JP2020132937A - 製造方法、三次元造形装置 - Google Patents

製造方法、三次元造形装置 Download PDF

Info

Publication number
JP2020132937A
JP2020132937A JP2019026965A JP2019026965A JP2020132937A JP 2020132937 A JP2020132937 A JP 2020132937A JP 2019026965 A JP2019026965 A JP 2019026965A JP 2019026965 A JP2019026965 A JP 2019026965A JP 2020132937 A JP2020132937 A JP 2020132937A
Authority
JP
Japan
Prior art keywords
protrusion
powder
powder layer
layer forming
predetermined thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019026965A
Other languages
English (en)
Inventor
仁 村尾
Hitoshi Murao
仁 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019026965A priority Critical patent/JP2020132937A/ja
Publication of JP2020132937A publication Critical patent/JP2020132937A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

【課題】粉末積層溶融法により複数の物品を同時に三次元造形する途中で、その一部に突起部が生じると、突起部が造形装置と干渉して装置が停止したり、突起部が生じていない物品の造形に支障をきたすことがあった。【解決手段】粉末層を形成可能な層形成部が基台の上を移動して所定の厚みの粉末層を形成する粉末層形成処理と、粉末層にエネルギービームを照射して固化部を形成する固化処理と、を繰り返し実行するが、固化処理において、高さが大きな突起部が固化部に形成された場合には、次に実行する粉末層形成処理において層形成部が基台の上を移動する際に、層形成部は突起部の手前までは粉末層を形成しながら移動し、突起部の位置においては突起部と接触しない姿勢で粉末層を形成せずに移動し、突起部の位置を通過した後には層形成部は粉末層を形成する姿勢に復帰するとともに基台の上に原料粉末を追加して粉末層を形成しながら移動する。【選択図】図1

Description

本発明は、いわゆる粉末積層溶融法のように、粉末層の形成と固化を繰り返して物品を製造する製造方法(三次元造形方法)、およびそれに用いる三次元造形装置に関する。
近年、いわゆる3Dプリンタの開発が盛んに行われており、さまざまな方式が試みられている。例えば、熱溶融積層造形法、光硬化性樹脂を用いた光造形法、粉末積層溶融法等の方式が知られている。
粉末積層溶融法は、ナイロン樹脂、セラミクス、金属等の原料粉末を層状に敷く工程と、レーザ光を照射して粉末層の一部を選択的に加熱してから固化させる工程とを繰り返し行なうことにより三次元造形物を形成する方法である。近年では、高い機械強度や良好な熱伝導性が要求される物品を製造する方法として、金属粉末を原料に用いた粉末積層溶融法が活用され始めている。
粉末積層溶融法では、造形すべき形状に応じて粉末層の所要箇所にレーザ光を照射して溶融や焼結を行う際に、粉末層の積層状態やレーザ光の照射条件の影響等により局部的に突出した固化部(突起部)が形成されてしまうことがある。また、高熱の粉末があたかも火花のように周辺に飛び散る場合があり、固化された部分の表面に付着して突出した固化部(突起部)が形成されてしまう場合がある。
突起部の高さが、次に敷く粉末層の厚み以上に大きくなってしまった場合には、次の層の粉末を堆積させて層の平坦化を行う際に、突起部と粉末層形成機構とが干渉してしまう。このため、粉末層形成機構が突起部に引っかかって動けなくなったり、突起部が形成された造形途中の物品が押し倒されて粉末層形成機構の障害物となったりして、造形装置が動作を停止したり均一に粉末層を敷けなくなってしまうことがあった。
この問題を解決するために、特許文献1には、突起部と粉末層形成機構(材料供給手段)が接触した際に、材料供給手段が予め設定された力以上の力を受けた場合には、材料供給手段を一時的に退避させながら移動させる方法が開示されている。
特開2007−100199号公報
三次元造形装置を用いた物品の製造では、装置の造形可能領域内にて複数の物品を同時に造形するいわゆる多数個取りを実行して生産性を向上することが行われる。
多数個取りの場合には、例えば造形途中の一つの物品に突起部が生じて造形装置の動作が停止すると、突起部なく正常に造形されつつあった他の物品についても造形を続行することができなくなり、全てを廃棄せざるを得なくなる。
特許文献1に開示された方法を採用した場合には、突起部と接触すると材料供給手段を一時的に退避させながら移動させるため、造形装置の動作が停止してしまうことは回避できる。しかし、材料供給手段を退避させながら移動させている間は、粉末材料を適切に供給することはできない。このため、突起部が生じた物品と並んで造形途中にある他の物品について、次の層を形成するための粉末材料が適切には供給されない。例えば、粉末の山をブレードで押しながら粉末層を形成してゆく場合に、突起部の位置でブレードを退避させると、そこに粉末の山を載置したままブレードは移動する。そして、突起部を通過した後にブレードを退避位置から戻しても、粉末材料が欠乏しているため、以後は粉末層を形成できないか、できたとしても所定の厚みよりも薄い層になってしまう。このように、それまで正常に造形されつつあった他の物品についても、粉末の山が載置されたり、粉末層の厚みが不足する部分が生じたりして、以後の造形を精度よく継続することができなくなっていた。このため、多数個取りを採用したとしても、実効的には生産性を向上することが困難になっていた。
そこで、粉末層の形成と固化を繰り返して複数の物品を同時に製造している途中で、その一部の物品に意図しない突起部が生じたとしても、造形装置を停止させることなく、他の物品の三次元造形を精度よく継続することができる方法が求められていた。
本発明は、三次元造形装置を用いて複数の物品を同時に製造する製造方法であって、前記三次元造形装置は、粉末層を形成可能な層形成部が基台の上を移動して所定の厚みの粉末層を形成する粉末層形成処理と、前記粉末層に前記複数の物品の形状に応じてエネルギービームを照射し、固化部を形成する固化処理と、を繰り返し、前記固化処理において、前記所定の厚みよりも高さが大きな突起部が前記固化部に形成された場合には、次に実行する前記粉末層形成処理において前記層形成部が前記基台の上を移動する際に、前記層形成部は前記突起部の手前までは前記所定の厚みの粉末層を形成しながら移動し、前記突起部の位置においては前記突起部と接触しない姿勢で粉末層を形成せずに移動し、前記突起部の位置を通過した後には前記層形成部は粉末層を形成する姿勢に復帰するとともに前記基台の上に原料粉末を追加して前記所定の厚みの粉末層を形成しながら移動する、ことを特徴とする製造方法である。
また、本発明は、基台と、前記基台の上を移動して所定の厚みの粉末層を形成可能な層形成部と、前記粉末層にエネルギービームを照射する照射部と、前記層形成部と前記照射部を制御する制御部と、突起部の存在の有無と、存在する場合の位置を検知するための検知部と、を備え、前記制御部は、前記層形成部に前記基台の上を移動させて所定の厚みの粉末層を形成する粉末層形成処理と、同時に形成する複数の物品の形状に応じて前記照射部にエネルギービームを前記粉末層に照射して固化部を形成する固化処理と、を繰り返し、前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検知した場合には、次に実行する前記粉末層形成処理において、前記層形成部が前記突起部を避けて粉末層を形成するように、前記層形成部を制御する、ことを特徴とする三次元造形装置である。
本発明によれば、粉末層の形成と固化を繰り返して複数の物品を同時に三次元造形する途中で、その一部の物品に意図しない突起部が生じたとしても、造形装置を停止させることなく、他の物品の三次元造形を精度よく継続することができる。
実施形態の三次元造形装置を示す模式的な断面図。 実施形態の粉末堆積装置とその周辺部を模式的に示す斜視図。 実施形態の粉末堆積装置の構造を模式的に示す一部断面図。 プレート上に複数の三次元造形物を形成する例を示す斜視図。 プレート上に複数の三次元造形物を形成する例を示す平面図。 (a)突起部が形成された状態を模式的に示す図。(b)突起部に到達する直前の位置まで粉末の層を敷く動作を示す図。 (a)板状部材を上方に退避させた状態で、粉末堆積装置をX軸正方向に移動させる動作を示す図。(b)突起部の先に粉末層を敷いてゆくための原料粉末を粉末供給機構から供給する動作を示す図。 突起部の先に粉末層を敷いてゆく動作を示す図。 (a)実施形態1の粉末堆積装置を模式的に示す図。(b)実施形態2の粉末堆積装置を模式的に示す図。
図面を参照して、本発明の実施形態である三次元造形物の製造方法と三次元造形装置について説明する。尚、以下の実施形態及び実施例の説明において参照する図面においては、特に但し書きがない限り、同一の機能を有する部材については同一の参照番号を付して示すものとする。
本発明の実施形態において、粉末層を加熱して固化部を形成する態様は、加熱された粉末が融点よりも低い温度で焼結するものでもよいし、粉末が融点以上に加熱されて溶融した後に冷却して固化するものでもよい。また、本発明の実施形態においては、固化部を積み重ねて三次元造形物を造形してゆくが、三次元造形物の断面観察等で固化部どうしの境界が確認できる場合もあるが、溶融の均一性が高い場合などには固化部どうしの境界が明確に検出されない場合もある。
[実施形態1]
(三次元造形装置)
図1を参照して、本実施形態に係る三次元造形装置1について説明する。
三次元造形装置1は、造形テーブル101を備え、造形テーブル101は三次元造形物を形成する際の基台として機能するプレート102を装着可能である。造形テーブル101は、位置基準としてピン103を備え、ピン103とプレート102のピン穴を嵌合させることで、プレート102の位置決めがなされる。本実施形態では、プレート102は、ネジ104により造形テーブル101に固定される。尚、プレートは、三次元造形物を形成する際の支持台として機能するものであれば、必ずしも板状である必要はなく、造形テーブルへの位置決め固定方法も、この例には限られない。造形テーブル101は、垂直移動機構106により、垂直方向(Z軸の正負方向)に移動可能に支持されている。
造形テーブル101の左右には、原料粉末を保管する粉末保管部113が配置され、粉末堆積装置107がプレート102上に粉末層を形成する際に使用する原料粉末を供給する。粉末保管部113は、粉末保管部垂直移動機構114により垂直方向(Z軸の正負方向)に移動可能に支持されている。粉末保管部113をZ軸正方向に所定距離だけ移動して所定量の原料粉末を押し上げ、粉末堆積装置107をX軸に沿って水平方向に移動させて板状部材21で原料粉末を押してゆくことにより、プレート102上に粉末層を形成することができる。図1中に点線で示す積層高さ規制線201は、粉末堆積装置107が形成する粉末層の上面の高さを示している。尚、粉末保管部113は、図1のように必ずしも造形テーブルの左右両方にある必要はなく、所定量の粉末を保管できる容量があれば左もしくは右のどちらか一方だけでもよい。
造形テーブル101の上方には、粉末堆積装置107と移動ガイド108が配置されている。粉末堆積装置107は、原料となる粉末を所定の厚さで堆積するための装置で、X軸に沿って水平方向を往復移動してプレート上を移動(走査)することができるように、移動ガイド108に支持されている。
図2は、本実施形態の粉末堆積装置107とその周辺部を模式的に示す斜視図である。また、図3は、本実施形態の粉末堆積装置107の構造を模式的に示す一部断面図である。
図3に示すように、粉末堆積装置107は板状部材21と粉末供給機構31を有している。板状部材21は、原料粉末の山をX軸に沿った方向に押してゆくことで、上面が平坦で厚みが一定の粉末層を形成するブレードである。ブレードの下端により形成する粉末層の厚みが規定されるため、板状部材21は粉末層の厚みを規定する厚み規定部であるといえる。
板状部材21の表面は原料粉末と摺動するので、耐摩耗性を向上するためのコーティング処理等を予め行うとよい。例えば、工作機械の工具や射出成形用金型等で使用されるダイヤモンドライクカーボン(DLC)のコーティングや、窒化処理や高周波焼入れなどの表面処理が効果的である。
粉末層の平坦性を担保するために、板状部材21は、原料粉末を押してゆく際に力がかかっても変形しにくい材料で作られている。すなわち、金属材料等の硬質材料が適しており、例えば、SKD11やSUS420J2、タングステンカーバイトなどが好適に用いられる。このように、板状部材21は高い強度で作られているため、もしも三次元造形物に形成された突起部と衝突した場合には、板状部材21はほとんど変形せず、駆動装置が抵抗のために停止してしまうか、または三次元造形物が倒壊する。
しかし、図3に示すように、本実施形態では、造形の途中で三次元造形物に突起が生じた場合に退避できるように、板状部材21は上下動可能に粉末堆積装置107に保持されている。上下させる機構に関しては、粉末堆積装置107に内蔵されて板状部材21を上下動できるものであればどのようなものであってもよい。例えば、空圧や油圧などで制御するピストン機構や、ラックとピニオンを用いてモータ等の回転運動を直線運動に変換する機構等を採用してもよい。また、本実施形態では、造形物に突起が生じた場合に板状部材21を上下動させて退避するが、退避の方法はこれに限らず、例えば、回転機構や伸縮機構により退避動作を行ってもよい。
図9(a)は、図3とは直交する方向から粉末堆積装置107を見た図である。本実施形態の板状部材21は、三次元造形物を形成する領域のY方向全幅に粉末を敷くことができるように所定の幅を有する1枚の板で構成されている。尚、所定の厚みの平坦な粉末層を形成するためには、上述した板状部材21でなくとも、例えばローラのように板状以外の部材を厚み規定部に用いることも可能である。その場合においても、三次元造形物に突起部が生じたときに退避動作を可能とする支持機構を設けておく。
本実施形態の三次元造形装置の粉末堆積装置107には、板状部材21と近接して粉末供給機構31が設けられている。粉末供給機構31は、上方からプレートの任意の位置に原料粉末を供給可能な供給部である。粉末供給機構31は、後述するように、造形物に突起部が生じて板状部材21を一時的に退避させた後に、原料粉末をプレート102に向けて適宜供給する。図3に示す粉末供給機構31は、図3と直交する方向から見ると、図9(a)に示すようにY方向に沿って並んで配置された複数の供給口51を備えている。粉末堆積装置107は、制御部112の指示に従って各々の供給口51からプレート102に向けて原料粉末を供給する。粉末供給機構31は、例えばシャッタ等の開閉機構や振動発生装置など、粉末供給のタイミングと量を制御するための機構を有している。
尚、本実施形態では、粉末堆積装置107の移動方向(X軸の正負方向)に沿って板状部材21を挟むように二つの粉末供給機構31を配置しているが、走査方法に合わせて変更可能である。例えば、粉末堆積装置107がX軸の正方向か負方向のどちらか一方向に移動する時のみに粉末層を堆積する装置の場合には、板状部材21の片側のみに粉末供給機構31を配置すればよい。
図1に戻り、造形テーブル101の上方には、エネルギービームを照射する照射部として、レーザ光源109、スキャナ110、集光レンズ111が配置されている。
レーザ光源109、スキャナ110、集光レンズ111は、粉末堆積装置107がプレート102上に敷いた原料粉末層に、造形形状に応じて加熱用のエネルギービームを局所選択的に照射するための照射光学系を構成している。
また、造形テーブルの上方に設置された監視装置115は、プレート102上に形成された粉末層の状態およびレーザ照射後の固化部の形状を計測するための装置で、例えば撮像装置を含んでいる。撮影画像を画像処理することで、突起部の存在の有無、および存在する場合にはその位置を検知することができる。監視装置115は、プレート102の上を監視して突起部を検出できるものであれば、どのような方式のものであってもよい。例えば、動画及び/または静止画を撮影できる撮像装置や、レーザを用いた測長機器を検知部として用いてもよい。また、接触式の変移センサや圧力センサを用いて、突起部の形状と位置を検知してもよい。監視装置115の方式、設置する位置、設置する台数等は、三次元造形物を作成する領域全体を必要な検知精度で測定できるように適宜選択すればよい。
三次元造形装置1の制御部112は、装置各部の動作を制御するためのコンピュータで、内部には、CPU、ROM、RAM、I/Oポート等を備えている。
コンピュータ読み取り可能な記憶媒体であるROMには、三次元造形装置1の動作プログラムが記憶されている。例えば、粉末層を形成可能な層形成部としての粉末堆積装置107が基台の上を移動して所定の厚みの粉末層を形成する粉末層形成処理を、制御部112が実行するプログラムである。あるいは、粉末層に複数の物品の形状に応じてエネルギービームを照射し、固化部を形成する固化処理を、制御部112が実行するためのプログラムである。
I/Oポートは、外部機器やネットワークと接続され、たとえば三次元造形に必要なデータの入出力を、外部コンピュータとの間で行うことができる。三次元造形に必要なデータとは、作成する三次元造形物の形状データや、作成に使用する材料の情報や、1層ごとの焼結層の形状データ、すなわちスライスデータを含む。スライスデータは、外部のコンピュータから受け取っても良いし、造形物の形状データに基づいて制御部112内のCPUが作成してRAMに記憶しても良い。
制御部112は、造形テーブルの垂直移動機構106、粉末堆積装置107、レーザ光源109、スキャナ110、集光レンズ111、粉末保管部垂直移動機構114などの各部と接続され、これらの動作を制御して造形に係る処理を実行する。
また、制御部112は、監視装置115で撮像されたレーザ照射後の三次元造形物の画像を解析し、突起部の存在の有無、および存在する場合にはその位置を検知する検知処理を行う。
(三次元造形物の製造方法)
まず、三次元造形装置1の基本的な造形動作を説明し、次に、意図しない突起部が形成された場合の動作を説明する。
三次元造形装置1の造形テーブル101にプレート102が装着されたら、三次元造形装置1は固化部を繰り返し堆積させてゆき、間隔をおいて配列された複数の三次元造形物をプレート102上に作成する。
一例として、図4の斜視図、および図5の平面図に示すように、8種類の合計49個の造形物を、プレート102上に互いに間隔を空けて7行7列に並べて作成する場合を説明する。もちろんこれは一例であって、実施形態において形成する複数の三次元造形物の形状、数、配置等はこの例に限られない。
まず、制御部112は、所定の厚みの粉末層を形成する粉末層形成処理を実行する。すなわち、制御部112は、垂直移動機構106に指令を送り、造形動作を行うための初期位置に造形テーブル101を移動させる。次に、左右どちらかの粉末保管部113を粉末保管部垂直移動機構114により上昇させ、積層高さ規制線201より上に粉末を上昇させる。
次に、制御部112は、粉末堆積装置107に指令を送り、上昇させた粉末保管部113側からプレート102に向けてX軸の正方向または負方向に移動ガイド108に沿って移動させる。その際には、板状部材21の下端の高さが積層高さ規制線201の高さと一致するように板状部材21のZ軸方向の位置を合わせておく。積層高さ規制線201より上に位置する粉末を、板状部材21が押し動かしながらプレート102の上を移動することにより、所定の厚さの一層目の原料粉末の層がプレート102の上に形成される。
1層目の粉末層が形成されたら、制御部112は、固化処理を実行する。すなわち、制御部112は、レーザ光源109、スキャナ110、集光レンズ111に指令を送り、固化させようとする箇所にレーザ光を照射させて原料粉末を加熱させる。レーザ光源109から出射したレーザ光は、スキャナ110によって、XY方向のそれぞれについて自由に走査される。レーザ光は、集光レンズ111で粉末層の極めて狭い領域に集束され、粉末層のうち局所加熱された部分が焼結あるいは溶融して固化する。スキャナ110によって走査しながら、レーザ光源109を明滅させることにより、粉末層の任意の位置にレーザ光を照射して固化部116を形成することができる。制御部112は、1層目に形成する固化部の形状パターンに応じて、固化処理を実行する。
こうして、49個の造形物について1層目の粉末層の固化が完了したら、制御部112は、垂直移動機構106に指令を送り造形テーブル101の高さを1層の厚さ分だけ下降させる。そして、粉末堆積装置107と粉末保管部垂直移動機構114に指令を送り、1層目の固化が完了したプレート102の上に2層目の原料粉末の層を堆積させる。
続いて、制御部112は、レーザ光源109、スキャナ110、集光レンズ111に指令を送り、2層目の形状パターンに沿ってレーザ光を照射させ、2層目の固化部を形成させる。以後、粉末層形成処理と固化処理を繰り返し実行して固化部を堆積させてゆき、所望の形状の物品が完成するまで三次元造形してゆく。
制御部112は、各層の固化処理の後には、次の層の粉末層形成処理を開始する前に、監視装置115が撮像した固化処理後の三次元造形物の画像を解析し、突起部が形成されていないかを監視する。具体的には、次の層を形成するために垂直移動機構106により造形テーブル101の高さを1層の厚さ分だけ下降させた時に、積層高さ規制線201より上に飛び出す高さを有する突起部が形成されていないかを監視する。かかる突起部が検出された場合には、制御部112は、当該突起部の位置、すなわちXY座標を記憶する。
(突起部が形成された場合の動作)
積層高さ規制線201より上に飛び出す高さを有する突起部(突出した固化部)が検出された場合には、制御部112は、上述した基本的な造形動作とは異なる手順で、次の層の粉末層形成処理を実行する。図6(a)〜図6(b)、図7(a)〜図7(b)、図8を参照しながら、三次元造形装置1の動作を説明する。尚、これらの図面では、図示の便宜のため、7行7列の三次元造形物の一部を省略して示している。
図6(a)は、粉末層形成処理と固化処理を複数回繰り返したところで、積層高さ規制線201より上に飛び出す高さを有する突起部が形成された状態を模式的に表している。11は、作成途中の三次元造形物、すなわち原料粉末が固化した部分を示し、12は意図せずに形成された突起部である。この突起部12が、例えば図5における4行D列の円柱状の三次元造形物を形成する途中に生じたとする。制御部112は、監視装置115が撮像した画像の解析結果から、突起部12の位置すなわちXY座標と高さを記憶する。
そして、次の層の粉末を堆積させるための準備として、上述の基本的な動作と同様に、制御部112は垂直移動機構106に指令を送り、造形テーブル101の高さを1層の厚さ分だけ下降させる。そして、粉末堆積装置107と粉末保管部垂直移動機構114に指令を送り、プレート102上に粉末を押し出して供給できるように、板状部材21の前に粉末の山13を形成する。
次に、図6(b)に示すように、粉末の山13を押しながら粉末堆積装置107を図の右方向(X軸正方向)に移動させ、上面が平坦になるように粉末層を敷いてゆく。制御部112は、突起部12の位置を記憶しており、板状部材21が突起部12に到達する直前の位置まで粉末層を敷いてゆくように粉末堆積装置107の動作を制御する。図5の4行D列の円柱状の三次元造形物に突起部が形成された例では、移動方向において手前の7行目から5行目までの全ての三次元造形物に関しては、正常に粉末が敷かれることになる。
板状部材21が突起部12に到達する直前の位置まで移動すると、制御部112は粉末堆積装置107に指令を送り、突起部12と接触しない高さまで板状部材21をZ軸正方向に移動させる。
そして、図7(a)に示すように、板状部材21を上方に退避させて突起部と接触しない姿勢にした状態で、粉末堆積装置107をX軸正方向に移動させる。板状部材21は、突起部12と接触することなくその上を通過するため、粉末堆積装置107が停止したり、突起部12がある4行D列の三次元造形物11を倒壊させることはない。この時、板状部材21を退避させたため、突起部12の近傍位置(図中の左側)には、粉末の山13が残留する。すなわち、図5の4行目の造形物の近傍には、Y軸方向に沿って粉末の山13が載置される。
そして、図7(b)に示すように、制御部112は、まだ粉末層を敷いていない3行目から1行目までに粉末層を敷くのに足る量の原料粉末を、粉末供給機構31に供給させる。すなわち、突起部12の近傍位置(図中の右側)に、突起部の先に粉末層を敷いてゆくための原料粉末をプレートの上方に配置された粉末供給機構31から供給して追加し、Y軸方向に沿った粉末の山14を形成する。
そして、図8に示すように、制御部112は、板状部材21の下端の高さが積層高さ規制線の高さと一致するまで板状部材21をZ軸負方向に下降させ、姿勢を復帰させた後、板状部材21をX軸正方向に移動させる。粉末の山14を押し動かしながらプレート102の上を移動することにより、図5の3行目から1行目の全ての三次元造形物を形成するための所定の厚さの原料粉末の層が形成される。
粉末層の形成が終了したら、レーザ光を照射し原料粉末を焼結させる工程に入るが、板状部材21を退避させて移動した部分、つまり図5の4行目に配置された造形物に関してはレーザ照射を行わない。4行目の造形物に関しては、最終的に廃棄することになるが、本実施形態によれば4行目に突起部が発生したとしても、三次元造形装置を停止させることなく1行目から3行目、および5行目から7行目の全ての三次元造形物を完成させることができる。
尚、実施形態の説明では、突起部が1箇所で発生した場合を示したが、複数個所で発生した場合であっても、各突起部の位置において、接触しない姿勢で粉末層を形成せずに層形成部が移動すればよい。そして、各突起部の位置を通過した後には層形成部は粉末層を形成する姿勢に復帰するとともに、基台の上に原料粉末を追加して所定の厚みの粉末層を形成すればよい。
すなわち、複数の物品を同時に三次元造形する途中で、その一部の物品に意図しない突起部が生じたとしても、造形装置を停止させることなく、多くの物品の三次元造形を精度よく継続することができる。
[実施形態2]
本発明の実施形態2について説明する。実施形態1と説明が共通する部分については、記載を省略する。
(三次元造形装置)
本実施形態の三次元造形装置の基本構成は実施形態1と共通するが、粉末堆積装置107の構成と動作が実施形態1とは異なる。
図9(b)は、本実施形態の粉末堆積装置107を、図3とは直交する方向から見た模式図であり、実施形態1における図9(a)に対応する図である。本実施形態の板状部材21は、図9(b)に示すように、Y軸方向に沿って隙間なく配列された複数の小板状部材41の集合体であり、各々の小板状部材41は、制御部112からの制御信号に基づき個別に上下動が可能である。すなわち、本実施形態の厚み規定部には、所定の領域を担当する規定部材である小板状部材41が、移動(走査)する方向と直交する方向に隙間なく複数配置されている。
また、Y方向に沿って並んで配置された複数の供給口51を備えているが、本実施形態では、各々の供給口51は、制御部112からの制御信号に基づき独立して粉末の供給を制御することが可能である。すなわち、本実施形態では、上方から前記基台の上に原料粉末を供給する供給部として、所定の領域を担当し独立して動作する供給口が、移動(走査)する方向と直交する方向に沿って複数配置されている。
(三次元造形物の製造方法)
本実施形態の三次元造形装置の基本的な造形動作は、実施形態1と同様であるので、説明を省略する。
(突起部が形成された場合の動作)
実施形態2について、意図しない突起部が形成された場合の動作を説明する。固化処理の後、図1の積層高さ規制線201より上に飛び出す高さを有する突起部が検出された場合には、制御部112は基本的な造形動作とは異なる手順で粉末層形成処理を実行し、次の粉末層を形成させる。図6(a)〜図6(b)、図7(a)〜図7(b)、図8を参照しながら、三次元造形装置1の動作を説明する。尚、これらの図面では、図示の便宜のため、7行7列の三次元造形物の一部を省略して示している。
図6(a)は、粉末の積層とレーザ光の照射を複数回繰り返したところで、積層高さ規制線201より上に飛び出す高さを有する突起部が形成された状況を模式的に表している。11は、作成途中の三次元造形物、すなわち原料粉末が焼結された部分を示し、12は意図せずに形成された突起部である。この突起部12が、例えば図5における4行D列の円柱状の三次元造形物の形成中に生じたとすると、制御部112は、監視装置115が撮像した画像の解析結果から、突起部12の位置すなわちXY座標と高さを記憶する。
次に、図6(b)に示すように、粉末の山13を押しながら粉末堆積装置107を図右方向(X軸正方向)に移動させ、上面が平坦になるように粉末層を敷いてゆく。制御部112は、突起部12の位置を記憶しており、板状部材21が突起部12に到達する直前の位置まで粉末の層を敷いてゆくように粉末堆積装置107の動作を制御する。図5の4行D列の円柱状の三次元造形物に突起部が形成された例では、移動方向において手前の7行目から5行目までの三次元造形物に関しては、正常に粉末が敷かれることになる。
板状部材21が突起部12に到達する直前の位置まで移動すると、制御部112は粉末堆積装置107に指令を送り、4行D列に存在する突起部12と対応する位置にある小板状部材を、突起部12と接触しない高さまでZ軸正方向に移動させる。図9(b)では、小板状部材41のうち、突起部12と対応する位置にある小板状部材を41Fとして示している。突起部12と対応する位置以外の小板状部材41は、引き続き下端が積層高さ規制線と同じ高さになるよう制御する。
そして、図7(a)に示すように、板状部材21の一部である小板状部材41Fを上方に退避させて突起部と接触しない姿勢にした状態で、粉末堆積装置107をX軸正方向に移動させる。小板状部材41Fは、突起部12と接触することなく通過するため、粉末堆積装置107が停止したり、突起部12がある三次元造形物11を倒壊させることはない。この時、小板状部材41Fを退避させたため、突起部12の近傍位置(図中の左側)には、粉末の山13が残留する。実施形態1では、図5の4行目各列の造形物の近傍にはY軸方向に沿って線状に粉末の山13が載置されるが、本実施形態では、4行D列の造形物の近傍にのみ粉末の山13が載置される。すなわち、D列以外の4行目の三次元造形物には、通常どおり粉末層が敷かれる。
そして、図7(b)に示すように、突起部12の近傍位置(図中の右側)に、以後のD列の造形物に粉末層を敷いてゆくため、原料粉末を粉末供給機構31の供給口から供給して追加し、粉末の山14を形成する。図9(b)では、複数の供給口51のうち、突起部が含まれる領域を担当する供給口を51Fとして示している。制御部112は、まだ粉末層を敷いていないD列の3行目から1行目までに粉末層を敷くのに十分な量の原料粉末を、突起部12が含まれる領域を担当する供給口51Fから供給させる。尚、41F以外の小板状部材41は通常通り粉末の山13を押し動かしてきているので、51F以外の供給口51から粉末を供給する必要はない。
そして、図8に示すように、制御部112は、板状部材21のうち退避させていた小板状部材41Fの下端の高さが積層高さ規制線の高さと一致するまでZ軸負方向に下降させ、姿勢を復帰させた後、板状部材21をX軸正方向に移動させる。すなわち、供給口51Fから供給された粉末の山14、および小板状部材41F以外の小板状部材41が押してきた粉末の山13を、全ての小板状部材で押し動かしながらプレート102の上を移動する。これにより、図5の3行目から1行目の三次元造形物を形成するための所定の厚さの原料粉末の層が精度よく形成される。
粉末層の形成が終了したら、レーザ光を照射し原料粉末を固化させる工程に入るが、突起が発生し板状部材21を退避させた部分、つまり図5の4行D列の造形物に関してはレーザ照射を行わない。突起部が発生した4行D列の造形物のみに関しては、最終的に廃棄することになる。しかし、本実施形態によれば、三次元造形装置を停止させることなく、1行目から3行目の全て、D列を除いた4行目の全て、および5行目から7行目全ての三次元造形物を精度よく完成させることができる。
尚、実施形態の説明では、突起部が1箇所で発生した場合を示したが、複数個所で発生した場合であっても、各突起部の位置において、接触しない姿勢で粉末層を形成せずに層形成部が移動すればよい。そして、各突起部の位置を通過した後には層形成部は粉末層を形成する姿勢に復帰するとともに、基台の上に原料粉末を追加して所定の厚みの粉末層を形成すればよい。
このように、本実施形態では、実施形態1よりも更に完成品の取れ数を増加させることができ、密集配置させて三次元造形物を作成する場合にも、突起部の発生に起因した造形物の廃棄数を低減することができる。
すなわち、複数の物品を同時に三次元造形する途中で、その一部の物品に意図しない突起部が生じたとしても、造形装置を停止させることなく、他の物品の三次元造形を精度よく継続することができる。
次に、具体的な実施例と比較例を示す。
実施例1〜実施例3は実施形態1に係る具体例で、実施例4は実施形態2に係る具体例である。また、比較例1は、板状部材の退避機構のみ搭載し、粉末堆積装置が粉末供給機構31を備えていない三次元造形装置を用いて造形を行った例である。比較例2は、板状部材の退避機構および粉末供給機構31を備えていない三次元造形装置を用いて造形を行った例である。
実施例および比較例の三次元造形工程は、同一条件下で行うようにした。すなわち、原料粉末として、粉末の最大粒径が35μm以下で、平均粒径が20μmのSUS630またはAlSi10Mgの粉末材料を使用した。光源はファイバーレーザを用い、造形時の雰囲気には、温度が30℃で酸素濃度1000ppmのアルゴンガスを用いた。
比較例1と比較例2は、実施例1と同じ材質の板状部材を備えた三次元造形装置を用い、実施例1と同じ材質の原料粉末を用いて造形した。
三次元造形物は、機械装置用部品として用いる30mm×30mm×30mmのブロックであり、実施例と比較例について同条件の多数個取りで造形した。一般的な加熱時よりも高エネルギーのレーザビームを照射して粉末の溶融を促進し、空孔の発生が抑制された高密度な造形物を作成した。
これらの実施例と比較例について、造形可否と造形品品質の2つの評価項目について評価を行った。
造形可否に関しては、造形工程の途中で多数個取りの造形物の一部に突起部が生じた場合に、突起部と板状形状の衝突により装置に過負荷が加わり異常停止しないか、あるいは造形物が倒壊して装置と干渉して異常停止しないかを評価した。造形工程が正常に終了した場合はA、装置が異常停止した場合はBとした。
造形品品質については、多数個取りの一部に突起部が生じた場合に、突起部が生じなかった造形物について目視で外観を検査し、粉末層の形成不良に起因した割れや造形段差などがないかを評価した。外観が良好な場合はA、割れや造形段差等を確認した場合はBとした。
実施例と比較例について、板状部材の材質、粉末の材質、評価結果をまとめて表1に示す。
Figure 2020132937
表1に示すように、いずれの実施例においても、実用上問題となるBの評価は無かった。すなわち、実施例1〜実施例4は、造形途中で一部の造形品に突起部が発生した場合に、造形工程は問題なく終了し、完成した造形品の品質は良好であり、完成品の取れ数が多かった。
これに対して比較例1では、造形途中で一部の造形品に突起部が発生した場合に、造形工程は完了したが、完成した造形品の多くには、粉末層の形成不良に起因した割れや段差が形成されており、良品の取れ数が実施例よりも遥かに少なかった。
また、比較例2では、造形途中で一部の造形品に突起部が発生した場合に、板状部材が造形物と衝突して停止したり、造形物が倒壊したりして、多くの場合は装置の動作が停止して完成品が得られなかった。また、造形物が倒壊した際に装置が停止しなかった場合であっても、倒壊した造形物と装置が干渉して以後の粉末層の形成が正常に行われなかったため、完成品の形状精度は極めて低かった。
[他の実施形態]
本発明は、以上説明した実施形態および実施例に限定されるものではなく、本発明の技術的思想内で多くの変形が可能である。
例えば、敷設した原料粉末層を加熱する光源として、上記実施形態ではレーザ光源を用いたが、照射エネルギー密度の制御や、照射光の走査ができるものであれば、用いる光は必ずしもレーザ光でなくてもよい。たとえば、高輝度ランプ、シャッタ、可変焦点レンズ、走査ミラー等の光学要素を組み合わせた照射光学系を用いることも、場合によっては可能である。さらに、加熱用のエネルギービームは光ビームでなくともよく、例えば電子ビームであってもよい。
また、原料粉末は、金属粉に限らず、ABSやPEEK等の樹脂粉末を用いても良く、粒径も上記実施形態や実施例のものに限られない。
1・・・三次元造形装置/11・・・三次元造形物/12・・・突起部/13・・・粉末の山/14・・・粉末の山/21・・・板状部材/31・・・粉末供給機構/41、41F・・・小板状部材/51、51F・・・供給口/101・・・造形テーブル/102・・・プレート/103・・・ピン/104・・・ネジ/106・・・垂直移動機構/107・・・粉末堆積装置/108・・・移動ガイド/109・・・レーザ光源/110・・・スキャナ/111・・・集光レンズ/112・・・制御部/113・・・粉末保管部/114・・・粉末保管部垂直移動機構/115・・・監視装置/116・・・固化部/201・・・積層高さ規制線

Claims (16)

  1. 三次元造形装置を用いて複数の物品を同時に製造する製造方法であって、
    前記三次元造形装置は、
    粉末層を形成可能な層形成部が基台の上を移動して所定の厚みの粉末層を形成する粉末層形成処理と、
    前記粉末層に前記複数の物品の形状に応じてエネルギービームを照射し、固化部を形成する固化処理と、を繰り返し、
    前記固化処理において、前記所定の厚みよりも高さが大きな突起部が前記固化部に形成された場合には、
    次に実行する前記粉末層形成処理において前記層形成部が前記基台の上を移動する際に、前記層形成部は前記突起部の手前までは前記所定の厚みの粉末層を形成しながら移動し、前記突起部の位置においては前記突起部と接触しない姿勢で粉末層を形成せずに移動し、前記突起部の位置を通過した後には前記層形成部は粉末層を形成する姿勢に復帰するとともに前記基台の上に原料粉末を追加して前記所定の厚みの粉末層を形成しながら移動する、
    ことを特徴とする製造方法。
  2. 前記層形成部は、前記粉末層の厚みを規定する厚み規定部を備え、
    前記固化処理において、前記所定の厚みよりも高さが大きな突起部が前記固化部に形成された場合には、
    次に実行する前記粉末層形成処理において、前記突起部の位置においては前記厚み規定部が前記突起部と接触しない位置に退避する、
    ことを特徴とする請求項1に記載の製造方法。
  3. 前記層形成部は、前記粉末層の厚みを規定する厚み規定部として、移動する方向と直交する方向に沿って配置され、各々が異なる領域を担当する複数の厚み規定部材を備え、
    前記固化処理において、前記所定の厚みよりも高さが大きな突起部が前記固化部に形成された場合には、次に実行する前記粉末層形成処理において、前記突起部の位置においては、当該位置を含む領域を担当する前記規定部材が前記突起部と接触しない位置に退避する、
    ことを特徴とする請求項1に記載の製造方法。
  4. 前記厚み規定部は、板状部材またはローラを備える、
    ことを特徴とする請求項2または3に記載の製造方法。
  5. 前記層形成部は、上方から前記基台に原料粉末を供給可能な供給部を備え、
    前記固化処理において、前記所定の厚みよりも高さが大きな突起部が前記固化部に形成された場合には、次に実行する前記粉末層形成処理において、前記突起部の位置を通過した後に前記供給部から原料粉末を供給する、
    ことを特徴とする請求項1乃至4のいずれか1項に記載の製造方法。
  6. 前記供給部は、移動する方向と直交する方向に沿って配置され、各々が前記基台の異なる領域を担当する複数の供給口を備え、
    前記固化処理において、前記所定の厚みよりも高さが大きな突起部が前記固化部に形成された場合には、次に実行する前記粉末層形成処理において、前記突起部の位置を通過した後に、前記突起部が含まれる領域を担当する前記供給口から原料粉末を供給する、
    ことを特徴とする請求項5に記載の製造方法。
  7. 検知部を用いて、前記突起部の存在の有無と、存在する場合の位置を検知する、
    ことを特徴とする請求項1乃至6のいずれか1項に記載の製造方法。
  8. 基台と、
    前記基台の上を移動して所定の厚みの粉末層を形成可能な層形成部と、
    前記粉末層にエネルギービームを照射する照射部と、
    前記層形成部と前記照射部を制御する制御部と、
    突起部の存在の有無と、存在する場合の位置を検知するための検知部と、を備え、
    前記制御部は、
    前記層形成部に前記基台の上を移動させて所定の厚みの粉末層を形成する粉末層形成処理と、
    同時に形成する複数の物品の形状に応じて前記照射部にエネルギービームを前記粉末層に照射して固化部を形成する固化処理と、を繰り返し、
    前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検知した場合には、
    次に実行する前記粉末層形成処理において、前記層形成部が前記突起部を避けて粉末層を形成するように、前記層形成部を制御する、
    ことを特徴とする三次元造形装置。
  9. 前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検出した場合には、
    前記突起部の手前までは前記層形成部が前記所定の厚みの粉末層を形成しながら移動し、前記突起部の位置においては前記層形成部が前記突起部と接触しない姿勢で粉末層を形成せずに移動し、前記突起部の位置を通過した後には前記層形成部が粉末層を形成する姿勢に復帰するとともに前記基台の上に原料粉末を追加して前記所定の厚みの粉末層を形成しながら移動する、ように前記層形成部を制御する、
    ことを特徴とする請求項8に記載の三次元造形装置。
  10. 前記層形成部は、前記粉末層の厚みを規定する厚み規定部を備え、
    前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検出した場合には、
    次に実行する前記粉末層形成処理において、前記突起部の位置においては前記突起部と接触しない位置に前記厚み規定部を退避させる、
    ことを特徴とする請求項8または9に記載の三次元造形装置。
  11. 前記層形成部は、前記粉末層の厚みを規定する厚み規定部として、移動する方向と直交する方向に沿って配置され、各々が異なる領域を担当する複数の厚み規定部材を備え、
    前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検出した場合には、
    次に実行する前記粉末層形成処理において、前記突起部の位置においては、当該位置を含む領域を担当する前記規定部材が前記突起部と接触しない位置に退避させる、
    ことを特徴とする請求項8または9に記載の三次元造形装置。
  12. 前記厚み規定部は、板状部材またはローラを備える、
    ことを特徴とする請求項10または11に記載の三次元造形装置。
  13. 前記層形成部は、上方から前記基台に原料粉末を供給可能な供給部を備え、
    前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検出した場合には、
    次に実行する前記粉末層形成処理において、前記突起部の位置を通過した後に前記供給部から原料粉末を供給する、
    ことを特徴とする請求項8乃至12のいずれか1項に記載の三次元造形装置。
  14. 前記供給部は、移動する方向と直交する方向に沿って配置され、各々が前記基台の異なる領域を担当する複数の供給口を備え、
    前記制御部は、前記検知部が、前記固化処理の後に、前記所定の厚みよりも高さが大きな突起部を検出した場合には、
    次に実行する前記粉末層形成処理において、前記突起部の位置を通過した後に、前記突起部が含まれる領域を担当する前記供給口に原料粉末を追加させる、
    ことを特徴とする請求項13に記載の三次元造形装置。
  15. 請求項8乃至14のいずれか1項に記載の三次元造形装置の前記制御部に、前記粉末層形成処理と前記固化処理を実行させるプログラム。
  16. 請求項15に記載のプログラムを記憶したコンピュータ読み取り可能な記憶媒体。
JP2019026965A 2019-02-18 2019-02-18 製造方法、三次元造形装置 Pending JP2020132937A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026965A JP2020132937A (ja) 2019-02-18 2019-02-18 製造方法、三次元造形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026965A JP2020132937A (ja) 2019-02-18 2019-02-18 製造方法、三次元造形装置

Publications (1)

Publication Number Publication Date
JP2020132937A true JP2020132937A (ja) 2020-08-31

Family

ID=72277857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026965A Pending JP2020132937A (ja) 2019-02-18 2019-02-18 製造方法、三次元造形装置

Country Status (1)

Country Link
JP (1) JP2020132937A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031758A (ja) * 2019-08-29 2021-03-01 株式会社ソディック 金属粉末積層造形方法および金属粉末積層造形装置
JP2022554302A (ja) * 2019-11-06 2022-12-28 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
JP2023517260A (ja) * 2019-09-10 2023-04-25 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
US11731368B2 (en) 2018-04-02 2023-08-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731368B2 (en) 2018-04-02 2023-08-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
JP2021031758A (ja) * 2019-08-29 2021-03-01 株式会社ソディック 金属粉末積層造形方法および金属粉末積層造形装置
JP2023517260A (ja) * 2019-09-10 2023-04-25 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
JP7320884B2 (ja) 2019-09-10 2023-08-04 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
JP2022554302A (ja) * 2019-11-06 2022-12-28 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
JP7320885B2 (ja) 2019-11-06 2023-08-04 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体

Similar Documents

Publication Publication Date Title
JP2020132937A (ja) 製造方法、三次元造形装置
EP3199327B1 (en) Novel method for calibrating laser additive manufacturing process
US10532513B2 (en) Method and arrangement for producing a workpiece by using additive manufacturing techniques
US11801633B2 (en) Apparatuses for continuously refreshing a recoater blade for additive manufacturing including a blade feed unit and arm portion
US10646924B2 (en) Additive manufacturing using a recoater with in situ exchangeable recoater blades
JP3724437B2 (ja) 三次元形状造形物の製造方法及びその製造装置
EP4230385A1 (en) Systems, methods and media for artificial intelligence feedback control in additive manufacturing
CN104159724B (zh) 三维形状造型物的制造方法
JP2018095946A (ja) 三次元造形物の製造方法、および三次元造形装置
CN109420762B (zh) 一种3d打印装置及方法
US20190134911A1 (en) Apparatus and methods for build surface mapping
US20210107215A1 (en) Adaptive Closed-Loop Control of Additive Manufacturing for Producing a Workpiece
CN111867754B (zh) 用于使多束照射系统对准的方法
EP3560635A1 (en) Additive manufacturing system with moveable sensors
EP3689503A1 (en) Recoating assembly for an additive manufacturing machine
US20190134891A1 (en) Dmlm build platform and surface flattening
CN204892952U (zh) 3d打印成型机
JP7171466B2 (ja) 製造方法、三次元造形装置
JP4141379B2 (ja) 三次元物体の造形方法および造形装置
JP2020026577A (ja) 三次元造形物を製造する方法、三次元造形装置
JP2021036072A (ja) 三次元造形物の製造方法、三次元造形装置、プログラム、記憶媒体、および粉末堆積装置
EP4116017A2 (en) Closed-loop automatic setting adjustments for additive manufacturing based on layer imaging
TW202408784A (zh) 加成製造中人工智慧反饋控制系統、方法及媒介

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207