JP2020136443A - 真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法 - Google Patents
真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法 Download PDFInfo
- Publication number
- JP2020136443A JP2020136443A JP2019026990A JP2019026990A JP2020136443A JP 2020136443 A JP2020136443 A JP 2020136443A JP 2019026990 A JP2019026990 A JP 2019026990A JP 2019026990 A JP2019026990 A JP 2019026990A JP 2020136443 A JP2020136443 A JP 2020136443A
- Authority
- JP
- Japan
- Prior art keywords
- switching
- vacuum valve
- contact point
- contact
- tap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Housings And Mounting Of Transformers (AREA)
Abstract
【課題】 既存の真空バルブ式負荷時タップ切換装置を改良することなく、切換開閉器における接点の消耗量を推定できる方法を提供する。【解決手段】 真空バルブ式負荷時タップ切換装置は、切換開閉器の切換スイッチを機械的な動作によって駆動させてタップ選択器のタップを切換えているため、タップを切換えた時に切換スイッチの可動接点と固定接点間の摩擦により接点が消耗して金属粉が発生する。そして、接点の消耗が進行すると、絶縁油の劣化により生成されるスラッジ中の接点材料元素(例えば、銀、タングステン、銅など)の濃度が増加する。そこで、定期点検時などに負荷時タップ切換装置から絶縁油を採油し、採油した絶縁油中の金属の濃度の関係から接点の摩耗量を推定する。【選択図】 図3
Description
本発明は、真空バルブ式負荷時タップ切換装置の切換開閉器における接点の消耗量を推定するものである。
従来から、切換開閉器における接点の消耗量を判断するために、負荷時タップ切換装置の使用年数やタップ切換動作の回数を表示する計数器の数値を基準にして、これらの数値が一定値以上に達すると注意レベル又は交換レベルとしていた。しかし、負荷によって同じ切換動作回数においても接点の消耗量に差異があるので、切換回数と接点消耗量の関係に信頼性が乏しいという問題があった。
他方、このような問題を解決できる手段として、下記特許文献1の図1に示すように、切換開閉器の絶縁油を浄化する活線浄油機に、切換開閉器から活線浄油機に供給される絶縁油が含む金属粉の濃度を検知する検知部と、検知された金属粉濃度に基づき、接触子(以下、接点)の消耗度(以下、消耗量)を診断する診断部を備えた負荷時タップ切換装置の異常診断システムが提案されている。前記異常診断システムは、接点が消耗するタップ切換動作時に活線浄油機を起動させて、絶縁油の金属粉濃度を測定し、金属粉濃度を基準に切換開閉器の接点の消耗量を推定するので、定量的に接点の消耗量を推定できる。
然るに、上記特許文献1記載の解決手段において、絶縁油を浄化する活線浄油機のポンプを使用して絶縁油を検知部に供給しているので、活線浄油機を採用していない真空バルブ式負荷時タップ切換装置では接点の消耗度を推定できない問題がある。
本発明は、前述の問題点を解決できるものであり、真空バルブ式負荷時タップ切換装置の接点の消耗量を定量的に判断できる手段を提供するものである。
請求項1記載の発明は、真空バルブ式負荷時タップ切換装置を構成する切換開閉器室内から絶縁油を採油した後、採油した絶縁油に含まれるスラッジを回収して、前記スラッジに含まれる元素分析を行うことで、切換開閉器の接点に使用されている金属成分の濃度を求め、この金属成分の濃度から切換開閉器の接点消耗量を推定することを特徴とする真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法。
請求項2記載の発明は、真空バルブ式負荷時タップ切換装置を構成する切換開閉器室内から絶縁油を採油した後、採油した絶縁油に含まれるスラッジを回収して、前記スラッジに含まれる元素分析を行うことで、切換開閉器の接点に使用されている金属成分の濃度比率を求め、この各金属成分の濃度比率から切換開閉器の接点消耗量を推定することを特徴とする真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法。
請求項1記載の発明によれば、定期点検時などに採油した切換開閉器室内の絶縁油に含まれるスラッジを回収して、前記スラッジに含まれる元素分析を行い、切換開閉器の接点に使用されている金属成分の濃度を求めることで、定量的に真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定することができる。
請求項2記載の発明によれば、定期点検時などに採油した切換開閉器室内の絶縁油に含まれるスラッジを回収して、前記スラッジに含まれる元素分析を行い、切換開閉器の接点に使用されている金属成分の濃度比率を求めることで、定量的に真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定することができる。
本発明の実施例について図1及び図2を用いて説明する。図1は変圧器等の油入電気機器Aに付属した既存の真空バルブ式負荷時タップ切換装置1の縦断面図である。図1において、2は油入電気機器Aのタンク3に取り付けられた負荷時タップ切換装置1を構成する切換開閉器、4はタップ選択器である。
2aは切換開閉器2の容器2b内に収納される切換開閉器本体であり、5は容器2b内から連通管6を介してコンサベータ7内に充填された絶縁油である。
8は切換開閉器本体2aとタップ選択器4の動作を制御する電動操作機構、9は電動操作機構の動力を切換開閉器本体2aとタップ選択器4に伝達する動力伝達機構である。
10はコンサベータ7に呼吸管11を介して接続される呼吸器であり、呼吸器10内には図示しないシリカゲルやモレキュラーシーブ等の吸湿剤が充填されている。
図2は真空バルブ式負荷時タップ切換装置1におけるタップ切換動作の一例を示す回路図である。図2において、TWは油入電気機器Aのタップ巻線、T1、T2、T3、T4,T5、T6・・・はタップ巻線TWに複数備えるタップ、M1、M2はタップ選択器4の可動接点である。
Rは限流抵抗器、Vは真空バルブ、C1は真空バルブVに直列接続された機械式の切換スイッチ(以下、第1の切換スイッチという)、C2は限流抵抗器Rに直列接続された機械式の切換スイッチ(以下、第2の切換スイッチという)である。
なお、図1では図示していないが、切換開閉器本体2aは真空バルブV、真空バルブVに直列接続された第1の切換スイッチC1、限流抵抗器Rに直列接続された第2の切換スイッチC2で構成されている。
タップ巻線TWの偶数タップT2から奇数タップT3への切換動作について、図2で説明する。図2の左から順に示すように、初めに第2の切換スイッチC2を偶数タップ側接点C2−1から奇数タップ側接点C2−2へ切換える。次に真空バルブVを開き通電停止の状態で第1の切換スイッチC1を偶数タップ側接点C1−1から奇数タップ側接点C2−2へ切換える。続いて、真空バルブVを閉じて真空バルブVに負荷電流を流す(通電する)ことで、偶数タップT2から奇数タップT3への切換動作を完了する。
タップを切換える際、切換開閉器2においては、図1に示す電動操作機構8による動力が図示しない蓄勢バネなどから構成される蓄勢機構に蓄えられ、この蓄勢力によって図2に示す切換スイッチC1及びC2において、偶数タップ側接点から奇数タップ側接点又は奇数タップ側接点から偶数タップ側接点へ切換えが高速で行われる。
この高速の接点切換により、切換スイッチC1及びC2の接点が摩擦により摩耗して接点において金属粉が発生し、この金属粉が絶縁油5の酸化等の経年劣化により発生する汚泥物質と共にスラッジとなる。
なお、スラッジはほとんど沈降しているので、実際に油中に浮遊しているのは一部分であり、正確な濃度測定のためには、沈降しているスラッジを何らかの方法で浮遊させ、分散させることで油中の濃度を均一にする必要がある。このため、撹拌、揺動、超音波振動子などにより容器2b内で沈降しているスラッジを均一にし、絶縁油を採油しスラッジ中の金属量を定量する。接点切換回数と金属量の関係から金属濃度が一定水準に到達すれば、接点が損耗したことを示す。
また、分析に使用する測定装置は、EDX(エネルギー分散型X線分析)装置が好適である。この装置を常圧条件で使用すれば、検出される元素はNa以上の原子番号を持つ元素となる。このため、スラッジの大半を占める炭素が検出されないため、金属を精度良く定量することができる。同様に比較的簡易な前処理で分析可能な分析手段であるフレームレスによる原子吸光法、WDX(波長分散型X線分析)法でも良い。
つづいて、真空バルブ式負荷時タップ切換装置1の切換開閉器2の接点消耗量を推定する方法の具体例を図3により説明する。定期点検時などに切換開閉器2の容器2b内の絶縁油5を撹拌してスラッジを均一にしてから絶縁油5を採油した後、採油した絶縁油5に含まれるスラッジをろ過などにより回収して、エネルギー分散型X線分析(EDX)装置等で前記スラッジに含まれる元素分析を行い、切換開閉器本体2aの接点C1−1、C1−2、C2−1、C2−2に使用されている金属成分の濃度を求めることで、定量的に接点C1−1、C1−2、C2−1、C2−2の消耗量を推定することができる。
図3の説明図は切換開閉器の接点消耗量とスラッジ中の金属濃度の相関関係を示している。図3に示すとおり、前記相関関係は明瞭であるので、判断対象である切換開閉器の絶縁油に含まれるスラッジ中の金属濃度を測定すれば、図3の説明図を利用して接点の摩耗量を推定することが可能となる。
しかし、容器2b内では切換開閉器本体2aを構成するギヤ、駆動軸などにスラッジが付着することにより、撹拌を行っても沈降しているスラッジを完全に均一に浮遊させることが困難となり、絶縁油5の採取毎でのスラッジ中の金属濃度分析のバラツキが大きくなる場合がある。長年の経験をもとに、切換開閉器2の絶縁油5中に浮遊しているスラッジ中の構成元素と、切換接点の損耗の関係を調査したところ、構成元素の比率の結果と接点損耗量に相関の高い関係が得られた。構成元素の比率を利用すると、より精度が高く接点消耗量を推定することができる。
ここでは、銀メッキされた銅製の接点を例に挙げて説明する。図4は接点消耗量とCu/Agの関係を示している。接点の消耗が進むに連れて、接点の素材である銅濃度の比率が増加する。スラッジ中の金属(接点を構成する金属)濃度の比率が一定値に到達したところが、接点の寿命となるため、金属濃度の比率から接点の消耗量を推定することが可能となる。交換時期を適切にすることで、接点を寿命まで使用することができるので、合理的に設備を運用することができる。なお、接点に使用する金属の材質によって、接点損耗が進むに連れて変化する元素の比率が異なる。また、銅タングステン合金の接点の場合は、W/Cu、Cu/S、Cu/Siにも同様に切換回数と接点消耗量に相関性が認められた。このように使用する接点の金属の種類と消耗によって油中に浮遊する金属濃度の比率が変化する関係を切換接点の消耗量(寿命診断)に利用する。
つづいて、真空バルブ式負荷時タップ切換装置1の切換開閉器2の接点消耗量を推定する方法の具体例を図4により説明する。定期点検時などに切換開閉器2の容器2b内から絶縁油5を採油した後、採油した絶縁油5に含まれるスラッジをろ過などにより回収して、エネルギー分散型X線分析(EDX)装置等で前記スラッジに含まれる元素分析を行い、切換開閉器本体2aの接点C1−1、C1−2、C2−1、C2−2に使用されている金属元素の濃度比率を求めることで、定量的に接点C1−1、C1−2、C2−1、C2−2の消耗量を推定することができる。
図4の説明図は切換開閉器の接点消耗量とスラッジ中の金属元素の濃度比率の相関関係を示している。図4に示すとおり、前記相関関係は明瞭であるので、判断対象である切換開閉器の絶縁油に含まれるスラッジ中の金属濃度を測定して金属元素の濃度比率を求めれば、図4の説明図を利用して接点の摩耗量を推定することが可能となる。
真空バルブ式負荷時タップ切換装置を構成する切換開閉器の接点消耗量を定量的に判断して内部点検や接点の交換時期を適切に把握することで、真空バルブ式負荷時タップ切換装置の保守業務の負荷を低減する。経済合理性を考慮して点検周期や交換時期を判断できる。なお、接点消耗量とは、例えば接点が摩耗した量(μm)や摩耗した比率などをいう。
1 真空バルブ式負荷時タップ切換装置
2 切換開閉器
2a 切換開閉器本体
2b 切換開閉器の容器
3 油入電気機器のタンク
4 タップ選択器
5 絶縁油
6 連通管
7 コンサベータ
8 電動操作機構
9 動力伝達機構
10 呼吸器
11 呼吸管
A 油入電気機器
TW タップ巻線
T1、T2、T3、T4、T5、T6 タップ
M1、M2 タップ選択器の可動接点
V 真空バルブ
R 限流抵抗器
C1 第1の切換スイッチ
C2 第2の切換スイッチ
C1−1、C2−1 偶数タップ側接点
C1−2、C2−2 奇数タップ側接点
2 切換開閉器
2a 切換開閉器本体
2b 切換開閉器の容器
3 油入電気機器のタンク
4 タップ選択器
5 絶縁油
6 連通管
7 コンサベータ
8 電動操作機構
9 動力伝達機構
10 呼吸器
11 呼吸管
A 油入電気機器
TW タップ巻線
T1、T2、T3、T4、T5、T6 タップ
M1、M2 タップ選択器の可動接点
V 真空バルブ
R 限流抵抗器
C1 第1の切換スイッチ
C2 第2の切換スイッチ
C1−1、C2−1 偶数タップ側接点
C1−2、C2−2 奇数タップ側接点
Claims (2)
- 真空バルブ式負荷時タップ切換装置を構成する切換開閉器室内から絶縁油を採油した後、採油した絶縁油に含まれるスラッジを回収して、前記スラッジに含まれる元素分析を行うことで、切換開閉器の接点に使用されている金属成分の濃度を求め、この金属成分の濃度から切換開閉器の接点消耗量を推定することを特徴とする真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法。
- 真空バルブ式負荷時タップ切換装置を構成する切換開閉器室内から絶縁油を採油した後、採油した絶縁油に含まれるスラッジを回収して、前記スラッジに含まれる元素分析を行うことで、切換開閉器の接点に使用されている金属成分の濃度比率を求め、この各金属成分の濃度比率から切換開閉器の接点消耗量を推定することを特徴とする真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026990A JP2020136443A (ja) | 2019-02-19 | 2019-02-19 | 真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019026990A JP2020136443A (ja) | 2019-02-19 | 2019-02-19 | 真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020136443A true JP2020136443A (ja) | 2020-08-31 |
Family
ID=72263528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019026990A Pending JP2020136443A (ja) | 2019-02-19 | 2019-02-19 | 真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020136443A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114152872A (zh) * | 2021-12-01 | 2022-03-08 | 湖南大学 | 基于金属离子检测的油浸金属设备健康状况诊断方法 |
-
2019
- 2019-02-19 JP JP2019026990A patent/JP2020136443A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114152872A (zh) * | 2021-12-01 | 2022-03-08 | 湖南大学 | 基于金属离子检测的油浸金属设备健康状况诊断方法 |
CN114152872B (zh) * | 2021-12-01 | 2022-11-29 | 湖南大学 | 基于金属离子检测的油浸金属设备健康状况诊断方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2020136443A (ja) | 真空バルブ式負荷時タップ切換装置の切換開閉器の接点消耗量を推定する方法 | |
CN107314860A (zh) | 油浸式变压器有载开关渗漏的色谱诊断方法 | |
DE102007024275A1 (de) | Verfahren zum Messen und/oder Überwachen eines Strömungsparameters und entsprechende Vorrichtung | |
JP2017054857A (ja) | 負荷時タップ切換装置の診断方法および診断システム | |
RU2013138125A (ru) | Способ ранжирования технических устройств технологических установок химических, нефтехимических и нефтеперерабатывающих комплексов на основе их экспертно-бальной оценки | |
JP2009168571A (ja) | 油入変圧器の劣化診断方法 | |
CN212800511U (zh) | 一种带有刮锡机构的光伏焊带镀锡装置 | |
JP2023001969A (ja) | 流路監視システム | |
JP2009170594A (ja) | 油入変圧器の余寿命診断方法 | |
Cincar et al. | On-load tap changer testing methods | |
JP2020155656A (ja) | 真空バルブ式負荷時タップ切換装置の切換開閉器接点の消耗量を推定する方法 | |
JP4836773B2 (ja) | 潤滑状態評価装置、潤滑状態評価方法、プログラム及び記録媒体 | |
Sunar | Arc damage identification and its effects on fatigue life of contact wires in railway overhead lines | |
JPWO2010021017A1 (ja) | 油入電気機器の診断方法、その診断方法を実施するための診断装置およびその診断装置を備えた油入電気機器 | |
CN113092103B (zh) | 一种数据驱动的齿轮啮合刚度实时预测装置及预测方法 | |
WO2021065191A1 (ja) | 純水製造管理システムおよび純水製造管理方法 | |
CN108152462A (zh) | 发电厂锅炉水汽监督装置 | |
JP2018024025A (ja) | 放電加工機 | |
CN104111275B (zh) | 线圈裸露面绝缘层破损检测装置和检测方法 | |
Mahajan et al. | Influence of parameters and wear analysis of aluminium-bronze (CuAl | |
JPH0743365B2 (ja) | 水処理装置の性能診断装置 | |
JP2010133788A (ja) | 潤滑剤及び粘稠性物質の劣化診断方法 | |
CN114152872B (zh) | 基于金属离子检测的油浸金属设备健康状况诊断方法 | |
RU2480700C2 (ru) | Устройство для автоматического анализа параметров теплоносителя и способ его реализации | |
Yenus | DEVELOPMENT OF MATERIAL FOR TRAIN OVERHEAD CONTACT WIRE |