JP2020127978A - Electroplated tool manufacturing method - Google Patents

Electroplated tool manufacturing method Download PDF

Info

Publication number
JP2020127978A
JP2020127978A JP2019020971A JP2019020971A JP2020127978A JP 2020127978 A JP2020127978 A JP 2020127978A JP 2019020971 A JP2019020971 A JP 2019020971A JP 2019020971 A JP2019020971 A JP 2019020971A JP 2020127978 A JP2020127978 A JP 2020127978A
Authority
JP
Japan
Prior art keywords
abrasive grains
base metal
adhesive tape
mesh sheet
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019020971A
Other languages
Japanese (ja)
Other versions
JP7013027B2 (en
Inventor
卓弥 仙波
Takuya Senba
卓弥 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Institute of Technology
Original Assignee
Fukuoka Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Institute of Technology filed Critical Fukuoka Institute of Technology
Priority to JP2019020971A priority Critical patent/JP7013027B2/en
Publication of JP2020127978A publication Critical patent/JP2020127978A/en
Application granted granted Critical
Publication of JP7013027B2 publication Critical patent/JP7013027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

To provide a method for manufacturing an electroplated tool in which abrasive grains are regularly arranged on a grindstone action surface.SOLUTION: This method includes: a step (S101) at which abrasive grains are located one by one in each open space of a mesh sheet bonded onto an adhesive tape; a step (S102) at which the mesh sheet is peeled from the adhesive tape; a step (S103) at which the adhesive tape is located in such a manner that a face thereof, to which the abrasive grains are adhered, is oriented to a surface of a base metal, and is pressed, thereby embedding the abrasive grains into the surface of the base metal; and a step (S105) at which electric plating is performed for the surface of the base metal.SELECTED DRAWING: Figure 3

Description

本発明は、台金表面に砥粒を電着固定した電着工具の製造方法に関する。 The present invention relates to a method for manufacturing an electrodeposition tool in which abrasive grains are electrodeposited and fixed on the surface of a base metal.

近年需要が増えている高硬度・小物部品の研削加工には、電気めっきを行い、台金表面にダイヤモンド砥粒を1層だけ固定化した電着工具が多用されている。従来の電着工具として、例えば、特許文献1には、粗粒のダイヤモンドホイールを使って平滑な研削加工面を作るため、工具の回転中心から砥石作用面にある砥粒先端までの距離を揃えることができる砥粒埋込み電着工具の製造方法が開示されている。 For the grinding of high hardness and small parts, which have been in increasing demand in recent years, electroplating tools in which electroplating is performed and only one layer of diamond abrasive grains is fixed on the surface of a base metal are often used. As a conventional electrodeposition tool, for example, in Patent Document 1, in order to make a smooth grinding surface by using a coarse-grained diamond wheel, the distance from the rotation center of the tool to the tip of the abrasive grain on the grindstone working surface is made uniform. A method of manufacturing an electro-deposited tool in which abrasive particles can be embedded is disclosed.

特開平6−39729号公報JP-A-6-39729

電気めっきを行い、工具台金の表面にダイヤモンド砥粒を1層だけ固定化した電着工具は既存の工具の中では最も切れ味が良い。しかしながら、通常、電着工具では、工具の回転中心から砥粒先端までの距離が揃っていないため、平滑な加工面は作れない。 An electroplated tool in which only one layer of diamond abrasive is fixed on the surface of the tool base metal by electroplating has the best sharpness among existing tools. However, in the electrodeposition tool, normally, the distance from the center of rotation of the tool to the tip of the abrasive grains is not uniform, so that a smooth machined surface cannot be formed.

上記特許文献1に記載の電着工具では、工具の回転中心から砥石作用面にある砥粒先端までの距離を揃えることができるとされているが、工具台金に機械振動を付加して砥粒を分散させても砥石作用面上に砥粒が均一に分布している保証はない。したがって、砥石の幅方向の粗さにはバラツキがある。 In the electrodeposition tool described in Patent Document 1, it is said that the distance from the center of rotation of the tool to the tip of the abrasive grains on the working surface of the grindstone can be made uniform, but mechanical vibration is added to the tool base metal to grind it. Even if the particles are dispersed, there is no guarantee that the abrasive particles are evenly distributed on the working surface of the grindstone. Therefore, the roughness of the grindstone in the width direction varies.

そこで、本発明においては、砥石作用面上に砥粒が規則正しく配列された電着工具の製造方法を提供することを目的とする。 Therefore, it is an object of the present invention to provide a method for manufacturing an electrodeposition tool in which abrasive grains are regularly arranged on a grindstone working surface.

本発明の電着工具の製造方法は、粘着テープ上に貼り付けられたメッシュシートの各オープンスペースに砥粒を1個ずつ配設すること、粘着テープからメッシュシートを剥離すること、砥粒が付着した面を台金の表面に向けて粘着テープを配置し、プレスすることにより台金の表面に砥粒を埋め込むこと、台金の表面に電気めっきを施すことを含む。 The method for producing the electrodeposition tool of the present invention is to dispose one abrasive grain in each open space of the mesh sheet attached on the adhesive tape, peel the mesh sheet from the adhesive tape, and remove the abrasive grains. The method includes arranging an adhesive tape with the adhered surface facing the surface of the base metal and pressing it to embed abrasive grains in the surface of the base metal, and performing electroplating on the surface of the base metal.

本発明の電着工具の製造方法によれば、粘着テープ上に貼り付けられたメッシュシートのオープンスペースに砥粒が1個ずつ配設することにより、粘着テープからメッシュシートを剥離すると、粘着テープ上に砥粒が規則正しく配列され、この粘着テープの砥粒が付着した面を台金の表面に向けて配置し、プレスすることで、台金の表面、すなわち砥石作用面上に砥粒が規則正しく配列され、電気めっきにより台金へ保持される。 According to the method for manufacturing an electrodeposition tool of the present invention, when the mesh sheet is peeled from the adhesive tape by disposing the abrasive grains one by one in the open space of the mesh sheet attached on the adhesive tape, the adhesive tape Abrasive grains are regularly arranged on the top, and by arranging the surface of the adhesive tape on which the abrasive grains adhere to the surface of the base metal and pressing it, the abrasive grains are regularly arranged on the surface of the base metal, that is, the working surface of the grindstone. They are arranged and held on the base metal by electroplating.

ここで、電気めっきは、プレス後、砥石作用面に付着している粘着剤を除去した後に行うことが望ましい。これにより、粘着テープを剥がした際に粘着テープの粘着剤が砥石作用面に付着している場合に、この付着している粘着剤を除去した後に電気めっきを行うことで、めっき皮膜をきれいに形成することができる。なお、粘着剤が残っていると、粘着剤が絶縁体となって電気めっきができなくなるため、プレス後、粘着剤は完全に除去した後に電気めっきを行う必要がある。 Here, it is desirable that the electroplating is performed after pressing and after removing the pressure-sensitive adhesive adhering to the working surface of the grindstone. As a result, when the adhesive of the adhesive tape adheres to the whetstone working surface when the adhesive tape is peeled off, the adhered adhesive is removed and electroplating is performed to form a clean plating film. can do. If the adhesive remains, the adhesive becomes an insulator and cannot be electroplated. Therefore, after the pressing, the adhesive must be completely removed and then electroplated.

また、本発明の電着工具の製造方法では、電気めっきを砥粒の1個分の厚さだけ施した後、めっき皮膜を磨いて砥粒の一部を表面に露出させることが望ましい。これにより、台金上に1層だけ埋め込まれた砥粒をめっき皮膜により完全に覆って面触れを除去することが可能となる。 Further, in the method for producing an electrodeposition tool according to the present invention, it is desirable that after electroplating is applied to the thickness of one abrasive grain, the plating film is polished to expose a part of the abrasive grain on the surface. As a result, it is possible to completely cover the abrasive grains embedded in only one layer on the base metal with the plating film and remove the surface contact.

粘着テープ上に貼り付けられたメッシュシートの各オープンスペースに砥粒を1個ずつ配設し、粘着テープからメッシュシートを剥離し、砥粒が付着した面を台金の表面に向けて粘着テープを配置し、プレスすることにより台金の表面に砥粒を埋め込み、台金の表面に電気めっきを施すことにより、砥石作用面上に砥粒が規則正しく配列された電着工具が得られる。 One abrasive grain is placed in each open space of the mesh sheet pasted on the adhesive tape, the mesh sheet is peeled off from the adhesive tape, and the surface with the abrasive grains is directed to the surface of the base metal. By arranging and pressing, the abrasive grains are embedded in the surface of the base metal, and the surface of the base metal is electroplated to obtain an electrodeposition tool in which the abrasive grains are regularly arranged on the working surface of the grindstone.

本発明の実施の形態における電着工具の概要を示す図であって、(A)は電着工具を砥石作用面からみた正面図、(B)は(A)のZ−Z線切断部端面図である。It is a figure which shows the outline|summary of the electrodeposition tool in embodiment of this invention, (A) is the front view which saw the electrodeposition tool from the grindstone action surface, (B) is the end surface of the ZZ line cutting part of (A). It is a figure. (A)本発明の実施の形態における正方配列させた砥粒を斜交配列させた電着工具と、(B)砥粒を単に正方配列させ、工具回転中心から砥石作用面にある砥粒先端までの高さを揃えた電着工具とを比較した説明図である。(A) An electrodeposition tool in which abrasive grains in a square arrangement in an embodiment of the present invention are obliquely arranged, and (B) abrasive grains are simply arranged in a square manner, and the tip of the abrasive grains on the working surface of the grindstone from the tool rotation center It is explanatory drawing which compared with the electrodeposition tool with which the same height was compared. 本発明の実施の形態における電着工具の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the electrodeposition tool in embodiment of this invention. メッシュシート作成工程の説明図であって、(A)は縦断面図、(B)は平面図である。It is explanatory drawing of a mesh sheet preparation process, (A) is a longitudinal cross-sectional view, (B) is a top view. メッシュサイズ#100のメッシュシートに、メッシュサイズ#100の砥粒を散布して作成したメッシュシートの顕微鏡画像である。It is a microscope image of the mesh sheet produced by spraying the abrasive grain of mesh size #100 on the mesh sheet of mesh size #100. メッシュシート剥離工程の説明図であって、(A)は縦断面図、(B)は平面図である。It is explanatory drawing of a mesh sheet peeling process, (A) is a longitudinal cross-sectional view and (B) is a top view. メッシュサイズ#100の砥粒が規則正しく付着された粘着テープの顕微鏡画像である。It is a microscope image of the adhesive tape to which the abrasive grain of mesh size #100 was regularly adhered. 台金への砥粒埋込み工程を示す説明図である。It is explanatory drawing which shows the process of embedding abrasive grains in a base metal. 粘着剤除去工程を示す説明図であって、(A)は粘着剤除去前の状態を示す縦断面図、(B)は粘着剤除去後の状態を示す縦断面図である。It is explanatory drawing which shows an adhesive removal process, Comprising: (A) is a longitudinal cross-sectional view which shows the state before adhesive removal, (B) is a longitudinal cross-sectional view which shows the state after adhesive removal. 粘着剤を除去した後の台金表面の顕微鏡画像である。It is a microscope image of the base metal surface after removing an adhesive. マシニングセンタにより面触れ除去を行う様子を示す説明図である。It is explanatory drawing which shows a mode that a surface removal is performed by a machining center. めっき皮膜の凹凸を平坦化する様子を示す説明図である。It is explanatory drawing which shows a mode that the unevenness|corrugation of a plating film is planarized. ロータリングドレッサによりドレッシングを実施する様子を示す説明図である。It is explanatory drawing which shows a mode that dressing is performed by a rotoring dresser. ドレッシングにより砥粒を砥石作用面に露出させる様子を示す説明図である。It is explanatory drawing which shows a mode that an abrasive grain is exposed to a grindstone action surface by dressing. 台金への砥粒埋込み後、電気めっき後、ならびに湿式ラッピング後に観察した砥石作用面の様子を示す顕微鏡画像であって、上段は5倍の微分干渉顕微鏡画像を示す図、下段はレーザ走査顕微鏡画像を示す図である。It is a microscope image showing the state of the working surface of the grindstone observed after embedding the abrasive grains in the base metal, after electroplating, and after wet lapping, in which the upper stage shows a 5× differential interference contrast microscope image, and the lower stage shows a laser scanning microscope. It is a figure which shows an image. 研削実験の説明図である。It is explanatory drawing of a grinding experiment. (A)はSD400を使って成形された加工面の顕微鏡画像(比較例)を示す図、(B)はSD140Pを使って成形された加工面の顕微鏡画像(実施例)を示す図である。(A) is a figure which shows the microscope image (comparative example) of the processed surface shape|molded using SD400, (B) is a figure which shows the microscope image (example) of the processed surface shape|molded using SD140P.

図1は本発明の実施の形態における電着工具の概要を示す図であって、(A)は電着工具を砥石作用面からみた正面図、(B)は(A)のZ−Z線切断部端面図である。 FIG. 1 is a diagram showing an outline of an electrodeposition tool according to an embodiment of the present invention, where (A) is a front view of the electrodeposition tool as seen from the working surface of a grindstone, and (B) is a line ZZ of (A). FIG.

図1(B)に示すように、本発明の実施の形態における電着工具1は、台金2の表面に砥粒3を電着固定し、砥石作用面にある砥粒3先端の高さ(工具回転中心から砥粒3先端までの高さ)を揃えた電着砥石である。砥粒3は、図1(A)に示す正方形のメッシュ4の交差部4Aにそれぞれ1個ずつ配列(正方配列)されている。なお、図1(A)に示すように、正方形のメッシュ4は、研削方向に対して傾斜角度θで配置されている。すなわち、砥粒3は、研削方向に対して傾斜角度θで斜交配列されていることになる。 As shown in FIG. 1(B), the electrodeposition tool 1 according to the embodiment of the present invention has abrasive grains 3 electrodeposited and fixed on the surface of a base metal 2 and the height of the tips of the abrasive grains 3 on the working surface of the grindstone. It is an electrodeposition grindstone with uniform (height from the tool rotation center to the tip of the abrasive grain 3). One abrasive grain 3 is arranged at each intersection 4A of the square mesh 4 shown in FIG. 1(A) (square arrangement). As shown in FIG. 1A, the square meshes 4 are arranged at an inclination angle θ with respect to the grinding direction. That is, the abrasive grains 3 are obliquely arranged at an inclination angle θ with respect to the grinding direction.

図2は(A)本発明の実施の形態における正方配列させた砥粒を斜交配列させた電着工具と、(B)砥粒を単に正方配列させ、工具回転中心から砥石作用面にある砥粒先端までの高さを揃えた電着工具とを比較した説明図である。 FIG. 2 shows (A) an electrodeposition tool in which square-arranged abrasive grains are obliquely arranged in the embodiment of the present invention, and (B) abrasive grains are simply square-arranged, and the grindstone working surface is located from the tool rotation center. It is explanatory drawing which compared with the electrodeposition tool which made the height to the abrasive grain tip uniform.

図2(A)に示すように、正方配列させた砥粒3を斜交配列させた電着工具1では、条痕の幅b=ω・cosθ/mであり、傾斜角度θを増やせばbは減少する。そのため、砥石幅方向(研削方向に対して直交方向)の粗さ≒0となる。なお、同一円周上の砥粒数nは無限大であるため、トラバース方向の粗さ≒0である。 As shown in FIG. 2(A), in the electrodeposition tool 1 in which the abrasive grains 3 arranged in a square are obliquely arranged, the width b of the striation is b=ω·cos θ/m, and if the inclination angle θ is increased, b Decreases. Therefore, the roughness in the grindstone width direction (direction orthogonal to the grinding direction) is approximately 0. Since the number of abrasive grains n on the same circumference is infinite, the roughness in the traverse direction ≈0.

一方、図2(B)に示すように、砥粒を単に正方配列させ、工具回転中心から砥石作用面にある砥粒先端までの高さを揃えた電着工具では、条痕の幅b=ω/2であり、砥石幅方向の粗さは均一となるが、良くはない。なお、同一円周上の砥粒数nは無限大であるため、トラバース方向の粗さ≒0である。 On the other hand, as shown in FIG. 2B, in the electrodeposition tool in which the abrasive grains are simply arranged in a square manner and the height from the tool rotation center to the tip of the abrasive grains on the working surface of the grindstone is uniform, the width b of the scratches is It is ω/2, and the roughness in the width direction of the grindstone is uniform, but it is not good. Since the number of abrasive grains n on the same circumference is infinite, the roughness in the traverse direction is ≈0.

次に、本発明の実施の形態における電着工具の製造方法について、図3のフロー図に従って説明する。図3は本発明の実施の形態における電着工具の製造方法を示すフロー図である。 Next, a method of manufacturing the electrodeposition tool according to the embodiment of the present invention will be described with reference to the flowchart of FIG. FIG. 3 is a flow chart showing a method for manufacturing an electrodeposition tool according to an embodiment of the present invention.

(S101)メッシュシート作成
図4はメッシュシート作成工程の説明図であって、(A)は縦断面図、(B)は平面図である。図4に示すように、ポリエチレン製のメッシュシート10の裏面に粘着テープ11を貼付け、表側から砥粒3を散布する。砥粒3としては、例えばブロッキーなダイヤモンド粒子を破砕して作られたメッシュサイズが#500以下の粗粒のダイヤモンド砥粒を使用する。これにより、各オープンスペース10Aに砥粒3が1個ずつ配設されたメッシュシート10を作成する。図5はメッシュサイズ#100のメッシュシート10に、メッシュサイズ#100の砥粒3を散布して作成したメッシュシート10の顕微鏡画像である。
(S101) Mesh Sheet Creation FIGS. 4A and 4B are explanatory views of the mesh sheet creation step, where FIG. 4A is a vertical sectional view and FIG. 4B is a plan view. As shown in FIG. 4, the adhesive tape 11 is attached to the back surface of the polyethylene mesh sheet 10, and the abrasive grains 3 are sprayed from the front side. As the abrasive grain 3, for example, a coarse diamond abrasive grain having a mesh size of #500 or less made by crushing blocky diamond particles is used. In this way, the mesh sheet 10 in which the abrasive grains 3 are arranged in each open space 10A is created. FIG. 5 is a microscope image of the mesh sheet 10 created by spraying the abrasive grains 3 of mesh size #100 on the mesh sheet 10 of mesh size #100.

(S102)メッシュシート剥離
図6はメッシュシート剥離工程の説明図であって、(A)は縦断面図、(B)は平面図である。図4に示す粘着テープ11からメッシュシート10を剥離すると、図6に示すように、砥粒3が規則正しく付着された粘着テープ11が作成される。図7はメッシュサイズ#100の砥粒3が規則正しく付着された粘着テープ11の顕微鏡画像である。
(S102) Mesh Sheet Peeling FIGS. 6A and 6B are explanatory views of the mesh sheet peeling step, where FIG. 6A is a vertical sectional view and FIG. 6B is a plan view. When the mesh sheet 10 is peeled off from the adhesive tape 11 shown in FIG. 4, the adhesive tape 11 to which the abrasive grains 3 are regularly attached is prepared as shown in FIG. FIG. 7 is a microscope image of the adhesive tape 11 to which the abrasive grains 3 having a mesh size of #100 are regularly attached.

(S103)プレスにより砥粒埋込み
図8は台金への砥粒埋込み工程を示す説明図である。図8に示すように、砥粒3が付着された粘着テープ11をカップ形の台金12の表面に貼付け、砥粒3の先端が揃うようにプレス機を使ってプレスすることにより、台金12に砥粒3を埋込む。台金12は、黄銅やジュラルミンといった軟質な工具台金である。例えば、黄銅製の台金12を超硬製の金型13上に配置し、3tプレスにより砥粒3を台金12に埋込む。このとき、砥石作用面にある砥粒3先端の高さが揃うようにプレスする。なお、後に粘着テープ11により付着した粘着剤11Aを除去するので、完全フラットには押し切らないようにする。
(S103) Embedding Abrasive Grains by Pressing FIG. 8 is an explanatory view showing a step of embedding abrasive grains in a base metal. As shown in FIG. 8, the adhesive tape 11 to which the abrasive grains 3 are attached is adhered to the surface of the cup-shaped base metal 12 and pressed with a pressing machine so that the tips of the abrasive grains 3 are aligned. Abrasive grains 3 are embedded in 12. The base metal 12 is a soft tool base metal such as brass and duralumin. For example, a brass base metal 12 is placed on a super hard metal mold 13, and the abrasive grains 3 are embedded in the base metal 12 by a 3t press. At this time, pressing is performed so that the heights of the tips of the abrasive grains 3 on the working surface of the grindstone are aligned. Since the adhesive 11A adhered by the adhesive tape 11 is removed later, the adhesive tape 11 should not be pressed completely flat.

(S104)粘着剤除去
図9は粘着剤除去工程を示す説明図であって、(A)は粘着剤除去前の状態を示す縦断面図、(B)は粘着剤除去後の状態を示す縦断面図である。上記プレス後、粘着テープ11を剥がし、砥石作用面に付着している粘着剤11Aを除去する。粘着剤11Aがアクリル系の場合、トルエンに漬けて除去する。図10は粘着剤11Aを除去した後の台金表面の顕微鏡画像である。
(S104) Adhesive Removal FIG. 9 is an explanatory view showing an adhesive removing step, (A) is a vertical cross-sectional view showing a state before removing the adhesive, and (B) is a vertical section showing a state after removing the adhesive. It is a side view. After the pressing, the adhesive tape 11 is peeled off and the adhesive 11A attached to the working surface of the grindstone is removed. When the adhesive 11A is acrylic, it is immersed in toluene for removal. FIG. 10 is a microscope image of the surface of the base metal after removing the adhesive 11A.

(S105)電気めっき
台金12への砥粒3の保持力を上げるため、台金12の表面にニッケルを電気めっきする。このとき、砥粒3の1個分の厚さだけめっき皮膜14(図12参照。)を形成する。
(S105) Electroplating In order to increase the holding power of the abrasive grains 3 on the base metal 12, nickel is electroplated on the surface of the base metal 12. At this time, the plating film 14 (see FIG. 12) is formed by the thickness of one abrasive grain 3.

(S106)砥粒先端露出
めっき後、図11に示すように、作成された電着工具1Aを立形マシニングセンタに取り付け、芯ぶれ防止用止めボルトを使って芯出しを行い、面触れを除去するために、図12に示すように耐水ペーパ等(図示せず。)でめっき皮膜14を磨き、めっき皮膜14の凹凸を平坦化し、砥粒3の先端を一部露出させる。
(S106) Exposure of Abrasive Grain Tip After plating, as shown in FIG. 11, the prepared electrodeposition tool 1A is attached to a vertical machining center, and centering is performed by using a runout preventing stop bolt to remove contact. For this purpose, as shown in FIG. 12, the plating film 14 is polished with water resistant paper or the like (not shown) to flatten the irregularities of the plating film 14 to partially expose the tips of the abrasive grains 3.

最後に、面触れを除去した電着工具1Aに対し、図13に示すように、メッシュサイズが#3000のロータリングドレッサGV3000Vを使用し、図14に示すように、砥粒3を粒径dの1/5程度、砥石作用面に露出させるためのドレッシングを実施する。これにより、砥粒3が台金12の表面に一部埋設され、台金12の表面に砥粒3の一部が露出しためっき層14Aを有する電着工具1Aが完成する。 Finally, as shown in FIG. 13, a rotoring dresser GV3000V having a mesh size of #3000 is used for the electrodeposition tool 1A from which the surface contact has been removed, and the abrasive grains 3 have a particle size d as shown in FIG. The dressing for exposing to the working surface of the grindstone is carried out for about 1/5 of the above. As a result, the abrasive grains 3 are partially embedded in the surface of the base metal 12, and the electrodeposition tool 1A having the plating layer 14A in which a part of the abrasive grains 3 is exposed on the surface of the base metal 12 is completed.

図15は台金への砥粒埋込み後、電気めっき後、ならびに湿式ラッピング後に観察した砥石作用面の様子を示す顕微鏡画像であって、上段は5倍の微分干渉顕微鏡画像、下段はレーザ走査顕微鏡画像を示している。 FIG. 15 is a microscope image showing a working surface of a grindstone observed after embedding abrasive grains in a base metal, after electroplating, and after wet lapping. The upper stage is a 5× differential interference contrast microscope image, and the lower stage is a laser scanning microscope. The image is shown.

本発明の電着工具の有用性を確認するため、比較例としての粒径が37.5μm(メッシュサイズ#400)の市販のレジンボンドダイヤモンドホイール(SD400B)と、実施例としての砥粒3の粒径が107.1μm(メッシュサイズ#140)の電着工具1A(SD140P)とを使って研削実験を行った。図16に示すように、まずSD400B(比較例)を使って研削を行い、その後、SD140P(実施例)を使って研削を行った。研削は1500rpm、100mm/min、2μm切込みにより行った。 In order to confirm the usefulness of the electrodeposition tool of the present invention, a commercially available resin bond diamond wheel (SD400B) having a particle size of 37.5 μm (mesh size #400) as a comparative example and abrasive grains 3 as an example were used. A grinding experiment was performed using an electrodeposition tool 1A (SD140P) having a particle size of 107.1 μm (mesh size #140). As shown in FIG. 16, first, grinding was performed using SD400B (comparative example), and then grinding was performed using SD140P (example). Grinding was performed at 1500 rpm, 100 mm/min, and 2 μm incision.

図17(A)はSD400を使って成形された加工面の顕微鏡画像(比較例)を示し、(B)はSD140Pを使って成形された加工面の顕微鏡画像(実施例)を示している。図17に示すように、メッシュサイズが#140の電着工具1A(SD140P(実施例))を使ったにもかかわらず、市販のメッシュサイズ#400のレジンボンドダイヤモンドホイール(SD400B(比較例))を使った場合の加工面(2.5μm Rz)に比べて平滑な加工面(0.3μm Rz)が得られている。 FIG. 17A shows a microscope image (comparative example) of a machined surface formed by using SD400, and FIG. 17B shows a microscope image (example) of a machined surface formed by using SD140P. As shown in FIG. 17, despite using the electrodeposition tool 1A having a mesh size of #140 (SD140P (example)), a commercially available resin bond diamond wheel having a mesh size of #400 (SD400B (comparative example)). A smooth processed surface (0.3 μm Rz) is obtained as compared with the processed surface (2.5 μm Rz) when using.

すなわち、本発明の電着工具では、研削方向に対して斜交配列された砥粒により条痕の幅を減少させることができるため、砥石幅方向の粗さを均一にすることができ、メッシュサイズが#500以下の粗粒を使用した場合であっても平滑な研削加工面を作ることが可能となっている。また、傾斜角度θを例えば80°以上に設定することにより、メッシュサイズ#500以下の粗粒を使用して、砥石幅方向の粗さを10nm Rz以下とすることも可能となる。 That is, in the electrodeposition tool of the present invention, since it is possible to reduce the width of the scratches by the abrasive grains obliquely arranged in the grinding direction, it is possible to make the roughness in the grinding stone width direction uniform, the mesh Even if coarse particles of size #500 or less are used, it is possible to make a smooth ground surface. Further, by setting the inclination angle θ to, for example, 80° or more, it is possible to use the coarse particles having a mesh size of #500 or less and the roughness in the grindstone width direction to be 10 nm Rz or less.

本発明の電着工具は、高硬度・小物部品の研削加工に有用であり、特に、砥石幅方向の粗さを均一にして、メッシュサイズが#500以下の粗粒により平滑な加工面を形成可能な電着工具として好適である。 INDUSTRIAL APPLICABILITY The electrodeposition tool of the present invention is useful for grinding high hardness/small parts, and in particular, the roughness in the width direction of the grindstone is made uniform, and a smooth machined surface is formed by coarse particles having a mesh size of #500 or less. It is suitable as a possible electrodeposition tool.

1,1A 電着工具
2 台金
3 砥粒
4 メッシュ
4A 交差部
10 メッシュシート
10A オープンスペース
11 粘着テープ
11A 粘着剤
12 台金
13 金型
14 めっき皮膜
14A めっき層
1,1A Electrodeposition tool 2 Base metal 3 Abrasive grains 4 Mesh 4A Intersection 10 Mesh sheet 10A Open space 11 Adhesive tape 11A Adhesive 12 Base metal 13 Mold 14 Plating film 14A Plating layer

Claims (4)

粘着テープ上に貼り付けられたメッシュシートの各オープンスペースに砥粒を1個ずつ配設すること、
前記粘着テープから前記メッシュシートを剥離すること、
前記砥粒が付着した面を台金の表面に向けて前記粘着テープを配置し、プレスすることにより前記台金の表面に前記砥粒を埋め込むこと、
前記台金の表面に電気めっきを施すこと
を含む電着工具の製造方法。
Arranging one abrasive grain in each open space of the mesh sheet attached on the adhesive tape,
Peeling the mesh sheet from the adhesive tape,
Placing the adhesive tape with the surface to which the abrasive particles are attached facing the surface of the base metal, and embedding the abrasive particles in the surface of the base metal by pressing,
A method for manufacturing an electrodeposition tool, which comprises subjecting the surface of the base metal to electroplating.
前記電気めっきは、前記プレス後、砥石作用面に付着している粘着剤を除去した後に行うことを特徴とする請求項1記載の電着工具の製造方法。 The method for manufacturing an electrodeposition tool according to claim 1, wherein the electroplating is performed after the pressing and after removing an adhesive agent adhering to the working surface of the grindstone. 前記電気めっきを前記砥粒の1個分の厚さだけ施した後、めっき皮膜を磨いて前記砥粒の一部を表面に露出させることを特徴とする請求項1または2に記載の電着工具の製造方法。 The electrodeposition according to claim 1 or 2, wherein after the electroplating is performed by a thickness of one of the abrasive grains, the plating film is polished to expose a part of the abrasive grains on the surface. Tool manufacturing method. 前記メッシュシートの各オープンスペースへの砥粒の配設は、前記メッシュシート上へ砥粒を散布することにより行うことを特徴とする請求項1から3のいずれか1項に記載の電着工具の製造方法。 4. The electrodeposition tool according to any one of claims 1 to 3, wherein the abrasive grains are arranged in each open space of the mesh sheet by spraying the abrasive grains onto the mesh sheet. Manufacturing method.
JP2019020971A 2019-02-07 2019-02-07 How to manufacture electrodeposition tools Active JP7013027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019020971A JP7013027B2 (en) 2019-02-07 2019-02-07 How to manufacture electrodeposition tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019020971A JP7013027B2 (en) 2019-02-07 2019-02-07 How to manufacture electrodeposition tools

Publications (2)

Publication Number Publication Date
JP2020127978A true JP2020127978A (en) 2020-08-27
JP7013027B2 JP7013027B2 (en) 2022-01-31

Family

ID=72175239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019020971A Active JP7013027B2 (en) 2019-02-07 2019-02-07 How to manufacture electrodeposition tools

Country Status (1)

Country Link
JP (1) JP7013027B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720112B2 (en) * 1978-05-31 1982-04-26
JPH0557617A (en) * 1991-08-28 1993-03-09 Komatsu Ltd Electrodeposited tool and manufacture thereof
JPH0639729A (en) * 1992-05-29 1994-02-15 Canon Inc Precision grinding wheel and its manufacture
JP3016588B2 (en) * 1990-01-22 2000-03-06 アルティメート アブレイシィブ システムズ エル.エル.シー. Composite material
JP2007098548A (en) * 2005-10-07 2007-04-19 Nitolex Honsha:Kk Grinding element and its manufacturing method
JP4248167B2 (en) * 2001-08-08 2009-04-02 株式会社ノリタケスーパーアブレーシブ Grinding wheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720112B2 (en) * 1978-05-31 1982-04-26
JP3016588B2 (en) * 1990-01-22 2000-03-06 アルティメート アブレイシィブ システムズ エル.エル.シー. Composite material
JPH0557617A (en) * 1991-08-28 1993-03-09 Komatsu Ltd Electrodeposited tool and manufacture thereof
JPH0639729A (en) * 1992-05-29 1994-02-15 Canon Inc Precision grinding wheel and its manufacture
JP4248167B2 (en) * 2001-08-08 2009-04-02 株式会社ノリタケスーパーアブレーシブ Grinding wheel
JP2007098548A (en) * 2005-10-07 2007-04-19 Nitolex Honsha:Kk Grinding element and its manufacturing method

Also Published As

Publication number Publication date
JP7013027B2 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
CN1867428B (en) Abrasive tools made with a self-avoiding abrasive grain array
US5993298A (en) Lapping apparatus and process with controlled liquid flow across the lapping surface
US5910041A (en) Lapping apparatus and process with raised edge on platen
US6120352A (en) Lapping apparatus and lapping method using abrasive sheets
KR20080065612A (en) Methods of bonding superabrasive particles in an organic matrix
JPH0639729A (en) Precision grinding wheel and its manufacture
TW200821092A (en) Conditioning disk having uniform structures
JP2002210659A (en) Finishing tool of chemical/mechanical flatting technology pad of grid-like diamond array
TW201936315A (en) Wafer production method
JP2003300165A (en) Segment type grinding wheel
CN106826601A (en) The method of CMP pad dresser of the manufacture with bitellos monocrystalline
JP5998574B2 (en) Manufacturing method of scribing wheel
KR101052325B1 (en) CMP pad conditioner and manufacturing method thereof
JP2009166150A (en) Wafer manufacturing method
JP7013027B2 (en) How to manufacture electrodeposition tools
JP7013026B2 (en) Electroplating tool
JPH0557617A (en) Electrodeposited tool and manufacture thereof
JP7018292B2 (en) Carrier and method of manufacturing a substrate using the carrier
TW201600229A (en) Scribing wheel and method of manufacturing same
KR20170073854A (en) A grind disk of grinder
CN217800999U (en) Composite base diamond grinding pad
WO2016166852A1 (en) Abrasive material and rotary polishing tool
TW201545839A (en) Manufacturing method of chemical mechanical polishing trimmer
JPH1199475A (en) Polisher correction tool and its manufacture
JP2010115768A (en) Cbn grinding wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7013027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150