JP2020133855A - Driving device and construction machine - Google Patents

Driving device and construction machine Download PDF

Info

Publication number
JP2020133855A
JP2020133855A JP2019031763A JP2019031763A JP2020133855A JP 2020133855 A JP2020133855 A JP 2020133855A JP 2019031763 A JP2019031763 A JP 2019031763A JP 2019031763 A JP2019031763 A JP 2019031763A JP 2020133855 A JP2020133855 A JP 2020133855A
Authority
JP
Japan
Prior art keywords
control valve
passage
pressure
control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019031763A
Other languages
Japanese (ja)
Other versions
JP7257181B2 (en
Inventor
小林 正幸
Masayuki Kobayashi
正幸 小林
篤史 住本
Atsushi Sumimoto
篤史 住本
晃右 三上
Kosuke Mikami
晃右 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2019031763A priority Critical patent/JP7257181B2/en
Priority to KR1020200018777A priority patent/KR20200103537A/en
Priority to CN202010105158.0A priority patent/CN111608970A/en
Publication of JP2020133855A publication Critical patent/JP2020133855A/en
Application granted granted Critical
Publication of JP7257181B2 publication Critical patent/JP7257181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0422Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with manually-operated pilot valves, e.g. joysticks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/465Flow control with pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/715Output members, e.g. hydraulic motors or cylinders or control therefor having braking means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems

Abstract

To provide a driving device which enables improvement of operability, and to provide a construction machine.SOLUTION: A driving device of an embodiment includes: a hydraulic pump 3; a tank 7; center passages L1, L2; a hydraulic motor 2; and a control device 5. The center passages L1, L2 allow communication between the hydraulic pump 3 and the tank 7. The hydraulic motor 2 is driven by oil sent from the hydraulic pump 3. The control device 5 includes a control valve 9, a pressure compensation control part 10, and a switch part 8. The control valve 9 adjusts a flow rate of the oil supplied to the hydraulic motor 2. The pressure compensation control part 10 is provided at an upstream side passage L3 and holds oil pressure in the upstream side passage L3 in a predetermined value. The switch part 8 switches a state of the pressure compensation control part 10 between a driving state and a non-driving state.SELECTED DRAWING: Figure 1

Description

本発明は、駆動装置及び建設機械に関する。 The present invention relates to a drive device and a construction machine.

建設機械は、旋回体(キャブ)、バケット、ブーム等を駆動させるためのさまざまな油圧アクチュエータと、これら油圧アクチュエータを駆動させるための油圧駆動装置とを備えている。油圧駆動装置は、操作部と、油圧アクチュエータに油を供給するための油圧ポンプと、各油圧アクチュエータに供給される油の流量を制御する油圧制御弁とを備えている。 The construction machine includes various hydraulic actuators for driving a swivel body (cab), a bucket, a boom, and the like, and a hydraulic drive device for driving these hydraulic actuators. The hydraulic drive system includes an operation unit, a hydraulic pump for supplying oil to the hydraulic actuators, and a hydraulic control valve for controlling the flow rate of the oil supplied to each hydraulic actuator.

ここで、例えば旋回体を旋回させると、ブームの先端での旋回半径が大きくなるので、吊荷の揺れが大きくなりやすい。このため、旋回体の旋回操作性を向上させるために、駆動装置の油圧回路(制御装置)としては、操作部の操作信号に基づいて油圧制御弁の駆動制御を行ういわゆるブリードオフ(圧力制御)方式の油圧回路とする場合が多い。
ブリードオフ方式の油圧回路では、油圧制御弁にセンター通路(ブリードオフ通路)が設けられている。そして、操作部の操作信号に基づいて、油圧制御弁のスプールを駆動させる。このスプールの移動量に応じて油圧ポンプから吐出された油の一部がタンクに還流され、油圧アクチュエータへの油の流量が制御される。
Here, for example, when the swivel body is swiveled, the swivel radius at the tip of the boom becomes large, so that the swing of the suspended load tends to be large. Therefore, in order to improve the turning operability of the swivel body, the hydraulic circuit (control device) of the drive device is a so-called bleed-off (pressure control) that controls the drive of the hydraulic control valve based on the operation signal of the operation unit. In many cases, it is a hydraulic circuit of the type.
In the bleed-off type hydraulic circuit, the hydraulic control valve is provided with a center passage (bleed-off passage). Then, the spool of the hydraulic control valve is driven based on the operation signal of the operation unit. A part of the oil discharged from the hydraulic pump is returned to the tank according to the movement amount of the spool, and the flow rate of the oil to the hydraulic actuator is controlled.

特開平6−24688号公報Japanese Unexamined Patent Publication No. 6-24688

ところで、近年、建設機械の自動運転化の要望が高まっている。一方、建設機械は、ブームが長いと風の影響を受けやすく、ブームにかかる風圧によって油圧アクチュエータに負荷がかかり、油圧回路内の油圧が変化してしまう。このため、建設機械を自動運転化させるためには、油圧回路内の油圧を所定値内に保持するように制御するいわゆる圧力補償制御方式の油圧回路とすることが望ましい。 By the way, in recent years, there has been an increasing demand for automatic operation of construction machinery. On the other hand, construction machinery is easily affected by wind when the boom is long, and the wind pressure applied to the boom puts a load on the hydraulic actuator, which changes the hydraulic pressure in the hydraulic circuit. Therefore, in order to automatically operate the construction machine, it is desirable to use a so-called pressure compensation control type hydraulic circuit that controls the hydraulic pressure in the hydraulic circuit to be maintained within a predetermined value.

しかしながら、圧力補償制御方式の油圧回路では、油圧回路内の油圧を所定値内に保持するように制御されてしまうので、ブリードオフ方式の油圧回路のように操作性を満足できない。このように、ブリードオフ方式と圧力補償制御方式とはトレードオフの関係にあり、操作性を向上させるのに限界があるという課題があった。 However, in the pressure compensation control type hydraulic circuit, the hydraulic pressure in the hydraulic circuit is controlled to be kept within a predetermined value, so that the operability cannot be satisfied unlike the bleed-off type hydraulic circuit. As described above, there is a trade-off relationship between the bleed-off method and the pressure compensation control method, and there is a problem that there is a limit to improving the operability.

本発明は、操作性を向上できる駆動装置及び建設機械を提供する。 The present invention provides a drive device and a construction machine capable of improving operability.

本発明の一態様に係る駆動装置は、流体を送り出すポンプと前記流体が排出されるタンクとを連通する通路部と、前記流体によって駆動される駆動体と、前記駆動体に供給される前記流体の流量を調整する制御弁、少なくとも前記通路部の通路の前記制御弁よりも上流側通路に設けられて前記上流側通路における前記流体の圧力を所定値内に保持する圧力補償制御部、及び前記圧力補償制御部の駆動状態と非駆動状態とを切り替える切替部を備え、前記通路部の途中に設けられて前記駆動体の駆動制御を行う制御装置とを備えた。 The drive device according to one aspect of the present invention includes a passage portion that communicates a pump that sends out a fluid and a tank from which the fluid is discharged, a drive body that is driven by the fluid, and the fluid that is supplied to the drive body. A control valve for adjusting the flow rate of the fluid, a pressure compensation control unit provided at least in a passage upstream of the control valve in the passage of the passage, and holding the pressure of the fluid in the upstream passage within a predetermined value, and the above. A switching unit for switching between a driven state and a non-driven state of the pressure compensation control unit is provided, and a control device provided in the middle of the passage unit for driving control of the driving body is provided.

このように構成することで、圧力補償制御部を駆動状態とさせた場合、駆動装置を圧力補償制御方式として使用できる。また、圧力補償制御部を非駆動状態とさせた場合、駆動装置をブリードオフ方式として使用できる。このように、切替部によって、圧力補償制御方式とブリードオフ方式とを容易に切り替えることができるので、容易に両方式を満足することができる。このため、駆動装置の操作性を向上できる。 With this configuration, when the pressure compensation control unit is put into the drive state, the drive device can be used as the pressure compensation control method. Further, when the pressure compensation control unit is not driven, the drive device can be used as a bleed-off method. In this way, the pressure compensation control method and the bleed-off method can be easily switched by the switching unit, so that both methods can be easily satisfied. Therefore, the operability of the drive device can be improved.

上記構成であって、前記制御弁は、前記駆動体のブレーキ制御を行うものであり、前記圧力補償制御部は、前記上流側通路における前記流体の圧力を所定値内に保持する第1制御弁と、前記制御弁に供給する前記流体の流量を調整する第2制御弁とを有してもよい。 In the above configuration, the control valve controls the brake of the drive body, and the pressure compensation control unit holds the pressure of the fluid in the upstream passage within a predetermined value. And a second control valve that regulates the flow rate of the fluid supplied to the control valve.

このように構成することで、第1制御弁及び第2制御弁の駆動制御を行うだけで圧力補償制御方式とブリードオフ方式との両方の方式を満足できる駆動装置とすることができる。 With this configuration, it is possible to obtain a drive device that can satisfy both the pressure compensation control method and the bleed-off method only by controlling the drive of the first control valve and the second control valve.

上記構成であって、前記上流側通路に、上流側から前記第1制御弁、前記第2制御弁の順に接続されてもよい。 With the above configuration, the first control valve and the second control valve may be connected to the upstream passage in this order from the upstream side.

このように構成することで、圧力補償制御方式とブリードオフ方式との両方の方式を満足できる駆動装置を、できる限り簡素化できる。 With such a configuration, the drive device that can satisfy both the pressure compensation control method and the bleed-off method can be simplified as much as possible.

上記構成であって、前記圧力補償制御部の前記駆動状態のとき、前記制御弁に供給される前記流体の流量は前記第2制御弁によって制御され、前記流体は、前記上流側通路における前記第2制御弁を挟んで上流側と下流側との差圧に基づいて前記差圧が所定圧以上の場合に、前記第1制御弁を介して前記タンクへと排出され、前記圧力補償制御部の前記非駆動状態のとき、前記第2制御弁と前記制御弁とが同期して駆動され、前記ポンプから送り出される前記流体は、前記制御弁によって制御された余剰油のみ前記第1制御弁を介して前記タンクへと排出されてもよい。 In the above configuration, when the pressure compensation control unit is in the driving state, the flow rate of the fluid supplied to the control valve is controlled by the second control valve, and the fluid is the first in the upstream passage. When the differential pressure is equal to or higher than a predetermined pressure based on the differential pressure between the upstream side and the downstream side across the control valve, the pressure is discharged to the tank via the first control valve, and the pressure compensation control unit of the pressure compensation control unit. In the non-driving state, the second control valve and the control valve are driven in synchronization with each other, and the fluid sent out from the pump is only the excess oil controlled by the control valve via the first control valve. It may be discharged to the tank.

このように構成することで、圧力補償部制御部の駆動状態のとき、駆動装置を圧力補償制御方式として確実に使用できる。また、圧力補償制御部を非駆動状態とさせた場合、駆動装置をブリードオフ方式として確実に使用できる。 With this configuration, the drive device can be reliably used as the pressure compensation control method when the pressure compensation unit control unit is in the drive state. Further, when the pressure compensation control unit is put into the non-driving state, the driving device can be reliably used as the bleed-off method.

上記構成であって、前記第1制御弁及び前記第2制御弁は2ポート2位置方向制御弁であってもよい。 In the above configuration, the first control valve and the second control valve may be a 2-port 2-position directional control valve.

このように構成することで、駆動装置をさらに簡素化できる。 With such a configuration, the drive device can be further simplified.

本発明の他の態様に係る建設機械は、上述の駆動装置を備え、前記ポンプは油圧ポンプであり、前記駆動体は油圧アクチュエータである。 The construction machine according to another aspect of the present invention includes the above-mentioned drive device, the pump is a hydraulic pump, and the drive body is a hydraulic actuator.

このように構成することで、圧力補償制御方式とブリードオフ方式とに切り替え可能な建設機械を提供できる。 With such a configuration, it is possible to provide a construction machine capable of switching between a pressure compensation control method and a bleed-off method.

上述の駆動装置及び建設機械は、圧力補償制御方式とブリードオフ方式とに切り替え可能とし、操作性を向上できる。 The above-mentioned drive device and construction machine can be switched between the pressure compensation control method and the bleed-off method, and the operability can be improved.

本発明の実施形態における建設機械の概略構成図。The schematic block diagram of the construction machine in embodiment of this invention.

次に、本発明の実施形態を図面に基づいて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

(建設機械)
図1は、建設機械100の概略構成図である。
建設機械100は、例えばラフテレーンクレーン等のクレーン車であり、旋回体101と、旋回体101を旋回駆動する駆動装置1とを備えている。
(Construction machinery)
FIG. 1 is a schematic configuration diagram of the construction machine 100.
The construction machine 100 is, for example, a crane vehicle such as a rough terrain crane, and includes a swivel body 101 and a drive device 1 that swivels and drives the swivel body 101.

(駆動装置)
図1に示すように、駆動装置1は、旋回体101を旋回駆動するための旋回用の油圧モータ(請求項の油圧アクチュエータに相当)2と、油圧モータ2を駆動するための油圧ポンプ(請求項のポンプに相当)3と、油圧モータ2の操作を行うための操作部4と、操作部4の出力信号に基づいて油圧モータ2の駆動制御を行う制御装置5及び制御部6とを主構成としている。油圧モータ2の出力軸2aに、旋回体101が連結されている。
(Drive)
As shown in FIG. 1, the drive device 1 includes a swivel hydraulic motor (corresponding to the hydraulic actuator according to the claim) 2 for swiveling and driving the swivel body 101, and a hydraulic pump (claimed) for driving the hydraulic motor 2. 3), an operation unit 4 for operating the hydraulic motor 2, and a control device 5 and a control unit 6 for driving and controlling the hydraulic motor 2 based on the output signal of the operation unit 4. It has a structure. The swivel body 101 is connected to the output shaft 2a of the hydraulic motor 2.

油圧ポンプ3は、油圧モータ2を駆動するためにこの油圧モータ2に圧油を供給する。油圧ポンプ3としては、例えば斜板式可変容量型の油圧ポンプが用いられる。斜板式可変容量型の油圧ポンプは、内部に、斜板とポンプ軸の回転に連動して往復運動するピストン(いずれも図示しない)とを有している。そして、斜板の傾斜角度によってピストンのストローク量を変化させ、圧油の吐出流量が調整できる。なお、油圧ポンプ3は、斜板式可変容量型の油圧ポンプに限られるものではなく、例えば、斜軸式容量型の油圧ポンプ等を用いてもよい。 The hydraulic pump 3 supplies pressure oil to the hydraulic motor 2 in order to drive the hydraulic motor 2. As the hydraulic pump 3, for example, a swash plate type variable displacement hydraulic pump is used. The swash plate type variable displacement hydraulic pump has a swash plate and a piston (neither shown) that reciprocates in conjunction with the rotation of the pump shaft. Then, the stroke amount of the piston can be changed according to the inclination angle of the swash plate, and the discharge flow rate of the pressure oil can be adjusted. The hydraulic pump 3 is not limited to the inclined plate type variable displacement hydraulic pump, and for example, an oblique shaft type capacitance type hydraulic pump or the like may be used.

操作部4は、例えば図示しない操作レバーを有し、この操作レバーを傾けることによって信号としてのパイロット圧P1、及び操作信号S1を出力する。操作信号S1は、制御部6に入力される。
油圧ポンプ3の吐出ポートには、第1センター通路(請求項の通路部に相当)L1が接続されている。第1センター通路L1は、油圧ポンプ3とタンク7とを連通している。第1センター通路L1における油圧ポンプ3とタンク7との間に、制御装置5が接続されている。
The operation unit 4 has, for example, an operation lever (not shown), and by tilting the operation lever, the pilot pressure P1 as a signal and the operation signal S1 are output. The operation signal S1 is input to the control unit 6.
A first center passage (corresponding to the passage portion of the claim) L1 is connected to the discharge port of the hydraulic pump 3. The first center passage L1 communicates the hydraulic pump 3 and the tank 7. A control device 5 is connected between the hydraulic pump 3 and the tank 7 in the first center passage L1.

制御装置5は、第1センター通路L1に接続された第2センター通路(請求項の通路部に相当)L2と、第2センター通路L2に接続された制御弁9及び圧力補償制御部10と、操作部4に設けられ圧力補償制御部10の駆動制御を行う切替部8とを備えている。切替部8の切替信号S2は、制御部6に出力される。 The control device 5 includes a second center passage (corresponding to the passage portion of the claim) L2 connected to the first center passage L1, a control valve 9 connected to the second center passage L2, and a pressure compensation control unit 10. The operation unit 4 is provided with a switching unit 8 that controls the drive of the pressure compensation control unit 10. The switching signal S2 of the switching unit 8 is output to the control unit 6.

制御弁9は、いわゆる4ポート3位置方向制御弁である。制御弁9には、操作部4から出力されたパイロット圧P1が入力される。これにより、制御弁9が駆動される。
制御弁9は、一対の給排通路13a,13bを介して油圧モータ2に接続されている。制御弁9は、パイロット圧P1に基づいて第2センター通路L2を介して油圧ポンプ3から送られる油の流量を制御する。また、制御弁9は、制御した流量で、一対の給排通路13a,13bを介して油圧モータ2に油を供給する。制御弁9は、油圧モータ2への油の流量を制御することにより、油圧モータ2のブレーキ制御を行う。
The control valve 9 is a so-called 4-port 3-position directional control valve. The pilot pressure P1 output from the operation unit 4 is input to the control valve 9. As a result, the control valve 9 is driven.
The control valve 9 is connected to the hydraulic motor 2 via a pair of supply / discharge passages 13a and 13b. The control valve 9 controls the flow rate of oil sent from the hydraulic pump 3 via the second center passage L2 based on the pilot pressure P1. Further, the control valve 9 supplies oil to the hydraulic motor 2 via a pair of supply / discharge passages 13a and 13b at a controlled flow rate. The control valve 9 controls the brake of the hydraulic motor 2 by controlling the flow rate of oil to the hydraulic motor 2.

圧力補償制御部10は、第2センター通路L2における制御弁9よりも上流側(油圧ポンプ3側)の上流側通路L3に配置されている。圧力補償制御部10は、上流側通路L3に接続された第1切替弁(請求項の第1制御弁に相当)11及び第2切替弁(請求項の第2制御弁に相当)12を備えている。 The pressure compensation control unit 10 is arranged in the upstream passage L3 on the upstream side (hydraulic pump 3 side) of the control valve 9 in the second center passage L2. The pressure compensation control unit 10 includes a first switching valve (corresponding to the first control valve of the claim) 11 and a second switching valve (corresponding to the second control valve of the claim) 12 connected to the upstream passage L3. ing.

第1切替弁11は、上流側通路L3から分岐されてタンク7へと連通するバイパス通路16の途中に設けられている。第1切替弁11は、いわゆる2ポート2位置方向制御弁である。第1切替弁11は、上流側通路L3の油圧を所定値内に保持する役割を有する。また、第1切替弁11は、第1比例制御弁14を介して制御部6に接続されている。第1比例制御弁14は、制御部6からの出力信号に基づいて第1切替弁11に駆動油圧を供給する。これにより、第1切替弁11が駆動される。
バイパス通路16の第1切替弁11よりも下流側(タンク7側)には、チェック弁21が接続されている。チェック弁21は、バイパス通路16が所定の油圧以上になると開放される。
The first switching valve 11 is provided in the middle of the bypass passage 16 which is branched from the upstream passage L3 and communicates with the tank 7. The first switching valve 11 is a so-called 2-port 2-position directional control valve. The first switching valve 11 has a role of keeping the hydraulic pressure of the upstream passage L3 within a predetermined value. Further, the first switching valve 11 is connected to the control unit 6 via the first proportional control valve 14. The first proportional control valve 14 supplies the drive hydraulic pressure to the first switching valve 11 based on the output signal from the control unit 6. As a result, the first switching valve 11 is driven.
A check valve 21 is connected to the downstream side (tank 7 side) of the first switching valve 11 of the bypass passage 16. The check valve 21 is opened when the bypass passage 16 becomes equal to or higher than a predetermined hydraulic pressure.

第2切替弁12は、上流側通路L3のバイパス通路16との分岐点よりも下流側(制御弁9側)に設けられている。第2切替弁12は、いわゆる2ポート2位置方向制御弁である。第2切替弁12は、制御弁9に供給する油の流量を調整する役割を有する。また、第2切替弁12は、第2比例制御弁15を介して制御部6に接続されている。第2比例制御弁15は、制御部6からの出力信号に基づいて第2切替弁12に駆動油圧を供給する。これにより、第2切替弁12が駆動される。 The second switching valve 12 is provided on the downstream side (control valve 9 side) of the branch point of the upstream side passage L3 with the bypass passage 16. The second switching valve 12 is a so-called 2-port 2-position directional control valve. The second switching valve 12 has a role of adjusting the flow rate of the oil supplied to the control valve 9. Further, the second switching valve 12 is connected to the control unit 6 via the second proportional control valve 15. The second proportional control valve 15 supplies the drive hydraulic pressure to the second switching valve 12 based on the output signal from the control unit 6. As a result, the second switching valve 12 is driven.

制御部6は、例えばECU(Electronic Contorol Unit)である。制御部6は、操作部4から出力される操作信号S1や切替信号S2に基づいて、駆動装置1を総括的に制御する。
また、制御部6は、第2切替弁12よりも上流側(油圧ポンプ3側)の絞り前油圧PGと、第2切替弁12よりも下流側(制御弁9側)の絞り後油圧LSGとの差圧(以下、第2切替弁12の前後の差圧という)を検出する。この検出結果、及び切替部8の切替信号S2に基づいて、制御部6は、第2切替弁12の前後の差圧が一定になるように第1切替弁11及び第2切替弁12の駆動を制御したり、制御弁9と第2切替弁12とを同期させたりする。なお、駆動装置1の動作の詳細については後述する。
The control unit 6 is, for example, an ECU (Electronic Control Unit). The control unit 6 comprehensively controls the drive device 1 based on the operation signal S1 and the switching signal S2 output from the operation unit 4.
Further, the control unit 6 includes a pre-throttle hydraulic pressure PG on the upstream side (hydraulic pump 3 side) of the second switching valve 12 and a post-throttle hydraulic pressure LSG on the downstream side (control valve 9 side) of the second switching valve 12. (Hereinafter, referred to as the differential pressure before and after the second switching valve 12) is detected. Based on this detection result and the switching signal S2 of the switching unit 8, the control unit 6 drives the first switching valve 11 and the second switching valve 12 so that the differential pressure before and after the second switching valve 12 becomes constant. Is controlled, and the control valve 9 and the second switching valve 12 are synchronized. The details of the operation of the drive device 1 will be described later.

制御弁9と油圧モータ2とを接続する一対の給排通路13a,13bには、一対のリリーフ弁17a,17bと、一対のチェック弁18a,18bとが接続されている。一対のリリーフ弁17a,17bは、油圧モータ2の過度の圧力上昇を防止するための安全弁としての役割を有するとともに、油圧モータ2にブレーキ力を作用させたりする役割を有する。 A pair of relief valves 17a and 17b and a pair of check valves 18a and 18b are connected to a pair of supply / discharge passages 13a and 13b that connect the control valve 9 and the hydraulic motor 2. The pair of relief valves 17a and 17b have a role as a safety valve for preventing an excessive increase in pressure of the hydraulic motor 2 and a role of applying a braking force to the hydraulic motor 2.

リリーフ弁17a,17bは、パイロット圧P1が入力される第1ポート18と、一対の給排通路13a,13bが接続されて各給排通路13a,13bの油圧が入力される第2ポート19とを備えている。
第1ポート18と操作部4との間には、第3切替弁20が接続されている。第3切替弁20は、操作部4の操作信号S1に基づいて、第1ポート18と操作部4との連結と、第1ポート18とタンク7との連結とを切り替える。
The relief valves 17a and 17b have a first port 18 to which the pilot pressure P1 is input and a second port 19 to which a pair of supply / discharge passages 13a and 13b are connected and the hydraulic pressure of each supply / discharge passage 13a and 13b is input. It has.
A third switching valve 20 is connected between the first port 18 and the operation unit 4. The third switching valve 20 switches between the connection between the first port 18 and the operation unit 4 and the connection between the first port 18 and the tank 7 based on the operation signal S1 of the operation unit 4.

(駆動装置の動作)
次に、駆動装置1の動作について説明する。
まず、圧力補償制御部10の動作について説明する。
圧力補償制御部10は、操作部4の切替部8から出力される切替信号S2に基づいて駆動状態と非駆動状態とに切り替わる。
(Operation of drive device)
Next, the operation of the drive device 1 will be described.
First, the operation of the pressure compensation control unit 10 will be described.
The pressure compensation control unit 10 switches between a driven state and a non-driven state based on the switching signal S2 output from the switching unit 8 of the operation unit 4.

(非駆動状態)
制御部6に圧力補償制御部10の非駆動状態の切替信号S2が入力されると、第1切替弁11が開放されたままの状態になる。そして、操作部4から出力されるパイロット圧P1に基づいて制御弁9が駆動される。また、制御部6に操作部4の操作信号S1が入力されると、制御部6は、操作信号S1に基づいて第2切替弁12を駆動させる。この際、制御弁9、及び第2切替弁12は、同期して駆動する。油圧ポンプ3から送り出される油は、制御弁9、及び第2切替弁12によって流量が制御され、一対の給排通路13a,13bへと流れる。制御弁9によって制御された余剰油は、第2センター通路L2を介してタンク7へと還流される。また、第1センター通路L1及び上流側通路L3の油圧が所定圧以上になると、バイパス通路16に接続されているチェック弁21が開放されてタンク7へと油が還流される。このように、圧力補償制御部10の非駆動状態では、いわゆるブリードオフ制御(ブリードオフ方式)が行われる。
(Non-driving state)
When the switching signal S2 in the non-driving state of the pressure compensation control unit 10 is input to the control unit 6, the first switching valve 11 remains open. Then, the control valve 9 is driven based on the pilot pressure P1 output from the operation unit 4. Further, when the operation signal S1 of the operation unit 4 is input to the control unit 6, the control unit 6 drives the second switching valve 12 based on the operation signal S1. At this time, the control valve 9 and the second switching valve 12 are driven in synchronization with each other. The flow rate of the oil sent out from the hydraulic pump 3 is controlled by the control valve 9 and the second switching valve 12, and flows into the pair of supply / discharge passages 13a and 13b. The excess oil controlled by the control valve 9 is returned to the tank 7 via the second center passage L2. When the hydraulic pressure of the first center passage L1 and the upstream passage L3 becomes equal to or higher than a predetermined pressure, the check valve 21 connected to the bypass passage 16 is opened and the oil is returned to the tank 7. As described above, in the non-driving state of the pressure compensation control unit 10, so-called bleed-off control (bleed-off method) is performed.

(駆動状態)
制御部6に圧力補償制御部10の駆動状態の切替信号S2が入力されると、制御部6は、第2切替弁12の前後の差圧を検出する。制御部6には、予め第2切替弁12の前後の設定差圧領域(以下、単に設定差圧領域という)が記憶されている。制御部6は、第2切替弁12の前後の差圧を検出し、この差圧が設定差圧領域に収まるように第1切替弁11を駆動させる。具体的には、第2切替弁12の前後の差圧が設定差圧領域を下回る場合、第1切替弁11によってバイパス通路16が閉塞される。第2切替弁12の前後の差圧が設定差圧領域を上回る場合、第1切替弁11によってバイパス通路16が開放される。
(Drive state)
When the switching signal S2 of the driving state of the pressure compensation control unit 10 is input to the control unit 6, the control unit 6 detects the differential pressure before and after the second switching valve 12. The control unit 6 stores in advance set differential pressure regions (hereinafter, simply referred to as set differential pressure regions) before and after the second switching valve 12. The control unit 6 detects the differential pressure before and after the second switching valve 12, and drives the first switching valve 11 so that the differential pressure falls within the set differential pressure region. Specifically, when the differential pressure before and after the second switching valve 12 is lower than the set differential pressure region, the bypass passage 16 is blocked by the first switching valve 11. When the differential pressure before and after the second switching valve 12 exceeds the set differential pressure region, the bypass passage 16 is opened by the first switching valve 11.

制御部6に操作部4の操作信号S1が入力されると、制御部6は、操作信号S1に基づいて第2切替弁12を駆動させる。これにより、制御弁9に供給される油の流量が制御される。第2切替弁12を介して制御弁9に供給された油は、制御弁9によって流量が制御され、一対の給排通路13a,13bへと流れる。このように、圧力補償制御部10の駆動状態では、第2センター通路L2の油圧が所定値内に保持されるように、いわゆる圧力補償制御(圧力補償制御方式)が行われる。
ここで、上記ブリードオフ制御、及び圧力補償制御の両制御では、制御弁9は、油圧ポンプ3から送り出される油の流量を制御することにより、油圧モータ2の駆動制御を行っていることから、油圧モータ2のブレーキ制御を行っているといえる。
When the operation signal S1 of the operation unit 4 is input to the control unit 6, the control unit 6 drives the second switching valve 12 based on the operation signal S1. As a result, the flow rate of the oil supplied to the control valve 9 is controlled. The flow rate of the oil supplied to the control valve 9 via the second switching valve 12 is controlled by the control valve 9 and flows into the pair of supply / discharge passages 13a and 13b. In this way, in the driving state of the pressure compensation control unit 10, so-called pressure compensation control (pressure compensation control method) is performed so that the hydraulic pressure of the second center passage L2 is maintained within a predetermined value.
Here, in both the bleed-off control and the pressure compensation control, the control valve 9 controls the drive of the hydraulic motor 2 by controlling the flow rate of the oil delivered from the hydraulic pump 3. It can be said that the brake control of the hydraulic motor 2 is performed.

(リリーフ弁の動作)
次に、一対の給排通路13a,13bに接続されている一対のリリーフ弁17a,17bの動作について説明する。なお、以下では、説明を簡単にするために、操作部4の図示しない操作レバーを一方向に傾けることにより、一対の給排通路13a,13bのうち、給排通路13aが油圧モータ2に油を供給する側の通路となり(以下、供給通路13aという)、給排通路13bが油圧モータ2から油が戻る通路となる(以下、排出通路13bという)場合について説明する。
(Operation of relief valve)
Next, the operation of the pair of relief valves 17a and 17b connected to the pair of supply / discharge passages 13a and 13b will be described. In the following, in order to simplify the explanation, by tilting the operation lever (not shown) of the operation unit 4 in one direction, the supply / discharge passage 13a of the pair of supply / discharge passages 13a and 13b oils the hydraulic motor 2. (Hereinafter referred to as supply passage 13a), and the supply / discharge passage 13b serves as a passage for oil to return from the hydraulic motor 2 (hereinafter referred to as discharge passage 13b).

上記のような操作部4の操作によって、第3切替弁20は、供給通路13a側におけるリリーフ弁17aの第1ポート18と操作部4とが連結されるように切り替わる。これにより、供給通路13a側のリリーフ弁17aにはパイロット圧P1がかかり、このパイロット圧P1と供給通路13aの油圧との差圧により閉塞される。リリーフ弁17aが閉塞されることにより、供給通路13aの油圧が昇圧される。 By the operation of the operation unit 4 as described above, the third switching valve 20 is switched so that the first port 18 of the relief valve 17a on the supply passage 13a side and the operation unit 4 are connected. As a result, a pilot pressure P1 is applied to the relief valve 17a on the supply passage 13a side, and the relief valve 17a is closed by the differential pressure between the pilot pressure P1 and the hydraulic pressure of the supply passage 13a. By closing the relief valve 17a, the hydraulic pressure in the supply passage 13a is boosted.

一方、排出通路13b側のリリーフ弁17bにかかるパイロット圧P1が下降していく。このため、パイロット圧P1と排出通路13bとの差圧によってリリーフ弁17bが開放され、排出通路13bの油がタンク7に還流される。
このように、各給排通路13a,13bとパイロット圧P1との差圧を信号とし、この信号に基づいて供給通路13aが高圧となる一方、排出通路13bが低圧となる。このため、操作部4の1回の操作で、油圧モータ2は所望の方向に回転し続ける。つまり、油圧モータ2は、自動運転となる。
On the other hand, the pilot pressure P1 applied to the relief valve 17b on the discharge passage 13b side decreases. Therefore, the relief valve 17b is opened by the differential pressure between the pilot pressure P1 and the discharge passage 13b, and the oil in the discharge passage 13b is returned to the tank 7.
In this way, the differential pressure between the supply / discharge passages 13a and 13b and the pilot pressure P1 is used as a signal, and the supply passage 13a becomes high pressure based on this signal, while the discharge passage 13b becomes low pressure. Therefore, the hydraulic motor 2 continues to rotate in a desired direction by one operation of the operation unit 4. That is, the hydraulic motor 2 is automatically operated.

油圧モータ2を停止させる場合、操作部4の図示しない操作レバーを一方向とは反対方向に傾ける。すると、第3切替弁20は、排出通路13b側におけるリリーフ弁17bの第1ポート18と操作部4とが連結されるように切り替わる。これにより、供給通路13a側のリリーフ弁17aにかかるパイロット圧P1が下降していく。このため、パイロット圧P1と供給通路13aとの差圧によってリリーフ弁17aが開放され、供給通路13aの油がタンク7に還流される。 When stopping the hydraulic motor 2, the operating lever (not shown) of the operating unit 4 is tilted in a direction opposite to one direction. Then, the third switching valve 20 is switched so that the first port 18 of the relief valve 17b on the discharge passage 13b side and the operation unit 4 are connected to each other. As a result, the pilot pressure P1 applied to the relief valve 17a on the supply passage 13a side decreases. Therefore, the relief valve 17a is opened by the differential pressure between the pilot pressure P1 and the supply passage 13a, and the oil in the supply passage 13a is returned to the tank 7.

一方、排出通路13b側のリリーフ弁17bはパイロット圧P1がかかり、このパイロット圧P1と排出通路13bの油圧との差圧により閉塞される。リリーフ弁17bが閉塞されることにより、排出通路13bの油圧が昇圧される。このように、各給排通路13a,13bとパイロット圧P1との差圧を信号とし、この信号に基づいて排出通路13bが高圧となる一方、供給通路13aが低圧となる。このため、油圧モータ2にブレーキ力が作用する。
なお、油圧モータ2にブレーキ力を作用させる場合、つまり、図示しない操作レバーを反対方向に傾ける場合、第2切替弁12を閉塞するように制御することが望ましい。このように制御することにより、第2センター通路L2に無駄に油が流れ出てしまうことを防止できる。
On the other hand, the relief valve 17b on the discharge passage 13b side is subject to the pilot pressure P1 and is closed by the differential pressure between the pilot pressure P1 and the hydraulic pressure of the discharge passage 13b. By closing the relief valve 17b, the hydraulic pressure in the discharge passage 13b is increased. In this way, the differential pressure between the supply / discharge passages 13a and 13b and the pilot pressure P1 is used as a signal, and the discharge passage 13b becomes high pressure based on this signal, while the supply passage 13a becomes low pressure. Therefore, a braking force acts on the hydraulic motor 2.
When a braking force is applied to the hydraulic motor 2, that is, when an operating lever (not shown) is tilted in the opposite direction, it is desirable to control the second switching valve 12 so as to close it. By controlling in this way, it is possible to prevent the oil from flowing out unnecessarily into the second center passage L2.

このように、駆動装置1は、センター通路L1,L2(第1センター通路L1、第2センター通路L2)の途中に制御装置5を備えている。制御装置5は、制御弁9と、第2センター通路L2の上流側通路L3に設けられた圧力補償制御部10と、圧力補償制御部10の駆動状態と非駆動状態とを切り替える切替部8とを備えている。このため、圧力補償制御部10を駆動状態とさせた場合、駆動装置1を圧力補償制御方式として使用できる。また、圧力補償制御部10を非駆動状態とさせた場合、駆動装置1をブリードオフ方式として使用できる。このように、切替部8によって、圧力補償制御方式とブリードオフ方式とを容易に切り替えることができるので、容易に両方式を満足することができる。このため、駆動装置1の操作性を向上できる。 As described above, the drive device 1 includes the control device 5 in the middle of the center passages L1 and L2 (first center passage L1 and second center passage L2). The control device 5 includes a control valve 9, a pressure compensation control unit 10 provided in the upstream passage L3 of the second center passage L2, and a switching unit 8 for switching between a driven state and a non-driven state of the pressure compensation control unit 10. It has. Therefore, when the pressure compensation control unit 10 is put into the drive state, the drive device 1 can be used as the pressure compensation control method. Further, when the pressure compensation control unit 10 is not driven, the drive device 1 can be used as a bleed-off method. In this way, the pressure compensation control method and the bleed-off method can be easily switched by the switching unit 8, so that both methods can be easily satisfied. Therefore, the operability of the drive device 1 can be improved.

また、制御弁9は、油圧モータ2のブレーキ制御を行うものであり、圧力補償制御部10は、上流側通路L3の油圧を所定値内に保持する第1切替弁11と、制御弁9に供給する油の流量を調整する第2切替弁12とを備えている。このため、駆動装置1を簡素な構造とすることができる。また、このような簡素な構造でありながら、第1切替弁11及び第2切替弁12の駆動制御を行うだけで圧力補償制御方式とブリードオフ方式との両方の方式を満足できる。 Further, the control valve 9 controls the brake of the hydraulic motor 2, and the pressure compensation control unit 10 uses the first switching valve 11 for holding the oil pressure of the upstream passage L3 within a predetermined value and the control valve 9. A second switching valve 12 for adjusting the flow rate of the supplied oil is provided. Therefore, the drive device 1 can have a simple structure. Further, despite such a simple structure, both the pressure compensation control method and the bleed-off method can be satisfied only by controlling the drive of the first switching valve 11 and the second switching valve 12.

また、第1切替弁11、及び第2切替弁12は、上流側からこの順で配置されている。このため、圧力補償制御方式とブリードオフ方式との両方の方式を満足できる駆動装置1を、できる限り簡素化できる。
また、第1切替弁11、及び第2切替弁12は、2ポート2位置方向制御弁である。このように構成することで、駆動装置1をさらに簡素化できる。
Further, the first switching valve 11 and the second switching valve 12 are arranged in this order from the upstream side. Therefore, the drive device 1 that can satisfy both the pressure compensation control method and the bleed-off method can be simplified as much as possible.
The first switching valve 11 and the second switching valve 12 are 2-port 2-position directional control valves. With such a configuration, the drive device 1 can be further simplified.

なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、上述の実施形態に種々の変更を加えたものを含む。
例えば、上述の実施形態では、建設機械100は、油圧ショベルである場合について説明した。しかしながら、これに限られるものではなく、さまざま建設機械に上述の駆動装置1を適用することができる。
The present invention is not limited to the above-described embodiment, and includes various modifications to the above-described embodiment without departing from the spirit of the present invention.
For example, in the above-described embodiment, the case where the construction machine 100 is a hydraulic excavator has been described. However, the present invention is not limited to this, and the above-mentioned drive device 1 can be applied to various construction machines.

また、上述の実施形態では、制御装置5は、油圧ポンプ3から送り出される油によって、油圧モータ2を駆動させる油圧回路に適用されている場合について説明した。しかしながら、これに限られるものではなく、制御装置5の構成は、油以外のさまざまな流体の回路に適用することが可能である。
また、上述の実施形態では、油によって駆動される駆動体として、油圧モータ2を用いて説明した。しかしながら、これに限られるものではなく、駆動体として、油圧シリンダ等、さまざまなアクチュエータを用いることが可能である。
Further, in the above-described embodiment, the case where the control device 5 is applied to the hydraulic circuit for driving the hydraulic motor 2 by the oil sent from the hydraulic pump 3 has been described. However, the present invention is not limited to this, and the configuration of the control device 5 can be applied to circuits of various fluids other than oil.
Further, in the above-described embodiment, the hydraulic motor 2 has been described as a drive body driven by oil. However, the present invention is not limited to this, and various actuators such as a hydraulic cylinder can be used as the driving body.

また、上述の実施形態では、制御弁9と油圧モータ2とを接続する一対の給排通路13a,13bに、一対のリリーフ弁17a,17bと、一対のチェック弁18a,18bとが接続されている場合について説明した。しかしながら、リリーフ弁17a,17bやチェック弁18a,18bの他に、一対の給排通路13a,13bに第2切替弁12を追加で設けもよい。この場合、リリーフ弁17a,17bよりも上流側(制御弁9側)に第2切替弁12を設ける。このように構成することで、さらに高精度に油圧モータ2の駆動制御を行うことができる。 Further, in the above-described embodiment, the pair of relief valves 17a and 17b and the pair of check valves 18a and 18b are connected to the pair of supply / discharge passages 13a and 13b connecting the control valve 9 and the hydraulic motor 2. I explained the case where there is. However, in addition to the relief valves 17a and 17b and the check valves 18a and 18b, the second switching valve 12 may be additionally provided in the pair of supply / discharge passages 13a and 13b. In this case, the second switching valve 12 is provided on the upstream side (control valve 9 side) of the relief valves 17a and 17b. With this configuration, the drive control of the hydraulic motor 2 can be performed with higher accuracy.

また、上述の実施形態では、圧力補償制御部10を構成する制御弁として、2ポート2位置方向制御弁の第1切替弁11、及び第2切替弁12とした場合について説明した。しかしながら、これに限られるものではなく、さまざまな制御弁で圧力補償制御部10を構成することができる。 Further, in the above-described embodiment, the case where the first switching valve 11 and the second switching valve 12 of the 2-port 2-position directional control valve are used as the control valves constituting the pressure compensation control unit 10 has been described. However, the pressure compensation control unit 10 can be configured by various control valves without being limited to this.

1…駆動装置、2…油圧モータ(駆動体、油圧アクチュエータ)、3…油圧ポンプ、5…制御装置、7…タンク、8…切替部、9…制御弁、10…圧力補償制御部、11…第1切替弁(第1制御弁)、12…第2切替弁(第2制御弁)、100…建設機械、L1…第1センター通路(通路部)、L2…第2センター通路(通路部)、L3…上流側通路(通路部) 1 ... Drive device, 2 ... Hydraulic motor (drive body, hydraulic actuator), 3 ... Hydraulic pump, 5 ... Control device, 7 ... Tank, 8 ... Switching unit, 9 ... Control valve, 10 ... Pressure compensation control unit, 11 ... 1st switching valve (1st control valve), 12 ... 2nd switching valve (2nd control valve), 100 ... Construction machinery, L1 ... 1st center passage (passage), L2 ... 2nd center passage (passage) , L3 ... Upstream passage (passage)

Claims (6)

流体を送り出すポンプと前記流体が排出されるタンクとを連通する通路部と、
前記流体によって駆動される駆動体と、
前記駆動体に供給される前記流体の流量を調整する制御弁、少なくとも前記通路部の通路の前記制御弁よりも上流側通路に設けられて前記上流側通路における前記流体の圧力を所定値内に保持する圧力補償制御部、及び前記圧力補償制御部の駆動状態と非駆動状態とを切り替える切替部を備え、前記通路部の途中に設けられて前記駆動体の駆動制御を行う制御装置と
を備えた駆動装置。
A passage that communicates the pump that sends out the fluid and the tank that discharges the fluid,
A drive body driven by the fluid and
A control valve that adjusts the flow rate of the fluid supplied to the drive body, at least provided in a passage upstream of the control valve in the passage of the passage portion, and keeps the pressure of the fluid in the upstream passage within a predetermined value. It is provided with a pressure compensation control unit to be held, a switching unit for switching between a driven state and a non-driven state of the pressure compensation control unit, and a control device provided in the middle of the passage unit to control the drive of the drive body. Drive device.
前記制御弁は、前記駆動体のブレーキ制御を行うものであり、
前記圧力補償制御部は、
前記上流側通路における前記流体の圧力を所定値内に保持する第1制御弁と、
前記制御弁に供給する前記流体の流量を調整する第2制御弁と
を有する
請求項1に記載の駆動装置。
The control valve controls the brake of the drive body and controls the brake.
The pressure compensation control unit
A first control valve that keeps the pressure of the fluid in the upstream passage within a predetermined value,
The drive device according to claim 1, further comprising a second control valve for adjusting the flow rate of the fluid supplied to the control valve.
前記上流側通路に、上流側から前記第1制御弁、前記第2制御弁の順に接続されている
請求項2に記載の駆動装置。
The drive device according to claim 2, wherein the first control valve and the second control valve are connected to the upstream passage in this order from the upstream side.
前記圧力補償制御部の前記駆動状態のとき、前記制御弁に供給される前記流体の流量は前記第2制御弁によって制御され、
前記流体は、前記上流側通路における前記第2制御弁を挟んで上流側と下流側との差圧に基づいて前記差圧が所定圧以上の場合に、前記第1制御弁を介して前記タンクへと排出され、
前記圧力補償制御部の前記非駆動状態のとき、前記第2制御弁と前記制御弁とが同期して駆動され、
前記ポンプから送り出される前記流体は、前記制御弁によって制御された余剰油のみ前記第1制御弁を介して前記タンクへと排出される
請求項3に記載の駆動装置。
When the pressure compensation control unit is in the driving state, the flow rate of the fluid supplied to the control valve is controlled by the second control valve.
The fluid passes through the tank through the first control valve when the differential pressure is equal to or higher than a predetermined pressure based on the differential pressure between the upstream side and the downstream side with the second control valve in the upstream passage. Is discharged to
When the pressure compensation control unit is in the non-driving state, the second control valve and the control valve are driven in synchronization with each other.
The driving device according to claim 3, wherein only the excess oil controlled by the control valve is discharged from the pump to the tank via the first control valve.
前記第1制御弁及び前記第2制御弁は2ポート2位置方向制御弁である
請求項3又は請求項4に記載の駆動装置。
The drive device according to claim 3 or 4, wherein the first control valve and the second control valve are 2-port 2-positional directional control valves.
請求項1〜請求項5のいずれか1項に記載の駆動装置を備え、
前記ポンプは油圧ポンプであり、
前記駆動体は油圧アクチュエータである
建設機械。
The drive device according to any one of claims 1 to 5 is provided.
The pump is a hydraulic pump
The drive body is a construction machine that is a hydraulic actuator.
JP2019031763A 2019-02-25 2019-02-25 drive and construction machinery Active JP7257181B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019031763A JP7257181B2 (en) 2019-02-25 2019-02-25 drive and construction machinery
KR1020200018777A KR20200103537A (en) 2019-02-25 2020-02-17 Driver and construction machine
CN202010105158.0A CN111608970A (en) 2019-02-25 2020-02-20 Drive device and construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019031763A JP7257181B2 (en) 2019-02-25 2019-02-25 drive and construction machinery

Publications (2)

Publication Number Publication Date
JP2020133855A true JP2020133855A (en) 2020-08-31
JP7257181B2 JP7257181B2 (en) 2023-04-13

Family

ID=72193930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019031763A Active JP7257181B2 (en) 2019-02-25 2019-02-25 drive and construction machinery

Country Status (3)

Country Link
JP (1) JP7257181B2 (en)
KR (1) KR20200103537A (en)
CN (1) CN111608970A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382937A (en) * 2021-11-29 2022-04-22 武汉船用机械有限责任公司 Hydraulic control device of electrohydraulic ball valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127607A (en) * 1993-09-07 1995-05-16 Yutani Heavy Ind Ltd Hydraulic device of work machine
JP2005009665A (en) * 2003-06-19 2005-01-13 Volvo Construction Equipment Holding Sweden Ab Discharge oil quantity control circuit of hydraulic pump
WO2018021288A1 (en) * 2016-07-29 2018-02-01 住友建機株式会社 Excavator, and control valve for excavator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889317B2 (en) * 1990-04-27 1999-05-10 日立建機株式会社 Pressure compensation valve
JP3129842B2 (en) 1992-06-30 2001-01-31 株式会社タダノ Crane turning control device
JPH0742705A (en) * 1993-07-30 1995-02-10 Yutani Heavy Ind Ltd Hydraulic device for operation machine
DE102017210823A1 (en) * 2017-06-27 2018-12-27 Robert Bosch Gmbh Valve block assembly and method for a valve block assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127607A (en) * 1993-09-07 1995-05-16 Yutani Heavy Ind Ltd Hydraulic device of work machine
JP2005009665A (en) * 2003-06-19 2005-01-13 Volvo Construction Equipment Holding Sweden Ab Discharge oil quantity control circuit of hydraulic pump
WO2018021288A1 (en) * 2016-07-29 2018-02-01 住友建機株式会社 Excavator, and control valve for excavator

Also Published As

Publication number Publication date
KR20200103537A (en) 2020-09-02
CN111608970A (en) 2020-09-01
JP7257181B2 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
US11274417B2 (en) Hydraulic drive system of construction machine
WO2021039284A1 (en) Hydraulic system for construction machine
KR20180033266A (en) Working machine
US11078646B2 (en) Shovel and control valve for shovel
JP6891079B2 (en) Hydraulic drive system for construction machinery
JP4480565B2 (en) Backhoe hydraulic circuit structure
US10889964B2 (en) Drive system for construction machine
JP2021032318A (en) Hydraulic system of construction machine
JP2020133855A (en) Driving device and construction machine
JPH0452329A (en) Hydraulic control circuit for hydraulic excavator
JP2020133856A (en) Control device and construction machine
CN108884843B (en) Excavator and control valve for excavator
JP2009092214A (en) Load sensing type hydraulic controller of construction machine
US10900199B2 (en) Drive system of construction machine
JP2005140153A (en) Hydraulic control device for construction machine
WO2017170256A1 (en) Shovel
JP2007032788A (en) Fluid pressure controller for traveling working machine and fluid pressure control method for traveling working machine
JP7332424B2 (en) Hydraulic controller and construction machinery
JP7431006B2 (en) hydraulic control circuit
JP2749317B2 (en) Hydraulic drive
JP2007092789A (en) Hydraulic control device for construction equipment
JP2017145950A (en) Hydraulic drive device of hydraulic motor and construction vehicle
JP3182614B2 (en) Hydraulic device in load sensing system
JPS5961633A (en) Oil-pressure circuit for oil-pressure working machine
JP2019011801A (en) Shovel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R151 Written notification of patent or utility model registration

Ref document number: 7257181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151