin composition
cyclic imide
fiber base
thermosetting resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027232A
Other languages
Japanese (ja)
Other versions
JP7014195B2 (en
Inventor
吉弘 堤
Yoshihiro Tsutsumi
吉弘 堤
伸介 山口
Shinsuke Yamaguchi
伸介 山口
雄貴 工藤
Yuki Kudo
雄貴 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019027232A priority Critical patent/JP7014195B2/en
Publication of JP2020136450A publication Critical patent/JP2020136450A/en
Application granted granted Critical
Publication of JP7014195B2 publication Critical patent/JP7014195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

To provide: a sealant for collectively sealing a semiconductor element-mount face and/or a semiconductor element-formed face, which can achieve a low warp; a semiconductor device arranged by use of the sealant; and a method for manufacturing a semiconductor package.SOLUTION: A sealant comprises an uncured resin layer on a one face of a resin-impregnated fiber base layer. The resin-impregnated fiber base layer is arranged by impregnating a cyclic imide compound-containing thermosetting resin composition (X) with a fiber base, and half- or full-curing the resultant resin composition. The uncured resin layer is formed from a cyclic imide compound-containing thermosetting resin composition (Y). The cyclic imide compounds included in the thermosetting resin composition (X) and the thermosetting resin composition (Y) are each a cyclic imide compound containing, in a molecule, at least one dimer acid skeleton, at least one straight-chain alkylene group with 6 or more carbon atoms and at least two cyclic imide groups.SELECTED DRAWING: Figure 1

Description

本発明は、封止材、該封止材により封止されている半導体装置及び該封止材を有する半導体パッケージの製造方法に関する。 The present invention relates to a sealing material, a semiconductor device sealed by the sealing material, and a method for manufacturing a semiconductor package having the sealing material.

従来から、半導体素子を搭載した基板の半導体素子搭載面又は半導体素子を形成したウエハの半導体素子形成面のウエハレベルの封止は、種々の方式が提案、検討されてきており、スピンコーティングによる封止、スクリーン印刷による封止、フィルム支持体に熱溶融性エポキシ樹脂をコーティングさせた複合シートを用いた方法が例示されている(特許文献1〜3)。 Conventionally, various methods have been proposed and studied for wafer-level sealing of the semiconductor element mounting surface of a substrate on which a semiconductor element is mounted or the semiconductor element forming surface of a wafer on which a semiconductor element is formed, and sealing by spin coating. Examples thereof include stopping, sealing by screen printing, and a method using a composite sheet in which a film support is coated with a heat-meltable epoxy resin (Patent Documents 1 to 3).

中でも、半導体素子搭載面のウエハレベルの封止方法として、金属、シリコンウエハ、又はガラス基板に、接着層を両面に有するフィルムを貼りつけた後、又は接着剤をスピンコート等で塗布した後、該基板上に半導体素子を配列し接着、搭載させ、半導体素子搭載面とし、その後、液状エポキシ樹脂やエポキシ成形材料等で加熱下、加圧成形により封止する方法が知られている(特許文献4)。また、半導体素子形成面のウエハレベルの封止方法としても、同様に同じようなエポキシ系材料を用いて封止めることで、該半導体素子形成面を封止する方法が知られている。 Above all, as a method for sealing the semiconductor element mounting surface at the wafer level, after attaching a film having an adhesive layer on both sides to a metal, silicon wafer, or glass substrate, or after applying an adhesive by spin coating or the like, A method is known in which semiconductor elements are arranged on the substrate, bonded and mounted to form a semiconductor element mounting surface, and then sealed by pressure molding under heating with a liquid epoxy resin, an epoxy molding material or the like (Patent Documents). 4). Further, as a wafer level sealing method of the semiconductor element forming surface, a method of sealing the semiconductor element forming surface by similarly using a similar epoxy-based material is known.

しなしながら、以上のような方法では、200mm(8インチ)以上のウエハや金属等の基板を用いた場合、封止樹脂であるエポキシ樹脂等の応力によって基板やウエハに反りが生じるだけでなく、封止樹脂の剥離が生じることが大きな問題であった。これらの問題を解決するために、封止樹脂組成物に90質量%近くのフィラー(無機充填材)を添加することで収縮応力を低下させたり、樹脂自体の弾性率を低下させたりすることが挙げられる(特許文献1〜3、5)。 However, in the above method, when a wafer or metal substrate of 200 mm (8 inches) or more is used, not only the substrate or wafer is warped due to the stress of the epoxy resin or the like as the sealing resin. , The peeling of the sealing resin has been a big problem. In order to solve these problems, it is possible to reduce the shrinkage stress or reduce the elastic modulus of the resin itself by adding a filler (inorganic filler) of nearly 90% by mass to the sealing resin composition. (Patent Documents 1 to 3 and 5).

しかし、フィラーを高充填すると封止樹脂組成物の粘度が上昇し、成形性が大きく低下したり、高い成形圧力が必要になったり、基板や半導体素子にダメージを与え、さらに接着力も低下する傾向から剥離が発生するなど、新たな問題が発生する可能性が高い。 However, when the filler is highly filled, the viscosity of the sealing resin composition increases, the moldability is greatly reduced, high molding pressure is required, the substrate and the semiconductor element are damaged, and the adhesive strength also tends to decrease. There is a high possibility that new problems will occur, such as peeling from the plastic.

これらの問題を解決するため、半導体素子搭載面を一括封止するための繊維含有有機樹脂基板に未硬化の熱硬化性樹脂組成物を搭載した繊維含有樹脂基板が提案されている(特許文献6)。これは繊維含有有機樹脂基板とウエハや金属等の基板の熱膨張係数を合わせることで反りを抑え込む手法であり、硬化物のハンドリング性も向上するため有効な手段であるが、シリコンウエハを使用する場合はシリコンが約3ppm/Kと非常に低い熱膨張係数であり、一般的なエポキシ樹脂やシリコーン樹脂といった熱硬化性樹脂を使用すると熱膨張係数が下がりきらなかったり、弾性率の影響もあり、応力によって反りが満足できるレベルではなかったり、チップの専有面積が異なるたびに細かい材料の調整が必要であり、汎用性に乏しいと言った問題があった。 In order to solve these problems, a fiber-containing resin substrate in which an uncured thermosetting resin composition is mounted on a fiber-containing organic resin substrate for collectively sealing a semiconductor element mounting surface has been proposed (Patent Document 6). ). This is a method of suppressing warpage by matching the coefficient of thermal expansion of a fiber-containing organic resin substrate and a substrate such as a wafer or metal, and is an effective means for improving the handleability of a cured product, but a silicon wafer is used. In this case, silicon has a very low coefficient of thermal expansion of about 3 ppm / K, and if a thermosetting resin such as a general epoxy resin or silicone resin is used, the coefficient of thermal expansion cannot be lowered completely or the elastic modulus has an effect. There was a problem that the warp was not at a satisfactory level due to stress, and fine adjustment of the material was required each time the occupied area of the chip was different, resulting in poor versatility.

特開2002−179885号公報Japanese Unexamined Patent Publication No. 2002-179858 特開2009−60146号公報Japanese Unexamined Patent Publication No. 2009-60146 特開2007−1266号公報Japanese Unexamined Patent Publication No. 2007-1266 特表2004−504723号公報Japanese Patent Publication No. 2004-504723 特開2007−146155号公報JP-A-2007-146155 特開2013−197327号公報Japanese Unexamined Patent Publication No. 2013-197327

従って、本発明の目的は、低反り化を実現できる、半導体素子搭載面を一括封止するための封止材とそれを用いた半導体装置及び半導体パッケージの製造方法を提供することである。 Therefore, an object of the present invention is to provide a sealing material for collectively sealing the semiconductor element mounting surface, which can realize low warpage, and a method for manufacturing a semiconductor device and a semiconductor package using the sealing material.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、下記封止材が、上記目的を達成できることを見出し、本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors have found that the following encapsulant can achieve the above object, and have completed the present invention.

<1>
樹脂含浸繊維基材層の片面に未硬化樹脂層を有する封止材であって、
該樹脂含浸繊維基材層が、環状イミド化合物を含む熱硬化性樹脂組成物(X)を繊維基材に含浸し、半硬化又は硬化したものであり、
該未硬化樹脂層が、環状イミド化合物を含む熱硬化性樹脂組成物(Y)から形成されたものであり、
前記熱硬化性樹脂組成物(X)及び前記熱硬化性樹脂組成物(Y)に含まれる環状イミド化合物が、分子中に、少なくとも1つのダイマー酸骨格、少なくとも1つの炭素数6以上の直鎖アルキレン基及び少なくとも2つの環状イミド基を含有する環状イミド化合物である、封止材。
<1>
A sealing material having an uncured resin layer on one side of a resin-impregnated fiber base material layer.
The resin-impregnated fiber base material layer is a fiber base material impregnated with a thermosetting resin composition (X) containing a cyclic imide compound and semi-cured or cured.
The uncured resin layer is formed from a thermosetting resin composition (Y) containing a cyclic imide compound.
The cyclic imide compound contained in the thermosetting resin composition (X) and the thermosetting resin composition (Y) has at least one dimer acid skeleton and at least one linear chain having 6 or more carbon atoms in the molecule. A sealing material which is a cyclic imide compound containing an alkylene group and at least two cyclic imide groups.

<2>
前記環状イミド化合物が下記一般式(1)で表されるものであることを特徴とする<1>に記載の封止材。

Figure 2020136450
(一般式(1)中、Aは独立して芳香族環または脂肪族環を含む4価の有機基を示す。Bは2価のヘテロ原子を含んでもよい脂肪族環を有する炭素数6から18のアルキレン基である。Qは独立して炭素数6以上の直鎖アルキレン基を示す。Rは独立して炭素数6以上の直鎖又は分岐鎖のアルキル基を示す。nは1〜10の整数を表す。mは0〜10の整数を表す。) <2>
The encapsulant according to <1>, wherein the cyclic imide compound is represented by the following general formula (1).
Figure 2020136450
(In the general formula (1), A independently represents a tetravalent organic group containing an aromatic ring or an aliphatic ring. B is from 6 carbon atoms having an aliphatic ring which may contain a divalent hetero atom. It is an alkylene group of 18. Q independently represents a linear alkylene group having 6 or more carbon atoms. R independently represents a linear or branched alkyl group having 6 or more carbon atoms. N is 1 to 10 Represents an integer of. M represents an integer of 0 to 10.)

<3>
前記式(1)のAが下記構造のいずれかで表されることを特徴とする<2>に記載の封止材。

Figure 2020136450
(上記構造式中の置換基が結合していない結合手は、一般式(1)において環状イミド構造を形成するカルボニル炭素と結合するものである。) <3>
The encapsulant according to <2>, wherein A of the formula (1) is represented by any of the following structures.
Figure 2020136450
(The bond to which the substituent in the above structural formula is not bonded is the one that bonds to the carbonyl carbon forming the cyclic imide structure in the general formula (1).)

<4>
前記熱硬化性樹脂組成物(X)及び/又は前記熱硬化性樹脂組成物(Y)が、下記成分(A)〜(C)を含むものである、<2>又は<3>に記載の封止材。
(A)分子中に、少なくとも1つのダイマー酸骨格、少なくとも1つの炭素数6以上の直鎖アルキレン基及び少なくとも2つの環状イミド基を含有する環状イミド化合物
(B)無機充填材
(C)硬化促進剤
<4>
The sealing according to <2> or <3>, wherein the thermosetting resin composition (X) and / or the thermosetting resin composition (Y) contains the following components (A) to (C). Material.
(A) Cyclic imide compound containing at least one dimer acid skeleton, at least one linear alkylene group having 6 or more carbon atoms and at least two cyclic imide groups in the molecule (B) Inorganic filler (C) Acceleration of curing Agent

<5>
<1>〜<4>のいずれか1項に記載の封止材により封止されている半導体装置。
<5>
A semiconductor device sealed by the sealing material according to any one of <1> to <4>.

<6>
基板又はウエハの半導体素子搭載面に、半導体素子を搭載する工程、
<1>〜<4>のいずれか1項に記載の封止材の未硬化樹脂層により該半導体素子搭載面を被覆する工程、及び
前記未硬化樹脂層を加熱、硬化させることで、前記半導体素子搭載面及び/又は形成面を一括封止する工程
を有する半導体パッケージの製造方法。
<6>
The process of mounting a semiconductor element on the semiconductor element mounting surface of a substrate or wafer,
The semiconductor is subjected to a step of coating the semiconductor element mounting surface with the uncured resin layer of the sealing material according to any one of <1> to <4>, and by heating and curing the uncured resin layer. A method for manufacturing a semiconductor package, which comprises a step of collectively sealing an element mounting surface and / or a forming surface.

<7>
<6>に記載の一括封止する工程に次いで、個片化する工程を含むことを特徴とする半導体パッケージの製造方法。
<7>
A method for manufacturing a semiconductor package, which comprises a step of batch-sealing according to <6> and then a step of individualizing.

本発明の封止材であれば、特に大口径シリコンウエハを封止した場合であっても、ウエハの反りの抑制が可能である。また、チップの搭載面積や搭載総数に依存せず、ウエハの反りの抑制が可能である。 With the sealing material of the present invention, warpage of the wafer can be suppressed even when a large-diameter silicon wafer is sealed. Further, the warp of the wafer can be suppressed without depending on the mounting area and the total number of mounted chips.

本発明の封止材の一例を示す断面図である。It is sectional drawing which shows an example of the sealing material of this invention. 本発明の封止材を用いて製造した半導体パッケージの一例を示す図である。It is a figure which shows an example of the semiconductor package manufactured by using the sealing material of this invention. 本発明の封止材を用いて製造し、個片化した半導体パッケージ(半導体装置)の一例を示す図である。It is a figure which shows an example of the semiconductor package (semiconductor device) manufactured by using the sealing material of this invention, and individualized.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
図1は本発明の封止材の一例を示す断面図である。本発明の封止材10は、繊維基材に熱硬化性樹脂組成物(X)を含浸させて、該熱硬化性樹脂組成物(X)を半硬化又は硬化した樹脂含浸繊維基材層1と、該樹脂含浸繊維基材層の片面に未硬化の熱硬化性樹脂組成物(Y)から形成される未硬化樹脂層2とを有することを特徴とする。
さらに本発明の封止材は、前記熱硬化性樹脂組成物(X)及び前記熱硬化性樹脂組成物(Y)が、分子中に、少なくとも1つのダイマー酸骨格、少なくとも1つの炭素数6以上の直鎖アルキレン基、及び少なくとも2つの環状イミド基を含有する環状イミド化合物を含有することを特徴とする。
また本発明の封止材は、図1に示すように、該樹脂含浸繊維基材層の片面に、樹脂含浸繊維基材層よりも小さい面積の未硬化樹脂層を有することが好ましく、より好ましくは、未硬化樹脂層の樹脂含浸繊維基材層と接触する面の面積が、前記樹脂含浸繊維基材層の未硬化樹脂層と接触する面の面積の85〜98%である。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
FIG. 1 is a cross-sectional view showing an example of the sealing material of the present invention. The encapsulant 10 of the present invention is a resin-impregnated fiber base material layer 1 in which a fiber base material is impregnated with a thermosetting resin composition (X) and the thermosetting resin composition (X) is semi-cured or cured. It is characterized by having an uncured resin layer 2 formed from the uncured thermosetting resin composition (Y) on one side of the resin-impregnated fiber base material layer.
Further, in the encapsulant of the present invention, the thermosetting resin composition (X) and the thermosetting resin composition (Y) have at least one dimer acid skeleton and at least one carbon number of 6 or more in the molecule. It is characterized by containing a linear alkylene group of the above and a cyclic imide compound containing at least two cyclic imide groups.
Further, as shown in FIG. 1, the encapsulant of the present invention preferably has an uncured resin layer having an area smaller than that of the resin-impregnated fiber base material layer on one side of the resin-impregnated fiber base material layer, more preferably. The area of the surface of the uncured resin layer in contact with the resin-impregnated fiber base material layer is 85 to 98% of the area of the surface of the resin-impregnated fiber base material layer in contact with the uncured resin layer.

<樹脂含浸繊維基材層>
本発明の封止材は上記のように、樹脂含浸繊維基材層を有する。該樹脂含浸繊維基材層は、繊維基材に環状イミド化合物を含む熱硬化性樹脂組成物(X)を含浸させて、該熱硬化性樹脂組成物(X)を半硬化又は硬化したものである。本発明の封止材は、前記樹脂含浸繊維基材層を具備することにより、後述する未硬化樹脂層を硬化させた時の収縮応力を抑制できるため、大径ウエハや金属等の大径基板を封止した場合でも、基板やウエハの反り、基板からの半導体素子の剥離を抑えることができる。特にウエハの口径が300mm以上で、かつ厚さが200μm以下の大口径薄膜状のウエハを封止した場合でも破損抑制できるため、口径300mm以上かつ厚さ200μm以下の大口径薄膜状のウエハの封止に本発明は効果的である。
<Resin impregnated fiber base material layer>
As described above, the sealing material of the present invention has a resin-impregnated fiber base material layer. The resin-impregnated fiber base material layer is obtained by impregnating a fiber base material with a thermosetting resin composition (X) containing a cyclic imide compound, and semi-curing or curing the thermosetting resin composition (X). is there. Since the sealing material of the present invention is provided with the resin-impregnated fiber base material layer, shrinkage stress when the uncured resin layer described later is cured can be suppressed, so that a large-diameter substrate such as a large-diameter wafer or a metal can be suppressed. Even when the semiconductor element is sealed, the warp of the substrate or wafer and the peeling of the semiconductor element from the substrate can be suppressed. In particular, even when a large-diameter thin-film wafer having a wafer diameter of 300 mm or more and a thickness of 200 μm or less is sealed, damage can be suppressed. Therefore, a large-diameter thin-film wafer having a diameter of 300 mm or more and a thickness of 200 μm or less can be sealed. The present invention is effective as a stop.

熱硬化性樹脂組成物(X)
本発明の封止材を構成する樹脂含浸繊維基材層には、環状イミド化合物を含む熱硬化性樹脂組成物(X)が含まれる。該熱硬化性樹脂組成物(X)は、(A)環状イミド化合物を含み、好ましくはさらに(B)無機充填材及び(C)硬化促進剤を含むものである。
(A)環状イミド化合物
(A)成分は環状イミド化合物であって、分子中に、少なくとも1つのダイマー酸骨格、少なくとも1つの炭素数6以上の直鎖アルキレン基、及び少なくとも2つの環状イミド基を有する。(A)成分の環状イミド化合物が炭素数6以上の直鎖アルキレン基を有することで、これを含む組成物の硬化物を低弾性化することができ、硬化物による半導体装置へのストレス低減に効果的である。また、(A)成分の環状イミド化合物が炭素数6以上の直鎖アルキレン基を有することで、これを含む組成物の硬化物は優れた誘電特性を有するだけでなく、相対的にフェニル基の含有比率が低下し、耐トラッキング性も向上する。
Thermosetting resin composition (X)
The resin-impregnated fiber base material layer constituting the sealing material of the present invention contains a thermosetting resin composition (X) containing a cyclic imide compound. The thermosetting resin composition (X) contains (A) a cyclic imide compound, and preferably further contains (B) an inorganic filler and (C) a curing accelerator.
(A) Cyclic imide compound The component (A) is a cyclic imide compound, which contains at least one dimer acid skeleton, at least one linear alkylene group having 6 or more carbon atoms, and at least two cyclic imide groups in the molecule. Have. Since the cyclic imide compound of the component (A) has a linear alkylene group having 6 or more carbon atoms, the cured product of the composition containing this can be reduced in elasticity, and the stress caused by the cured product on the semiconductor device can be reduced. It is effective. Further, since the cyclic imide compound of the component (A) has a linear alkylene group having 6 or more carbon atoms, the cured product of the composition containing this has not only excellent dielectric properties but also relatively phenyl groups. The content ratio is reduced and the tracking resistance is also improved.

また、中でも(A)成分の環状イミド化合物としてはマレイミド化合物であることが好ましく、下記一般式(1)で表されるマレイミド化合物を使用することがより好ましい。

Figure 2020136450
一般式(1)中、Aは独立して芳香族環または脂肪族環を含む4価の有機基を示す。Bは2価のヘテロ原子を含んでもよい脂肪族環を有する炭素数6から18のアルキレン鎖である。Qは独立して炭素数6以上の直鎖アルキレン基を示す。Rは夫々独立に炭素数6以上の直鎖又は分岐鎖のアルキル基を示す。nは1〜10の整数を表す。mは0〜10の整数を表す。 Further, among them, the cyclic imide compound of the component (A) is preferably a maleimide compound, and it is more preferable to use a maleimide compound represented by the following general formula (1).
Figure 2020136450
In the general formula (1), A independently represents a tetravalent organic group containing an aromatic ring or an aliphatic ring. B is an alkylene chain having 6 to 18 carbon atoms having an aliphatic ring which may contain a divalent heteroatom. Q independently represents a linear alkylene group having 6 or more carbon atoms. R independently represents a linear or branched alkyl group having 6 or more carbon atoms. n represents an integer of 1-10. m represents an integer from 0 to 10.

式(1)中のQは直鎖のアルキレン基であり、これらの炭素数は6以上であるが、好ましくは6以上20以下であり、より好ましくは7以上15以下である。
また、式(1)中のRはアルキル基であり、直鎖のアルキル基でも分岐のアルキル基でもよく、これらの炭素数は6以上であるが、好ましくは6以上12以下である。
Q in the formula (1) is a linear alkylene group, and the number of carbon atoms thereof is 6 or more, preferably 6 or more and 20 or less, and more preferably 7 or more and 15 or less.
Further, R in the formula (1) is an alkyl group, which may be a linear alkyl group or a branched alkyl group, and the number of carbon atoms thereof is 6 or more, preferably 6 or more and 12 or less.

式(1)中のAは芳香族環または脂肪族環を含む4価の有機基を示し、特に、下記構造式で示される4価の有機基のいずれかであることが好ましい。

Figure 2020136450
(なお、上記構造式中の置換基が結合していない結合手は、一般式(1)において環状イミド構造を形成するカルボニル炭素と結合するものである。)
また、式(1)中のBは2価のヘテロ原子を含んでもよい脂肪族環を有する炭素数6から18のアルキレン鎖であり、該アルキレン基の炭素数は好ましくは炭素数8以上15以下である。
式(1)中のnは1〜10の整数であり、好ましくは2〜7の整数である。式(1)中のmは0〜10の整数であり、好ましくは0〜7の整数である。 A in the formula (1) represents a tetravalent organic group containing an aromatic ring or an aliphatic ring, and is particularly preferably any of the tetravalent organic groups represented by the following structural formula.
Figure 2020136450
(Note that the bond to which the substituent in the above structural formula is not bonded is the one that bonds to the carbonyl carbon forming the cyclic imide structure in the general formula (1).)
Further, B in the formula (1) is an alkylene chain having 6 to 18 carbon atoms having an aliphatic ring which may contain a divalent heteroatom, and the carbon number of the alkylene group is preferably 8 or more and 15 or less. Is.
N in the formula (1) is an integer of 1 to 10, preferably an integer of 2 to 7. M in the formula (1) is an integer of 0 to 10, preferably an integer of 0 to 7.

(A)成分の環状イミド化合物は、室温(25℃)での性状を含めて特に制限はないが、室温(25℃)で固体であることが好ましい。さらに、ゲルパーミエーションクロマトグラフィ(GPC)測定によるポリスチレン標準で換算した重量平均分子量(Mw)が2,000〜50,000であることが好ましく、より好ましくは2,500〜40,000である。該分子量が2,000以上であれば、得られるマレイミド化合物は固形化しやすく、2,000より小さいと硬化前の組成物はタックを有しやすくなる。該分子量が50,000以下であれば、得られる組成物は粘度が高くなりすぎて流動性が低下するおそれがなく、ラミネート成形などの成形性が良好となる。
なお、本発明中で言及する重量平均分子量(Mw)とは、下記条件で測定したGPCによるポリスチレンを標準物質とした重量平均分子量を指すこととする。
[測定条件]
展開溶媒:テトラヒドロフラン
流量:0.35mL/min
検出器:RI
カラム:TSK−GEL Hタイプ(東ソー株式会社製)
カラム温度:40℃
試料注入量:5μL
The cyclic imide compound of the component (A) is not particularly limited including its properties at room temperature (25 ° C.), but is preferably solid at room temperature (25 ° C.). Further, the weight average molecular weight (Mw) converted by the polystyrene standard by gel permeation chromatography (GPC) measurement is preferably 2,000 to 50,000, more preferably 2,500 to 40,000. If the molecular weight is 2,000 or more, the obtained maleimide compound tends to solidify, and if it is less than 2,000, the composition before curing tends to have tack. When the molecular weight is 50,000 or less, the obtained composition does not have a possibility that the viscosity becomes too high and the fluidity decreases, and the moldability such as laminating molding becomes good.
The weight average molecular weight (Mw) referred to in the present invention refers to the weight average molecular weight of polystyrene obtained by GPC measured under the following conditions as a standard substance.
[Measurement condition]
Developing solvent: Tetrahydrofuran Flow rate: 0.35 mL / min
Detector: RI
Column: TSK-GEL H type (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Sample injection volume: 5 μL

(A)成分の環状イミド化合物としては、BMI−2500、BMI−2560、BMI−3000、BMI−5000(以上、Designer Molecules Inc.製)等の市販品を用いることができる。
また、環状イミド化合物は1種単独で使用しても2種以上を併用しても構わない。
熱硬化性樹脂組成物(X)中、(A)環状イミド化合物は5〜50質量%含むことが好ましく、10〜45質量%含むことがより好ましい。
As the cyclic imide compound of the component (A), commercially available products such as BMI-2500, BMI-2560, BMI-3000, and BMI-5000 (all manufactured by Desisigner Moleculars Inc.) can be used.
Further, the cyclic imide compound may be used alone or in combination of two or more.
In the thermosetting resin composition (X), the cyclic imide compound (A) is preferably contained in an amount of 5 to 50% by mass, more preferably 10 to 45% by mass.

(B)無機充填材
無機充填材としては、基板の熱膨張係数や剛性を改善するために半導体封止材に一般的に使用されるものを用いることができ、例えば、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化ケイ素、窒化アルミニウム、アルミノシリケート、窒化ホウ素、ガラス繊維、三酸化アンチモン等が挙げられる。
(B)成分の無機充填材の平均粒径及び形状は特に限定されないが、平均粒径は通常0.1〜40μmである。(B)成分としては、平均粒径が0.5〜40μmの球状シリカが好適に用いられる。なお、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(又はメジアン径)として求めた値である。
(B)成分の無機充填材の配合量は、(A)環状イミド化合物100質量部に対して、100〜700質量部とすることが好ましい。
(B) Inorganic Filler As the inorganic filler, those generally used for semiconductor encapsulants can be used in order to improve the coefficient of thermal expansion and rigidity of the substrate. For example, molten silica and crystalline silica can be used. Examples thereof include silicas such as, alumina, silicon nitride, aluminum nitride, aluminosilicate, boron nitride, glass fiber, and antimony trioxide.
The average particle size and shape of the inorganic filler of the component (B) are not particularly limited, but the average particle size is usually 0.1 to 40 μm. As the component (B), spherical silica having an average particle size of 0.5 to 40 μm is preferably used. The average particle size is a value obtained as the mass average value D 50 (or median diameter) in the particle size distribution measurement by the laser light diffraction method.
The blending amount of the inorganic filler of the component (B) is preferably 100 to 700 parts by mass with respect to 100 parts by mass of the cyclic imide compound (A).

(C)硬化促進剤
硬化促進剤としては、(A)成分の環状イミド化合物の反応性、硬化性を高めるために一般的に使用されるものを用いることができ、例えば、ジクミルパーオキサイド、t−ヘキシルハイドロパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイドなどの熱ラジカル重合開始剤が挙げられる。また、(C)成分の硬化促進剤は、種類に関わらず、1種単独で用いてもよいし、2種以上を併用してもよい。
(C)成分の硬化促進剤の配合量は、(A)環状イミド化合物100質量部に対して、0.1〜5.0質量部とすることが好ましい。
(C) Curing Accelerator As the curing accelerator, those generally used for enhancing the reactivity and curability of the cyclic imide compound of the component (A) can be used, for example, dicumyl peroxide, etc. t-hexyl hydroperoxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, α, α'-bis (t-butylperoxy) diisopropylbenzene, t-butylcumyl peroxide, Examples thereof include thermal radical polymerization initiators such as di-t-butyl peroxide. Further, the curing accelerator of the component (C) may be used alone or in combination of two or more, regardless of the type.
The amount of the curing accelerator of the component (C) is preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the cyclic imide compound (A).

その他の成分
熱硬化性樹脂組成物(X)には、更に必要に応じてその他の成分を配合できる。該その他の成分として本発明の効果を損なわない範囲で、樹脂特性を改善するためにオルガノポリシロキサン、シリコーンオイル、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、光安定剤、顔料、染料等を配合してもよいし、濡れ性向上や封止樹脂層との密着性向上のためにカップリング剤、電気特性改善のためのイオントラップ剤、難燃性を付与するためのリン化合物や金属水和物を代表とする非ハロゲン系の難燃剤等を配合してもよい。
必要に応じてエポキシ樹脂、フェノール樹脂、シアネート樹脂、エポキシ−シリコーンハイブリッド樹脂など(A)成分中の環状イミド基と反応しうる官能基を有する熱硬化性樹脂成分を硬化が損なわれない範囲で併用しても構わない。
熱硬化性樹脂組成物(X)は、さらに(D)顔料を含むものが好ましい。
(D)顔料としては、カーボンブラック、チタンブラック等が挙げられる。(D)成分の顔料の配合量は、(A)環状イミド化合物100質量部に対して、0.5〜4.0質量部とすることが好ましい。
Other Ingredients Other ingredients can be further added to the thermosetting resin composition (X), if necessary. As the other components, organopolysiloxane, silicone oil, thermoplastic resin, thermoplastic elastomer, organic synthetic rubber, light stabilizer, pigment, dye, etc. are used to improve the resin properties as long as the effects of the present invention are not impaired. It may be blended, a coupling agent for improving wettability and adhesion to the sealing resin layer, an ion trapping agent for improving electrical characteristics, a phosphorus compound or metal water for imparting flame retardancy. A non-halogen flame retardant typified by Japanese products may be blended.
If necessary, a thermosetting resin component having a functional group capable of reacting with a cyclic imide group in the component (A) such as an epoxy resin, a phenol resin, a cyanate resin, and an epoxy-silicone hybrid resin is used in combination as long as the curing is not impaired. It doesn't matter.
The thermosetting resin composition (X) preferably further contains the pigment (D).
Examples of the pigment (D) include carbon black and titanium black. The blending amount of the pigment of the component (D) is preferably 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the cyclic imide compound (A).

繊維基材
前記繊維基材としては、例えば炭素繊維、E−ガラス繊維及びT−ガラス繊維等のガラス繊維、石英ガラス繊維、金属繊維等の無機繊維;芳香族ポリアミド繊維、ポリイミド繊維、ポリアミドイミド繊維等の有機繊維;さらには炭化ケイ素繊維、炭化チタン繊維、ボロン繊維、アルミナ繊維等が例示される。中でも、絶縁性、基板の剛性などの観点からガラス繊維、石英ガラス繊維、炭素繊維が好ましく、より好ましくはE−ガラス繊維、T−ガラス繊維、石英ガラス繊維である。
Fiber base material The fiber base material includes, for example, carbon fiber, glass fiber such as E-glass fiber and T-glass fiber, inorganic fiber such as quartz glass fiber and metal fiber; aromatic polyamide fiber, polyimide fiber, polyamideimide fiber. Organic fibers such as silicon carbide fiber, titanium carbide fiber, boron fiber, alumina fiber and the like are exemplified. Among them, glass fiber, quartz glass fiber, and carbon fiber are preferable, and E-glass fiber, T-glass fiber, and quartz glass fiber are more preferable from the viewpoint of insulation property and substrate rigidity.

前記繊維基材の形態としては、例えば長繊維フィラメントを一定方向に引きそろえたロービング、繊維クロス、不織布等のシート状のもの、更にはチョップストランドマット等が例示されるが、積層体を形成できるものであれば特に制限はされない。 Examples of the form of the fiber base material include rovings in which long fiber filaments are aligned in a certain direction, fiber cloths, sheet-like materials such as non-woven fabrics, and chop strand mats, which can form laminates. If it is a thing, there is no particular limitation.

<樹脂含浸繊維基材の作製方法>
前記繊維基材に前記熱硬化性樹脂組成物(X)を含浸させる方法としては、溶剤法とホットメルト法のいずれでもよい。溶剤法とは前記熱硬化性樹脂組成物(X)を有機溶剤に溶解した樹脂ワニスを調製し、該樹脂ワニスを前記繊維基材に含浸させる方法であり、ホットメルト法とは固体の前記熱硬化性樹脂組成物(X)を加熱融解して前記繊維基材に含浸させる方法である。
<Method of manufacturing resin-impregnated fiber base material>
As a method of impregnating the fiber base material with the thermosetting resin composition (X), either a solvent method or a hot melt method may be used. The solvent method is a method of preparing a resin varnish in which the thermosetting resin composition (X) is dissolved in an organic solvent and impregnating the fiber base material with the resin varnish, and the hot melt method is the heat of a solid. This is a method in which the curable resin composition (X) is heated and melted to impregnate the fiber base material.

前記繊維基材に含浸した前記熱硬化性樹脂組成物(X)を半硬化する方法としては、特に制限はされないが、前記繊維基材に含浸した前記熱硬化性樹脂組成物(X)を加熱により脱溶媒等して半硬化する方法等が例示される。前記繊維基材に含浸した前記熱硬化性樹脂組成物(X)を硬化する方法としては、特に制限はされないが、前記繊維基材に含浸した前記熱硬化性樹脂組成物(X)を加熱により硬化する方法等が例示される。
なお、樹脂含浸繊維基材は熱硬化性樹脂組成物(X)を含浸し、硬化又は半硬化した後、150〜200℃の温度で2〜8時間ポストキュアすることが好ましい。
The method for semi-curing the thermosetting resin composition (X) impregnated in the fiber base material is not particularly limited, but the thermosetting resin composition (X) impregnated in the fiber base material is heated. An example is a method of semi-curing by removing the solvent. The method for curing the thermosetting resin composition (X) impregnated in the fiber base material is not particularly limited, but the thermosetting resin composition (X) impregnated in the fiber base material is heated. An example is a method of curing.
The resin-impregnated fiber base material is preferably impregnated with the thermosetting resin composition (X), cured or semi-cured, and then post-cured at a temperature of 150 to 200 ° C. for 2 to 8 hours.

繊維基材に熱硬化性樹脂組成物(X)を含浸させて該熱硬化性樹脂組成物を半硬化又は硬化した樹脂含浸繊維基材の厚さは使用する繊維クロス等の繊維基材の厚さによって決まり、厚い樹脂含浸繊維基材を作製する場合は繊維クロス等の繊維基材の使用枚数を多くし、積層して作製する。 The thickness of the resin-impregnated fiber base material obtained by impregnating the fiber base material with the thermosetting resin composition (X) and semi-curing or curing the thermosetting resin composition is the thickness of the fiber base material such as the fiber cloth used. When producing a thick resin-impregnated fiber base material, the number of fiber base materials used such as fiber cloth is increased, and the fibers are laminated.

本発明において半硬化とは、B−ステージ(熱硬化性樹脂組成物の硬化中間体、この状態での樹脂は加熱すると軟化し、ある種の溶剤に触れると膨潤するが、完全に溶融、溶解することはない)状態をいうものである。 In the present invention, semi-curing means B-stage (a curing intermediate of a thermosetting resin composition. The resin in this state softens when heated and swells when exposed to a certain solvent, but is completely melted and dissolved. It means a state (which does not happen).

前記樹脂含浸繊維基材の厚さは、基本的には半導体素子上の厚さによって選定されるが、取扱い等の観点から、繊維基材に含浸させた熱硬化性樹脂組成物(X)を半硬化または硬化したいずれの場合でも30μm〜3,000μmであることが好ましく、より好ましくは40μm〜2,500μmである。樹脂含浸繊維基材の厚さが30μm以上であれば薄すぎて変形しやすくなることを抑制できるため好ましく、また3,000μm以下であれば半導体装置そのものが厚くなることを抑制できる。 The thickness of the resin-impregnated fiber base material is basically selected according to the thickness on the semiconductor element, but from the viewpoint of handling and the like, the thermosetting resin composition (X) impregnated in the fiber base material is used. In either case of semi-curing or curing, it is preferably 30 μm to 3,000 μm, and more preferably 40 μm to 2,500 μm. When the thickness of the resin-impregnated fiber base material is 30 μm or more, it is preferable because it is suppressed from being too thin and easily deformed, and when it is 3,000 μm or less, it is possible to suppress the thickness of the semiconductor device itself.

本発明の封止材を構成する樹脂含浸繊維基材層は、本発明の封止材で半導体素子搭載面を一括封止した後の反りを低減させ、2個以上の半導体素子を配列、接着した基板を補強するために重要である。そのため、硬くて剛直な樹脂含浸繊維基材であることが望ましい。 The resin-impregnated fiber base material layer constituting the sealing material of the present invention reduces warpage after the semiconductor element mounting surface is collectively sealed with the sealing material of the present invention, and two or more semiconductor elements are arranged and bonded. It is important to reinforce the finished substrate. Therefore, it is desirable that the resin-impregnated fiber base material is hard and rigid.

<未硬化樹脂層>
本発明の封止材は未硬化樹脂層を有する。該未硬化樹脂層は、前記樹脂含浸繊維基材層の片面に、未硬化の熱硬化性樹脂組成物(Y)から形成されたものである。未硬化樹脂層は、半導体素子を封止するための樹脂層である。そして、本発明の未硬化樹脂層は前述の(A)成分である特定の環状イミド化合物を含有することを特徴とする。
<Uncured resin layer>
The encapsulant of the present invention has an uncured resin layer. The uncured resin layer is formed from the uncured thermosetting resin composition (Y) on one side of the resin-impregnated fiber base material layer. The uncured resin layer is a resin layer for sealing a semiconductor element. The uncured resin layer of the present invention is characterized by containing a specific cyclic imide compound which is the component (A) described above.

未硬化樹脂層は、前記樹脂含浸繊維基材層の片面に樹脂含浸繊維基材層よりも小さい面積で形成されることが好ましく、より好ましくは、未硬化樹脂層の樹脂含浸繊維基材層と接触する面の面積が、前記樹脂含浸繊維基材層の未硬化樹脂層と接触する面の面積の85〜98%である。未硬化樹脂層の面積を前述の所望の大きさとするには、熱硬化性樹脂組成物(Y)の必要樹脂総量を重量換算し、必要量を使用すればよい。 The uncured resin layer is preferably formed on one side of the resin-impregnated fiber base material layer in an area smaller than that of the resin-impregnated fiber base material layer, and more preferably the resin-impregnated fiber base material layer of the uncured resin layer. The area of the contact surface is 85 to 98% of the area of the surface of the resin-impregnated fiber base material layer that contacts the uncured resin layer. In order to make the area of the uncured resin layer the above-mentioned desired size, the total amount of the required resin of the thermosetting resin composition (Y) may be converted into weight and the required amount may be used.

熱硬化性樹脂組成物(Y)
本発明の封止材を構成する未硬化樹脂層は、環状イミド化合物を含む熱硬化性樹脂組成物(Y)から形成されるものである。該熱硬化性樹脂組成物(Y)は、前述の(A)成分である特定の環状イミド化合物を含み、好ましくはさらに前述の(B)無機充填材及び(C)硬化促進剤を含むものである。(A)、(B)及び(C)成分の具体例及び配合量は、前述した熱硬化性樹脂組成物(X)と同様である。
Thermosetting resin composition (Y)
The uncured resin layer constituting the sealing material of the present invention is formed from the thermosetting resin composition (Y) containing the cyclic imide compound. The thermosetting resin composition (Y) contains a specific cyclic imide compound which is the component (A) described above, and preferably further contains the above-mentioned inorganic filler (B) and a curing accelerator (C). Specific examples and blending amounts of the components (A), (B) and (C) are the same as those of the thermosetting resin composition (X) described above.

その他の成分
熱硬化性樹脂組成物(Y)には、更に必要に応じてその他の成分を配合することができる。該その他の成分として本発明の効果を損なわない範囲で、樹脂特性を改善するためにオルガノポリシロキサン、シリコーンオイル、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、光安定剤、顔料、染料、離型剤等を配合してもよいし、濡れ向上や封止樹脂層との密着性向上のためにカップリング剤、電気特性を改善するためにイオントラップ剤、難燃性を付与させるためのリン化合物や金属水和物を代表とする非ハロゲン系の難燃剤等を配合してもよい。
熱硬化性樹脂組成物(Y)としては、さらに(D)顔料及び(E)カップリング剤を含むことが好ましい。
(D)顔料としては、カーボンブラック、チタンブラック等が挙げられる。(D)成分の顔料の配合量は、(A)環状イミド化合物100質量部に対して、0.5〜4.0質量部とすることが好ましい。
(E)カップリング剤としては、エポキシ官能性アルコキシシラン(例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等)、メルカプト官能性アルコキシシラン(例えばγ−メルカプトプロピルトリメトキシシラン等)、アミン官能性アルコキシシラン(例えば、γ−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン等)等が挙げられる。
(E)成分のカップリング剤の配合量は、(A)環状イミド化合物100質量部に対して、0.5〜5.0質量部とすることが好ましい。
Other Ingredients Other ingredients can be further added to the thermosetting resin composition (Y), if necessary. Organopolysiloxane, silicone oil, thermoplastic resin, thermoplastic elastomer, organic synthetic rubber, light stabilizer, pigment, dye, release to improve the resin properties as the other components without impairing the effects of the present invention. A mold or the like may be blended, a coupling agent for improving wetting and adhesion to the sealing resin layer, an ion trapping agent for improving electrical properties, and phosphorus for imparting flame retardancy. A non-halogen flame retardant typified by a compound or metal hydrate may be blended.
The thermosetting resin composition (Y) preferably further contains (D) a pigment and (E) a coupling agent.
Examples of the pigment (D) include carbon black and titanium black. The blending amount of the pigment of the component (D) is preferably 0.5 to 4.0 parts by mass with respect to 100 parts by mass of the cyclic imide compound (A).
Examples of the coupling agent (E) include epoxy-functional alkoxysilanes (for example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri). Methoxysilane, etc.), mercapto-functional alkoxysilane (eg, γ-mercaptopropyltrimethoxysilane, etc.), amine-functional alkoxysilane (eg, γ-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-amino, etc.) (Propyltrimethoxysilane, etc.) and the like.
The blending amount of the coupling agent for the component (E) is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the cyclic imide compound (A).

<封止材の作製方法>
本発明の封止材は、樹脂含浸繊維基材層と未硬化樹脂層とに、同じ環状イミド化合物を用いることにより、封止後のウエハの反りを抑制することができ、また樹脂含浸繊維基材層と未硬化樹脂層の密着力が向上する。
本発明の封止材の作製方法としては、例えば以下の方法が挙げられる。
まず、熱硬化性樹脂組成物(X)及び熱硬化性樹脂組成物(Y)をそれぞれ調製する。調製方法は特に制限されるものではなく、上述した各成分を所定の組成比で配合し、ミキサー等によって十分均一に混合、撹拌、溶解、分散及び/又は溶融混練させる方法が挙げられる。各成分は、同時に又は別々に配合してもよく、必要に応じて加熱しながら混合等を行なってもよい。混合等を行なう装置は、特に限定されないが、具体的には、撹拌及び加熱装置を備えたライカイ機、2本ロールミル、3本ロールミル、ボールミル、プラネタリーミキサー及びマスコロイダー等が挙げられ、これらの装置を適宜組み合わせて使用してもよい。
次に、熱硬化性樹脂組成物(X)と繊維基材とから、上述した方法により樹脂含浸繊維基材を作製し、樹脂含浸繊維基材層とする。
次に、樹脂含浸繊維基材層の片面に、熱硬化性樹脂組成物(Y)を用いて未硬化樹脂層を形成する。ここで、未硬化樹脂層に用いる熱硬化性樹脂組成物(Y)が未硬化状態では室温(25℃)で液状である場合、樹脂含浸繊維基材層の片面に、減圧又は真空下で、印刷やディスペンス等で該熱硬化性樹脂組成物(Y)を塗布し、加熱することで、50℃以下で固体状の未硬化樹脂層を形成することができる。一方、未硬化樹脂層に用いる熱硬化性樹脂組成物(Y)が未硬化状態では室温(25℃)で固体である場合、樹脂含浸繊維基材の片面に、該熱硬化性樹脂組成物(Y)を加熱しながら加圧する方法や溶剤を適量添加して該熱硬化性樹脂組成物(Y)を液状化し印刷などで薄膜を形成し、溶剤を減圧下で加熱して除去する方法で、均一に樹脂含浸繊維基材の片面に未硬化樹脂層を形成できるが、未硬化樹脂層にボイドを発生させないために溶剤を使用しないことが好ましい。
<Method of manufacturing encapsulant>
In the encapsulant of the present invention, by using the same cyclic imide compound for the resin-impregnated fiber base material layer and the uncured resin layer, warpage of the wafer after encapsulation can be suppressed, and the resin-impregnated fiber group can be suppressed. The adhesion between the material layer and the uncured resin layer is improved.
Examples of the method for producing the sealing material of the present invention include the following methods.
First, a thermosetting resin composition (X) and a thermosetting resin composition (Y) are prepared, respectively. The preparation method is not particularly limited, and examples thereof include a method in which each of the above-mentioned components is blended in a predetermined composition ratio and sufficiently uniformly mixed, stirred, dissolved, dispersed and / or melt-kneaded by a mixer or the like. Each component may be blended at the same time or separately, or may be mixed while heating if necessary. The device for mixing and the like is not particularly limited, and specific examples thereof include a Raikai machine equipped with a stirring and heating device, a two-roll mill, a three-roll mill, a ball mill, a planetary mixer, a mascoroider, and the like. The devices may be used in combination as appropriate.
Next, a resin-impregnated fiber base material is prepared from the thermosetting resin composition (X) and the fiber base material by the method described above, and used as a resin-impregnated fiber base material layer.
Next, an uncured resin layer is formed on one side of the resin-impregnated fiber base material layer using the thermosetting resin composition (Y). Here, when the thermosetting resin composition (Y) used for the uncured resin layer is liquid at room temperature (25 ° C.) in the uncured state, it is applied to one side of the resin-impregnated fiber base material layer under reduced pressure or vacuum. By applying the thermosetting resin composition (Y) by printing, dispensing, or the like and heating it, a solid uncured resin layer can be formed at 50 ° C. or lower. On the other hand, when the thermosetting resin composition (Y) used for the uncured resin layer is solid at room temperature (25 ° C.) in the uncured state, the thermosetting resin composition (Y) is applied to one side of the resin-impregnated fiber base material. A method of pressurizing while heating Y) or a method of adding an appropriate amount of a solvent to liquefy the thermosetting resin composition (Y) to form a thin film by printing or the like, and heating and removing the solvent under reduced pressure. Although the uncured resin layer can be uniformly formed on one side of the resin-impregnated fiber base material, it is preferable not to use a solvent in order not to generate voids in the uncured resin layer.

本発明の未硬化樹脂層を形成するための熱硬化性樹脂組成物(Y)の形状としては、該組成物をシート状に成形したものを用いることが好ましい。このシートの作製方法としては、熱硬化性樹脂組成物(Y)の各成分を所定の組成比で配合し、これをミキサー等によって十分均一に混合した後、先端にTダイを設置した二軸押し出し機を用いてシート状に成形するTダイ押し出し法が挙げられる。あるいは、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕して得られた組成物の粉砕品を加圧部材間で70〜120℃で加熱溶融し圧縮してシート状に成形してもよい。 As the shape of the thermosetting resin composition (Y) for forming the uncured resin layer of the present invention, it is preferable to use a sheet-like shape of the composition. As a method for producing this sheet, each component of the thermosetting resin composition (Y) is blended in a predetermined composition ratio, mixed sufficiently uniformly with a mixer or the like, and then a T-die is placed at the tip of the biaxial. An example is a T-die extrusion method in which a sheet is formed using an extruder. Alternatively, a pulverized product of the composition obtained by performing melt mixing treatment with a heat roll, kneader, extruder or the like, then cooling and solidifying, and pulverizing to an appropriate size is heated at 70 to 120 ° C. between the pressurizing members. It may be melted and compressed to form a sheet.

いずれの方法でも、樹脂含浸繊維基材層の片面上に、ボイドや揮発成分のない、厚さが30μm〜3,000μmの未硬化の熱硬化性樹脂組成物(Y)からなる未硬化樹脂層を形成する。 In either method, an uncured resin layer composed of an uncured thermosetting resin composition (Y) having a thickness of 30 μm to 3,000 μm and having no voids or volatile components on one surface of the resin-impregnated fiber base material layer. To form.

<半導体パッケージ>
本発明は、2個以上の半導体素子が搭載された基板又はウエハの半導体素子搭載面が、上述の封止材の未硬化樹脂層によって一括封止されたものであることを特徴とする半導体パッケージを提供する。
<Semiconductor package>
The present invention is characterized in that the semiconductor element mounting surface of a substrate or wafer on which two or more semiconductor elements are mounted is collectively sealed by the uncured resin layer of the above-mentioned sealing material. I will provide a.

本発明の半導体パッケージの一例の断面図を図2に示す。図2の半導体パッケージ11は、接着剤4によって2個以上の半導体素子3が搭載されたウエハ5の半導体素子搭載面が、封止材10の未硬化樹脂層2の硬化物(即ち、硬化後の樹脂層2’)によって一括封止されたものである。 A cross-sectional view of an example of the semiconductor package of the present invention is shown in FIG. In the semiconductor package 11 of FIG. 2, the semiconductor element mounting surface of the wafer 5 on which two or more semiconductor elements 3 are mounted by the adhesive 4 is a cured product of the uncured resin layer 2 of the sealing material 10 (that is, after curing). It is collectively sealed by the resin layer 2') of.

このような本発明の封止材により一括封止された半導体パッケージであれば、基板又はウエハの反りが抑制される。
以上のように、本発明の封止材であれば、特にチップオンウエハ(CoW)パッケージに特化し、大径ウエハを封止した場合であっても、ウエハの反り、半導体素子の剥離を抑制しながら半導体素子を搭載したウエハの半導体素子搭載面をウエハレベルで一括封止できる。したがって、本発明の封止材は、チップオンウエハパッケージの封止用に有用である。
With such a semiconductor package collectively sealed by the sealing material of the present invention, warpage of the substrate or wafer is suppressed.
As described above, the encapsulant of the present invention is particularly specialized for chip-on-wafer (CoW) packages, and even when a large-diameter wafer is encapsulated, warpage of the wafer and peeling of semiconductor elements are suppressed. At the same time, the semiconductor element mounting surface of the wafer on which the semiconductor element is mounted can be collectively sealed at the wafer level. Therefore, the encapsulant of the present invention is useful for encapsulating chip-on-wafer packages.

<半導体装置>
さらに、本発明は、上述の半導体パッケージが個片化されたものである半導体パッケージ(半導体装置)を提供する。
<Semiconductor device>
Furthermore, the present invention provides a semiconductor package (semiconductor device) in which the above-mentioned semiconductor package is individualized.

本発明の半導体装置の一例の断面図を図3に示す。図3の半導体装置12は図2の半導体パッケージ11をダイシングして、個片化したものである。このようにして作製された半導体装置12は耐熱性や耐湿性等の封止性能に優れる封止材により封止され、かつウエハの反り、半導体素子の剥離が抑制された高品質な半導体装置となる。半導体装置12はウエハ5上に接着剤4を介して半導体素子3が搭載され、その上から硬化後の樹脂層2’と樹脂含浸繊維基材層1により封止された半導体装置である(図3)。 A cross-sectional view of an example of the semiconductor device of the present invention is shown in FIG. The semiconductor device 12 of FIG. 3 is obtained by dicing the semiconductor package 11 of FIG. 2 into individual pieces. The semiconductor device 12 manufactured in this way is a high-quality semiconductor device that is sealed with a sealing material having excellent sealing performance such as heat resistance and moisture resistance, and that warpage of the wafer and peeling of the semiconductor element are suppressed. Become. The semiconductor device 12 is a semiconductor device in which a semiconductor element 3 is mounted on a wafer 5 via an adhesive 4, and is sealed from above by a cured resin layer 2'and a resin-impregnated fiber base material layer 1 (FIG. 6). 3).

<半導体パッケージ(半導体装置)の製造方法>
また、本発明は、半導体パッケージ(半導体装置)を製造する方法を提供する。半導体パッケージの製造方法は、半導体素子搭載工程、被覆工程及び封止工程を有し、必要に応じてさらに個片化工程を有する。
<Manufacturing method of semiconductor package (semiconductor device)>
The present invention also provides a method for manufacturing a semiconductor package (semiconductor device). The method for manufacturing a semiconductor package includes a semiconductor element mounting step, a coating step, and a sealing step, and further includes an individualization step if necessary.

<半導体素子搭載工程>
半導体素子搭載工程は、基板又はウエハの半導体素子搭載面に、半導体素子を搭載する工程である。本工程で搭載する半導体素子は2個以上であることが好ましい。半導体素子を搭載する方法としては、特に限られず、公知の方法を使用でき、例えば、接着剤、好ましくは高温で接着力が低下する接着剤を介して搭載することが好ましい。
<被覆工程>
被覆工程は、封止材10の未硬化樹脂層2により、ウエハ5の半導体素子3が搭載された半導体素子搭載面を被覆する工程である。
<Semiconductor device mounting process>
The semiconductor element mounting process is a step of mounting a semiconductor element on a semiconductor element mounting surface of a substrate or a wafer. It is preferable that the number of semiconductor elements mounted in this step is two or more. The method for mounting the semiconductor element is not particularly limited, and a known method can be used. For example, it is preferable to mount the semiconductor element via an adhesive, preferably an adhesive whose adhesive strength decreases at a high temperature.
<Coating process>
The coating step is a step of coating the semiconductor element mounting surface on which the semiconductor element 3 of the wafer 5 is mounted with the uncured resin layer 2 of the sealing material 10.

<封止工程>
封止工程は、封止材の未硬化樹脂層2を加熱、硬化して硬化後の樹脂層2’とすることで、ウエハ5の半導体素子3が搭載された半導体素子搭載面を一括封止する工程である。
以上より、ウエハレベルの半導体パッケージを得ることができる。
<Sealing process>
In the sealing step, the uncured resin layer 2 of the sealing material is heated and cured to form the cured resin layer 2', so that the semiconductor element mounting surface on which the semiconductor element 3 of the wafer 5 is mounted is collectively sealed. It is a process to do.
From the above, a wafer level semiconductor package can be obtained.

<個片化工程>
個片化工程は、封止工程後得られたウエハレベルの半導体パッケージをダイシングし、個片化する工程である。これにより、個片化された半導体パッケージ(半導体装置)12を得ることができる。
<Individualization process>
The individualization step is a step of dicing and individualizing the wafer-level semiconductor package obtained after the sealing step. As a result, an individualized semiconductor package (semiconductor device) 12 can be obtained.

以下、本発明の半導体パッケージの製造方法について、より具体的に説明する。前述の被覆工程、及び封止工程においては、ソルダーレジストフィルムや各種絶縁フィルム等のラミネーションに使用されている真空ラミネータ装置や真空プレス装置等を使用することで、ボイドも反りもない被覆、及び封止を行うことができる。ラミネーションの方式としてはロールラミネーションやダイアフラム式真空ラミネーション、エアー加圧式ラミネーション等、いずれの方式も使用することができる。 Hereinafter, the method for manufacturing the semiconductor package of the present invention will be described in more detail. In the above-mentioned coating process and sealing process, by using a vacuum laminator device, a vacuum press device, etc. used for lamination of solder resist films, various insulating films, etc., coating and sealing without voids and warpage are performed. You can stop it. As the lamination method, any method such as roll lamination, diaphragm type vacuum lamination, and air pressurization type lamination can be used.

ここでは例として、ニチゴーモートン社製の真空ラミネーション装置を用いて、厚さ42μmのガラスクロス(繊維基材)に熱硬化性樹脂組成物(X)を含浸した樹脂含浸繊維基材と、その片面に熱硬化性樹脂組成物(Y)から形成された厚み150μmの未硬化樹脂層を有する封止材で、厚さ250μm、直径300mmのシリコンウエハに10×10mmのシリコンチップを搭載した基板を封止する場合について説明する。 Here, as an example, a resin-impregnated fiber base material obtained by impregnating a glass cloth (fiber base material) having a thickness of 42 μm with a thermosetting resin composition (X) using a vacuum lamination device manufactured by Nichigo Morton Co., Ltd., and one side thereof. A sealing material having an uncured resin layer having a thickness of 150 μm formed from a thermosetting resin composition (Y), and a substrate on which a silicon chip of 10 × 10 mm is mounted on a silicon wafer having a thickness of 250 μm and a diameter of 300 mm is sealed. The case of stopping will be described.

真空ラミネーション装置は、ヒーターが内蔵されたプレートを上下に2つ有している。2つのプレートのうち、上側プレートにはダイアフラムラバーが減圧された状態でヒーターと密着している。
2つのプレートのプレート温度を150℃に設定し、下側プレート上にシリコンチップを搭載したウエハをセットし、封止材の未硬化樹脂層面を前述のウエハの半導体素子(シリコンチップ)搭載面に合わせてセットする。その後、下側プレートが上昇し、下側プレート上にセットされたウエハを囲むように設置されたOリングにより上下のプレートが密着して真空チャンバーが形成され、該真空チャンバー内が減圧される。真空チャンバー内が十分に減圧されたら、上側プレートのダイアフラムラバーとヒーターの間から真空ポンプにつながる配管の弁を閉じ、圧縮空気を送り込む。それにより、上側のダイアフラムラバーが膨張しウエハと繊維含有樹脂基板を上側のダイアフラムラバーと下側のプレートで挟み、真空ラミネーションを行うと同時に熱硬化性樹脂の硬化が進行し、封止が完了する。硬化時間としては3〜20分程度あれば十分である。真空ラミネーションが完了したら真空チャンバー内を常圧に戻し、下側プレートを下降させ、封止したウエハを取り出す。上記工程によりボイドや反りのない基板の封止を行うことができる。取り出した基板は通常、150〜200℃の温度で1〜8時間ポストキュアすることで電気特性や機械特性を安定化させることができる。
なお、半導体素子搭載及び個片化工程は、常法に従えばよい。
The vacuum lamination device has two plates with built-in heaters at the top and bottom. Of the two plates, the upper plate is in close contact with the heater with the diaphragm rubber depressurized.
The plate temperature of the two plates is set to 150 ° C., a wafer on which a silicon chip is mounted is set on the lower plate, and the uncured resin layer surface of the encapsulant is placed on the semiconductor element (silicon chip) mounting surface of the above-mentioned wafer. Set together. After that, the lower plate rises, and the upper and lower plates are brought into close contact with each other by the O-ring installed so as to surround the wafer set on the lower plate to form a vacuum chamber, and the inside of the vacuum chamber is depressurized. When the inside of the vacuum chamber is sufficiently decompressed, the valve of the pipe connected to the vacuum pump is closed from between the diaphragm rubber on the upper plate and the heater, and compressed air is sent. As a result, the upper diaphragm rubber expands and the wafer and the fiber-containing resin substrate are sandwiched between the upper diaphragm rubber and the lower plate, vacuum lamination is performed, and at the same time, the thermosetting resin is cured and the sealing is completed. .. A curing time of about 3 to 20 minutes is sufficient. When the vacuum lamination is completed, the inside of the vacuum chamber is returned to normal pressure, the lower plate is lowered, and the sealed wafer is taken out. By the above process, the substrate can be sealed without voids or warpage. The removed substrate is usually post-cured at a temperature of 150 to 200 ° C. for 1 to 8 hours to stabilize the electrical characteristics and mechanical characteristics.
The semiconductor element mounting and individualization steps may be performed according to a conventional method.

このような半導体装置の製造方法であれば、被覆工程においては封止材の未硬化樹脂層により簡便に、充填不良なく半導体素子搭載面を被覆することができる。また、樹脂含浸繊維基材を使用することで、未硬化樹脂層の硬化時の収縮応力を抑制できるため、封止工程においては半導体素子搭載面を一括封止することができ、ウエハの反り、半導体素子の剥離が抑制された半導体パッケージを得ることができる。さらに、個片化工程においては耐熱性や耐湿性等の封止性能に優れる樹脂含浸繊維基材により封止され、かつ反りが抑制されたウエハレベルの半導体パッケージから半導体装置をダイシングし、個片化することができるため、高品質な半導体装置を容易に製造することができる。 With such a method for manufacturing a semiconductor device, the semiconductor element mounting surface can be easily coated with the uncured resin layer of the sealing material in the coating process without filling defects. Further, by using the resin-impregnated fiber base material, the shrinkage stress at the time of curing of the uncured resin layer can be suppressed, so that the semiconductor element mounting surface can be collectively sealed in the sealing process, and the wafer warpage, It is possible to obtain a semiconductor package in which peeling of the semiconductor element is suppressed. Furthermore, in the individualization process, the semiconductor device is diced from a wafer-level semiconductor package that is sealed with a resin-impregnated fiber base material having excellent sealing performance such as heat resistance and moisture resistance and whose warpage is suppressed, and then individualized. Therefore, a high-quality semiconductor device can be easily manufactured.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<環状イミド化合物を含む樹脂含浸繊維基材の作製>
下記式(2)で示される環状イミド化合物(商品名:BMI−3000J、Designer Molecules Inc.製)100質量部、
粒径0.5μmのシリカ(商品名:SO−25R、(株)アドマテックス製)150質量部、
黒色顔料としてカーボンブラック(商品名:3230B、三菱化学製)3質量部、及び
過酸化物(パークミルD、日油(株)製)2.0質量部に、
トルエン300質量部を加えて攪拌混合し、環状イミド化合物を含む熱硬化性樹脂組成物のトルエン分散液を調製した。

この環状イミド化合物を含む熱硬化性樹脂組成物のトルエン分散液に、繊維基材としてTガラスクロス(日東紡績製、厚さ:42μm)を浸漬することにより、環状イミド化合物を含む熱硬化性樹脂組成物のトルエン分散液をTガラスクロスに含浸させた。該ガラスクロスを120℃で15分間放置することによりトルエンを揮発させた。該ガラスクロスを175℃で5分間加熱成型して成型品を得、更にこれを180℃で2時間加熱(2次硬化)することで、含浸させた環状イミド化合物を含む熱硬化性樹脂組成物を硬化させ、環状イミド化合物を含む熱硬化性樹脂組成物が硬化状態で繊維基材に含浸された、樹脂含浸繊維基材X1を作製した。該樹脂含浸繊維基材X1は、繊維基材の両面に環状イミド化合物を含む熱硬化性樹脂組成物の硬化物層が形成されたものであり、その大きさは400mm×500mm、厚さ0.12mmであった。その後、該樹脂含浸繊維基材X1を直径300mm(12インチ)の円板状に切断した。この樹脂含浸繊維基材X1の0℃から200℃における線膨張係数は7ppm/℃であった。

Figure 2020136450
<Preparation of resin-impregnated fiber base material containing cyclic imide compound>
100 parts by mass of a cyclic imide compound represented by the following formula (2) (trade name: BMI-3000J, manufactured by Designer Moleculars Inc.),
Silica with a particle size of 0.5 μm (trade name: SO-25R, manufactured by Admatex Co., Ltd.) 150 parts by mass,
As a black pigment, carbon black (trade name: 3230B, manufactured by Mitsubishi Chemical Corporation) in 3 parts by mass and peroxide (Park Mill D, manufactured by Nichiyu Co., Ltd.) in 2.0 parts by mass.
300 parts by mass of toluene was added and mixed by stirring to prepare a toluene dispersion of a thermosetting resin composition containing a cyclic imide compound.

A thermosetting resin containing a cyclic imide compound by immersing T glass cloth (manufactured by Nitto Boseki Co., Ltd., thickness: 42 μm) as a fiber base material in a toluene dispersion of a thermosetting resin composition containing the cyclic imide compound. The toluene dispersion of the composition was impregnated into the T glass cloth. Toluene was volatilized by leaving the glass cloth at 120 ° C. for 15 minutes. The glass cloth is heat-molded at 175 ° C. for 5 minutes to obtain a molded product, which is further heated at 180 ° C. for 2 hours (secondary curing) to obtain a thermosetting resin composition containing an impregnated cyclic imide compound. Was cured to prepare a resin-impregnated fiber base material X1 in which a thermosetting resin composition containing a cyclic imide compound was impregnated into a fiber base material in a cured state. The resin-impregnated fiber base material X1 has a cured product layer of a thermosetting resin composition containing a cyclic imide compound formed on both sides of the fiber base material, and has a size of 400 mm × 500 mm and a thickness of 0. It was 12 mm. Then, the resin-impregnated fiber base material X1 was cut into a disk shape having a diameter of 300 mm (12 inches). The coefficient of linear expansion of the resin-impregnated fiber base material X1 from 0 ° C. to 200 ° C. was 7 ppm / ° C.
Figure 2020136450

<熱硬化性エポキシ樹脂組成物を含む樹脂含浸繊維基材の作製、比較例用>
クレゾールノボラック型エポキシ樹脂(商品名:EPICLON−N695、DIC製)60質量部、
フェノールノボラック樹脂(商品名:TD2090、DIC製)30質量部、
粒径0.5μmのシリカ(商品名:SO−25R、(株)アドマテックス製)150質量部、
黒色顔料としてカーボンブラック(商品名:3230B、三菱化学製)3質量部、及び
トリフェニルホスフィン(TPP、北興化学工業(株)製)0.6質量部に、
トルエン300質量部を加えて攪拌混合し、エポキシ樹脂組成物のトルエン分散液を調製した。

このエポキシ樹脂組成物のトルエン分散液に、繊維基材としてTガラスクロス(日東紡績製、厚さ:88μm)を浸漬することにより、エポキシ樹脂組成物のトルエン分散液をTガラスクロスに含浸させた。該ガラスクロスを120℃で15分間放置することによりトルエンを揮発させた。該ガラスクロスを175℃で5分間加熱成型して成型品を得、更にこれを180℃で4時間加熱(2次硬化)することで、含浸させたエポキシ樹脂組成物を硬化させ、エポキシ樹脂組成物が硬化状態で繊維基材に含浸された、樹脂含浸繊維基材X2を作製した。該樹脂含浸繊維基材X2は、繊維基材の両面にエポキシ樹脂組成物の硬化物層が形成されたものであり、その大きさは400mm×500mm、厚さ0.12mmであった。その後、該樹脂含浸繊維基材X2を直径300mm(12インチ)の円板状に切断した。この熱硬化性エポキシ樹脂含浸繊維基材X2の0℃から200℃における線膨張係数は7ppm/℃であった。
<Preparation of resin-impregnated fiber base material containing thermosetting epoxy resin composition, for comparative example>
Cresol novolac type epoxy resin (trade name: EPICLON-N695, manufactured by DIC) 60 parts by mass,
Phenolic novolak resin (trade name: TD2090, manufactured by DIC) 30 parts by mass,
Silica with a particle size of 0.5 μm (trade name: SO-25R, manufactured by Admatex Co., Ltd.) 150 parts by mass,
As a black pigment, carbon black (trade name: 3230B, manufactured by Mitsubishi Chemical Corporation) in 3 parts by mass and triphenylphosphine (TPP, manufactured by Hokuko Kagaku Kogyo Co., Ltd.) in 0.6 parts by mass.
300 parts by mass of toluene was added and mixed by stirring to prepare a toluene dispersion of an epoxy resin composition.

The toluene dispersion of the epoxy resin composition was impregnated with the toluene dispersion of the epoxy resin composition by immersing the T glass cloth (manufactured by Nitto Boseki, thickness: 88 μm) as a fiber base material in the toluene dispersion of the epoxy resin composition. .. Toluene was volatilized by leaving the glass cloth at 120 ° C. for 15 minutes. The glass cloth is heat-molded at 175 ° C. for 5 minutes to obtain a molded product, which is further heated at 180 ° C. for 4 hours (secondary curing) to cure the impregnated epoxy resin composition, and the epoxy resin composition is cured. A resin-impregnated fiber base material X2 was prepared in which the material was impregnated into the fiber base material in a cured state. The resin-impregnated fiber base material X2 had cured product layers of an epoxy resin composition formed on both sides of the fiber base material, and had a size of 400 mm × 500 mm and a thickness of 0.12 mm. Then, the resin-impregnated fiber base material X2 was cut into a disk shape having a diameter of 300 mm (12 inches). The coefficient of linear expansion of the thermosetting epoxy resin impregnated fiber base material X2 from 0 ° C. to 200 ° C. was 7 ppm / ° C.

<未硬化熱硬化性環状イミド樹脂の作製>
前記式(2)で示される環状イミド化合物(商品名:BMI−3000J、Designer Molecules Inc.製)100質量部、
粒径4μmのシリカ(商品名:MUF−4H、(株)龍森製)250質量部、
黒色顔料としてカーボンブラック(商品名:3230B、三菱化学製)3質量部、
過酸化物(パークミルD、日油(株)製)2.0質量部、及び
シランカップリング剤(KBM−403、信越化学工業(株)製)1.0質量部を高速混合装置で十分混合し、Tダイを取り付けた連続混練装置にて、加熱溶融混練してシート状の、環状イミド化合物を含む熱硬化性樹脂組成物Y1を得た。
<Preparation of uncured thermosetting cyclic imide resin>
100 parts by mass of the cyclic imide compound represented by the formula (2) (trade name: BMI-3000J, manufactured by Designer Moleculars Inc.),
Silica with a particle size of 4 μm (trade name: MUF-4H, manufactured by Ryumori Co., Ltd.) 250 parts by mass,
Carbon black (trade name: 3230B, manufactured by Mitsubishi Chemical Corporation) as a black pigment, 3 parts by mass,
Sufficiently mix 2.0 parts by mass of peroxide (Park Mill D, manufactured by Nichiyu Co., Ltd.) and 1.0 part by mass of silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) with a high-speed mixer. Then, the thermosetting resin composition Y1 containing a cyclic imide compound in the form of a sheet was obtained by heating, melting and kneading in a continuous kneading apparatus equipped with a T-die.

<未硬化熱硬化性エポキシ樹脂の作製、比較例用>
クレゾールノボラック型エポキシ樹脂(商品名:EPICLON−N655、DIC製)60質量部、
フェノールノボラック樹脂(商品名:TD2131、DIC製)40質量部、
粒径4μmのシリカ(商品名:MUF−4H、(株)龍森製)250質量部、
黒色顔料としてカーボンブラック(商品名:3230B、三菱化学製)3質量部、
トリフェニルホスフィン(TPP、北興化学工業(株)製)0.6質量部、及び
シランカップリング剤(KBM−403、信越化学工業(株)製)1.0質量部を高速混合装置で十分混合し、Tダイを取り付けた連続混練装置にて、加熱溶融混練してシート状の、熱硬化性エポキシ樹脂組成物Y2を得た。
<Making uncured thermosetting epoxy resin for comparative examples>
Cresol novolac type epoxy resin (trade name: EPICLON-N655, manufactured by DIC) 60 parts by mass,
Phenol novolak resin (trade name: TD2131, manufactured by DIC) 40 parts by mass,
Silica with a particle size of 4 μm (trade name: MUF-4H, manufactured by Ryumori Co., Ltd.) 250 parts by mass,
Carbon black (trade name: 3230B, manufactured by Mitsubishi Chemical Corporation) as a black pigment, 3 parts by mass,
Thoroughly mix 0.6 parts by mass of triphenylphosphine (TPP, manufactured by Hokuko Kagaku Kogyo Co., Ltd.) and 1.0 part by mass of silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) with a high-speed mixer. Then, the thermosetting epoxy resin composition Y2 in the form of a sheet was obtained by heating, melting and kneading in a continuous kneading apparatus equipped with a T-die.

<封止材の作製>
あらかじめ直径300mmの円型に切り出しておいた樹脂含浸繊維基材X1又はX2を減圧下で加熱圧縮できる圧縮成形装置の下金型上にセットし、その上にシート状の熱硬化性樹脂組成物Y1又は熱硬化性エポキシ樹脂組成物Y2を必要重量分だけ乗せた。上下の金型温度を80℃にし、上金型にはフッ素樹脂コートしたPETフィルム(剥離フィルム)をセットして金型内を真空レベルまで減圧し、30秒間圧縮成形して樹脂含浸繊維基材層の片面に未硬化樹脂層を有する封止材を作製した。
なお、各例の封止材において、それぞれ、未硬化樹脂層の樹脂含浸繊維基材層と接触する面の面積は、前記樹脂含浸繊維基材層の未硬化樹脂層と接触する面積の95%であった。
<Preparation of encapsulant>
A resin-impregnated fiber base material X1 or X2, which has been cut into a circular shape having a diameter of 300 mm in advance, is set on a lower mold of a compression molding device capable of heating and compressing under reduced pressure, and a sheet-shaped thermocurable resin composition is placed on the lower mold. Y1 or the thermosetting epoxy resin composition Y2 was placed in the required weight. The upper and lower mold temperatures are set to 80 ° C., a fluororesin-coated PET film (release film) is set in the upper mold, the inside of the mold is depressurized to the vacuum level, and compression molding is performed for 30 seconds to make a resin-impregnated fiber base material. A sealing material having an uncured resin layer on one side of the layer was produced.
In each of the sealing materials of each example, the area of the surface of the uncured resin layer in contact with the resin-impregnated fiber base material layer is 95% of the area of the resin-impregnated fiber base material layer in contact with the uncured resin layer. Met.

<半導体素子が搭載されたウエハの被覆及び封止>
次に、ニチゴーモートン社製のプレート温度を150℃に設定した真空ラミネーション装置を用いて、上記で作製した封止材によりウエハを被覆、封止した。
まず、直径300mm(12インチ)で厚みが200μm、400μm又は725μmのシリコンウエハ上に、高温で接着力が低下する接着剤を介して、個片化した半導体素子である400個のシリコンチップ(形状:10mm×10mm 厚み250μm)を整列し搭載したシリコンウエハを作製した。該シリコンウエハを真空ラミネーション装置の下側プレートにセットし、上記で作製した封止材の未硬化樹脂層面をシリコンウエハの半導体素子搭載面に合わせて、該未硬化樹脂層により半導体素子搭載面を被覆した。その後、真空ラミネーション装置のプレートを閉じ10分間真空圧縮成形することで硬化封止した。硬化封止後、180℃で4時間ポストキュアして、半導体パッケージを得た。なお、封止材に使用した樹脂含浸繊維基材層と未硬化樹脂層の組合せは表1に記載したとおりであり、樹脂含浸繊維基材層の欄が「無」のものは、樹脂含浸繊維基材X1及びX2のいずれも使用せずに成形を行ったことを意味する。
<Coating and sealing of wafers on which semiconductor elements are mounted>
Next, the wafer was coated and sealed with the sealing material produced above using a vacuum lamination device manufactured by Nichigo Morton Co., Ltd. in which the plate temperature was set to 150 ° C.
First, 400 silicon chips (shapes), which are semiconductor elements that are individualized, are placed on a silicon wafer having a diameter of 300 mm (12 inches) and a thickness of 200 μm, 400 μm, or 725 μm via an adhesive whose adhesive strength decreases at high temperatures. : 10 mm × 10 mm, thickness 250 μm) were aligned and mounted to produce a silicon wafer. The silicon wafer is set on the lower plate of the vacuum lamination device, the uncured resin layer surface of the encapsulant produced above is aligned with the semiconductor element mounting surface of the silicon wafer, and the semiconductor element mounting surface is formed by the uncured resin layer. Covered. Then, the plate of the vacuum lamination device was closed and vacuum compression molded for 10 minutes to cure and seal. After curing and sealing, it was post-cured at 180 ° C. for 4 hours to obtain a semiconductor package. The combinations of the resin-impregnated fiber base material layer and the uncured resin layer used for the sealing material are as shown in Table 1, and the resin-impregnated fiber base material layer in the column of "None" is the resin-impregnated fiber. It means that the molding was performed without using either the base materials X1 and X2.

得られた半導体パッケージの反り及び外観について確認した。反りについては、半導体パッケージを、平坦な机にウエハを下にして置き、任意の4ヶ所のウエハの反りをノギスで測定し、その平均値を算出した。外観については、各実施例又は比較例の厚みの異なる3種類のウエハを用いたそれぞれの半導体パッケージに対して、外観を観察し、異常がないか確認した。結果を表1に記す。 The warp and appearance of the obtained semiconductor package were confirmed. Regarding the warpage, the semiconductor package was placed on a flat desk with the wafers facing down, and the warpage of the wafers at any four locations was measured with a caliper, and the average value was calculated. Regarding the appearance, the appearance was observed for each semiconductor package using three types of wafers having different thicknesses in each example or comparative example, and it was confirmed whether there was any abnormality. The results are shown in Table 1.

Figure 2020136450
Figure 2020136450

以上のことから、樹脂含浸繊維基材層及び未硬化樹脂層に特定の環状イミド化合物を含有する本発明の封止材であれば、大径ウエハ、特にウエハの口径が300mm以上でかつ厚さが200μm以下の大口径薄膜状ウエハを一括封止した場合であっても、基板やウエハの反りを抑制できる。また、半導体パッケージの外観もよく、封止材のハンドリング性も向上することも確認できた。 From the above, the encapsulant of the present invention containing a specific cyclic imide compound in the resin-impregnated fiber base material layer and the uncured resin layer has a large-diameter wafer, particularly a wafer having a diameter of 300 mm or more and a thickness. Even when a large-diameter thin-film wafer having a diameter of 200 μm or less is collectively sealed, warpage of the substrate or wafer can be suppressed. It was also confirmed that the appearance of the semiconductor package was good and the handleability of the encapsulant was improved.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same action and effect is the present invention. Is included in the technical scope of.

1 樹脂含浸繊維基材層
2 未硬化樹脂層
2’ 硬化後の樹脂層
3 半導体素子
4 接着剤
5 ウエハ
10 封止材
11 半導体パッケージ
12 個片化された半導体パッケージ(半導体装置)
1 Resin impregnated fiber base material layer 2 Uncured resin layer 2'Cured resin layer 3 Semiconductor element 4 Adhesive 5 Wafer 10 Encapsulant 11 Semiconductor package 12 Semiconductor package (semiconductor device)

Claims (7)

樹脂含浸繊維基材層の片面に未硬化樹脂層を有する封止材であって、
該樹脂含浸繊維基材層が、環状イミド化合物を含む熱硬化性樹脂組成物(X)を繊維基材に含浸し、半硬化又は硬化したものであり、
該未硬化樹脂層が、環状イミド化合物を含む熱硬化性樹脂組成物(Y)から形成されたものであり、
前記熱硬化性樹脂組成物(X)及び前記熱硬化性樹脂組成物(Y)に含まれる環状イミド化合物が、分子中に、少なくとも1つのダイマー酸骨格、少なくとも1つの炭素数6以上の直鎖アルキレン基及び少なくとも2つの環状イミド基を含有する環状イミド化合物である、封止材。
A sealing material having an uncured resin layer on one side of a resin-impregnated fiber base material layer.
The resin-impregnated fiber base material layer is a fiber base material impregnated with a thermosetting resin composition (X) containing a cyclic imide compound and semi-cured or cured.
The uncured resin layer is formed from a thermosetting resin composition (Y) containing a cyclic imide compound.
The cyclic imide compound contained in the thermosetting resin composition (X) and the thermosetting resin composition (Y) has at least one dimer acid skeleton and at least one linear chain having 6 or more carbon atoms in the molecule. A sealing material which is a cyclic imide compound containing an alkylene group and at least two cyclic imide groups.
前記環状イミド化合物が下記一般式(1)で表されるものであることを特徴とする請求項1に記載の封止材。
Figure 2020136450
(一般式(1)中、Aは独立して芳香族環または脂肪族環を含む4価の有機基を示す。Bは2価のヘテロ原子を含んでもよい脂肪族環を有する炭素数6から18のアルキレン基である。Qは独立して炭素数6以上の直鎖アルキレン基を示す。Rは独立して炭素数6以上の直鎖又は分岐鎖のアルキル基を示す。nは1〜10の整数を表す。mは0〜10の整数を表す。)
The encapsulant according to claim 1, wherein the cyclic imide compound is represented by the following general formula (1).
Figure 2020136450
(In the general formula (1), A independently represents a tetravalent organic group containing an aromatic ring or an aliphatic ring. B is from 6 carbon atoms having an aliphatic ring which may contain a divalent hetero atom. It is an alkylene group of 18. Q independently represents a linear alkylene group having 6 or more carbon atoms. R independently represents a linear or branched alkyl group having 6 or more carbon atoms. N is 1 to 10 Represents an integer of. M represents an integer of 0 to 10.)
前記式(1)のAが下記構造のいずれかで表されることを特徴とする請求項2に記載の封止材。
Figure 2020136450
(上記構造式中の置換基が結合していない結合手は、一般式(1)において環状イミド構造を形成するカルボニル炭素と結合するものである。)
The encapsulant according to claim 2, wherein A of the formula (1) is represented by any of the following structures.
Figure 2020136450
(The bond to which the substituent in the above structural formula is not bonded is the one that bonds to the carbonyl carbon forming the cyclic imide structure in the general formula (1).)
前記熱硬化性樹脂組成物(X)及び/又は前記熱硬化性樹脂組成物(Y)が、下記成分(A)〜(C)を含むものである、請求項1〜3のいずれか1項に記載の封止材。
(A)分子中に、少なくとも1つのダイマー酸骨格、少なくとも1つの炭素数6以上の直鎖アルキレン基及び少なくとも2つの環状イミド基を含有する環状イミド化合物(B)無機充填材
(C)硬化促進剤
The invention according to any one of claims 1 to 3, wherein the thermosetting resin composition (X) and / or the thermosetting resin composition (Y) contains the following components (A) to (C). Encapsulant.
(A) Cyclic imide compound containing at least one dimer acid skeleton, at least one linear alkylene group having 6 or more carbon atoms and at least two cyclic imide groups in the molecule (B) Inorganic filler (C) Acceleration of curing Agent
請求項1〜4のいずれか1項に記載の封止材により封止されている半導体装置。 A semiconductor device sealed by the sealing material according to any one of claims 1 to 4. 基板又はウエハの半導体素子搭載面に、半導体素子を搭載する工程、
請求項1〜4のいずれか1項に記載の封止材の未硬化樹脂層により該半導体素子搭載面を被覆する工程、及び
前記未硬化樹脂層を加熱、硬化させることで、前記半導体素子搭載面を一括封止する工程
を有する半導体パッケージの製造方法。
The process of mounting a semiconductor element on the semiconductor element mounting surface of a substrate or wafer,
The step of covering the semiconductor element mounting surface with the uncured resin layer of the sealing material according to any one of claims 1 to 4, and the step of heating and curing the uncured resin layer to mount the semiconductor element. A method for manufacturing a semiconductor package, which comprises a step of collectively sealing the surfaces.
請求項6に記載の一括封止する工程に次いで、個片化する工程を含むことを特徴とする半導体パッケージの製造方法。 A method for manufacturing a semiconductor package, which comprises a step of batch-sealing according to claim 6 and then a step of individualizing.
JP2019027232A 2019-02-19 2019-02-19 A method for manufacturing a sealing material, a semiconductor device sealed by the sealing material, and a semiconductor package having the sealing material. Active JP7014195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027232A JP7014195B2 (en) 2019-02-19 2019-02-19 A method for manufacturing a sealing material, a semiconductor device sealed by the sealing material, and a semiconductor package having the sealing material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027232A JP7014195B2 (en) 2019-02-19 2019-02-19 A method for manufacturing a sealing material, a semiconductor device sealed by the sealing material, and a semiconductor package having the sealing material.

Publications (2)

Publication Number Publication Date
JP2020136450A true JP2020136450A (en) 2020-08-31
JP7014195B2 JP7014195B2 (en) 2022-02-01

Family

ID=72263531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027232A Active JP7014195B2 (en) 2019-02-19 2019-02-19 A method for manufacturing a sealing material, a semiconductor device sealed by the sealing material, and a semiconductor package having the sealing material.

Country Status (1)

Country Link
JP (1) JP7014195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251681B1 (en) 2022-01-13 2023-04-04 信越化学工業株式会社 Thermosetting maleimide resin composition, slurry, film, prepreg, laminate and printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340258A (en) * 1990-10-08 1992-11-26 Toshiba Corp Constituent body for sealing use; semiconductor device; manufacture of semiconductor device
EP2469590A2 (en) * 2010-12-27 2012-06-27 Shin-Etsu Chemical Co., Ltd. Fiber-containing resin substrate, sealed substrate having semiconductor device mounted thereon, sealed wafer having semiconductor device formed thereon, a semiconductor apparatus, and method for manufacturing semiconductor apparatus
JP2014001289A (en) * 2012-06-18 2014-01-09 Nippon Steel & Sumikin Chemical Co Ltd Semiconductor sealing resin composition
JP2018083893A (en) * 2016-11-24 2018-05-31 日立化成株式会社 Solid resin composition for sealing and rearrangement wafer therewith, semiconductor package, and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340258A (en) * 1990-10-08 1992-11-26 Toshiba Corp Constituent body for sealing use; semiconductor device; manufacture of semiconductor device
EP2469590A2 (en) * 2010-12-27 2012-06-27 Shin-Etsu Chemical Co., Ltd. Fiber-containing resin substrate, sealed substrate having semiconductor device mounted thereon, sealed wafer having semiconductor device formed thereon, a semiconductor apparatus, and method for manufacturing semiconductor apparatus
JP2012151451A (en) * 2010-12-27 2012-08-09 Shin Etsu Chem Co Ltd Fiber containing resin substrate, after-sealing semiconductor element mounting substrate and after-sealing semiconductor element formation wafer, semiconductor device, and method of manufacturing semiconductor device
JP2014001289A (en) * 2012-06-18 2014-01-09 Nippon Steel & Sumikin Chemical Co Ltd Semiconductor sealing resin composition
JP2018083893A (en) * 2016-11-24 2018-05-31 日立化成株式会社 Solid resin composition for sealing and rearrangement wafer therewith, semiconductor package, and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251681B1 (en) 2022-01-13 2023-04-04 信越化学工業株式会社 Thermosetting maleimide resin composition, slurry, film, prepreg, laminate and printed wiring board
JP2023103171A (en) * 2022-01-13 2023-07-26 信越化学工業株式会社 Thermosetting maleimide resin composition, slurry, film, prepreg, laminate, and printed wiring board

Also Published As

Publication number Publication date
JP7014195B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
KR101884418B1 (en) Fiber-containing resin substrate, semiconductor element mounting substrate after sealing and semiconductor device forming wafer after sealing, semiconductor device, and method for manufacturing the semiconductor device
US8872358B2 (en) Sealant laminated composite, sealed semiconductor devices mounting substrate, sealed semiconductor devices forming wafer, semiconductor apparatus, and method for manufacturing semiconductor apparatus
US20180247834A1 (en) Method for manufacturing semiconductor apparatus
US9287174B2 (en) Fiber-containing resin substrate, device-mounting substrate and device-forming wafer, semiconductor apparatus, and method for producing semiconductor apparatus
JP2015216229A (en) Method for manufacturing semiconductor device, and thermosetting resin sheet
US20170098551A1 (en) Base-attached encapsulant for semiconductor encapsulation, method for manufacturing base-attached encapsulant for semiconductor encapsulation, and method for manufacturing semiconductor apparatus
JP6185342B2 (en) Encapsulant laminated composite, post-sealing semiconductor element mounting substrate or post-sealing semiconductor element forming wafer, and method for manufacturing semiconductor device
WO2015098838A1 (en) Method for producing semiconductor device, and thermosetting resin sheet
JP2015050447A (en) Seal material multilayer composite, sealed semiconductor device mounted substrate, sealed semiconductor device formed wafer, semiconductor device and semiconductor device manufacturing method
JP7014195B2 (en) A method for manufacturing a sealing material, a semiconductor device sealed by the sealing material, and a semiconductor package having the sealing material.
JP6800113B2 (en) Fiber-containing resin substrate, semiconductor element mounting substrate after sealing, semiconductor element forming wafer after sealing, semiconductor element mounting sheet after sealing, semiconductor device, and manufacturing method of semiconductor device
WO2015098842A1 (en) Method for manufacturing semiconductor device
JP2015216230A (en) Method for manufacturing semiconductor device
JP5770662B2 (en) Fiber-containing resin substrate, post-sealing semiconductor element mounting substrate, and semiconductor device manufacturing method
WO2019150446A1 (en) Adhesive composition, filmy adhesive, adhesive sheet, and production method for semiconductor device
JP5542848B2 (en) SEALING MATERIAL LAMINATE COMPOSITE, SEMICONDUCTOR SEMICONDUCTOR MOUNTING WAFER, SEMICONDUCTOR SEMICONDUCTOR FORMED WAFER, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2014103178A (en) Fiber-containing resin substrate, sealed semiconductor element mounted substrate and sealed semiconductor element formation wafer, semiconductor device, and semiconductor device manufacturing method
JP2015133526A (en) Fiber containing resin substrate, sealed semiconductor element mounting substrate, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103